T UM

INSTITUT FURINFORMATIK

Architecture: Methodology of Decomposition

Maria Spichkova

TUM-I1018
Oktober 10

TECHNISCHEUNIVERSITAT MUNCHEN

TUM-INFO-10-I1018-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2010

Druck: Institut fur Informatik der
Technischen Universitat Munchen

M. Spichkova

This paper presents a methodology of formal specification de-
composition. We show which development steps are necessary on
this phases and how the system architecture can be decomposed
schematically.

Architecture: Methodology of Decomposition, October 1, 2010

Contents
1 Introduction 5
2 FOCUS: Main Aspects 7
2.1 Concept of Streams Lo Lo 8
2.2 Specifications 9
3 Architecture: Methodology of Decomposition 10
3.1 Mealy vs. Moore? 10
3.2 Local Variables 11
3.3 Outputs That Depends from Inputs 13
4 Case Study: Data Types and Constants 14
5 Case Study: Auxiliary Functions and Predicates 15
5.1 Function ModSubtraction 15
5.2 Predicate SignallPrecondition 15
5.3 Function SignalAccepted L. 16
5.4 Predicates SystemStateSubset and CrCtStateActive 16
5.5 Function LimitedValue 17
6 Case Study: Specifications of the Subcomponents 18
6.1 Logic. e 18
6.1.1 Decomposition: Mealy vs. Moore 19
6.1.2 LogicInf Component 19
6.1.3 Logic Component 21
6.1.4 Decomposition: Local Variables 24
6.1.5 LogicLoc Component 30
6.1.6 LogicLoc Component: Parallel Decomposition 32
6.1.7 LogicLoc Subcomponent: Timed State Transition Diagrams 34
6.1.8 Decomposition: Outputs That Depends from Inputs . . . 37
6.1.9 LogicOut Component 41
6.1.10 LogicOut Component: Timed State Transition Diagram . 46
6.1.11 LogicMain Component 48
6.1.12 State So ol
6.1.13 State S;o 51
6.1.14 State So 52
6.1.15 State S3 53
6.1.16 State Sq 99
6.1.17 State S5 55
6.1.18 State Sg « « « o v e e 56
6.1.19 State Sy 56
6.2 LogicMain Component: Timed State Transition Diagram 58
7 Specification of the System Requirements 60

M. Spichkova

8 Summary

References

62
63

Architecture: Methodology of Decomposition, October 1, 2010

1 Introduction

This paper! presents a part of specification and verification process developed
within the Verisoft-XT project [14]. The purpose of this project is to inte-
grate verification techniques in real industrial development processes — from
specification and analysis of requirements to a verified implementation.

The main focus here is on embedded systems. Embedded systems is not only
the most important field for current computer-based applications, but is also
one of the most challenging fields of software engineering: such a system must
meet real-time requirements, is safety critical and distributed over multiple
Processors.

The complexity of such systems increases from day to day. Therefore, build-
ing correct software becomes more and more complicated. Moreover, the de-
veloping of an appropriate and manageable software architecture becomes also
more and more important. In this paper we discuss the methodology and earlier
phases of the process applied to build verified application software.

The starting point of this approach is a requirement specification developed
according to the ideas presented in [5]. This kind of specification is semiformal
one an cab be inexact as well as contain some underspecifications or, ever worse,
contradictions. On base of these semiformal requirements the corresponding
message sequence charts (MSCs) can specified — this representation deals for
the visualization of the semiformal specification to get ore readability and to
find out more inconsistencies or uderspecified parts already on the semiformal
level.

After that we can translate the semiformal specification to a formal ones in
Focus [2] that is a framework for formal specifications and development of
interactive systems: we split the semiformal requirements into two main parts
— the general ones, which correspond to the general system requirements (black
box view), and more concrete ones, which correspond to the system architecture
(glass box view). If some missing requirements are found, they need to be added;
if some inconsistencies are found, they must be corrected corrected. Of course,
on the specification phase not all of the underspecifications and inconsistencies
can be easily found (this is a task for the verification phase), but a number of
them can be resolved even before the formal verification.

In this paper we focus on the formal specification phase: on the developing of
a logical system architecture and on the corresponding system decomposition.
There is a large number of approaches in this area (see, e.g., [6, 8, 16, 4]). The
main difference and the main contribution of our decomposition methodology
is that it was developed for such a system architecture, where we already know
(or, more precisely, have already specified them in a formal way) systems or
components properties and need to decompose this whole properties collection
to a number of subcomponents to get readable and manageable specifications.
Thus, the presented methodology allows us to decompose component archi-
tecture decomposition exactly on this point where we see that the component

!This work was fully funded by the German Federal Ministry of Education, Science, Re-
search and Technology (BMBF) in the framework of the Verisoft XT project [14]. The
responsibility for this article lies with the author.

M. Spichkova

specification becomes too large and too complex. In many cases the real com-
plexity of a component (and, consequently, of its formal specification) is realized
only during the specification process, when we comes from semiformal (or, even
harder, from informal) general description to a formal one — only by collecting
and combining all the component properties together for the first time we also
get the feeling of the component complexity for the first time. Moreover, during
this step a number of component properties can added — in most cases some
refinement is necessary.

In addition, our methodology helps to perform the next modeling step —
translation to the case tool representation and deployment.

The main ideas, presented in the paper, are language independent, but for the
better readability and for better understanding of this ideas we shoe them ob the
base of formal specifications presented in the FOCUs specification framework [2].

We can also see this methodology as an extension of the approach “Focus on
Isabelle” [10] — it is integrated into a seamless development process, which cov-
ers both specification and verification, starts from informal specification and
finishes by the corresponding verified C code (see Verisoft-XT project, [13]).
Given a system, represented in FOCUS, one can verify its properties by trans-
lating the specification to a Higher-Order Logic and subsequently using the
theorem prover Isabelle/HOL or the point of disagreement can be found. For
a detailed description of Isabelle/HOL see [7] and [15].

The translation can be done according to the approach “Focus on Isabelle” [10].
Moreover, using this approach one can validate the refinement relation between
two given systems, as well as make automatic correctness proofs of syntactic
interfaces for specified system components. Having a FOCUS specification, we
can schematically translate it to a specification in Hight-Order Logic and verify
properties of the specified system.

As the next step we can schematically translate the FOCUS specification to an
AutoFOCUS model [9, 3, 1]. AutoFOCUS 3 is a tool for modeling and analyzing
the structure and behavior of distributed, reactive, and timed computer-based
systems. Having an AutoFOCUS 3 model we can simulate it, prove its prop-
erties using model checking and also using its translation to Isabelle/HOL, as
well as we gan generate C code from it.

We present here only this part of the case study [11] that is needed to present
the advantages of the formal decomposition methodology. Please note that this
part of the case study is presented in anonymized form and has in the most
parts only a weak correlation to the case study presented in [11].

The general architecture of the specified system does not be described in this
paper — we focus only on the main system logic (anonymized and changed vs.
the original case study) to show how the decomposition methodology works and
how it can help us to find out underspecifications and inconsistencies in formal
specifications.

Architecture: Methodology of Decomposition, October 1, 2010

Outline:
The next section gives a short introduction to Focus: main concepts and
specification kinds, and Section 3 presents the main theoretical part of the
paper — system architecture decomposition methodology.

After that the an anonymized part of the case study from the Verisoft-XT
project [13] is discussed:

e the used data types, constants, auxiliary functions and predicates are
described in Sections 4 and 5;

e the system components as well as their decomposition according the pre-
sented methodology are discussed in Section 6.

e the system requirements are specified in Section 7 to complete the Focus
specification phase for the main system logic component.

Section 8 summarizes the paper.

2 FOCUS: Main Aspects

A distributed system in FOCUS is represented by its components?. Components
that are connected by communication lines called channels, can interact or work
independently of each other.

The channels in Focus are asynchronous communication links without de-
lays. They are directed, reliable, and order preserving. Via these channels
components exchange information in terms of messages of specified types. The
formal meaning of a FOCUS specification is a relation between the communica-
tion histories for the external input and output channels.

The specifications can be structured into a number of formulas each charac-
terizing a different kind of property, the most prominent classes of them are
safety and liveness properties. FOCUS supports a variety of specification styles
which describe system components by logical formulas or by diagrams and ta-
bles representing logical formulas.

Specification of a real-time system in the untimed frame may be in some cases
shorter or more elegant from mathematical point of view, but case studies have
shown, that to understand such specifications and to argue about their prop-
erties is in many cases much more difficult in comparison to the corresponding
specifications in the timed frame that use causality property explicitly. More-
over, abstraction from timing aspects can easily lead to specification mistakes
because of difficulties of correct abstraction.

Thus, we restrict in the methodology “Focus on Isabelle” [10] the whole Fo-
CUs specification domain for representation embedded real-time systems to only
timed and time-synchronous systems. This not only simplifies the translation
into Isabelle/HOL, but also allows us to concentrate on the timing properties

2A component in FOcUS means a “logical component” and not a physical one.

M. Spichkova

to have not only more clear and readable specifications, but also simpler proofs
about them.

Considering causality (weak or strong) it is simpler and also more readable
to argue not about single messages in a timed stream, but about a sequence of
messages that are present in this stream at some time interval. This sequence
can be in general empty, contain a single message or a number of messages. In
the case of time-synchronous stream this sequence must always contain exactly
one message.

For easier argumentation about the behavior of a component at some time
interval we introduced a special kind of Focus tables and state transition di-
agrams, which help us to specify a component in the time interval based way
(see [10]). This approach to represent a timed component will be used also for
the presented case study.

As mentioned in the methodology “Focus on Isabelle”, the concrete mean-
ing of a time interval is not defined in the FOCUs specification, but it must
be specified additionally as a remark to the specification. This interpretation
flexibility allows to specify systems also for the case where the “time intervals”
does not have the same (constant) duration and are understood as a formal
technique for a causality representation.

2.1 Concept of Streams

The central concept in FOCUS are streams, that represent communication histo-
ries of directed channels. Streams in FOCcus are functions mapping the indexes
in their domains to their messages. For any set of messages M, M“ denotes
the set of all streams, M and M* denote the sets of all infinite and all finite
streams respectively. M% denotes the set of all timed streams, M and M=*
denote the sets of all infinite and all finite timed streams respectively.

A timed stream is represented by a sequence of messages and time ticks,
the messages are also listed in their order of transmission. The ticks model a
discrete notion of time.

The timed domain is the most important one for representation of distributed
systems with real-time requirements. Specifications of embedded systems must
be timed, because by representing a real-time system as an untimed specification
a number of properties of the system are loosed (e.g. the causality property)
that are not only very important for the system, but also help us to make proofs
easier. Another ways of streams formalizations as well as the related work for
the approach “Focus on Isabelle” are discussed in [10].

To simplify the specification of the real-time systems we use an additional
Focus operator ti(s,n) that yields the list of messages that are in the timed
stream s between the ticks n — 1 and n (at the nth time unit).

The predicate ts holds for a timed stream s, iff s is time-synchronous in the
sense that exactly one message is transmitted in each time interval.

The Focus operator msg,, (s), which holds for a timed stream s, if this stream
contains at every time unit at most n messages.

Architecture: Methodology of Decomposition, October 1, 2010

2.2 Specifications

Focus specifications can be elementary or composite. Any elementary FOCUS
specification has the following syntax:

— Name (Parameter_Declarations) Frame_Labels —

in Input_Declarations

out Qutput_Declarations

Body

where
e Name is the name of the specification;

o Frame_Labels lists a number of frame labels, e.g. untimed, timed or time-
synchronous, that correspond to the stream types in the specification (see
Sect. 2.1);

e Parameter_Declarations lists a number of parameters (optional);

e Input_Declarations and Output_Declarations list the declarations of input
and output channels respectively;

e Body characterizes the relation between the input and output streams,
and can be a number of formulas, or a table, or diagram or a combination
of them.

For any elementary timed parameterized specification S we define its seman-
tics, written [S], to be the formula:

Z'SGI%/\psepg/\OSGO%/\BS (1)

where ig and og denote lists of input and output channel identifiers, Iy and
Og denote their corresponding types, pg denotes the list of parameters and Pg
denotes their types, By is a formula in predicate logic that describes the body
of the specification S.

Focus operators used in the paper:
An empty stream is represented in Focus by ().
(z) denotes the one element stream consisting of the element z.
#s denotes the length of the stream s.
ith time interval of the stream s is represented by ti(s,).
msg,,(s) denotes a stream s that can have at most n messages at each time
interval.
st denotes the first element of the ith time interval of the stream s (partial
function).
See [2] and [10] for more background on Focus and its extensions.

M. Spichkova

3 Architecture: Methodology of Decomposition

Let assume a formal (Focus) specification of some component, which covers a
large number of its properties, s.t. most of which have strong correlation, and
let this component describes among others the system states and transitions
between them, s.t. the resulting representation must correspond to a state
transition diagram.

If we specify this component as a single, non-composite, specification we get
a set of formulas that is not really understandable. Trying to built a state
transition diagram for the whole component, we will get a large automat with
spaghetti-transitions between them — this representation will be useless and
not manageable. Moreover, the later representation in some case tool, e.g.
AutoFocus, will be not fit the model checker restrictions. Therefore, we have a
challenge to decompose it in a number of subcomponents to get some (more)
readable specification.

A simple, intuitive, way to decompose a component is not suitable here. In
this case we need to have some rules to decompose the component according to
the kinds of its logical properties.

We start the decomposition to observe the properties that correspond to the
different kinds of automats: Mealy and Moore.

3.1 Mealy vs. Moore?

By definition, any state machine can be either a Mealy automat, where the
output depends both on the current input and state, or a Moore automat,
where the output depends only from the current state.

Generally, having a specification represented by a number of formulas, we
can divide these formulas into two parts: formulas, which correspond to the
definition of a Mealy automat, and formulas, which correspond to the definition
of the Moore automat. Thus, having a component C'Comp describing large state
machine, we can decompose it into two components as follows:

e component C, describing reactions on the component (system) inputs and
describing all the state transitions — corresponds to a Mealy automat,

e component ClInf, describing outputs, which depend only on the system
state — corresponds to a Moore automat.

This decomposition also belong to the parameters of the component CComp.
Please note, that the sets of output streams of C' and CInf must be disjoint,
and their union without information about system state results the set of output
streams of the component CComp. Under information about system state we
understand here the extra output stream statelnf that must be added to the
component C to send the current state value to the component CInf.
In the notation from [2]:

ocNogmf =9

0CComp = (00 \ L0Inf) U 0CInf
(oc '\)U

10

Architecture: Methodology of Decomposition, October 1, 2010

In some cases we have to split formulas to separate the description of reactions
on the system inputs as well as all the state transitions from the descriptions
of messages about the system.

For example, if we add to the specification CInf some formula like

stateInf! = SomeState — ti(z,t+ 1) = SomeValueOfTimelnterval
ft

where z is an output stream of the component CComp, then we must move all
other definitions of the stream z to this specification also, and simplify in the
specification C all the formulas of kind

Some_Term_1 —
CState’ = SomeState A ti(z,t + 1) = SomeValueOfTimelnterval
N Some_Term_2

to the formulas of kind

Some_Term_1 — CState’ = SomeState N Some_Term_2

3.2 Local Variables

In this section we discuss the decomposition schema we proposed to use for all
local variables x; : My, ..., x, : M, that are moved via decomposition from a
component C to some extra component CLoc.

This schema describes not only the way to write the specification CLoc, but
also the changes we need to do in the specification C. After applying this
schema we get two specifications, C’ and CLoc, which composition results the
specification C':

C =C"® CLoc

1. The set of input channels of the component C'Loc is a subset of the cor-
responding set of the component C. In the notation from [2]:

1CLoc € tC

2. Add all the assumptions about the input streams according to the speci-
fication C'.

3. The set of output channels of the component CLoc corresponds to the local
variables to move and have the same data type as these variables. Let
call these channels my : My,...,m, : M,, s.t. the channel m; corresponds
to the variable z;.

In some cases we can use for these streams the same names as for the

variables.

4. Move all corresponding formulas from the specification C' to the specifi-
cation CLoc.

11

M. Spichkova

10.

11.

. Add to the component C the channels my : My,...,m, : M, as extra

input channels. Add to the component C assumptions that these streams
are time-synchronous.

. Delete from the interface of C' all the input streams that are used only in

the formulas moved to the specification C'Loc. Delete all the assumptions
about these streams.

Define in CLoc for all x € {x,...,x,} the initial value of the correspond-
ing stream m as follows according to the initial value of the local variable:

z = SomeValuey
will be translated to the formula

ti(m,0) = (Some Valuey)

. Replace all the entrances of the local variables = from x; : My, ..., z, : M,

at the current time interval ¢ (denoted by z) by the values of ¢th time
interval of the corresponding stream mj,.

. Replace all the entrances of the local variable z at the time interval t+1 or

t+n (denoted by 2’ and z(™ respectively) by ti(m, t 4 1) and ti(m, t +n)
respectively.

Convert the related part of formula to the time interval syntax, e.g.
z = SomeValues

must be converted to
ti(m, t) = (Some Valuey)

Another solution for this point is to replace all the entrances of the local
variable z at the time interval t+1 or t+n by mftﬂ and mftt+1 respectively.
These kind of specification will also define the whole corresponding time
interval: the stream m that corresponds to the local variable z is by
definition a time-synchronous one, thus, it has exactly one message at
each time unit, therefore, we can define this message as the first (and the

only one) message of the time interval.

Delete from the specification C definitions of the initial values of the local
variables zy : My, ..., T, : M,.

Add to the specification CLoc all the needed parameters of the component
C. Remove from the component C' the parameters that are not in use
any more.

Please note, that the component CLoc is strong causal, where the component
C’ preserves the causality property of the component C.

12

Architecture: Methodology of Decomposition, October 1, 2010

3.3 Outputs That Depends from Inputs

In this section we discuss the decomposition schema we proposed to use for
all output streams oy : My,...,0, : M, and corresponding formulas describ-
ing them (depending only on the component state, local variables and some
inputs) that are moved via decomposition from a component C’ to some extra
component COut.

We suggest to extract specification parts according this schema must after
the moving of local variables via decomposition.

