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Abstract. The purpose of this work1 is to integrate verification tech-
niques in real industrial development processes – from informal textual
specification and analysis of requirements to a verified implementation.
Therefore, we present methods necessary to bridge the gap from informal
requirements towards formal specification and from there to executable
implementation. We show which development steps are necessary and
how the specifications and models are verified using both automatic and
interactive techniques.

1 Introduction

Embedded software-based systems development has become a most challenging
field of software engineering research and industrial application. These systems
underlie real-time requirements, they are safety critical, they must be highly re-
liable, and they are distributed over multiple processing units. Typical example
systems can be found in modern cars and airplanes, but also in power plants,
production facilities, and electronic consumer products. Building correct con-
trol software becomes more and more complicated in these application domains
because the size and the complexity of such systems increases from day to day.

Currently, software correctness is accounted for through extensive testing ef-
forts, but it is well known that testing cannot prove correctness of systems, but
it can only demonstrate the presence of errors in exemplary cases. On the con-
trary formal verification methods can show total correctness of systems w.r.t. the
intended, specified behavior. Both automatic and interactive verification tech-
niques have been successfully applied in integrated circuits and processor design.
However, software verification turned out to be much more difficult, since soft-
ware serves a large variety of purposes: there is software working close to the
hardware environment like operating systems and driver software, while appli-
cation software implements the customer functionality.

We need defined methodologies to build and verify these different kinds of
software. This is particularly difficult because a complete embedded system prod-
uct consists of all these parts working tightly together: application software is
1 This work was fully funded by the German Federal Ministry of Education, Science,

Research and Technology (BMBF) in the framework of the Verisoft XT project. The
responsibility for this article lies with the authors.



executed in the context of an operating system, which in terms is executed on a
hardware execution unit and interacts with peripheral components like sensors
or actuators. In order to obtain a fully verified embedded system all the techni-
cal issues have to be considered. We have to verify the hardware, the operating
system and the application software.

We are well aware that system development in an industrial setting seldom
proceeds from requirements to implementation in a single run, but uses review
and feedback cycles to address changes found as development progresses. How-
ever, for the sake of clarity of presentation we do not provide a process model
with change cycles, but stick to the presentation of the development artifacts
and the applied verification techniques.

The paper is organized as follows: Section 2 discusses the motivation for
the presented approach and related work, this includes the discussion of the
differences between the methodology, we propose here, and the mentioned case
studies our methodology has evolved from. Section 3 introduces the development
methodology as a whole, while Sections 4 – 8 discuss the different artifacts, while
Section 9 concludes this paper.

2 Motivation and Related Work

There is a number of works on integration of different system models and ver-
ification techniques. For instance, the Ptolemy approach (see [8]) introduces a
general way to combine heterogeneous models of embedded systems. A promi-
nent example of integration of verification techniques is a combination of Model
Checking and Deduction for I/O-Automata done by O. Müller and T. Nipkow
(see [19]). However, to our best knowledge there are no other works on achiev-
ing a pervasive formal development process for embedded applications starting
with informal textual specification and leading to verified machine-code. This
direction has been touched for the first time in [3], though only for upper layer
of automotive systems and focused on later verification phases – in contrast, the
contribution of the work presented here is covering the entire seamless pervasive
development process.

The first steps towards a methodology for development of verified embedded
system have been done in [4,5].For example, a typical setting found in the auto-
motive domain, a time-triggered operating and communication bus system, has
been verified [16,3]. In this paper we deal with the verification of the applica-
tion software. In comparison to the problem frame approach of M. Jackson [14]
as well as the 4-variable model of Parnas and Madey [21], we present a perva-
sive formal development methodology for embedded systems starting from an
informal textual specification of the requirements and going all the way to ver-
ified application code. Earlier results of the Verisoft project [3] have shown the
methodology for later verification phases, in particular the relation between the
application model and its execution environment, e.g. the operating system.

The proposed methodology evolved from experience gained through three
case studies on embedded control systems: two industrial case studies from the



automotive area one case study from the business information systems area [6].
In the remainder of the paper we introduce the models and methods applied to
achieve a seamless development methodology for embedded applications incor-
porating suitable verification techniques.

Related work for single phases of the presented methodology is given in each
section it pertains to.