1. If the formulas to extract to the component COut contain also some local
variables Iy : My, ..., I, : My of the component C’, then the corresponding
output channels ml; : My,..., ml; : My must be added to the component
C’, s.t. the channel ml; corresponds to the variable ;. As result we get a
component C”, s.t.

1on = 1o U {mll, RN mlk}

The semantics of the specification € is extended to the semantics of C”
by the formulas describing the streams miy, ..., ml:

VteN: ti(mll, t) = <ll>

VteN: ti(mlk, t) = <l]c>

2. The set of input channels of the component COut is a subset of union of
the input and output channels sets of the component C”. In the notation
from [2]:

icout C (icn U ocn)

where the set of output channels of the component C'Out is only the set of
output channels oy : My, ..., 0, : M, moved from C’ toCOut. We remove
these outputs from the definition of C”.

3. Add to the specification C'Out all the assumptions about its input streams
according to the specification C”.

4. If values of some input streams are used only in the formulas to extract
to the component COut, then we can remove these inputs from interface
of the component C”. As result we get a component C"”.

5. Delete from the specification C" all the assumptions about the input
streams that are removed according the previous step.

6. Add the assumption about all the extra channels channels ml; : My, ..., mi :
Mj: the corresponding streams must be time-synchronous.

7. Move all corresponding formulas from the specification C”” to the speci-
fication C'Out.

13

M. Spichkova

8. Replace all the entrances of all local variables [from I : My, ..., : My
at the current time interval ¢ (denoted by 1) by mif,.

9. Replace all the entrances of the local variable [at the time interval {+1 or
t+n (denoted by I’ and 1(™) respectively) by ti(ml, t+1) and ti(mi, t +n)
respectively.

Convert the related part of formula to the time interval syntax, e.g.
| = SomeValuesy
must be converted to ti(l, t) = (Some Values).

10. Add to the specification Cout all the needed parameters of the component
C’. Remove from the component C’ the parameters that are not in use
any more.

Please note, that the component C'Out is strong causal only if the component
C was strong causal.

4 Case Study: Data Types and Constants

In this section we define data types, which are needed to specify the case study
system and its components. The main part of these data types must be inhered
from the semiformal specification, but some of them can represent refined ver-
sions of the data types from the semiformal specification. Please note that we
present here only these data types and constants, which are used in the speci-
fication of the main system logic component, and omit all other data type and
constant definitions.?

We deal here with a system that has 8 logical states of type State Type and 8
main control signals of type SignalAType as well as with 3 control signals the
type SValueType. The Event type represents signals showing that some event
was happen.

type StateType = {850, 51, 52,53, 54, S5, S, 57}

type SignalAType = {SignalA;, SignalAs, SignalAs, SignalAy,
SignalAs, SignalAg, SignalA7, SignalAs}

type SValueType = {Vi, Vo, V3}

type Ewvent = {event}

3Please also note that we present here an anonymized version of the case study specifica-
tion [11]. In the full case study — among other differences — some other, more meaningful,
names for function, constants, data types etc. are used, but here the concrete meaning of
the names is unimportant to understand the methodology.

14

Architecture: Methodology of Decomposition, October 1, 2010

The system has the following parameters:
o X_Appl, Xcounter, C'Value : N — correction values;

o MinCurrentValue, MaxCurrentValue : N — bounds for the current value
of the main sensor;

o MinTargetValue, MazTargetValue : N — bounds for the target value of
the main sensor;

o sSignall_targetl, sSignall_target2 € N — abstraction of the target values
that are set by system transition from the state S35 or from the state Sy
to the states S; and Sg respectively.

e tcontrol € N - target control value.

5 Case Study: Auxiliary Functions and Predicates

In this section we present the FOCUS specifications of all auxiliary functions
and predicates used to represent the Case Study System in a formal way.

5.1 Function ModSubtraction

The function ModSubtraction returns the difference between two natural num-
bers as a positive natural number.

__ModSubtraction

NxN-—-N

ModSubtraction(z,y) =

ifr <y
then y — z
else x — gy
fi

5.2 Predicate SignallPrecondition

The predicate Signall Precondition analyses a given time interval of the infinite
timed stream of type SignalType and returns true only if this time interval is not
empty and contains exactly one of the following messages: SignalAs, SignalAs,
SignalAy, SignalAs, SignalAg, SignalAy, SignalAs.

15

M. Spichkova

—SignallPrecondition

SignalType * — Bool

Signall Precondition(()) = false
Signall Precondition({z) ~s) =
s =
N
((z = Signalds) V (x = Signalds) V (z = SignalAy) V
(z = SignalAs) V (x = Signaldg) V
(x = SignalA7) VvV (z = SignalAs))

=

5.3 Function SignalAccepted

The following function describes relations between a current_value, a target Value,
applicable values z and zcounter, as well as current numbers of counters,
counter; and counters.

Please note that MaxzTargetValue, MinTargetValue, Xcounter and CValue are
global system parameters, thus, there is no need to include them as parameters
of the function SignalAccepted.

The first parameter of the function has a boolean type and is used to choose a
mode in which the function is applied.

__SignalAccepted

current_value, target Value, countery, counters € Nat

SignalAccepted (true, current_value, target Value, countery, counters) =
counter; < Xcounter A counters =0 A
ModSubtraction(current_value, target Value) < z A
targetValue + CValue < MazTargetValue

SignalAccepted(false, current_value, target Value, countery, counters) =
countery < Xcounter A counter; =0 A
ModSubtraction(current_value, target Value) < Xcounter A
(MinTargetValue + CValue > targetValue)

5.4 Predicates SystemStateSubset and CrCtStateActive

The predicate SystemStateSubset holds if its input value is one of the following
state values: Sz, Sy, S5, or Sg, where the predicate SystemStateSubset2 holds if
its input value is Sy, S5, or Sg.

16

Architecture: Methodology of Decomposition, October 1, 2010

___SystemStateSubset

st € StateType

SystemStateSubset(st) =
(st=253) V (st=2054) V (st=255) V (st =5)

—_ SystemStateSubset2

st € State Type

SystemStateSubset(st) =
(St = 54) V (St = S5) V (St = S(;)

It is easy to see the following implication relations between these predicates:

SystemStateSubset2(st) — SystemStateSubset(st)
SystemStateSubset(st) - SystemStateSubset2(st)

5.5 Function LimitedValue

The function Limited Value calculates the limitation of the target speed value
according to the current value v and to the applicable parameters minS, maxS,
minT, and mazT representing the minimal and the maximal current speed as
well as the minimal and the maximal target speed respectively.

___LimitedValue

NXxNXxNxNxN-—-N

Limited Value(v, minS, minT, mazS, mazT) =
if v<minTV
then minTV
else (if v > mazTV
then mazTV
else v
fi)

where minTV, mazTV so that
minTV = maz(minS, minT)
mazTV = min(mazS, mazT)

17

M. Spichkova

6 Case Study: Specifications of the Subcomponents

6.1 Logic

The specification of the component LogicComp that describes an imaginer

4

logic component, developed by authors of the paper to show the main ideas
of the decomposition methodology. The component LogicComp fulfills all the
properties described in Section 3 — it covers a large number of components
properties most of which have a strong correlation, moreover, this component
describes the system states and transitions between them. Thus, we need to
decompose LogicComp in a number of subcomponents to get more readable
specification, and we do it according the methodology presented in Section 3.

— LogicComp(const LogicParam)

sensor_signali

sensor_signal2
=2 e

sensor_signala
___sensor_signals |

sensor_signals
S »

sensor_signals

sensor_signals

preconditions

precondition2
—_—
preconditions

preconditions

preconditions
—

signaly »

signal2

signals

counterl

counter2

powerl
—_—

power2

current_value
— =

Logic
(LogicParam)

glass-box —

target_value_1

target_value_2

eventy »-

event2

events >

stateInfOut

SignalA7Action

statelnf SignalA8Action

ControlAction

CrCtLogiclnf

indicator_lamp_is_On

request

systemSignall

We do not present here the component LogicComp as a collection of Focus
formulas, because this kind of specification is very unreadable and do not fit on

a page also with the tiny letter size.

4Some influence to the development of this component was given by the The Cruise Control

case study [12, 11].

18

Architecture: Methodology of Decomposition, October 1, 2010

6.1.1 Decomposition: Mealy vs. Moore

Decomposing the component LogicComp by the rules described in 3.1 we get
the following two components, which describe the main logic of the system:

e The component Logic describes reactions on the system inputs as well as
all the state transitions.

e The component LogicInf is used to represent only these requirements,
which describe some messages about the system.

Their sets of output streams are disjoint — we had separate the description of
reactions on the system inputs as well as all the state transitions from the de-
scriptions of messages about the system.

For example, we add to the specification LogicInf the following formula
stateInfi = S5 — ti(systemSignall,t) = (sSignall_target1)

and this implies that we must move all other definitions of the stream systemSignall
to this specification also, and simplify in the specification Logic all the formulas
of kind

Some_Term_1 —

SystemState’ = S5 A ti(systemSignall, t + 1) = (sSignall_target1)
A Some_Term_2

to the formulas of kind

Some_Term_1 — SystemState’ = S5 N Some_Term_2

Please note the time stamp convention within these two specifications: the
component Logic is strong causal, where the component LogicInf is weak causal
and works only with one input stream — the statelnf output stream of Logic
(this stream is a local one for the composition of these two components). Thus,
the outputs of both components have the same delay wrt. to the inputs of the
component Logic.

Let us proceed with the specification details of the components LogicInf and
Logic.

6.1.2 LogicInf Component

The Focus specification of the component LogicInf is presented below. This
component describes messages to signal about system state or actions according
to the system state.

19

M. Spichkova

— LogicInf (const tcontrol, sSignall_targetl, sSignall_target2) ——— timed —
in stateInf : State Type

Signal AT Action, Signal A8 Action, Sy Action : Event;
indicator_lamp_is_On : Bool; request, systemSignall : N;

asm ts(statelnf)

gar

VteN:
SystemStateSubset2(stateInfl) — ti(indicator_lamp_is_On,t) = (true)
—SystemStateSubset2(statelnfl) — ti(indicator_lamp_is_On,t) = (false)

ti(stateInf, t) = (S5) — ti(SignalA7 Action, t) = (event)
ti(stateInf, t) # (S5) — ti(SignalAT Action, t) = ()

ti(stateInf,t) = (Sg) — ti(SignalA8Action,t) = (event)
ti(stateInf, t) # (Se) — ti(SignalA8Action,t) = ()

ti(stateInf, t) = (Sy)
— ti(S4Action, t) = (event) A ti(control_request,t) = (tcontrol)

ti(stateInf, t) # (Sy)
— ti(SaAction, t) = () A ti(control_request,t) = ()

stateInf = S5 — ti(systemSignall, t) = (sSignall_target1)

stateInf = Sg — ti(systemSignall, t) = (sSignall_target2)

Specifying the system in a formal way one can found some missing assumptions
or conclusions not only by verification but also from the specification itself. In
our case we add here to the the specification LogicInf the following new (wrt.
semiformal specification) subformula

stateInfl # S5 N statelnfd # Sg — ti(systemSignall, t) = ()

otherwise the values of the stream systemSignall will be defined only for two
system states. We can also join the 9th formula with the 3rd one, and the 10th
with the 5th one. The resulting specification is presented below:

20

Architecture: Methodology of Decomposition, October 1, 2010

— LogicInf (const tcontrol, sSignall _targetl, sSignall_target2) ——— timed —
in stateInf : State Type

Signal AT Action, Signal A8 Action, Sy Action : Event;
indicator_lamp_is_On : Bool; control_request, systemSignall : N;

asm ts(statelnf)

gar

VteN:
SystemStateSubset2(stateInfl) — ti(indicator_lamp_is_On,t) = (true)
—SystemStateSubset2(statelnfl) — ti(indicator_lamp_is_On,t) = (false)

ti(stateInf, t) = (S5)
— ti(SignalAT Action, t) = (event) A ti(systemSignall,t) = (sSignall_targetl)

ti(stateInf, t) # (S5) — ti(SignalATAction, t) = ()

ti(statelnf, t) = (Ss)
— ti(SignalA8Action, t) = (event) A ti(systemSignall,t) = (sSignall_target2)

ti(stateInf, t) # (Sg) — ti(SignalA8Action,t) = ()

ti(stateInf, t) = (Sa)
— ti(SyAction, t) = (event) A ti(control_request,t) = (tcontrol)

ti(statelnf, t) # (S4)
— ti(SsAction, t) = () A ti(control_request,t) = ()

stateInfi # S5 A stateInfi # S — ti(systemSignall,t) = ()

This component is weak-causal and does not use any local variables. Therefore,
we can represent it in AutoFocus as a functional specification.

6.1.3 Logic Component

The Focus specification of the component Logic is presented below.

Please note that we extend here the original syntax of the FOCUS specification
language to have within component specifications bodies with a large number
of describing formulas an enumeration of these formulas.

To make our specification more readable we can decompose also the compo-
nent Logic. Beholding the specification Logic we can divide its formulas into
three parts, applying the ideas of formal decomposition — firstly from Section
3.2 and secondly from Section 3.3:

(1) describing inter alia state transitions;

21

M. Spichkova

(2) describing no state transitions, but only component outputs — depending
on the component state, local variables and some inputs;

(3) describing no state transitions, but only some manipulations on the local
variables — depending on the component state and some inputs.

This decomposition means, that the main component LogicMain has less local
variables than the component Logic.

The optimized architecture of the component Logic as well as the decomposi-
tion steps are presented below.

— Logic(const LogicParam) glass-box —
counterl
counter2
signal: powerl
current_value Log | c M a| n power2

(LogicParam)
target_value_1
sensor_signals S

target_value_2
sensor_signaly

sensor_signal2 statelnfOut

statelnf
prer | prez | pres | pres | pres

signalz »

signala

sValue

«eemn | LogicOut

< eventz

< events

___ preconditions |
___preconditionz | LogicLoc
___ preconditions |
___ preconditions |
___ preconditions |

sensor_signals
sensor_signals

sensor_signals

22

— Logic(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3, sensor_signald, sensor_signalb, sensor_signal6 : Bool

current_value, counterl, counter2 : N;

preconditiony , preconditiony, preconditiong, preconditiony, preconditions, powerl, power2, signal, signals : Event

eventy, eventa, events : Event; target_value_1, target_value_2 : N;

statelnf, stateInfOut : StateType

timed —

in signaly : SignalType;
out

local

init

asm

gar

1
VteN:

2

3

4

5

6

7

8

9

10

11

12

13 ti(

14 ti((
15 ti(preconditiona, t) # (
16 ti(preconditions, t) # (
17 ti(preconditiona, t) # (
18 ti(preconditions, t) # (
19

20

21

22

23

24

25

26 SystemState = S3 A
27 SystemState = S3 A
28 SystemState = Sz A
29 SystemState = S3 A
30 SystemState = Sz A
31 SystemState = Sy A
32 SystemState = Sy A
33 SystemState = Sg A
34 SystemState = S5 A
35

36

37

38

39 SystemState = Sg A
40 SystemState = Sg A
41 SystemState = Sg A
42 SystemState = S7 A
43 SystemStateSubset(
44 SystemStateSubset(
45 SystemStateSubset(
46 SystemStateSubset(
47 SystemState # Sa A —ti(powerl,
48

SystemState : StateType; pre1, prez, pres, preq, pres : Bool; targetValue : N; sValue : SValue Type;

SystemState = Sp; pre; = false; prepx = false; pres = false; preqs = false; pres = false; targetValue = 0; sValue = Vy;

ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3) A ts(sensor_signald) A ts(sensor_signalb5) A ts(sensor_signal6)

msg, (signali) A ts(current_value) A ts(counterl) A ts(counter2) A msg,(powerl) A msg;(power2)

msg; (precondition1) A msgq(preconditiona) A msg; (preconditions) A msgy(preconditions) A msg; (preconditions)

stateInfOut = statelnf A target_value_2 = target_value_1

ti(statelnf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)

SystemState = Sa A (—sensor_signalia A — Signall Precondition(ti(signali, t))) — SystemState’ = Ss3
SystemState = So A (—sensor_signalia A Signall Precondition(ti(signali,t))) — SystemState’ = S

— SystemState’ = Sy A targetValue’ = ChangeTargetValue(target Value, SignalAs)

— SystemState’ = Sy A targetValue’ = ChangeTarget Value(targetValue, SignalAg)

SystemState # So A SystemState’ = So A sValue = Vi A sensor,signalQ}t A
SystemState # So A SystemState’ = So A sValue = Vo A sensor,signalﬁt A
SystemState # So A SystemState’ = So A sValue = Vi A sensotsignalQ}t A

—\sensor,signalla

—sensor_signallf,

ﬁsensor,signallft —

SystemState = So A ti(signalz, t) # () A ti(signalz, t) # () — ti(events,t + 1) = (event)

SystemState = Sy A ti(powerl,t) # () — targetValue’ =0 A CrCtSate’ = S1

powerl,t) = () — CrCtSate’ = Sy
precondition1, t) # () — pre; = true

— prel, = true
— pre} = true
— prej = true
-

pref = true

SystemState = S1 A pre] A prel A prej A prej A prel — SystemState’ = Sz

SystemState = S1 A (- pre; V —prey V —pref V —prej V - prel) — SystemState’ = Sy

SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = Sz

SystemState = Sy A ti(signaly,t) = (SignalAs) A —sensor_signalia A SignalAccepted(true, current_valuel, targetValue, counterll,, counter2f,)

SystemState = Sy A ti(signaly,t) = (SignalAe) A —sensor_signalis A SignalAccepted(false, current_valuel, targetValue, counterlf,, counter2f,)

— ti(events, t + 1) = (event)

ti(eventy, t + 1) = (event)

— ti(eventz, t + 1) = (event)

SystemState = Sy A —sensor_signalia A ti(signal,t) = (SignalAs) A ModSubtraction(current_valuel, target Value) > X_Appl
— targetValue' = limTargetValue A

SystemState = Sy AN —sensor_signalia
— targetValue' = limTargetValue A

SystemState = Sy AN —sensor_signalia
— targetValue' = limTargetValue A

SystemState = Sy N —sensor_signalia
— targetValue’ = limTargetValue A

SystemState’ = Sy

A ti(signaly,t) = (SignalAg) A ModSubtraction(current_valuel, targetValue) > X_Appl

SystemState’ = Sy

A ti(signaly, t) = (SignalAs) A ti(counter2,t) >0

SystemState’ = Sy

A ti(signali, t) = (SignalAg) A ti(counterl,t) >0

SystemState’ = Sy

(SystemStateSubset(SystemState) V SystemState = S2) A ti(sensor_signall, t) = (true) — SystemState’ = Sy

—sensor_signali o
—sensor_signali2
—sensor_signali2
—sensor_signali 2
—sensor_signali2

—sensor_signali 2
—sensor_signali2
—sensor_signali2

current,valueff‘t >

— targetValue’ = limTarget Value A

SystemState = S5 A cur'rent,valueftt <
— SystemState’ = Sy A targetValue' # 0

SystemState = S5 A current,valueftt > min(MazCurrentValue, MazTarget Value) A
— targetValue' = min(MazCurrent Value, MazTarget Value) A SystemState’ = Sy

ti(signaly, t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = S
targetValue > 0 A ti(signali, t) = (SignalAs) — SystemState’ = S4 A targetValue' = targetValue

ti(signaly, t) = (SignalA7) — SystemState’ = S5 A targetValue' = limTargetValue

AN
AN
A targetValue =0 A ti(signali,t) = (SignalAs) — SystemState’ = S3
AN
AN

ti(signaly, t) = (SignalAg) — SystemState’ = S A targetValue’ = limTargetValue

A ti(signaly, t) = (SignalA7) — SystemState’ = Sy
A ti(signaly,t) = (SignalAg) — SystemState’ = Sg
A ti(signali, t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = Sy

targetValue A ti(signali,t) # (SignalA7) A

SystemState’ = Sy

targetValue A ti(signali,t) # (SignalA7) A

SystemState = S5 A sensor,signalﬁt A ﬂsensor,signallft A —\sensor,signaZSa
— targetValue' = targetValue A SystemState’ = So

SystemState = Sg A current,valueftt <

stemState = Sy V SystemState = S5) A ti(signali, t) = — stemState’ = Sg
Sy S S4V Sy S S i(signal Sy. State’ = S

SystemState)
SystemState)
SystemState)
SystemState)

current,valueftt >

current_valuel <

targetValue A ti(signali,t) # (SignalAg) A

targetValue A ti(signali,t) # (SignalAg) A

mazx(MinCurrent Value, MinTarget Value) A

- sensor_signali2

- sensor_signali2

- sensor_signali2

- sensor_signalia

- sensor_signali2

— sensor_signalia — targetValue’ = max(MinCurrentValue, MinTargetValue) A SystemState’ = Sy

— targetValue' = limTargetValue A SystemState’ = Sy

— SystemState’ = Sy A targetValue’ # 0

sensor,signal21'§t A ﬂsensor,signall;"t A ﬁsensor,signal?)a — targetValue' = targetValue A SystemState’ = Sz

where sensor_signaly2, limTargetValue so that
sensor_signaliz = sensor,signaZZ]ﬁt \Y, sensor,signallﬁt
limTargetValue = Limited Value(current,valueft, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

A ti(sensor_signal3,t
A ti(sensor_signald,t
A ti(sensor_signald,t
A ti(sensor_signald,t

)=
)=
)=
)=

ti(powerl, t) = () — SystemState’ = Sy

true)
true)
false)
false)

— targetValue' =0

— sValue’ = V1

A ti(sensor_signalb, t) = (true) — sValue’ = Vs

A ti(sensor_signalb, t) = (false) A ti(sensor_signal6,t) = (true) — sValue’ = V3

t) =) A ti(power2,t) = () — SystemState’ = S

M. Spichkova

6.1.4 Decomposition: Local Variables

Now we apply the schema from Section 3.2 to get the component LogicLoc_1
(we add _1 to its name, because we assume some underspecification here that
must be clarified to get the component LogicLoc). The component LogicLoc
will be discussed in the next section.

Here we present the decomposition process as well as the results of changes
in Logic according to the schema: we call this specification LogicNew — this
specification is just an intermediate result and will be used to extract from it
the specifications LogicMain and LogicOut (see Sections 6.1.9 and 6.1.11).

First of all we determine the set of local variables that we want to move to
the extra component as well as in which formulas of the specification Logic
they appear, which dependencies they have with the input channels of this
component and whether they influence on some other local variables or values
on the output channels:

e The local variables pre;, pres, pres, preq and pres:

© The values of these local variables at each time unit were defined
by the formulas 14, ..., 18, using only the values of the input chan-
nels precondition,, preconditiony, preconditions, preconditiony and
preconditions. Thus, we need to have these channels as input chan-
nels of the component LogicLoc_1.

¢ The values of these local variables influence on the values of the
local variable SystemState (formulas 19 and 20), which will be not
removed from the main component.

e The local variable sValue:

o The values of this local variable at each time unit is defined by the
formulas 44, 45, and 46, using only the values of the input channels
sensor_signald, sensor_signalb, and sensor_signal6 as well as using
the value of the local variable SystemState. Thus, we need to have
the channels sensor_signald, sensor_signalb, and sensor_signal6 as
input channels of the component LogicLoc_1. The value of the local
variable SystemState is equal (according to the formula 1 of the spec-
ification Logic) to the value of the output channel stateInf. We need
to have this channel as input channels of the component LogicLoc_1
also.

¢ The value of this local variable influences on the values of the output
channels variable event;, eventy and events (formulas 8, 9, and 10).

Now we apply the decomposition scheme:

1. The set of input channels of the component LogicLoc_1 is a subset of the

24

Architecture: Methodology of Decomposition, October 1, 2010

corresponding set of the component Logic.

statelnf : StateType;
sensor_signaly, sensor_signals, sensor_signalg : Bool
precondition , preconditions, preconditions : Event

preconditiony, preconditions : Fvent

. We add all the assumptions about the input streams according to the
specification LogicLoc:

ts(sensor_signaly), ts(sensor_signals), ts(sensor_signals),

msg, (precondition;), msg; (preconditions), msg; (preconditions),
msg, (preconditions), msg;(preconditions),

ts(statelnf)

. The output streams of LogicLoc correspond to the three local variables
and have the same data as these variables. Let us call this streams by the
variable names: sValue, prey, pres, pres, pres, and pres.

. Move from the specification Logic to the specification LogicLoc_1 all the
formulas, in which the values of these local variables are defined: the
formulas 14, ..., 18, 44, 45, and 46.

. Add to the component Logic the following channels:

o sValue : SValueType,

e prey, preg, pres, preg, pres : Bool

Add to the component Logic corresponding assumptions about these streams:

ts(sValue)
ts(pre1), ts(prez), ts(pres), ts(pres), ts(pres)

. Delete from the interface of Logic all the input streams that are used only
in the formulas moved to the specification LogicLoc:

sensor_signaly, sensor_signals, sensor_signalg : Bool
preconditiony , preconditions, preconditions : Event

preconditiony, preconditions : Fvent
Delete all the assumptions about these streams:

ts(sensor_signaly), ts(sensor_signals), ts(sensor_signalg),
msg; (preconditiony), msg; (preconditiony), msg; (preconditions),

msg, (preconditions), msg; (preconditions)

25

M. Spichkova

7. Define in LogicLoc_1 the initial value of the output streams according to
the initial value of the local variables:

ti(sValue,0) = (V1)
ti(pre;, 0) = (false)
ti(preg, 0) =)
ti(pres, 0) = (false)
i())
ti(pres, 0) = (false)

8. Replace all the entrances of the local variables at the current time interval
t by the values of the corresponding streams at this time interval:

o sValue by ft.ti(sValue, t): the formulas 8, 9, and 10.
e The local variables pre;, pres, pres, pres, and pres are specified and
used only for time interval ¢ + 1.
9. Replace
o sValue' by ft.ti(sValue, t + 1): the moved formulas 44, 45, and 46.

e pre] by ft.ti(prei, t +1): the formulas 19 and 20 as well as the moved
formula 14.

e pre by ft.ti(prez, t +1): the formulas 19 and 20 as well as the moved
formula 15.

e preg by ft.ti(pres, t+1): the formulas 19 and 20 as well as the moved
formula 16.

e prej by ft.ti(pres, t +1): the formulas 19 and 20 as well as the moved
formula 17.

e prel by ft.ti(pres, t+1): the formulas 19 and 20 as well as the moved
formula 18.

respectively.

10. Delete from the specification Logic declarations of the local variables
sValue : SValueType, prey, pres, pres, preg, pres : Bool, as well as the given
definitions of their initial values:

local SystemState : State Type;
prey, pres, pres, preg, pres : Bool;
tspeed : N; sValue : SValue Type;
init SystemState = Sp;

prep = false; pres = false; pres = false; pres = false; pres = false;

tspeed = 0;
sValue = Vy;

26

Architecture: Methodology of Decomposition, October 1, 2010

11. We do not use in the specification LogicLoc any parameter of the compo-
nent Logic — we do not need to (re)move any parameter.

The intermediate result of the decomposition is presented below by the new
graphical specification of the component Logic:

— Logic(const LogicParam) glass-box —
l_ counterl
counter2
signalx
le powerl
B — power2
signals
LogicNew | target value 1
__current value | (LogicParam) | target value 2
statelnfOut
__ sensor_signals | | staelnfout
16
___sensor_signal | |———eventi
___sensor_signalz | | —eventz .
| events
statelnf
-~ preir | prez | pres | pres | pres sValue

___ precondition1 |
___ preconditionz |
___ preconditions |
___ preconditiona |
___ preconditons | LogicLoc

sensor_signals
sensor_signals

sensor_signals

27

M. Spichkova

— LogicLoc_1 timed —
stateInf : State Type;
sensor_signald, sensor_signalb, sensor_signal6 : Bool

in preconditiony , preconditions, preconditions : Event
preconditiony, preconditions : Event

sValue : SValue Type;

out
prey, preg, pres, preg, pres : Bool

asm ts(sensor_signald)
ts(sensor_signalb)
ts(sensor_signal6)
msg, (precondition;) A msgy (preconditions) A msgy (preconditions)
msg, (preconditiony) A msg, (preconditions)
ts(stateInf)

gar
ti(sValue,0) = (V1)
ti(prey,0) = (false) A ti(pres,0) = (false) A ti(pres,0) = (false)
ti(preq,0) = (false) A ti(pres,0) = (false)

VteN:
ti(preconditiony, t) # () — ti(prer,t + 1) = (true)
ti(preconditions, t) # () — ti(pres, t + 1) = (true)
ti(preconditions, t) # () — ti(pres,t + 1) = (true)
ti(preconditiong, t) # () — ti(pres, t + 1) = (true)
ti(preconditions, t) # () — ti(pres,t + 1) = (true)

SystemStateSubset(stateInfit) A ti(sensor_signald,t) = (true)
— ti(sValue, t + 1) = (V1)

SystemStateSubset (stateInf) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (true)
— ti(sValue, t + 1) = (V3)

SystemStateSubset (stateInf) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (false)
A ti(sensor_signal6, t) = (true)

— ti(sValue, t + 1) = (V3)

Please note, that we do not change the enumeration of formulas in the specifica-
tion LogicNew, thus, this specification has formulas with the following numbers:
1-13, 19 — 43, 47, 48.

28

— LogicNew(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool

timed —

in signaly : SignalType; current_value, counterl, counter2 : N; powerl, power2, signaly, signalz : Event
sValue : SValueType; prei, prez, pres, prea, pres : Event
out eventy, eventy, events : Event; target_value_1, target_value_2 : N; statelnf, stateInfOut : State Type
local SystemState : State Type; targetValue : N
init SystemState = So; targetValue = 0;
asm ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
msg, (signali) A ts(current_value) A ts(counterl) A ts(counter2) A msg,(powerl) A msg;(power2)
ts(sValue) A ts(prer) A ts(prez) A ts(pres) A ts(pres) A ts(pres)
gar
1 statelnfOut = stateInf A target_value_2 = target_value_1
VteN:
2 ti(stateInf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)
3 SystemState = Sz A (—sensor_signalia A — Signall Precondition(ti(signali, t))) — SystemState’ = S3
4 SystemState = So A (—sensor_signaliz A Signall Precondition(ti(signali, t))) — SystemState’ = S
5 SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = So
6 SystemState = Sy A ti(signal,t) = (SignalAs) A —sensor_signalia A SignalAccepted(true, current_valuel, targetValue, counterlf,, counter2f,)
— SystemState’ = Sy A targetValue’ = ChangeTargetValue(target Value, SignalAs)
7 SystemState = Sy A ti(signali, t) = (SignalAg) A —sensor_signaliz A SignalAccepted(false, current_valuel,, target Value, counterl},, counter2},)
— SystemState’ = Sy A targetValue’ = ChangeTarget Value(targetValue, SignalAg)
8 SystemState # So A SystemState’ = So A ft.ti(sValue,t) = Vi A senso7;signal2ft A —\sensor,signallgt — ti(events,t + 1) = (event)
9 SystemState # Sa A SystemState’ = Sy A ft.ti(sValue,t) = Vo A sensor_signal2l, A —sensor_signalll, — ti(eventi,t+ 1) = (event)
10 SystemState # So A SystemState’ = Sa A ftti(sValue,t) = V3 A sensor_signal2l, A —sensor_signalll — ti(events,t+ 1) = (event)
11 SystemState = Sa A ti(signalz, t) # () A ti(signals,t) # () — ti(events, ¢t + 1) = (event)
12 SystemState = So A ti(powerl,t) # () — targetValue’ =0 A CrCtSate’ = 51
13 ti(powerl,t) = () — CrCtSate’ = Sy
19 SystemState = S1 A ftti(prer,t +1) A ftti(prea, t +1) A ftti(pres, ¢t +1) A ftti(pres,t +1) A ftti(pres,t +1) — SystemState’ = So
20 SystemState = S1 A (= ftti(prer,t +1) V - ftti(pres, t +1) V - ftti(pres, t +1) V - ftti(pres, t +1) V = ft.ti(pres, t + 1)) — SystemState’ = 51
21 SystemState = Sy A —sensor_signalia A ti(signali, t) = (SignalAs) A ModSubtmction(current,valueftt7 target Value) > X_Appl
— targetValue' = limTargetValue A SystemState’ = Sy
22 SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAg) A ModSubtraction(current_valuel, targetValue) > X_Appl
— targetValue' = limTargetValue A SystemState’ = Sy
23 SystemState = Sy N —sensor_signalia A ti(signaly, t) = (SignalAs) A ti(counter2,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy
24 SystemState = Sy N —sensor_signalia A ti(signali, t) = (SignalAe) A ti(counterl,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy
25 (SystemStateSubset(SystemState) V SystemState = Sa2) A ti(sensor_signall,t) = (true) — SystemState’ = Sy
26 SystemState = S3 A —sensor_signalia A ti(signali, t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = Sy
27 SystemState = S3 A —sensor_signalia A targetValue >0 A ti(signal,t) = (SignalAs) — SystemState’ = Ss A targetValue' = targetValue
28 SystemState = S3 A —sensor_signaliz A targetValue =0 A ti(signali,t) = (SignalAs) — SystemState’ = S3
29 SystemState = S3 A —sensor_signalia A ti(signali,t) = (SignalA7) — SystemState’ = S5 A targetValue' = limTargetValue
30 SystemState = S3 A —sensor_signalia A ti(signali,t) = (Signaldg) — SystemState’ = S¢ A targetValue’ = limTarget Value
31 SystemState = Sy A —sensor_signalia A ti(signali,t) = (SignalA7) — SystemState’ = Ss
32 SystemState = Sa N —sensor_signalia A ti(signali, t) = (SignalAg) — SystemState’ = Sg
33 SystemState = Si A —sensor_signaliz A ti(signali,t) = (Signalds) — targetValue' = limTargetValue A SystemState’ = Sy
34 SystemState = S5 A current,valueftt > targetValue A ti(signali,t) # (SignalA7) A — sensor_signali2
— targetValue' = limTargetValue A SystemState’ = Sy
35 SystemState = S5 A current,valueftt < targetValue A ti(signali,t) # (SignalA7) N — sensor_signalia
— SystemState’ = Sy A targetValue' # 0
36 SystemState = S5 A current,valueftt > min(MazCurrentValue, MazTarget Value) A — sensor_signalia
— targetValue' = min(MazCurrentValue, MazTarget Value) A SystemState’ = Sy
37 SystemState = S5 A sensor_signal2}, A —sensor_signallf A —sensor_signal3f
— targetValue' = targetValue A SystemState’ = Sz
38 SystemState = Sg A cur'rent,valueftt < targetValue A ti(signali,t) # (SignalAs) A — sensor_signalia — targetValue' = limTargetValue A SystemState’ = Sy
39 SystemState = Sg A current,valueftt > targetValue A ti(signali,t) # (SignalAg) A — sensor_signalia — SystemState’ =S4 A targetValue' #0
40 SystemState = Sg N current,valueftt < maz(MinCurrentValue, MinTarget Value) A — sensor_signalia — targetValue’ = maz(MinCurrentValue, MinTargetValue) A SystemState’ = S
41 SystemState = Sg N sensorJignal?ft A ﬂsensor,signallft A ﬂsensor,signalfﬁa — targetValue' = targetValue A SystemState’ = So
42 SystemState = S; A ti(powerl,t) = () — SystemState’ = S7
43 SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0
47 SystemState # So A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = Si
48 (SystemState = Si V SystemState = S5) A ti(signal,t) = () — SystemState’ = Sg

where sensor_signali2, limTarget Value so that

sensor_signalijs = sensm:signal??t \Y, sensor,signallft
limTargetValue = Limited Value(current,value]ft, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

M. Spichkova

6.1.5 LogicLoc Component

Now, focusing on the small part of the specification Logic, it is easier to see
in the specification LogicLoc_1 that the specification contains no formula de-
scribing the case that the shutdown value remains unchanged if the predicate
SystemStateSubset does not hold for the current state or if all the signals
sensor_signald, sensor_signalb, sensor_signal6 are false. We can refine to the
specification LogicLoc by the following formula

—SystemStateSubset (statelnfl) Vv
(ti(sensor_signal4, t) = (false)
A ti(sensor_signalb, t) = (false)
A ti(sensor_signal6, t) = (false))
— ti(sValue, t + 1) = ti(sValue, t)

but it is a bad style to define the value of output stream at time ¢ + 1 by the
value of the same stream at time ¢. Moreover, if we want to translate later this
Focus specification to an AutoFocus model, we need to ovoid such a situation
— such kind of definitions cannot be used on the AutoFocus layer at all. Thus,
we need to use a local variable to safe this value.