3 Development Methodology

Our methodology starts with the first phase of a real development process –
the informal specification of the requirements – and concentrates on the verifi-
cation aspects during the course of system development. Thus, we deal not only
with formal specifications, but rather with verification-oriented formal specifica-
tions and refinement-based verification of safety-critical distributed systems (see
also [26]).

Figure 1 illustrates the structure of the proposed development methodology
in a top-down manner: from an informal specification through multiple transfor-
mation steps we get a verified formal specification, a verified executable model
and also a verified C code implementation. The boxes represent development
artifacts, the dark arrows show the dependency relations, i.e., which artifact is
used as input for the development of the successor artifact. The light arrows
show the proof relations between the artifacts.
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Fig. 1. Development Methodology

The informal specification of the requirements captures the relevant aspects
of the system to be developed. It is usually given as a requirements document in



natural language. On the one hand the informal specification allows flexibility
to capture the relevant aspects, but on the other hand it lacks precision from
the formal point of view. While flexibility is desirable in the early stages of
system development, the later phases, and verification methods in particular,
need artifacts described in a formal language. Therefore, our first step is to
derive a tabular semi-formal specification of the requirements. We use specific
pre-defined syntactic patterns to transform the informal specifications by adding
more details and precision.

The tabular semiformal specification can be also rewritten to a Message
Sequence Charts (MSCs) representation [13,15] according to the approach pre-
sented in [24]. The purpose of using MSCs for specification of highly interacting
systems is to obtain a better overview in comparison to a textual representation.
However, this kind of specification does not give advantages in representation
for all kind of systems. We consider this step as an optional one to be included
if necessary.

The MSC specification or the semiformal specification, respectively, is trans-
lated to a specification in Focus [7], a framework for formal specifications and
development of distributed interactive systems. This framework is preferred here
over other specification frameworks since it has an integrated notion of time and
modeling techniques for unbounded networks (where we have replications of sys-
tem components of the same kind), provides a number of specification techniques
for distributed systems and concepts of refinement. Moreover, Focus specifica-
tions are much more readable and manageable than specification done according
to approaches like B-method [2] or Z [27] – the advantage of graphical notation is
extremely important when we are dealing with systems of industrial size. Focus
supports a variety of specification styles, which describe system components by
logical formulas or by diagrams and tables representing logical formulas.

In general we represent in Focus two kinds of specifications: a requirements
specification of the system and its architecture specification (corresponding to
the black and the glass box view on the system, respectively). Both of them are
extracted from the MSC specification and/or the semiformal specification. This
representation prepares the ground to verify the system architecture specifica-
tions against the system requirements by translating both to the theorem prover
Isabelle/HOL [20] via the framework “Focus on Isabelle” [25]. Dealing with the
“Focus on Isabelle” approach we can influence the complexity of proofs and
their reusability already during the specification phase. This is due to the treat-
ment of specification and verification/validation methodologies as a single joint
methodology with the main focus on the specification part. Moreover, using this
approach one can perform automatic correctness proofs of syntactic interfaces
for specified system components.

In some cases inconsistencies can still remain in the specification, model or
code even after verifying certain properties – most often an important property
was ignored as nicely stated by Donald E. Knuth’s famous saying: “Beware of
bugs in the above code – I have only proved it correct, not tried it.”. Thus,
not only verification techniques, but also testing and simulation must belong



to the development process. Therefore, as the next step of the methodology,
we translate the architecture specification to a representation in the related
CASE tool AutoFocus 3 [11], a scientific research prototype, which is a tool
implementation based on the Focus approach. We can now use the simulation
and model-checking facilities of this tool.

The requirements specification will be translated from Focus to temporal
logic. This representation gives us a basis to model-check the AutoFocus 3
model against. The transformations from Focus to temporal logic and to the
AutoFocus 3 representation are formal and schematic, given some constraints
on the Focus specification are obeyed.

The AutoFocus 3 model is also exported to Isabelle/HOL to prove its prop-
erties – the AutoFocus 3 model is in general a refinement of a Focus specifica-
tion, thus its properties can be slightly different, i.e., more strict, from the ones
specified on the Focus layer. On the other hand, the proof schema, which has
been developed for the Focus specifications, can be (partially) reused. Finally,
the AutoFocus 3 model is transformed to a corresponding C code by a code
generator. We can show that this step preserves properties of the model [12]. Al-
together, the methodology guides us from an informal specification via stepwise
refinement to a verified formal specification, a corresponding executable verified
model, and also a corresponding verified C code implementation.