The same holds for the values of prey, pres, pres, pres and pres: the speci-
fication contains no formula describing the case that the values of prej, pres,
pres, pre4 and pres remain unchanged after setting them to true.

We can refine to the specification CrCtLogicLoc by by rewriting the formulas

ti(preconditiony, t) # () — ti(prei, t + 1) = (true)
ti(preconditiong, t) # () — ti(prea, t + 1) = (true)
ti(preconditions, t) # () — ti(pres, t + 1) = (true)
ti(preconditiony, t) # () — ti(pres, t + 1) = (true)
ti(preconditions, t) # () — ti(pres, t + 1) = (true)

to the following ones

ti(preconditiony, t VieN:t<i—ti(pre,1

((pres, i) = (true))
ti(preconditions, t (VieN:t <i— ti(preg,i) = (true))
(VieN:t <i— ti(pres, i) = (true))
ti(preconditiony, t (VieN:t <i—ti(pres, i) = (true))
((pres, 1) = (true))

() # ()
() # ()
ti(preconditions, t) # ()
() # ()
() # ()

el

ti(preconditions, t VieN:t <i— ti(pres, i

But to specify the behavior of a component as a step-by-step one, similar to
state transition diagram, we need to use a local variable to safe the correspond-
ing value. Thus, we need to use a local variable to represent to safe this value,
we refine the LogicLoc_1 to the specification LogicLoc.

30

Architecture: Methodology of Decomposition, October 1, 2010

— LogicLoc timed —
stateInf : State Type;
sensor_signald, sensor_signalb, sensor_signal6 : Bool
in preconditiony , preconditions, preconditions : Event
preconditiony, preconditions : Event

out sValue : SValue Type; prey, pres, pres, preg, pres : Bool

local sValue : SValueType; Inity, Inity, Inits, Inity, Inits : Bool

init Init; = false; Init, = false; Init; = false; Inity = false; Inits = false

asm ts(sensor_signald) A ts(sensor_signalb) A ts(sensor_signal6)
msg; (preconditiony) A msg;(preconditiony) A msg, (preconditions)
msg, (preconditiony) A msg (preconditions)
ts(statelnf)

ti(sValue,0) = (V1)
ti(prer,0) = (false) A ti(prez,0) = (false) A ti(pres,0) = (false)
ti(preq,0) = (false) A ti(pres,0) = (false)

VteN:
ti(preconditiony, t) # () — ti(prey,t + 1) = (true) A Init] = true
ti(preconditiong, t) # () — ti(prea, t + 1) = (true) A Init) = true
ti(preconditions, t) # () — ti(pres,t + 1) = (true) A Inity = true
ti(preconditiong, t) # () — ti(pres,t + 1) = (true) A Inity = true
ti(preconditions, t) # () — ti(pres,t + 1) = (true) A Init, = true

ti(preconditiony, t) = () — ti(prei, t + 1) = (Inity) A Init{ = Inity
ti(preconditiong, t) = () — ti(pres,t + 1) = (Inity) A Init’ = Inity
ti(preconditions, t) = () — ti(pres,t + 1) = (Inits) A Init’ = Inits
ti(preconditions, t) = () — ti(pres,t +1) = (Inity) A Init’ = Inity
ti(preconditions, t) = () — ti(pres,t + 1) = (Inits) A Init’ = Inits

SystemStateSubset (stateInfit) A ti(sensor_signald,t) = (true)
— ti(sValue,t +1) = (V1) A sValue' =V

SystemStateSubset (stateInfil) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (true)
— ti(sValue, t + 1) = (Vo) A sValue' = Vs

SystemStateSubset (stateInft) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (false)
A ti(sensor_signal6, t) = (true)

— ti(sValue,t +1) = (V3) A sValue' = V3

—~SystemStateSubset (statelnfl) V (ti(sensor_signald,t) = (false) A
ti(sensor_signalb, t) = (false) A
ti(sensor_signal6, t) = (false))
— ti(sValue, t + 1) = (sValue) AN sValue’ = sValue

31

M. Spichkova

6.1.6 LogicLoc Component: Parallel Decomposition

To have more clear architecture we can decompose the component LogicLoc
into three subcomponents, LogicLocS, LogicLocP1, LogicLocP2, LogicLocP3,
LogicLocP4 and LogicLocP5 by the kind of working with the local variables.
Please note that the component LogicLoc is a parallel composition of these sub-
components: they work independently.

The components LogicLocP1, LogicLocP2, LogicLocP3, LogicLocP4 and Logic-
LocP5 have the same structure and can be specified as two different instances
of one component, i.e. represented using specification replication (see below).

— LogicLoc glass-box —

statelnf

sensor_signala
77

sValue

LogicLocS

sensor_signals
T]

sensor_signals
T

pre1

——precondiions | ogicLocP1

prez

___ preconditionz | Log|CLOCP2

pres

——precondiions | ogicLocP3

pres

___ preconditiona | LOg|CLOCP4

pres

—precondons | | ogicLOCP5

32

Architecture: Methodology of Decomposition, October 1, 2010

— LogicLoc

statelnf

sensor_signala

LogicLocS

sensor_signals

sensor_signale

sValue

preconditione LOgICLOCP[C]

ce{l,23,4,5)

—_—

glass-box —

in

— LogicLocP

timed —

precondition : Event

out pre : Bool

local p : Bool

ti(pre, 0) = (false)

VteN:
ti(precondition, t) # () — ti(pre,t 4+ 1) = (true) A p’ = true

ti(precondition, t) = () — ti(pre,t+1)=(p) A p'=p

33

M. Spichkova

— LogicLocS timed —

stateInf : State Type;
sensor_signald : Bool
sensor_signalb : Bool
sensor_signal6 : Bool

out sValue : SValueType

local sValue : SValue Type

asm ts(sensor_signald)
ts(sensor_signalb)
ts(sensor_signal6)
ts(statelnf)

ti(sValue,0) = (V1)

VteN:
SystemStateSubset (stateInft) A ti(sensor_signald,t) = (true)
— ti(sValue,t +1) = (V1) A sValue’ =V

SystemStateSubset (stateInfi) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (true)
— ti(sValue,t + 1) = (Vo) A sValue' = Vs

SystemStateSubset (stateInfi) A ti(sensor_signald, t) = (false)
A ti(sensor_signalb, t) = (false)
A ti(sensor_signal6, t) = (true)

— ti(sValue,t +1) = (V3) A sValue' = V3

—SystemStateSubset (statelnf) Vv (ti(sensor_signald,t) = (false) A
ti(sensor_signalb, t) = (false) A
ti(sensor_signal6, t) = (false))
— ti(sValue,t + 1) = (sValue) A sValue’ = sValue

6.1.7 LogicLoc Subcomponent: Timed State Transition Diagrams

The specification LogicLocP is semantically equal to the specification using a
timed state transition diagram, which two states, pFualse and pTrue, according
to the value of the local variable p. We take pFulse as the initial state, because
of to the initial value of this variable.

The formula ti(pre,0) = (false) defines the starting output value, where the
formulas

34

Architecture: Methodology of Decomposition, October 1, 2010

ti(precondition, t) # () — ti(pre,t+ 1) = (true) A p’ = true
ti(precondition, t) = () — ti(pre,t+1)=(p) A p'=p

describe state transitions with corresponding inputs.
We do not have precondition about the value of p on the left part of impli-
cation — this means, that both formulas must hold for each state:

p’ = true A ti(precondition,t) # () — ti(p,t+ 1) = (true) A p’ = true
p’ =true A ti(precondition,t) = () — ti(pre,t+1)=(p) A p'=1p

p’ = false A ti(precondition, t) # ()
— ti(pre,t + 1) = (true) A p’ = true

p’ =false A ti(precondition,t) = ()
— ti(pre,t+1)=(p) A p'=p
We can easily see that the first two formulas can be simplified to a single one:
p' =true — ti(pre,t + 1) = (true) A p’ = true
The corresponding timed state transition diagram for the component LogicLocP
is presented on Figure 1.
-/
-/ ti(pre,t) = <true>

ti(pre,0) = «false>
ti(precondition,t) # o /
ti(pre,t) = <true>

» pTrue

ti(precondition,t) = <> /
ti(pre,t) = <false»

Figure 1: Timed state transition diagram for the component LogicLocP

The specification LogicLocS is semantically equal to the specification using a
simple state transition diagram, which has three states, let call them V7, V5 and
V3. The corresponding timed state transition diagram is presented on Figure 2.

Please note, that we cannot mark here an initial state, because no initial
value of the variable sValue is given in the specification LogicLoc (and as result
also in the specification LogicLocS).

35

M. Spichkova

<€N> = (1'aneAs)n
/ (13U181815)11°14)195gNS B1RISWIAISAS -

<a/n = (1'anfeAs)n
/ <enup = (1'preubis 1osuas)n

EN = (FanfeAS) (1 JUI9IEIS) N L)I9SANSBIEISWRISAS

J<anJp = (1'9peubis Josuas)n
«as|ep> = (3'gJeubis Josuas)nn
<asjep> = (I'yjeubis Josuas)n
“(¥'gugereIs) 'Y)18SONSIRIS WaISAS

€/ = (Ian[eAs)

Janup = (3'9leubis Josuas)i
«aspep = (1'greubis Josuas)n
«asfep = (1'yreubis Josuas)n
{(1'4u18181S) 11'14)195qNSB1LIS WIBISAS

N> = (1anjeAs)n
J<anap = (3'Greubis 1osuss) i
“<aspep = (1'yreubis Josuas)n
{(3'pura1e1s) 'Y 19SaNSeIRISWISAS

/N> = (1anjeas)n
/ (JU18181S) 11"y)19SONSBIRIS WAISAS —

<TA> = (1anfeas)n
/ <anip = (1'ppeubis Josuss)n
:(2'Ju12181S) 11'Y)19SqNSIRIS WAISAS

<~

@N> = (1anEeAs)N TN = (FaneAs)

@\ = (1'anfeAs)n f<enip = (1'G[eubisiosuas)n / @b = ('pfeubls losuss)n
J@np = o_m_mcm_mJOmcmmv: “«as[ep = (1'p[eublsIosuas)n (yursres) iy issansarerswaishs
“casfey = (1'p[eubisIosuas)n {(1'Ju18181S) 11'14)195QNSB1RISWBISAS

“(gurere18) 'Y)18SONSBIRIS WaISAS

aIN> = (PanjeAs)n
/ (1'JU131818) 11°14)1850NSB1RISWRISAS -

Figure 2: Timed state transition diagram for the component LogicLocS

36

Architecture: Methodology of Decomposition, October 1, 2010

6.1.8 Decomposition: Outputs That Depends from Inputs

Now we need apply the schema from Section 3.3 to get the components Logic-
Main and LogicOut from the component LogicNew presented in Section 6.1.

For this purpose we have to extract the specification LogicNew according to
all the steps from Section 3.2. Now we can see in the specification LogicNew that
there a number of formulas, describing a number of output streams depend only
on the component state, local variables and some inputs, s.t. these formulas do
not describe any requirement on the state changes. These are formulas 8 — 11,
which describe outputs event;, eventy, and events. The is also the 43d formula
that does not describe any requirement on the state changes, but this formula
describe requirements on the local variable targetValue, therefore it will be no
advantage to move this formula out.

1. The formulas to extract from the component LogicNew to the component
LogicOut contain the local variable SystemState, but the value of this
variable at any time interval ¢ is equal to the value of its output stream
stateInf at this time interval (see the second formula in the guarantee-
part of the specification LogicNew). Thus, we do not need any extensions
of LogicNew, but we need to change the 8th, 9th, 10th and 11th formulas
of LogicNew as follows:

o SystemState # Sy must be replaced by stateInf # So,
o SystemState = S> must be replaced by statelnfi = S5, and

e SystemState’ = Sy must be replaced by statelnfffrl = 5.

2. The set of input channels of the component LogicOut is a subset of the
corresponding set of the component LogicNew

o sValue,
e sensor_signall,

e sensor_signal2,

signal2, and
e signal3

together with this output of the component LogicNew that presents value
of local variable SystemState of this component:

o statelnf.

In the notation from [2]:

Z'LogicOut - (iLogicNew U OLogicNew)
where the set of output channels of the component LogicOut is only the
set of output channels moved from LogicNew toLogicOut:

e cventy,

e cventy, and

e cvents

37

M. Spichkova

We remove these outputs from the definition of LogicNew.

3. Add to the specification LogicOut all the assumptions about its input
streams according to the specification LogicNew:

ts(sValue)
ts(sensor_signall)
ts(sensor_signal2)
msg (signaly)

msg; (signals)

4. Values of the following input streams of LogicNew are used only in the
formulas to extract to the component LogicOut:

sValue : SValueType

stgnals, signals : Fvent
We remove these inputs from interface of the component LogicNew.

5. Delete from the specification LogicNew all the assumptions about the
input streams that are removed according the previous step:

ts(sValue)

6. Add to the specification LogicOut the assumption about all the extra
channels:

ts(statelnf)

7. Move all corresponding formulas from the specification LogicNew to the
specification LogicOut.

8. We do not use in the specification LogicOut any parameter of the compo-
nent LogicNew — we do not need to (re)move any parameter.

Now we get the first versions of the components LogicMain (see also Sec-
tion 6.1.11) and LogicOut (see also Section 6.1.9), we denote this adding _1
to the specification names.

Please note, that we do not change the enumeration of formulas in the spec-
ification LogicMain_1, thus, this specification has formulas with the following
numbers: 1 — 7, 12, 13, 19 — 43, 47, 48. After that we group the formulas by
the current system state and update the enumeration to get the specification
LogicMain_2.

38

— LogicMain_1(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool; signaly : SignalType

current_value, counterl, counter?2 : N; pre1, prea, pres, prea, pres, powerl, power2 : Event

target_value_1, target_value_2 : N;

statelnf, stateInfOut : State Type

timed —

gar
1

SystemState : State Type; targetValue : N

SystemState = Sp; targetValue = 0;

ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)

msg; (signal) A ts(current_value) A ts(counterl) A ts(counter2) A msg;(powerl) A msg;(power2)

ts(pre1) A ts(prez) A ts(pres) A ts(pres) A ts(pres)

stateInfOut = stateInf A target_value_2 = target_value_1

VteN:

2

w

7

12

13

19
20

21

22

23

24

25
26
27
28

29
30

31
32
33

34

35

36

37

38

39

40

41

42

43

47

48

where sensor_signali2, limTarget Value so that

ti(statelnf, t) = (SystemState) A ti(target_value_1,t) = (targetValue)

SystemState = Sa A (—sensor_signalia A — Signall Precondition(ti(signaly, t))) — SystemState’ = S3

SystemState = Sa A (—sensor_signalia A Signall Precondition(ti(signali, t))) — SystemState’ = S

SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = So

SystemState = Sy A ti(signali, t) = (Signalds) N —sensor_signalia A SignalAccepted(true, cw“rent,valueftt, target Value, counterlft7 counter2ft)
— SystemState’ = Sy A targetValue’ = ChangeTarget Value(target Value, SignalAs)

SystemState = Sy A ti(signal, t) = (SignalAg) A —sensor_signaliz A SignalAccepted(false, current_valuel, target Value, counterl

— SystemState’ = Sy A targetValue’ = ChangeTarget Value(target Value, SignalAg)

SystemState = Sy A ti(powerl,t) # () — targetValue’ =0 A CrCtSate’ = S

ti(powerl, t) = () — CrCtSate’ = So

t

¢
f» counter2t)

SystemState = S1 A ft.ti(prer,t +1) A ft.ti(prea,t +1) A ft.ti(pres,t +1) A ft.ti(prea,t +1) A ft.ti(pres,t +1) — SystemState’ = S2
SystemState = S1 A (= ft.ti(pre1,t +1) V = ftti(pres,t +1) vV — ftti(pres, t +1) V — ftti(pres, t +1) V - ftti(pres, ¢t + 1)) — SystemState’ = 51

SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAs) A MoalSubt’r’action(current,valueftt7 target Value) > X_Appl
— targetValue' = limTargetValue A SystemState’ = Sy

SystemState = Sy A —sensor_signaliz A ti(signal, t) = (SignalAg) A ModSubtraction(current_valuel,, target Value) > X_Appl
— targetValue’ = limTargetValue A SystemState’ = Sy

SystemState = Sy A —sensor_signaliz A ti(signali, t) = (SignalAs) A ti(counter2,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy

SystemState = Sy A —sensor_signalia A ti(signali, t) = (Signalds) A ti(counterl,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy

(SystemStateSubset(SystemState) V SystemState = S2) A ti(sensor_signall,t) = (true) — SystemState’ = Sy

SystemState = S3
SystemState = S3
SystemState = S3
SystemState = S3
SystemState = S3

A
A
A
A
A

SystemState = Sy A

SystemState = Sy
SystemState = Sy

SystemState = S5

A
A

A

—sensor_signali2
—sensor_signali 2
—sensor_signali 2
—sensor_signali2
—sensor_signali2

—sensor_signali2
—sensor_signali2
—sensor_signali 2

current,valueftt >

— targetValue' = limTargetValue A

SystemState = S5 A current,valueftt <
— SystemState’ = Sy A targetValue' # 0

SystemState = S5 A current,valueftt > min(MazCurrent Value, MazTarget Value) A
— targetValue’ = min(MazCurrentValue, MazTarget Value) A SystemState’ = Sy

SystemState = S5 A sensor_signal2l, A —sensor_signalll, A —sensor_signal3l

ti(signaly, t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = Sy
target Value > 0 A ti(signaly, t) = (SignalAs) — SystemState’ = Sa A targetValue' = targetValue

ti(signaly, t) = (SignalA7) — SystemState’ = S5 A targetValue' = limTargetValue

A
A
A targetValue =0 A ti(signali,t) = (SignalA4) — SystemState’ = S3
AN
A

ti(signaly, t) = (SignalAg) — SystemState’ = Sg A targetValue' = limTargetValue

A ti(signaly, t) = (SignalA7) — SystemState’ = Sy
A ti(signali, t) = (SignalAg) — SystemState’ = Sg
A ti(signaly, t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = S

target Value A ti(signali,t) # (Signaldz7) A

SystemState’ = Sy

targetValue A ti(signali, t) # (SignalA7) A

— targetValue' = targetValue A SystemState’ = Sz

SystemState = Sg A current,valueff’t <

SystemState = Sg
SystemState = Sg
SystemState = Sg

SystemState = St

N

N

A

A

current,valueftt >

current,valueftt <

targetValue A ti(signali,t) # (SignalAg) A
targetValue A ti(signali,t) # (SignalAg) A

maz(MinCurrent Value, MinTarget Value) A

- sensor_signali2

- sensor_signali2

- sensor_signalia

- sensor_signali2
- sensor_signali2

- sensor_signali2

— targetValue' = limTargetValue A SystemState’ = Sy
— SystemState’ = Sy A targetValue' # 0

— targetValue’ = maz(MinCurrent Value, MinTarget Value) A SystemState’ = S

sensor,signamft A ﬂsensor,signallftt A ﬂsensor,signalfia — targetValue’ = targetValue A SystemState’ = So

ti(powerl, t) = () — SystemState’ = Sy

SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0

SystemState # So A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = S1

(SystemState = Sq V SystemState = S5) A ti(signali,t) = () — SystemState’ = S

sensor_signaljas = sensor,signalﬁt \Y, sensomsignal12t
limTargetValue = Limited Value(current,valueftt, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

— LogicMain_2(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool; signaly : SignalType

timed —

n current_value, counterl, counter2 : N; prey, prea, pres, prea, pres, powerl, power2 : Event
out target_value_1, target_value_2 : N; statelnf, stateInfOut : State Type
local SystemState : StateType; targetValue : N
init SystemState = Sp; targetValue = 0;
asm ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
msg; (signal) A ts(current_value) A ts(counterl) A ts(counter2) A msg;(powerl) A msg;(power2)
ts(pre1) A ts(prez) A ts(pres) A ts(pres) A ts(pres)
gar
1 stateInfOut = stateInf A target_value_2 = target_value_1
VteN:
2 ti(statelnf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)
3 ti(powerl,t) = () — CrCtSate’ = S
4 SystemState = Sy A ti(powerl,t) # () — targetValue’ =0 A CrCtSate’ = S1
5 SystemState = S1 A ftti(prei,t +1) A ftti(prea,t +1) A ftti(pres,t +1) A ftti(presa,t +1) A ft.ti(pres,t +1) — SystemState’ = So
6 SystemState = S1 A (= ft.ti(prer,t +1) V - ftti(pree,t +1) V = ftti(pres, t +1) V - ftti(pres, t +1) V - ftti(pres,t + 1)) — SystemState’ = S1
7 SystemState = So N (—sensor_signalia A — Signall Precondition(ti(signali, t))) — SystemState’ = S3
8 SystemState = So A (—sensor_signalia A Signall Precondition(ti(signali, t))) — SystemState’ = S
9 (SystemStateSubset(SystemState) V SystemState = S2) A ti(sensor_signall,t) = (true) — SystemState’ = Sy
10 SystemState # Sa A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = S1
11 SystemState = S3 A —sensor_signali2 A ti(signali,t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = Sy
12 SystemState = S3 A —sensor_signaliz A targetValue >0 A ti(signali, t) = (SignalA4) — SystemState’ = Sy A targetValue' = targetValue
13 SystemState = S3 A —sensor_signaliz A targetValue =0 A ti(signali,t) = (SignalA4) — SystemState’ = S3
14 SystemState = S3 A —sensor_signali2 A ti(signali,t) = (SignalA7) — SystemState’ = S5 A targetValue' = limTargetValue
15 SystemState = S3 A —sensor_signalia A ti(signali,t) = (SignalAg) — SystemState’ = Sg A targetValue’ = limTargetValue
16 SystemState = Sq4 A —sensor_signaliz A ti(signali,t) = (SignalAs) — targetValue' = limTargetValue A SystemState’ = Sy
17 SystemState = S4 N —sensor_signaliz A ti(signali, t) = (SignalAs) A SignalAccepted(true, cm‘renLvalueftt7 target Value, counterlﬁt, counteert)
— SystemState’ = Sy A targetValue’ = ChangeTarget Value(target Value, SignalAs)
18 SystemState = S; A —sensor_signaliz A ti(signali,t) = (SignalAs) A ModSubtraction(current_valuel, targetValue) > X_Appl
— targetValue' = limTargetValue A SystemState’ = Sy
19 SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAs) A ti(counter2,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy
20 SystemState = Sy A —sensor_signalia A ti(signaly,t) = (SignalAg) A SignalAccepted(false, current_valuel, targetValue, counterlf,, counter2t)
— SystemState’ = Sy A targetValue’ = ChangeTargetValue(target Value, SignalAg)
21 SystemState = Sa N —sensor_signalia A ti(signali,t) = (SignalAe) A ModSubtmction(cur’revaotlueftt7 target Value) > X_Appl
— targetValue' = limTargetValue A SystemState’ = Sy
22 SystemState = Sy A —sensor_signalia A ti(signali, t) = (SignalAg) A ti(counterl,t) >0
— targetValue' = limTargetValue A SystemState’ = Sy
23 SystemState = S4 N —sensor_signaliz A ti(signali,t) = (SignalA7) — SystemState’ = Sy
24 SystemState = Sy N —sensor_signalia A ti(signali,t) = (SignalAg) — SystemState’ = Sg
25 (SystemState = S4 V SystemState = S5) A ti(signali,t) = () — SystemState’ = Sp
26 SystemState = S5 A - sensor_signaliz A current_valuel > targetValue A ti(signali,t) # (SignalAr)
— targetValue' = limTargetValue A SystemState’ = Sy
27 SystemState = S5 A - sensor_signalia A current_valuel < targetValue A ti(signali,t) # (SignalAr)
— SystemState’ = Sq4 A targetValue’ # 0
28 SystemState = S5 A - sensor_signaliz N cur’rent,valueftt > min(MazCurrent Value, MazTarget Value)
— targetValue' = min(MazCurrent Value, MazTarget Value) A SystemState’ = S
29 SystemState = S5 A sensor,signalﬁt A ﬁsensor,signallft A ﬁsensor,signal%t
— targetValue' = targetValue A SystemState’ = So
30 SystemState = S¢ N — sensor_signaliz A cum‘ent,’ualue}t < targetValue A ti(signali,t) # (Signaldg) — targetValue' = limTargetValue A SystemState’ = Sy
31 SystemState = Sg N — sensor_signaliz N current,valueftt > targetValue A ti(signali,t) # (Signaldg) — SystemState’ = Sa A targetValue' # 0
32 SystemState = Sg N — sensor_signalia A cur’rent,valueftt < maz(MinCurrent Value, MinTarget Value) — targetValue’ = maz(MinCurrentValue, MinTarget Value) A SystemState’ = Sy
33 SystemState = Sg A sensor,signamﬁt A ﬂsensor,signallﬁt A ﬁsensor,signal?)}’t — targetValue' = targetValue A SystemState’ = S
34 SystemState = S7 A ti(powerl,t) = () — SystemState’ = Sy
35 SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0
36 SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = Sa

where sensor_signali2, limTarget Value so that

sensor_signaljas = sensor,signalﬁt \Y, sensomsignal12t
limTargetValue = Limited Value(current,valueftt, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

Architecture: Methodology of Decomposition, October 1, 2010

— LogicOut_1 timed —

stateInf : StateType; sValue : SValue Type;
signalz, signals : Event;
sensor_signall, sensor_signal2 : Bool

out eventy, eventy, events : Fvent

asm ts(stateInf) A ts(sValue) A ts(sensor_signall) A ts(sensor_signal2)
msg, (signalz) A msg, (signals)

gar
stateInfil # S A statelnfi™ = So A sValuel = Vi A
sensor_signal2f, N —sensor_signalll,
— ti(events, t + 1) = (event)

stateInfi # So A state[nfﬁt'*'1 =5 A sValuel, = Vo A
sensor_signal2f, N —sensor_signalll,
— ti(eventi, t + 1) = (event)

stateInfi # S» A sL‘ateInfﬁt'*'1 =8 A sValuel = V3 A
sensor_signal2, N —sensor_signalll,
— ti(events, t + 1) = (event)

stateInfii = So A ti(signala, t) # () A ti(signals, t) # ()
— ti(events, t + 1) = (event)

6.1.9 LogicOut Component

As we can easily see now, the specification LogicOut_1 is only weak causal: its
values of its output streams at the time interval ¢ 4+ 1 depend on the values of
the input stream statelnf at the same time interval. Because we want to have
this component as a causal one, we need to change the first three formulas as
follows:®

stateInft # So A stateInfi™ = Sy A sValuelT™' = Vi A

t
sensor,signal%+1 A ﬁsensor,signallfjl

— ti(events, t + 2) = (event)

stateInfd # So A state[nfffr1 =8 A sValueftt+1 Vo A

sensor,signal%+1 A msensor,signal1&+1

— ti(eventy, t +2) = (event)

stateInfd # So A statefnff;”r1 =5 A sValueftt+1 Vs A

sensor,signal2]ft+1 A ﬁsen&’or,signal1]ft+1

— ti(eventy, t + 2) = (event)

>These changes have no contradiction with the initial requirement specification.

41

M. Spichkova

To be consistent with the output stream events we also need to change the last
formula:

statelnf ™' = Off A ti(signaly, t + 1) # () A ti(signals, t +1) # ()
— ti(events, t + 2) = (event)

After these changes the specification LogicOut will be strong causal, but another
problem still exists: we argue here about the input values of the input stream
stateInf within two different time intervals, ¢ and ¢ 4+ 1. More natural way to
represent this situation is to use a local variable to save the value of statelnf
(its initial value must be Sp, because this is the initial system state).

Using this solution we can also simplify the component delay definition (see
the specification LogicOut_2 below).

— LogicOut_2 timed —

stateInf : State Type; sValue : SValue Type;
signaly, signals : Fvent;
sensor_signall, sensor_signal2 : Bool

out eventy, events, events : Fvent

local oldState : State Type;

init oldState = Sp;

asm ts(statelnf) A ts(sValue) A ts(sensor_signall) A ts(sensor_signal2)
msg; (signalz) A msgy (signals)

gar
oldState’ = stateInf

oldState # S> A stateInft = Sy A sValuel = Vi A
sensor_signal2l, N —sensor_signallk,
— ti(events, t + 1) = (event)

oldState # So A stateInft = Sy A sValuel = Vo A
sensor_signal2l, N —sensor_signallf,
— ti(event, t + 1) = (event)

oldState # Sy N stateInf = So A sValuel, = Vi A
sensor_signal2l, N —sensor_signalll,
— ti(eventy, t + 1) = (event)

stateInf = Sy A ti(signale, t) # () A ti(signals, t) # ()
— ti(events, t + 1) = (event)

42

Architecture: Methodology of Decomposition, October 1, 2010

To have more clear definition, for which cases the value of the output stream
events is specified, we can join the first and the fourth formulas:

(oldState # So A stateInfit = So A sValuel = Vi A

sensor_signal2k. N —sensor_signallk,

Vv

stateInfl = So A ti(signaly, t) # () A ti(signals, t) # ()
— ti(events, t + 1) = (event)

This formula can also be reformulated as follows:

stateInfl = Sy A
(oldState # So A sValuel = Vi A sensor_signal2l, N —sensor_signallf,
Vv

ti(signaly, t) # () A ti(signals, t) # ()
— ti(events, t + 1) = (event)

We change it to get a new version of the specification, let call it Logic-
Out_3. In the specification LogicOut_3 we have corrected also the following
underspecification: in the specification LogicOut_2 there is no information that
the streams event;, events and events are disjoint — at every time interval only
one of them can contain the event message:
in

disj'™ (eventy, eventy, events)

We need to add this information, but the formula above is again too abstract,
wee need to specify that these streams have empty time intervals in all cases
that were underspecified until now. The new version of the specification is
presented below. In the next section we discuss a representation of this speci-
fication as a timed state transition diagram.

43

M. Spichkova

— LogicOut_3 timed —

stateInf : State Type; sValue : SValue Type;
signaly, signaly : Event;
sensor_signall, sensor_signal2 : Bool

out eventy, events, events : Event

local oldState : State Type;

init oldState = Sp;

asm ts(statelnf) A ts(sValue) A ts(sensor_signall) A ts(sensor_signal2)
msg, (signalz) A msg, (signals)

gar
oldState’ = statelnfd

stateInf = Sy A oldState # So A sValuel = Vo A
sensor_signal2l, N\ —sensor_signalll,
— ti(events, t +1) = () A ti(event;,t + 1) = (event) A ti(eventz,t +1) = ()

stateInfi = So A oldState # So N sValuel, = Vi A
sensor_signal2t. N —sensor_signallk,
— ti(events, t +1) = () A ti(event;,t +1) = () A ti(events, t+ 1) = (event)

stateInfl = Sy A
(oldState # So A sValuel = Vi A sensor_signal2l, N —sensor_signallf,
\%
ti(signaly, t) # () A ti(signals, t) # ()
— ti(events, t + 1) = (event) A ti(eventy,t+1)= () A ti(eventz,t +1) = ()

Now we can easily see in the specification LogicOut_3, that all the output
streams are defined only for the case statelnfi = S, moreover, with a num-
ber of restrictions. Thus we extend the component definition by the following
formula and do a number of logical simplifications:

—(stateInf = Sy A

(oldState # Sy N sValuel = Vi A sensor_signal2, N —sensor_signalll,
Vo ti(signaly, t) # () A ti(signals, t) # ()))

A\

—(statelnfi = So A oldState # Sy N sValuel, = Vo A
sensor_signal2, N —sensor_signalll)

A\

—(statelnfi = So A oldState # Sy N sValuel, = V5 A
sensor_signal2l, N —sensor_signallf,)

— ti(eventy, t +1) = () A ti(eventz, t +1) = () A ti(events,t+1) = ()

44

Architecture: Methodology of Decomposition, October 1, 2010

This is equal to the following formulas:

(statelnft # Sy Vv
(oldState = Sy V' sValuel # Vi V —sensor_signal2l, V sensor_signalll)

A (ti(signalz, t) = () V ti(signals, t) = ()))
N
(statelnft # Sy vV (oldState = Sy V sValuel # Vo V —sensor_signal2f, V sensor_signallf,))
A
(statelnf # SV

(oldState = Sy Vv sValuel # Vi V —sensor_signal2l, V sensor_signalll,))
— ti(eventy, t +1) = () A ti(events, t +1) = () A ti(events,t+1) =)
stateInfi # So

V

(oldState = Sy V' sValuel # Vi V —sensor_signal2l, V sensor_signalll)
A
(ti(signaly, t) = () V ti(signals, t) = ())
A
(oldState = Sy V' sValuel # Vo V —sensor_signal2l vV sensor_signalll)
A
(oldState = Sy V sValuel # Vs V —sensor_signal2f, V sensor_signalll,))
— ti(eventy, t +1) = () A ti(events,t +1) = () A ti(events,t+1) =)
stateInfit # So

V ((oldState = Sy V —sensor_signal2l, V sensor_signalll)

A (ti(signale, t) = () V ti(signals, t) = ()))

— ti(event;, t +1) = () A ti(eventa,t +1) = () A ti(events, t +1) = ()

Please note that the stream sValue is time-synchronous and its type contains
only three values: Vi, Vo and V3, therefore we can simplify the expression

(oldState = Sy V' sValuel # Vi V —sensor_signal2l, V sensor_signalll)
A\
(oldState = Sy V' sValuel # Vo V —sensor_signal2l, V sensor_signalll)
AN

(oldState = Sy V' sValuel # V3 V —sensor_signal2l, V sensor_signalll)
to the expression

oldState = Sy V —sensor_signal2l, V sensor_signalll,

It easy to see that to find out all the presented inconsistencies and underspecifi-
cations within a large specification like Logic, is much more difficult than after
the decomposition.

45

M. Spichkova

As result we get the following specification of the component LogicOut.

— LogicOut timed —
stateInf : State Type; sValue : SValue Type;

signaly, signaly : Event;

sensor_signall, sensor_signal2 : Bool

out eventy, events, events : Fvent

local oldState : State Type;

init oldState = Sp;

asm ts(statelnf) A ts(sValue) A ts(sensor_signall) A ts(sensor_signal2)
msg, (signaly) A msg, (signals)

gar
oldState’ = stateInf;

stateInft = Sy A oldState # Sy N sValuel = Vo A
sensor_signal2l, N —sensor_signalll,
— ti(eventy, t + 1) = (event) A
ti(events, t +1) = () A ti(events, t +1) = ()

stateInf = Sy A oldState # Sy N sValuel = Vs A
sensor_signal2l, N\ —sensor_signalll,
— ti(eventy, t+1)={) A
ti(events, t + 1) = (event) A ti(events,t +1) = ()

stateInf = Sy A
(oldState # So A sValuel = Vi A
sensor_signal2l, N\ —sensor_signalll,
\%
ti(signaly, t) # () A ti(signals, t) # ()
— ti(eventy, t+1)={) A
ti(eventa, t + 1) = () A ti(events, t + 1) = (event)

stateInfi # So
\%
((ti(signaly, t) = () V ti(signals, t) = ())
A (oldState = Sy V —sensor_signal2l, \V sensor_signalll,))
— ti(event, t +1) = () A ti(eventy, t +1) = () A ti(events, t+1) = ()

6.1.10 LogicOut Component: Timed State Transition Diagram

The specification LogicOut is semantically equal to the specification using a
simple state transition diagram (see Figure 3), which two states, NonS2 and
52, according to the value of the local variable oldState. We take NonS2 as the
initial state, because of to the initial value of this variable.