The proposed development methodology makes it possible to perform formal
verification on different levels of system abstraction and development, ranging
from formalisation of system requirements to program code. In this section we
address verification techniques applicable for different specification techniques
used in this project for different system development phases. We opt to use both
techniques, model checking and interactive theorem proving, because they pro-
vide different features needed for different verification tasks and complementing
each other. While model checking provides automatic verification for property
notations of limited expressiveness like LTL, interactive theorem proving allows
for using powerful notations like HOL at the price of semi-automatic verification,
i.e., requiring user interaction to find a proof.

After the requirements and the system architecture have been formalised in
Focus, they can be translated to Isabelle/HOL (cf. [25]) and the refinement
relation between them can be validated. In most cases not only one refinement
step is needed, but a number of them. Thus, we can use the idea of refinement
layers and of a refinement-based verification [26]: we see any proof about a system
as the proof that a more concrete system specification is a refinement of a more
abstract one.

In AutoFocus 3 functional properties can be specified using temporal logic
notations, especially LTL (Linear Temporal Logic [17]). Temporal properties
can be checked using model checking tools, e.g., SMV [18]. That way, system
properties expressible in LTL can be verified by exporting AutoFocus 3 models
to SMV and model checking the corresponding temporal formulae [22], as has
been performed, for instance, for selected safety-critical properties in [9]. To
cover the cases where using model checking have its typical proplems, functional



properties can be formulated and proven in Isabelle/HOL. For this purpose a
code generator has been developed for creating Isabelle/HOL representations of
AutoFocus 3 models, as described in [28].

The final product of the development process is C code generated from Auto-
Focus 3 models. In order to obtain the formal guarantee the correctness of
the code, the behavioural equivalence of the Isabelle/HOL representation of the
model and generated code can be proven in Isabelle/HOL.

Table 1 gives short description how the statistics about the two industrial
case studies from the automotive area2 looks like. The size of the AutoFocus 3
model is approximately equal to that of the corresponding Focus specifica-
tion. Until now formal verification for the case studies has only been completed
within [9] on the AutoFocus layer using model checking, discovering several
errors, e.g., modelling errors, inconsistencies between requirements and model,
incomplete requirements. The pervasive verification of the second case study
starting on the Focus layer and ending on the code layer is work in progress.

Table 1. Case Studies statistics

Methodology Artifact Case study 1 Case Study 2

Semiformal Specification (atomic requirements) 30 70

MSC Specification (MSCs) 16 20

FOCUS Specifications (components) 10 ca. 70

FOCUS Specifications (hierarchy levels) 2 4

Code (lines of generated code) ca. 3.000 ca. 17.000

4 Semiformal Specification

Based on an initial set of requirements, the informal specification3 is structured
and subsequently specified with the help of pre-defined text patterns. Further-
more, the logical interface of the system as well as the system states are identified.
For this purpose we use a simplified version of an approach presented in [9,10],
which we extended according to the needs of the overall development approach.

An informal specification consists of a set of words, which can be distin-
guished into two categories: content words and keywords (relation words). Con-
tent words are system-specific words or phrases, e.g. “system is initialized” or

2 The first case study (referred in [9,24]) was motivated and supported by DENSO
CORPORATION. The second case study [29] is ongoing and supported by Robert
Bosch GmbH.

3 The presented methodology focuses only on functional requirements, including tim-
ing aspects.



“Off-button is pressed”. The set of all content words forms the logical inter-
face of the system, which can be understood as some kind of (domain spe-
cific, system-dependent) glossary that must be defined in addition. Keywords
are domain-independent and form relationships between the content words (e.g.
“if”, “then”, “else”). A semiformal specification consists of a number of require-
ments described using the following textual patterns:4

WHILE 〈Some state〉
IF 〈Some event occurs or some state changes〉
THEN 〈Some event occurs or some state changes〉

An event describes a point in time, in which the system observes or does some-
thing; the duration of the event is not important, e.g., “driver presses a button”.
A state describes a system or component state within some time period, e.g., “a
button is pressed”. Strictly speaking, all states of a state space are disjunct, but
in some cases it is more efficient to use a state hierarchy that must be described
separately.