46

, October 1, 2010

101

Methodology of Decomposit

Architecture

(o = (T4 ‘SUaAd)N (o = (TH'QUAAR)N ‘o> = (T+1'TIUBAI) I
I HO #¥Julerers

‘o = (T+1 ‘€UsAd)1]
‘o = (T+H1'2UBAA)N ‘o> = (T+1'TIUBAS) I
/ (¥ TreubisTIosuss A ¥ z[eubis Josuss -)

(o = (ereubis)n A © = (¥'zeubis)n)
1 TS = HJujanels

{QUaNe> = (T+1 ‘SlUana)n
‘o = (TH'2UdAA)N ‘o = (T+1'TIUBAS) I

[o # (erubis)n o # (zreubis)n
{ HO =Hjujeels

1o = (T+) ‘€1UaAd) 1N ‘o = (T+H1'QUaAd)N
‘o = (T+1'TIUBA) N}

/(o = (¥gleubis)n A o = (1'zjeubis)n)
"HO =¥julenmes

o = (T+1'QusAd)N ‘o = (T+I'TIUBAI)N
{QUANS> = (T+1 ‘Sluana)i}

/¥ T[eubis 10suas—

. ¥Z[eubis iosuas

TTA =H3NeASs ! zS = Hjulsiels

o = (TH'Quans)n

‘o = (T+1'TIUdNd) 1}
{quUane> = (T+ ‘SIuana)n
[o # (erubis)n

to # (1'zreubis)n

1 TS =HJujanels

‘o = (T+1 ‘SUaAd)n (o = (T+H1'QUaAd)N

{qUaNS> = (T+HI'TIUBAS)N}
/¥ TIeuBis 1osuss- : ¥zjeubis 1osuss
TN =HaN[eAS [ZS = ¥ julaels

o = (T+ ‘€IUBAI)N (<IUBAD> = (T+1'2IUBAd) 11 ‘> = (T+1'TIUBAB)N
/¥ TIeubis 1osuss— : ¥ zjeubisTIosuss [gA = ¥aN[eAS | gS = ¥ Julerels

o = (TH'Quand)n
‘o = (T+H'TIUBAB) N
‘o = (T+) ‘gUand)n

| TS #¥Julalers

Timed state transition diagram for the component LogicOut

Figure 3

47

M. Spichkova

6.1.11 LogicMain Component

The specification LogicMain_2 was obtained in Section 6.1.8 by decomposi-
tion of the specification LogicNew. To make it more readable we moved some
formulas inside it to group them by value of the variable SystemState at the
time interval ¢ and to put them in the order which can be realistic in a state
transition diagram — the intermediate result is presented by the specification
LogicMain_3.

This specification is now much readable than the Logic specification — some
inconsistencies and undefined cases can be found. Let discuss all the formulas
that describe system behavior grouping them to the system states.

Now we can see, that the local variable target Value is indeed in strong relation
with the system state, but comparing, e.g., the formulas 11 — 15 with the 35th
formula, we find out more possibilities and also benefits to try to move the
computation of this variable to separate formulas. This separation also allows
us to present the timed state transition diagram of the LogicMain component
(see Section 6.2) in a simplified way, omitting the local variables calculation —
this representation is more readable for the case one want to understand the
main state transitions.

The result of the splitting of formulas is presented by the specification, where
the formulas to split were: 4, 11, 12, 14, 15, 16 — 22, 26 — 33. After that we group
all the formulas about the local variable targetValue after the main formulas
about state changes. We also can see that

e the formulas 16 — 22 describe the case in which the system is at the state
S4 and will stay at this state at the next time unit, thus we can group
these formulas together;

e the formulas 26 — 28 describe the case in which the system is in the state
S5 and will move to the state Sy at this state at the next time unit, thus
we can group them together;

e the formulas 30 — 32 describe the case in which the system is in the state
Se and will move to the state Sy at this state at the next time unit, thus
we can group them together;

The result of the optimization is presented by the specification LogicMain_4.

The result of the optimization according to Sections 6.1.12 — 6.1.19 is presented
by the specification LogicMain.

48

— LogicMain_3(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool; signaly : SignalType
current_value, counterl, counter2 : N; prey, prea, pres, prea, pres, powerl, power2 : Event

out target_value_1, target_value_2 : N; statelnf, stateInfOut : State Type

timed —

local SystemState : StateType; targetValue : N

init SystemState = Sp; targetValue = 0;

asm ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
msg; (signal) A ts(current_value) A ts(counterl) A ts(counter2) A msg;(powerl) A msg;(power2)
ts(pre1) A ts(prez) A ts(pres) A ts(pres) A ts(pres)

gar
1 stateInfOut = stateInf A target_value_2 = target_value_1

VteN:
2 ti(statelnf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)

3 ti(powerl,t) = () — CrCtSate’ = Sy

4 SystemState = Sy A ti(powerl,t) # () — CrCtSate’ = S1
4t SystemState = So A ti(powerl,t) # () — targetValue’ =0

5 SystemState = S1 A ftti(prei,t +1) A ftti(prea,t +1) A ft.ti(pres,t +1) A ft.ti(presa,t +1) A ft.ti(pres,t +1) — SystemState’ = Sz
6 SystemState = S1 A (= ftti(prer,t +1) vV - ftti(pres,t +1) V = ftti(pres,t +1) V - ftti(pres,t +1) V - ftti(pres,t + 1)) — SystemState’ = Sy

7 SystemState = Sa N (—sensor_signalia A — Signall Precondition(ti(signali, t))) — SystemState’ = S3
8 SystemState = So A (—sensor_signalia A Signall Precondition(ti(signali, t))) — SystemState’ = S

9 (SystemStateSubset(SystemState) V SystemState = Sa) A ti(sensor_signall,t) = (true) — SystemState’ = S7
10 SystemState # Sa A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = S1

11 SystemState = S3 A —sensor_signaliz A ti(signaly, t) = (SignalAs) — SystemState’ = Sy

11t SystemState = S3 A —sensor_signaliz A ti(signali,t) = (SignalAs) — targetValue' = limTarget Value

12 SystemState = S3 A —sensor_signaliz A targetValue >0 A ti(signali,t) = (SignalA4) — SystemState’ = Sy

12t SystemState = S3 A —sensor_signalia A targetValue >0 A ti(signali,t) = (SignalA4) — targetValue' = targetValue
13 SystemState = S3 A —sensor_signali2 A targetValue =0 A ti(signali,t) = (SignalAs) — SystemState’ = S3

14 SystemState = S3 A —sensor_signali2 A ti(signali,t) = (SignalA7) — SystemState’ = Sy

14t SystemState = S3 A —sensor_signalia A ti(signali,t) = (SignalA7) — targetValue' = limTargetValue

15 SystemState = S3 A —sensor_signaliz A ti(signali,t) = (SignalAg) — SystemState’ = Sp

15t SystemState = S3 A —sensor_signaliz A ti(signali,t) = (SignalAg) — targetValue’ = limTargetValue

16 SystemState = Sa A —sensor_signaliz A ti(signali,t) = (SignalAs) — SystemState’ = S
16t SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAs) — targetValue’ = limTargetValue

17 SystemState = Sa N —sensor_signaliz A ti(signali, t) = (SignalAs) A SignalAccepted(true, current,valueftt, target Value, counterlt , counteert) — SystemState’ = Sy

t
ft

t

17t SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAs) A SignalAccepted(true, current_value o

— targetValue’ = ChangeTargetValue(target Value, SignalAs)

targetValue, counterl counterQFt)

18 SystemState = Sy A —sensor_signaliz A ti(signaly, t) = (Signalds) A ModSubtraction(current_valuel,, target Value) > X_Appl — SystemState’ = Sy

18t SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAs) A ModSubtraction(current_valuel, targetValue) > X_Appl — targetValue' = limTargetValue

19 SystemState = Sy A —sensor_signalia A ti(signali,t) = (SignalAs) A ti(counter2,t) >0 — SystemState’ = Sy
19t SystemState = Sy A —sensor_signalia A ti(signali,t) = (SignalAs) A ti(counter2,t) >0 — targetValue’ = limTargetValue

20 SystemState = Sy A —sensor_signalia A ti(signal,t) = (SignalAg) A SignalAccepted(false, current_valuel, targetValue, counterlf,, counter2t)

— SystemState’ = Sy

t

20t SystemState = Sq4 A —sensor_signaliz A ti(signali, t) = (SignalAe¢) N SignalAccepted(false, current,valueftt, targetValue, counterlg,

— targetValue' = ChangeTargetValue(target Value, SignalAg)

¢
counter2f,)

21 SystemState = S4 A —sensor_signalia A ti(signaly,t) = (SignalAg) A ModSubtraction(current_valuel, targetValue) > X_Appl — SystemState’ = Sy

21t SystemState = S4 A —sensor_signaliz A ti(signali, t) = (Signaldg) A ModSubtraction(current_valuel,, targetValue) > X_Appl — targetValue' = limTargetValue

22 SystemState = Sy A —sensor_signaliz A ti(signali, t) = (Signalds) A ti(counterl,t) >0 — SystemState’ = Sy
22t SystemState = Sa N —sensor_signalia A ti(signali,t) = (SignalAe) A ti(counterl,t) >0 — targetValue’ = limTargetValue

23 SystemState = Sy A —sensor_signalia A ti(signali,t) = (SignalA7) — SystemState’ = Sy
24 SystemState = Sa N —sensor_signalia A ti(signali, t) = (SignalAg) — SystemState’ = Sg
25 (SystemState = S4 V SystemState = S5) A ti(signali,t) = () — SystemState’ = Sg

26 SystemState = S5 A — sensor_signali2 A cur’rent,valueftt > targetValue A ti(signali,t) # (SignalA7) — SystemState’ = Sa
26t SystemState = S5 N — sensor_signaliz A current,valueftt > targetValue A ti(signali,t) # (SignalA7) — targetValue’ = limTargetValue

27 SystemState = S5 A — sensor_signaliz A current,valueftt < targetValue A ti(signali,t) # (SignalA7) — SystemState’ = Sa

27t SystemState = S5 A — sensor_signalia A current_valuel < targetValue A ti(signali,t) # (SignalA7) — targetValue' # 0

28 SystemState = S5 A — sensor_signaliz A current,valueftt > min(MazCurrent Value, MazTarget Value) — SystemState’ = Sa

28t SystemState = S5 A — sensor_signaliz A current,valueftt > min(MazCurrent Value, MazTargetValue) — targetValue’ = min(MazCurrentValue, MazTarget Value)

29 SystemState = S5 A sensor,signalﬁt A ﬁsensor,signallft A ﬁsensor,signal%t — SystemState’ = S
29t SystemState = S5 A sensonsignalﬂt A ﬁsensor,signalla A ﬁsensor,signal?;gt — targetValue' = targetValue

30 SystemState = Sg¢ N\ — sensor_signaliz N current,valueftt < targetValue A ti(signali,t) # (SignalAg) — SystemState’ = Sa
30t SystemState = Sg¢ A — sensor_signaliz A current,@aluef”t < targetValue A ti(signali,t) # (SignalAs) — targetValue’ = limTargetValue

31 SystemState = Sg N — sensor_signaliz A current;ualueftt > targetValue A ti(signali,t) # (SignalAg) — SystemState’ = Sy
31t SystemState = Sg A — sensor_signalia A current_valuel > targetValue A ti(signali,t) # (SignalAg) — targetValue' # 0

32 SystemState = S¢ N — sensor_signaliz A current;ualueftt < maz(MinCurrent Value, MinTarget Value) — SystemState’ = Sy

32t SystemState = Sg¢ N\ — sensor_signaliz A current,valueftt < mazx(MinCurrentValue, MinTarget Value) — targetValue’ = mazx(MinCurrentValue, MinTarget Value)

33 SystemState = Sg A sensor,signalﬁt A ﬁsensor,signallﬁt A ﬁsensor,signaliﬁt — SystemState’ = S,

34 SystemState = S; A ti(powerl,t) = () — SystemState’ = S7

35 SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0

36 SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = S
where sensor_stgnali2, limTarget Value so that

sensor_signaliz = sensorjignal?ft \Y, sensor,signallﬁt
limTarget Value = Limited Value(current,valueff’t, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

— LogicMain_4(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool; signaly : SignalType

timed —

where sensor_signaly2, limTarget Value so that
sensor_signalis = sensonsz’gnalZ}t \Y, sensor,signallﬁt
limTargetValue = Limited Value(current,valueftt, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

n current_value, counterl, counter2 : N; prey, prea, pres, prea, pres, powerl, power2 : Event
out target_value_1, target_value_2 : N; statelnf, stateInfOut : State Type
local SystemState : StateType; targetValue : N
init SystemState = Sp; targetValue = 0;
asm ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
msg; (signal) A ts(current_value) A ts(counterl) A ts(counter2) A msg;(powerl) A msg;(power2)
ts(pre1) A ts(prez) A ts(pres) A ts(pres) A ts(pres)
gar
1 stateInfOut = stateInf A target_value_2 = target_value_1
VteN:
2 ti(statelnf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)
3 ti(powerl,t) = () — CrCtSate’ = S
4 SystemState = Sy A ti(powerl,t) # () — CrCtSate’ = S1
5 SystemState = S1 A ftti(prei,t +1) A ftti(prea,t +1) A ftti(pres,t +1) A ftti(presa,t +1) A ft.ti(pres,t +1) — SystemState’ = So
6 SystemState = S1 A (= ft.ti(prer,t +1) V - ftti(pree,t +1) V = ftti(pres, t +1) V - ftti(pres, t +1) V - ftti(pres,t + 1)) — SystemState’ = S1
7 SystemState = So N (—sensor_signalia A — Signall Precondition(ti(signali, t))) — SystemState’ = S3
8 SystemState = So A (—sensor_signalia A Signall Precondition(ti(signali, t))) — SystemState’ = S
9 (SystemStateSubset(SystemState) V SystemState = S2) A ti(sensor_signall,t) = (true) — SystemState’ = Sy
10 SystemState # Sa A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = S1
11 SystemState = S3 A —sensor_signaliz A ti(signali,t) = (SignalAs) — SystemState’ = Sy
12 SystemState = S3 A —sensor_signaliz A targetValue >0 A ti(signali, t) = (SignalA4) — SystemState’ = Sy
13 SystemState = S3 A —sensor_signaliz A targetValue =0 A ti(signali,t) = (SignalA4) — SystemState’ = S3
14 SystemState = S3 A —sensor_signali2 A ti(signali,t) = (SignalA7) — SystemState’ = Sy
15 SystemState = S3 A —sensor_signalia A ti(signali,t) = (SignalAg) — SystemState’ = Sg
16 SystemState = Sy N\ —sensor_signaliz A
(ti(stgnaly, t) = (SignalAs) V
(ti(signaly, t) = (SignalAs) A SignalAccepted(true, current,valueftt, target Value, counterlft, counte7’2ft)) Vv
(ti(signaly, t) = (SignalAs) A ModSubtraction(current_valuel,, target Value) > X_Appl) V
(ti(signaly, t) = (SignalAs) A ti(counter2,t) > 0) V
(ti(signali, t) = (SignalAg) N SignalAccepted(false, current,valueftt, target Value, counterla, counter2§t)) Vv
(ti(signaly, t) = (SignalAe¢) A ModSubtraction(current_valuel,, targetValue) > X_Appl)) V
(ti(signali, t) = (Signaldg) A ti(counterl,t) > 0))
— SystemState’ = Sy
17 SystemState = Sq4 A —sensor_signaliz A ti(signaly,t) = (SignalA7) — SystemState’ = Sy
18 SystemState = Sa A —sensor_signaliz A ti(signali,t) = (SignalAg) — SystemState’ = Sg
19 (SystemState = Sy V SystemState = S5) A ti(signali,t) = () — SystemState’ = Sg
20 SystemState = S5 A — sensor_signaliz A
((current_valuel > targetValue A ti(signali,t) # (SignalAz)) V
(current_value}, < targetValue A ti(signal,t) # (SignalAz7)) V
current_valuel, > min(MaxzCurrent Value, MazTarget Value))
— SystemState’ = Sy
21 SystemState = S5 A sensor,signamft A ﬂsensor,signallft A —\5ensm;signal3?t — SystemState’ = S
22 SystemState = Sg A — sensor_signalia A
((current_valuel < targetValue A ti(signali,t) # (SignalAg)) V
(current_valuel, > targetValue A ti(signal,t) # (SignalAg)) V
current_value}, < maz(MinCurrentValue, MinTarget Value))
— SystemState’ = Sy
23 SystemState = Sg A sensor,signalﬁt A ﬁsensor,signallft A ﬁsensotsi_qnalS?t — SystemState’ = S
24 SystemState = Sy A ti(powerl,t) = () — SystemState’ = S7
25 SystemStateSubset(SystemState) A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = So
26 SystemState = So A ti(powerl,t) # () — targetValue’ =0
27 SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0
28 SystemState = S3 A —sensor_signalia A (ti(signali, t) = (SignalAsg) V ti(signali, t) = (SignalAs) V ti(signali, t) = (SignalA7)) — targetValue’ = limTargetValue
29 SystemState = S3 A —sensor_signaliz A targetValue >0 A ti(signali,t) = (SignalAs) — targetValue' = targetValue
30 SystemState = Sq4 A —sensor_signalia A
(ti(signaly, t) = (SignalAs) V
ti(signaly, t) = (SignalAs) A ModSubtraction(current_valuel, target Value) > X_Appl) V (ti(signaly,t) = (Signalds) A ti(counter2,t) > 0) V
g g ft g g g
ti(signaly, t) = (SignalAg) A ModSubtraction(current_value! , target Value) > X_Appl) V (ti(signali,t) = (Signaldg) A ti(counterl,t) >0
ft
— targetValue’ = limTarget Value
31 SystemState = Sy A —sensor_signalia A ti(signaly,t) = (SignalAs) A SignalAccepted(true, current_valuel,, targetValue, counterll,, counter2},)
— targetValue' = ChangeTargetValue(target Value, SignalAs)
32 SystemState = Sy A —sensor_signaliz A ti(signali,t) = (SignalAe) A SignalAccepted(false, current_valuel, targetValue, counterl},, counter2f,)
— targetValue' = ChangeTargetValue(target Value, SignalAg)
33 SystemState = S5 A - sensor_signaliz A current_valuel > targetValue A ti(signal,t) # (SignalA7) — targetValue' = limTargetValue
34 SystemState = S5 A — sensor_signaliz A current,valueftt < targetValue A ti(signali,t) # (Signald7) — targetValue' # 0
35 SystemState = S5 N — sensor_signaliz A cum‘ent,valuef‘t > min(MazCurrent Value, MazTargetValue) — targetValue’ = min(MazCurrentValue, MazTarget Value)
36 (SystemState = S5 V SystemState = Sg) A sensor,signanft A ﬁsensor,signallﬁt A —\sens07‘,sig'rzali’)§'t — targetValue' = targetValue
37 SystemState = Sg A — sensor_signaliz N cur’rent,valueftt < targetValue A ti(signali,t) # (SignalAg) — targetValue’ = limTargetValue
38 SystemState = Sg A — sensor_signaliz A current_valuel > targetValue A ti(signali,t) # (SignalAg) — targetValue' # 0
39 SystemState = Sg A — sensor_signaliz A curre'nt,valueftt < mazx(MinCurrentValue, MinTarget Value) — targetValue' = max(MinCurrentValue, MinTarget Value)

Architecture: Methodology of Decomposition, October 1, 2010

6.1.12 State Sy

The explicit description of the system behavior at this state is given only in the
4th formula, where the reaction on the nonempty signal powerl is presented.
This nonempty signal is the only way to change the system state from Sy to 5.
The system behavior at the state Sy for the case of the empty signal powerl is
given by the 3rd formula: if at any state the signal powerl is empty, the system
goes to the state Sy, thus, if the system was at the state Sy at this time unit, it
does not change its state.

Value of the local variable target Value at the time interval ¢t 41 for the case the
system is at the state Sy at the time interval ¢ is defined only for the nonempty
signal powerl (formula 26), but this underspecification has no influence on the
system behavior — value of this variable at the state Sy is unimportant and
moving to the state S; the system will set the value to 0 (according to the
formula 26).

6.1.13 State S

The description of the system behavior at this state is given by 5th and 6th
formulas: if all the streams preq, ..., pres have at the time unit ¢ true-values,
the system state will be changed to Sz, otherwise the system state will be
unchanged.

This is a contradiction to the 3rd formula: if the system is on the state S and
the signal powerl is empty, then according to the 3rd formula the system must
change its state to Sy, but according to the 5th and 6th formulas the system
state at the next time unit must be either S; or So. Therefore, we need to
extend the 5th and 6th formulas to correct this underspecification: their must
hold only for the case ti(powerl, t) # ().

SystemState = S1 A ti(powerl,t) # () A

ft.ti(prei, t +1) A ftti(prez, t +1) A ft.ti(pres, t +1) A
ft.ti(pres, t + 1) A ft.ti(pres, t + 1)

— SystemState’ = Sy

SystemState = S1 A ti(powerl,t) # () A

(- ftti(prer, t +1) vV - ftti(pres, t +1) V - ft.ti(pres, t +1) V
= ftti(pres, t + 1) V - ftti(pres, t + 1))

— SystemState’ = 91

But also after this correction we still have contradictions, because the behav-
ior at the system state S is also implicit described by the 10th formula that
says: if the system does not be at the state S, the signal powerl does not be
empty, but the signal power?2 is empty, then the system state at the next time
unit must be changed to S;. After analyzing the system we restrict the 10th
formula to hold only at the states Ss3,..., S, i.e. only at the states for which
the predicate SystemStateSubset holds and unify the syntax:

51

M. Spichkova

SystemStateSubset(SystemState) A ti(powerl,t) # () A ti(power2,t) = ()
— SystemState’ = S

Value of the local variable target Value at the time interval ¢+ 1 is undefined for
the case the system is at the state S; at the time interval ¢, thus, analyzing the
system we add new formula (%) that specify this value to be unchanged for both
possible situations: system state will be changes to So or will be unchanged.

SystemState = S1 — targetValue' = targetValue (*)

We can also see that the local variable targetValue is undefined for the case
described by the corrected 10th formula. We specify explicitly that the value
of this variable must be unchanged for this case:

SystemStateSubset(SystemState) A ti(powerl,t) # () A ti(power2,t) = ()

— targetValue' = target Value

We join this formula with (x):

(SystemState = S1 V
(SystemStateSubset(SystemState) A ti(powerl,t) # () A ti(power2,t) = ()))
— targetValue' = targetValue (")

6.1.14 State Sa

The description of the system behavior at the state Sy is given by Tth, 8th and
9th formulas, and analyzing them we find an underspecification: they do not
cover the case ti(sensor_signall, t) = (false) A ti(sensor_signal2, t) = (true), the
9th formula hold only if ti(sensor_signall, t) = (true), where 7th and 8th formu-
las hold only for the case ti(sensor_signall, t) = (false) A ti(sensor_signal2,t) =
(false), because

—sensor_signalis =
—(sensor_signallf, V sensor_signal2}) =
—sensor_signalll, N —sensor_signal2f, =

ti(sensor_signall, t) = (false) A ti(sensor_signal2,t) = (false)
Analyzing the system we find the underspecified formula (xx):
SystemState = Sa A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false)
— SystemState’ = S5
This formula is very similar to the 36th formula, thus, we extend the 25th
formula by (xx):

(SystemStateSubset(SystemState) V SystemState = S2)
A ti(sensor_signal2, t) = (true) A ti(sensor_signall,t) = (false)
— SystemState’ = S92

52

Architecture: Methodology of Decomposition, October 1, 2010

Value of the local variable targetValue at the time interval ¢ + 1 is undefined
for the case the system is at the state S2 at the time interval ¢, thus, analyzing
the system we need new formula that specify this value to be unchanged for
the tree possible situations: system state will be changes to S3 or 57, or system
state will be unchanged.

SystemState = Sa — targetValue' = targetValue

We join this formula with the formula (') defined in the previous section:

(SystemState = S1 V SystemState = Sa V
(SystemStateSubset(SystemState) A ti(powerl,t) # () A ti(power2,t) = ()))

— targetValue' = target Value (")

Moreover, all these formulas have a contradiction to the 3rd formula: if the
system is on the state Sy and the signal powerl is empty, then according to
the 3rd formula the system must change its state to Sg. Therefore, we need to
extend these formulas to correct this underspecification: their must hold only
for the case ti(powerl, t) # ().

6.1.15 State S3

The description of the system behavior at this state is given by the 9th — 15th
and the 25th formulas. It is easy to see the following underspecification at the
formulas 11 — 15: they must be extended by the conjunct

ti(powerl, t) # () A ti(power2,t) # ()

To make the correction result more readable, we define a new abbreviation
power_sensor_signal as follows

power_sensor_signal = —sensor_signaliz A ti(powerl,t) # () A ti(power2,t) # ()
and use it in these formulas instead of sensor_signalio. Therefore, we get:

SystemState = S3 A power_sensor_signal A ti(signali,t) = (SignalAs)
— SystemState' =S4

SystemState = S3 N power_sensor_signal A targetValue >0 A ti(signali, t) = (SignalAs)
— SystemState’ = S,

SystemState = S A power_sensor_signal A ti(sensor_signal3,t) = (false) A
ti(signaly, t) = (SignalAz)
— SystemState’ = S5

SystemState = S3 A power_sensor_signal A ti(sensor_signal3,t) = (false) A
ti(signal, t) = (SignalAs)
— SystemState’ = S5

93

M. Spichkova

SystemState = Sz A power_sensor_signal A ti(sensor_signal3,t) = (false) A
targetValue = 0 A ti(signali, t) = (SignalA4)
— SystemState’ = S5

Now we can also see that these formulas does not cover the case

SystemState = S3 A power_sensor_signal A ti(sensor_signal3,t) = (false) A
ti(signal, t) # (SignalAs) A ti(signali,t) # (SignalAs) A
ti(signaly, t) # (SignalA7) A ti(signali,t) # (SignalAs)

or, more explicit,

SystemState = S A power_sensor_signal A ti(sensor_signal3,t) = (false) A
(ti(signal, t) = (Signald1) V ti(signali, t) = (SignalAs) V
ti(signaly, t) = (SignalAs) V ti(signali,t) = (Signalds) V ti(signal,t) = ())

The cases ti(signal;, t) = (SignalA;) and ti(signaly, t) = (SignalAs) can be
omitted, because if we analyse the whole system, we get that this cases imply
also sensor_signalja, thus these cases will be covered either by the 9th or by
the 25st formula. Thus, we need to add a new formula to the specification:

SystemState = Sz A power_sensor_signal A ti(sensor_signal3,t) = (false) A
(ti(signal, t) = (SignalAs) V ti(signali,t) = (SignalAe) V ti(signali,t) = ()
— SystemState’ = S5

The same case must be added to specify value of the local variable target Value
(let call this formula (x * *)):

SystemState = S A power_sensor_signal A ti(sensor_signal3,t) = (false) A
(ti(signaly, t) = (SignalAs) V ti(signali,t) = (Signalds) V ti(signali,t) = ()

— targetValue' = targetValue

The values of this variable are defined now by this formula as well as by the
formulas 27 — 29, and we can easily see that the formulas (% x %), 28 and 29
are in contradiction to the 27th formula. To correct this, we need to add new
conjunct ti(sensor_signal3, t) = (false) to the formulas (* x *), 28 and 29:

SystemState = S A power_sensor_signal A ti(sensor_signal3,t) = (false) A
(ti(signaly, t) = (SignalAs) V ti(signali,t) = (Signalds) V ti(signali,t) = ())

— targetValue' = target Value

SystemState = S A power_sensor_signal A ti(sensor_signal3,t) = (false) A
(ti(signaly, t) = (SignalAs) V ti(signaly, t) = (SignalAs) V ti(signali, t) = (SignalAz))

— targetValue' = limTarget Value

SystemState = S3 A power_sensor_signal A ti(sensor_signal3,t) = (false) A
targetValue > 0 A ti(signaly, t) = (SignalAs)

— targetValue' = targetValue

54

Architecture: Methodology of Decomposition, October 1, 2010

To get more readable specification we join now the formulas (* * %) and 28:

SystemState = S3 A power_sensor_signal A ti(sensor_signal3,t) = (false) A
((targetValue > 0 A ti(signal,t) = (SignalAs)) V
ti(signaly, t) = (SignalAs) V ti(signali,t) = (Signalds) V ti(signali,t) = ()))

— targetValue' = target Value

6.1.16 State Sy

The description of the system behavior at this state is given by 9th, 10th, 16th
— 19th and 25th formulas. In the formulas 16 — 18 we need the same changes as
described in Section 6.1.15: replace —sensor_signalis by power_sensor_signal.
We also need to add this conjunct to the 19th formula.

We can easily see that in the specification there is no formula describing
the following cases: ti(signal,t) = (SignalAy), ti(signaly, t) = (SignalAs), and
ti(signaly, t) = (SignalA4). We add the case ti(signaly, t) = (SignalAy) to the
16th formula, because the system state must be unchanged in this situations.
The cases ti(signaly,t) = (SignalA;) and ti(signaly,t) = (SignalAs) can be
omitted, because if we analyse the whole system, we get that this cases imply
also sensor_signalis, thus these cases will be covered either by the 9th or by
the 25st formula.

Analyzing the specified reactions to the signal SignalAs as well as to the signal
SignalAg for the case that no switch-off-condition occurs and compare these
definitions with the system behavior, we can find out that according to these
signal the system state will be unchanged independently from the conjuncts
SignalAccepted (true, current,valueftt, target Value, counterlﬁt, counteert),
ModSubtmction(current,valueftt, target Value) > X_Appl,
ti(counterl, t) > 0 and ti(counter2,t) > 0. All these conjunct influence only on
the value of the local variable target Value and we can simplify the 16th formula
as follows:

SystemState = S4 N\ power_sensor_signal N

(ti(signaly, t) = (SignalAs) V ti(signali, t) = (SignalAs) V
ti(signaly, t) = (SignalAs) V ti(signali,t) = (SignalAs))
— SystemState’ = S,

In the formulas 30 — 32, which describe the corresponding value of the variable
target Value, we also need to replace —sensor_signalis by power_sensor_signal.

The manual analyze whether we cover all the possible cases in the definition
of targetValue for the state Sy is not sufficient, if the semiautomated proof of
the system properties is planed.

6.1.17 State Ss

The description of the system behavior at the state S5 is given by 9th, 10th,
20th and 21st formulas.

95

M. Spichkova

In the formula 20 we need to replace —sensor_signalis by power_sensor_signal.
Analyzing this formula we can see that in the case of ti(signaly, t) # (SignalA7)
we have no dependencies on current_value. We simplify it as follows:

SystemState = S5 N power_sensor_signal N
(ti(signaly, t) # (SignalA7) V current_valuel > min(MazCurrentValue, MazTarget Value))
— SystemState’ = S,

The situation described by the 21st formula is covered by more general 25th
formula, thus, we can simply remove the 21st formula from the specification.
We also need to add a formula which describes what happens if none of the
cases of the 20th formula is applicable:

SystemState = S5 N power_sensor_signal N
(ti(signali, t) = (SignalA7) A current_valuel, < min(MazCurrentValue, MazTarget Value))
— SystemState’ = S5

The manual analyze whether we cover all the possible cases in the definition
of targetValue for the state S; is not sufficient, if the semiautomated proof of
the system properties is planed.

6.1.18 State Sg

The description of the system behavior at the state S5 is given by the 9th, 10th,
22nd and 23rd formulas. In the formula 22 we need to replace —sensor_signalis
by power_sensor_signal. We can see that in the case of ti(signaly, t) # (SignalAg)
we have no dependencies on current_value and simplify it as follows:

SystemState = Sg N power_sensor_signal A
(ti(signaly, t) # (SignalAs)) V current_valuel < mazx(MinCurrentValue, MinTarget Value))
— SystemState’ = S,

The situation described by the 23rd formula is covered by more general 25th
formula, thus, we can simply remove the 23rd formula from the specification.
We also need to add a formula which describes what happens if none of the
cases of the 22nd formula is applicable:

SystemState = Sg N\ power_sensor_signal N
(ti(signali, t) = (SignalAs) A current_valuef > min(MazCurrentValue, MazTarget Value))
— SystemState’ = Sg

The manual analyze whether we cover all the possible cases in the definition
of targetValue for the state Sg is not sufficient, if the semiautomated proof of
the system properties is planed.

6.1.19 State S7

The description of the system behavior at the state S7 is given explicitly by the
24th formula, which is in contradiction with the 3rd formula because of typo:
the correct conjunct must be ti(powerl,t) # (). The system behavior at the
state S7 for the case of the empty signal powerl is given by the 3rd formula.

56

— LogicMain(const LogicParam)

sensor_signall, sensor_signal2, sensor_signal3 : Bool; signaly : SignalType

timed —

n current_value, counterl, counter2 : N; prey, prea, pres, prea, pres, powerl, power2 : Event
out target_value_1, target_value_2 : N; statelnf, stateInfOut : State Type
local SystemState : StateType; targetValue : N
init SystemState = Sp; targetValue = 0;
asm ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
msg; (signal) A ts(current_value) A ts(counterl) A ts(counter2) A msg;(powerl) A msg;(power2)
ts(pre1) A ts(prez) A ts(pres) A ts(pres) A ts(pres)
gar
1 stateInfOut = stateInf A target_value_2 = target_value_1
VteN:
2 ti(statelnf,t) = (SystemState) A ti(target_value_1,t) = (targetValue)
3 ti(powerl,t) = () — CrCtSate’ = S
4 SystemState = Sy A ti(powerl,t) # () — CrCtSate’ = S1
5 SystemState = S1 A ti(powerl,t) # () A ftti(prei,t+1) A ft.ti(prez,t +1) A ft.ti(pres, t +1) A ftti(pres,t +1) A ft.ti(pres,t +1) — SystemState’ = Sz
6 SystemState = S1 A ti(powerl,t) # () A (= ftti(prer,t +1) V - ftti(prea, t +1) V - ft.ti(pres,t +1) V - ft.ti(prea,t +1) V - ft.ti(pres,t + 1)) — SystemState’ = S1
7 SystemState = So A ti(powerl,t) # () A (—sensor_signaliz A — Signall Precondition(ti(signali,t))) — SystemState’ = S3
8 SystemState = So A ti(powerl,t) # () N (—sensor_signalia A Signall Precondition(ti(signal,t))) — SystemState’ = Sz
9 (SystemStateSubset(SystemState) V SystemState = S2) A ti(powerl,t) # () A ti(sensor_signall,t) = (true) — SystemState’ = S7
10 SystemStateSubset(SystemState) A —ti(powerl,t) = () A ti(power2,t) = () — SystemState’ = S1
11 SystemState = S3 A power_sensor_signal A ti(signali,t) = (Signalds) — SystemState’ = Sy
12 SystemState = S3 A power_sensor_signal A targetValue >0 A ti(signali,t) = (Signaldy) — SystemState’ = Sy
13 SystemState = S3 A power_sensor_signal A targetValue =0 A ti(signali,t) = (Signalds) — SystemState’ = S3
14 SystemState = S3 A power_sensor_signal A ti(signali,t) = (Signald7) — SystemState’ = S
15 SystemState = S3 A power_sensor_signal A ti(signali,t) = (SignalAg) — SystemState’ = Sg
16 SystemState = S3 A power_sensor_signal A ti(sensor_signal3,t) = (false) A (ti(signali,t) = (Signalds) V ti(signali,t) = (Signalde) V ti(signali,t) = () — SystemState’ = S3
16 SystemState = Sy A power_sensor_signal N
(ti(signali, t) = (SignalAs) V ti(signali,t) = (SignalA4) V ti(signali,t) = (SignalAs) V ti(signali,t) = (SignalAg)) — SystemState’ = Sy
17 SystemState = Sa A power_sensor_signal A ti(signali,t) = (Signald7) — SystemState’ = Ss
18 SystemState = S4 A power_sensor_signal A ti(signali,t) = (Signaldg) — SystemState’ = Sg
19 (SystemState = Sy V SystemState = S5) A power_sensor_signal A ti(signali,t) = () — SystemState’ = Ss
20 SystemState = S5 A power_sensor_signal A (ti(signali,t) # (SignalAz) V current_valuel > min(MazCurrentValue, MazTargetValue)) — SystemState’ = Sy
21 SystemState = S5 A power_sensor_signal A (ti(signali,t) = (SignalA7z) A curreme)alueftt < min(MazCurrent Value, MazTarget Value)) — SystemState’ = S5
22 SystemState = S¢ A power_sensor_signal A (ti(signali,t) # (SignalAg)) V current_valuel < max(MinCurrentValue, MinTargetValue)) — SystemState’ = Sy
23 SystemState = S¢ A power_sensor_signal A (ti(signali,t) = (SignalAg) A currentJ}alueftt > min(MazCurrent Value, MazTarget Value)) — SystemState’ = Sg
24 SystemState = Sy A ti(powerl,t) # () — SystemState’ = S7
25 (SystemStateSubset(SystemState) V SystemState = S2) A ti(powerl,t) # () A ti(sensor_signal2,t) = (true) A ti(sensor_signall,t) = (false) — SystemState’ = So
26 SystemState = So A ti(powerl,t) # () — targetValue’ =0
27 (SystemState = S1 V SystemState = S V (SystemStateSubset(SystemState) A ti(powerl,t) # () A ti(power2,t) = ())) — targetValue' = targetValue
28 SystemStateSubset(SystemState) A ti(sensor_signal3,t) = (true) — targetValue’ =0
28 SystemState = S3 A power_sensor_signal A (ti(signali,t) = (SignalAs) V ti(signali, t) = (SignalAz7) V ti(signali, t) = (SignalAg)) — targetValue’ = limTargetValue
29 SystemState = S3 A power_sensor_signal A
((targetValue > 0 A ti(signali,t) = (SignalAa)) V ti(signali,t) = (Signalds) V ti(signali,t) = (Signalde) V ti(signal,t) = ()) — targetValue' = targetValue
30 SystemState = S4 N power_sensor_signal A
(ti(signaly, t) = (SignalAs) V
(ti(signaly, t) = (SignalAs) A ModSubtraction(current_valuel, targetValue) > X_Appl) V (ti(signaly,t) = (SignalAs) A ti(counter2,t) >0) V
(ti(signaly, t) = (SignalAe) A ModSubtraction(current_valuef,, targetValue) > X_Appl) V (ti(signali,t) = (Signalde) A ti(counterl,t) > 0))
— targetValue' = limTarget Value
31 SystemState = Sq4 A power_sensor_signal A ti(signali,t) = (SignalAs) A SignalAccepted(true, current,valueff‘t, targetValue, counterl?t, counterQF‘t)
— targetValue' = ChangeTargetValue(target Value, SignalAs)
32 SystemState = Sy A power_sensor_signal A ti(signali,t) = (SignalAe) A SignalAccepted(false, current_valuel, targetValue, counterl},, counter2f,)
— targetValue' = ChangeTargetValue(target Value, SignalAg)
33 SystemState = S5 A power_sensor_signal A current,valueftt > targetValue A ti(signali,t) # (SignalA7) — targetValue’ = limTargetValue
34 SystemState = S5 N power_sensor_signal N current,valueftt < targetValue A ti(signali,t) # (SignalA7) — targetValue' # 0
35 SystemState = S5 A power_sensor_signal A current,valuef”t > min(MazCurrent Value, MazTargetValue) — targetValue’ = min(MazCurrentValue, MazTarget Value)
36 (SystemState = S5 V SystemState = Sg) A sensor,signaﬂftt A ﬂsensor,signallﬁt A —\sensor,signali’)& — targetValue' = targetValue
37 SystemState = Sg N power_sensor_signal A current,valueftt < targetValue A ti(signali,t) # (SignalAs) — targetValue’ = limTargetValue
38 SystemState = S¢ N power_sensor_signal A current;ualueftt > targetValue A ti(signali,t) # (Signaldg) — targetValue' # 0
39 SystemState = Sg A power_sensor_signal A curremf;mluef‘t < maz(MinCurrent Value, MinTarget Value) — targetValue' = maz(MinCurrent Value, MinTarget Value)