The semiformal specification can be given in a simple tabular form, where
the columns are, e.g., unique requirement identifier, semiformal description of
the requirement, names of the corresponding MSC, remarks, alternative descrip-
tion, and sentences from the informal specification, which were reformulated to
the semiformal requirement. Using such a simple tabular description to structure
the information from the informal specification, we can find out missing informa-
tion quite fast. Furthermore, we identify possible synonyms that must be unified
before proceeding to a formal specification. Analysis of the semiformal specifi-
cation document should also yield sentences, which need to be reformulated or
extended.

5 MSC Specification

The Message Sequence Charts (MSCs) representation [13,15] is widely used in
telecommunication applications – for specification of systems that have complex
interaction patterns and a comparatively small state space. They interact mostly
according to their inputs and not so much according to their states and state
changes. However, if a system has a large state space and the main (re)action
of this system depends on its states and results in state changes, a graphical
MSC specification becomes hardly readable. Thus, we gain no benefit w.r.t. the
textual, tabular one and the effort to build an MSC specification is practically
wasted. Therefore, we consider the MSC-based development step an optional
one, which should be included only if necessary and useful in the application
domain.

For example, for the system specified in [6], where the interaction between the
system components was very intensive, the MSC specification was really wise,

4 In some cases either the WHILE-part or the IF-part can be omitted.



the case study represented in [9,24] was also appropriate for this step. However,
for the case study from the Verisoft XT project [29] this step turned out to be
useless, because the system was primarily state-based.

6 FOCUS Specifications: Requirements and Architecture

A system in Focus is represented by its components that are connected by com-
munication lines called channels, and are described in terms of its input/output
behavior. Any Focus specification characterizes the relation between the com-
munication histories for the external input and output channels. Thus, the for-
mal meaning of a specification is exactly this external input/output relation. The
components can interact and also work independently of each other.

A specification can be elementary or composite – composite specifications
are built hierarchically from the elementary ones. Elementary specifications are
divided in Focus into untimed, timed, and time-synchronous according to their
level of time abstraction. In the methodology we use the timed kind of speci-
fications only. This simplifies the verification (see also [25]) and allows for the
schematic formal translation to the AutoFocus 3 model. Hence, we use a dis-
crete notion of time, which allows us to precisely specify system components, and
to compose them without causality anomalies that may occur in the untimed
treatment.

7 Executable AutoFocus 3 Model

During the last step, we have obtained a formal model of the system architecture
specified as a Focus specification. In order to obtain an executable model next,
we transform this specification into an AutoFocus 3 model. AutoFocus 3 [23]
is a scientific CASE tool prototype5 implementing a modeling language based
on a graphical notation and a restricted version of the formal Focus semantics,
in particular the time-synchronous setting. The system structure specification
is similar to the Focus architecture specification. It captures the static aspects
of the system description. We specify a network of communicating components
working in parallel (assuming a global synchronized time frame).

The AutoFocus 3 model is an execuarble one. Thus, we can validate the
model using the AutoFocus 3 simulator to get a first impression of the system
under development and possibly find implementation errors that we introduced
during the manual transformation of the Focus specification into a AutoFo-
cus 3 model. Automatisation of this transformation is future work.

8 C Code Implementation

In order to obtain executable code from an AutoFocus 3 model, we have imple-
mented a C code generator [12]. As a result, we gain the advantage of being able
5 http://af3.in.tum.de/



to compute memory consumption at compile time. We can also compute worst
case execution times, since all operations and function calls are non-recursive,
e.g., we can estimate the execution times with the tool aiT by AbsInt [1].

The code generation step is the last formal transformation in our method-
ology. The correctness of this step will be shown by paper and pencil proof of
the generation algorithm similar to the proof for the Isabelle/HOL exporter [28].
Here, we show that the C0 program is an admissible simulation of the Auto-
Focus 3 model.

9 Conclusions

We have presented a methodology for development of safety-critical embedded
software systems extended with pervasive verification techniques. We cover the
development process from the initial informal requirements over several interme-
diary formal models to an implementation in a C language subset. The artifacts
of the different stages can be created through schematic transformations, which
are, depending on the development state of the tools, automatic or at least tool-
supported. These artifacts are verified during each development phase: we apply
both automatic and semi-automatic interactive verification techniques.

The feasibility of the proposed approach was evaluated on a number of case
studies that cover different application areas of embedded control systems: in-
formation processing systems and automotive systems.

The ultimate goal of our approach, which is not entirely comparable to any
other approach we know, is to obtain a seamless development process with pre-
cisely defined phases and methodologies to build fully verified software-based
embedded systems: from textual requirements to verified code, from application
software to execution environments.
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