where sensor_signali2, power_sensor_signal, lim Target Value so that

sensor_signaljas = sensor,signalﬁt \Y, sensor,signallﬁt
power_sensor_signal = —sensor_signaliz A ti(powerl,t) # () A ti(power2,t) # ()
limTargetValue = Limited Value(current,valueftt, MinCurrentValue, MinTarget Value, MazCurrentValue, MazTarget Value)

M. Spichkova

6.2 LogicMain Component: Timed State Transition Diagram

The specification LogicMain is semantically equal to the specification using a
timed state transition diagram (TSTD), with 8 states, which correspond to the
values of the local variable SystemState: Sy, ..., S7. We take Sy as the initial
state, because of to the initial value of the variable SystemState.

Please note that according to [10] for the TSTDs the following rules hold:

e The argumentation is over time intervals, the “current” time interval num-
ber is ¢, t € N.

e For any stream y from the input channels used in the TSTD: if an ex-
pression of the form ti(y, t) = SomeTimelnterval is omitted, the value of
the tth time interval of the stream y can be arbitrary.

e For any stream z from the output channels used in the TSTD: all expres-
sion of the form ti(z, t) = () are omitted.

e For any local variable [all expression of the form I’ = [are omitted.

The init-part of the specification defines the starting output values, where the
1st formula of the body-part of the specification LogicMain

stateInfOut = stateInf A target_value_2 = target_value_1

specifies a general equality on the outputs, which must be added to each tran-
sition in the same manner as the equalities from the 2nd formula of LogicMain:

ti(stateInf, t) = (SystemState) A ti(target_value_1,t) = (targetValue)

After translation these formulas, which operates with a single current state,
to the state transitions, we get a TSTD that is relatively readable, but we
need also to add to the TSTD the transitions that represents formulas that
do not operate with a single current state, but with a number of states, which
correspond to some properties.

The formula 3 has no information about the current state. This implies that
the corresponding transition must be added to each state. Therefore, we need
to add eight transitions to our TSTD . For better readability we mark them
green.

The formula 10 holds for four state (according to the definition of the predi-
cate SystemStateSubset) — we need to add four corresponding transitions to our
TSTD. For better readability we mark them purple.

The formulas 9 and 25 hold for five states (the Si-state and the four states,
for which holds the predicate SystemStateSubset). Therefore, we need to add
five corresponding transitions to our TSTD for each of these two cases. For
better readability we mark them blue and red correspondingly.

As result we get the complete TSTD for the LogicMain component.

Here we present a simplified version of the TSTD — LogicMainTSTD (see
Figure 4), omitting the local variables calculation — this representation is more
readable for the case one want to understand the main state transitions.

58

, October 1, 2010

101

Methodology of Decomposit

Architecture

@ [eubis> = (3 ‘T [eubis)n :[euBis Josuss™1emod

(<@ V[eubls> # (1 ‘T [eubis)n A
(anfeAlsBire LUl ‘pasdsuiin)xew

> ¥an[eA jualno)
‘Jeubis Josuas Jamod

(«9"vIeubls> = (1 ‘1" [eubis)n
A <G Veubls> = (1 ‘T [eubls)n
A<y VIeublS> = (1 ‘T [eubis)n

A <€ V[eubIS> = (3 ‘T [eubis)i)
‘[euBisiosuas tamod

<L V[eubiS> # (1 ‘T [eubis)n A
‘(anjelsbie L XeN ‘anfe AXeN)UIW

< ¥3njeA IuaLIND)
‘[eubis™1osuas 1amod

(<£7wreubls> = (1 ‘T eubis)n
‘{(anjeAlebiel xeN ‘anfe AXeN)UIW

> ¥aN[eA juaLINd)
‘[eubis Josuss Jamod

€ VIerubIS> = (3 ‘T Teubis)n
‘[euBisiosussJamod

v vIeubls> = (1 ‘T eubis)n
‘0 < anjeAlabIel
‘[euBisiosusas™Jamod

“[eubis)n
suas ™ Jamod

& V[eubis> 2 (1 ‘7 [eubis)n
‘0'= anjeAlabiel
”_m:m_m_/mm:mmdm;on

<& =07 reubis)n
' B1s)\= (1 ' Teubis)n
A G VIeubIS: = (1T TeubIs))

Josuaslamod

o =07 |eubis)in
‘[eubis 1osuaslamod

@ V[eubIS> = (1 ‘T [eubis)n
‘leubis JosuasJamod

1'T feuis))uonipuodaidTipubls -
fo £ @ T4emod)n) ‘g1 [eubisI0sueS —
a S Tiamod)n 21" feubis g
N ((°T” reubis)n)uenIpuodaIdTeub
a * 2T |euBisTIosuss - |
_ — .ana T ,i
g VIeubIS> = (3 ‘T [eubis)i O (TR0 0)
“ oG pamod)y o7 T\ =[('Tiemod)n
“ TTeMOd) My erd ¥y eld 4

‘(anje1ebue LUl ‘paadguln)xew
1S S tMeTaud Mz eud YT eud
- o # (1 ‘Tremod)n (<o = (1 ‘zramod)nn s » s [U

< Yan[ea jusind
© = (3 ‘T4emod)y

‘[eubis™iosuas~mod
. AMTTaud o A ¥y aid A MgTaud — T 4/

o # (1 'T4emod)n AYZead A YT eud) o #(‘Tlomod)n

©# (1 ‘Tiomod)n
¥ 17 [eubis™1osuss

Timed state transition diagram LogicMainTSTD for the component

LogicMain

Figure 4

99

M. Spichkova

7 Specification of the System Requirements

In this section we define the requirements on the component LogicComp.

Please note, that the specification LogicCompReq contains not all require-
ments which can be important for the component LogicComp — our aim here
was to present a number of examples for such kind of specifications.

60

Architecture: Methodology of Decomposition, October 1, 2010

— LogicCompReq(const LogicParam) timed —
sensor_signall, sensor_signal2, sensor_signal3, sensor_signald, sensor_signalb, sensor_signal6 : Bool
signaly : SignalType; current_value, counterl, counter2 : N;

in precondition , preconditiony, preconditions, preconditiony, preconditions : Fvent
signalz, signals, powerl, power2 : Fvent

target_value_1, target_value_2 : N; stateInfOut : StateType;
out Signal A7 Action, Signal A8 Action, Sq Action, eventy , eventa, events : Event;
indicator_lamp_is_On : Bool; request, systemSignall : N;

asm
ts(sensor_signall) A ts(sensor_signal2) A ts(sensor_signal3)
ts(sensor_signald) A ts(sensor_signalb) A ts(sensor_signal6)
msg, (signali) A ts(current_value) A ts(counterl) A ts(counter2)
msg; (precondition1) A msgy(preconditiona) A msg; (preconditions)
msg, (preconditions) A msgy (preconditions)
msg; (powerl) A msg; (power2) A msg;(signalz) A msg;(signalz)

gar
VteN:

stateInfOut! = So A ti(powerl,t) # ()
— state[nfOutfttJrl =5 V state[nfOutfttJrl =53 V stateInfOutft,tJrl =Sy

stateInfOutf = Sy — ti(targetValuer,t) # (0)

power_sensor_signal A ft.ti(signali, t) = SignalAs A statelnfOutftt =S4 N
SignalAccepted(true, current_valuel,, target_value_1},, counterl},, counter2},)
— ti(target_value_1,t + 1) = (ChangeTargetValue(target,value,lft, SignalAs))

power_sensor_signal A ft.ti(signal, t) = SignalAs A stateInfOut} = Sy A
- SignalAccepted (true, cur'rent,valueftt, target,value,lft, counteTla, counterQ?t)
— ti(target_value_1,t + 1) = (limTarget Value)

power_sensor_signal A ft.ti(signali, t) = SignalAs A state]nfOutfi =54 N
SignalAccepted(false, current,valueftt, tow’get,value,l]’ﬁt7 counterlft, counterQ}t)
— ti(target_value_1, t + 1) = (ChangeTarget Value(target ValueInf!, SignalAg))

power_sensor_signal A ft.ti(signali, t) = Signalds AN state[nfOutftt =S4 A
- SignalAccepted (false, current_valuel, target_value_1},, counterl! , counter2})
— ti(target_value_1,t + 1) = (limTargetValue)

—power_sensor_signal A SystemStateSubset(state]nfOutftt)
— (ti(stateInfOut, t + 1) = (So) V (S1) V (S2) V ti(stateInfOut,t + 1) = (S7))

stateInfOutl = S; A ti(powerl, t) # () — (ti(stateInfOut,t+ 1) = (S7))

power_sensor_signal A ft.ti(signali, t) = SignalAz A (st‘ateInfOutftt =853 V stateInfOutftt = S4)
— ti(stateInfOut, t + 1) = (Sa4) A ti(target_value_1,t + 1) = (limTargetValue)

power_sensor_signal A ft.ti(signal, t) = SignalAds A stateInfOut} = S3 A ft.ti(target_value_1,t) >0
— ti(stateInfOut,t + 1) = Sa

power_sensor_signal A ft.ti(signal, t) = SignalAds A stateInfOut] = S3 A ti(target_value_1,t) = (0)
— ti(stateInfOut, t +1) = Ss

power_sensor_signal A ft.ti(signali, t) = SignalAz A (state[nwafftt =853 V stateInwafftt = S4)
— ti(stateInfOut, t + 1) = Ss

power_sensor_signal A ft.ti(signali, t) = SignalAs A (state]nfOutffi =53 V stateInfOutf‘t = S1)
— ti(stateInfOut,t + 1) = S5

where power_sensor_signal, limTarget Value so that
power_sensor_signal =
—sensor_signal2}, A —sensor_signalll) A ti(powerl,t) # () A ti(power2,t) # ()
limTargetValue =
Limited Value(current,valueftt, MinCurrentValue, MinTarget Value, MaxCurrent Value, MazTarget Value)

61

M. Spichkova

8 Summary

In this paper we have presented a part of specification and verification process
developed within the Verisoft-XT project. The purpose of this project is to
integrate verification techniques in real industrial development processes — from
specification and analysis of requirements to a verified implementation.

Ones of the main points in this paper are system architecture and system
decomposition. The main contribution of our decomposition methodology is
that it was developed for such a system architecture, where we know systems
(components) properties and need to decompose this whole properties collection
to a number of subcomponent. Thus, the presented methodology allows us to
decompose component architecture decomposition exactly on this point where
we see that the component specification becomes too large and too complex. In
addition, our methodology helps to perform the next modeling step — translation
to the case tool representation and deployment.

We can also see this methodology as an extension of the approach “Focus
on Isabelle” — it is integrated into a seamless development process, which cov-
ers both specification and verification, starts from informal specification and
finishes by the corresponding verified C code.

The starting point of presented approach is a semiformal requirement spec-
ification — according to it we represent the system in FOCus according to the
approach “Focus on Isabelle”. Using this approach one can validate the refine-
ment relation between two given systems, as well as make automatic correctness
proofs of syntactic interfaces for specified system components. Having a Focus
specification, we can schematically translate it to a specification in Hight-Order
Logic and verify properties of the specified system.

We present and discuss here the FOCUs specifications of an imaginary case
study that is an anonymization of the of the case study [11] from Robert Bosch
GmbH: the used data types, constants, auxiliary functions and predicates, the
general system architecture and the system components as well as their decom-
position according the presented methodology, as well as the system require-
ments.

Given a system, represented in FOCUS, one can verify its properties by trans-
lating the specification to a Higher-Order Logic and subsequently using the
theorem prover Isabelle/HOL or the point of disagreement can be found. This
must be done as the next step of the methodology. As an other next step we can
schematically translate the FOCUS specification to a model in the n AutoFo-
cus 3 case tool and analyze the structure and behavior of the system, simulate
it, prove its properties using model checking and also using its translation to
Isabelle/HOL, as well as we gan generate C code from it.

62

Architecture: Methodology of Decomposition, October 1, 2010

References

1]
2]

AutoFOCUS 3. http://af3.in.tum.de.

M. Broy and K. Stglen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces, and Refinement. Springer-Verlag,
2001.

Manfred Broy, Franz Huber, and Bernhard Schétz. AutoFocus — Ein
Werkzeugprototyp zur Entwicklung eingebetteter Systeme. Informatik
Forschung und Entwicklung, (13(3)):121-134, 1999.

David Bettencourt da Cruz and Birgit Penzenstadler. Designing, Docu-
menting, and Evaluating Software Architecture. Technical Report TUM-
INFO-06-10818-0/1.-FI, Technische Universitat Miinchen, Institut fir In-
formatik, Boltzmannstr. 3, 85748 Garching, GERMANY, jun 2008. avail-
able at http://www.in.tum.de/forschung/publikationen/index.html.de.

Andreas Fleischmann. Model-based formalization of requirements of em-
bedded automotive systems. PhD thesis, Technische Universitat Miinchen,
2008.

Christoph Hofmann, Eckart Horn, Wolfgang Keller, Klaus Renzel, Monika
Schmidt, Wirth Horn, and Bereiter Anger. Approaches to software archi-
tecture.

T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Archi-
tectures. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99 —
Formal Methods, Proceedings of the World Congress on Formal Methods
in the Development of Computing System, number LNCS 1708, pages 96 —
115. Springer, 1999.

Bernhard Schétz and Franz Huber. Integrating Formal Description Tech-
niques. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors,
FM’99 — Formal Methods, Proceedings of the World Congress on Formal
Methods in the Development of Computing Systems, volume 1709 of Lec-
ture Notes in Computer Science, pages 1206 — 1225. Springer Verlag, sep
1999.

M. Spichkova. Specification and Seamless Verification of Embedded Real-
Time Systems: FOCUS on Isabelle. PhD thesis, Technische Universitéat
Miinchen, 2007.

Maria Spichkova. Architecture: Methodology of Decomposition. Specifica-
tion of the Cruise Control System. Case Study. Technical report, Robert
Bosch GmbH, 2010.

63

M. Spichkova

[12] Maria Spichkova. Verisoft XT Automotive Application: Semiformal Speci-
fication for Cruise Control System. Technical report, Robert Bosch GmbH,
2010.

[13] Verisoft Project. http://www.verisoft.de.
[14] Verisoft-XT Project. http://www.verisoftxt.de.

[15] M. Wenzel. The Isabelle/Isar Reference Manual. Technische Universitét
Miinchen, 2004.

[16] Doris Wild, Andreas Fleischmann, Judith Hartmann, Christian Pfaller,
Martin Rappl, and Sabine Rittmann. An Architecture-Centric Approach
towards the Construction of Dependable Automotive Software. In Proceed-
ings of the SAE 2006 World Congress, 2006.

64

