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Abstract

This report presents an assumption/commitment specification technique and a refinement
calculus for networks of agents communicating asynchronously via unbounded FIFO chan-

nels in the tradition of [Kah74], [Kel78], [BDD*92]:

e We define two different types of (explicit) assumption/commitment specifications,
namely simple and general specifications.

o [t is shown that semantically, any deterministic agent can be uniquely characterized
by a simple specification, and any nondeterministic agent can be uniquely charac-
terized by a general specification.

o We define two sets of refinement rules, one for simple specifications and one for
general specifications. The rules are Hoare-logic inspired. In particular the feedback
rules employ an invariant in the style of a traditional while-rule.

e Both sets of rules have been proved to be sound and also semantically complete
with respect to a chosen set of composition operators.

e Conversion rules allow the two logics to be combined. This means that general
specifications and the rules for general specifications have to be introduced only at
the point in a system development where they are really needed.

The proposed specification formalism and refinement rules together with a number of
related design principles presented in [Bro92d], [Bro92a| constitute a powerful design
method which allows distributed systems to be developed in the same style as methods
like [Jon90], [Mor90] allow for the design of sequential systems.
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Chapter 1

Introduction

Ever since formal program development became a major research direction some 20 years
ago, it has been common to write specifications in an assumption/commitment form.
The assumption characterizes the essential properties of the environment in which the
specified program, from now on referred to as the agent, is supposed to run, while the
commitment is a requirement which must be fulfilled by the agent whenever it is executed
in an environment which satisfies the assumption.

For example, in Hoare-logic [Hoa69] the post-condition characterizes the states in which
the agent is allowed to terminate when executed in an initial state which satisfies the pre-
condition. Thus, the pre-condition makes an assumption about the environment, while
the post-condition states a commitment which must be fulfilled by the agent.

In general, the popularity of the assumption/commitment paradigm is due to the fact
that an agent is normally not supposed to work in an arbitrary environment, in which
case specifications and agent designs can be simplified by “restricting” the environment
in terms of assumptions.

There are many different techniques for writing assumption/commitment specifications.
Roughly speaking, they can be split into two main categories: those which require an
explicit assumption/commitment form, and those which are content with an implicit as-
sumption/commitment form.

In the first category, the assumption is clearly separated from the commitment. A speci-
fication can be thought of as a pair [A, C], where A is the assumption about the environ-
ment, and (' is the commitment to the agent. The pre/post specifications of Hoare-logic
belong to this category, so does Jones’ rely /guarantee method [Jon83], the Misra/Chandy
technique [MC81] for hierarchical decomposition of networks, and a number of other con-

tributions like [Pnu85], [Sta85], [Pan90], [AL90], [Ste91], [PJO1].

In the second category, specifications still make assumptions about the environment and
state commitments to the agent, but the assumptions and the commitments are mixed
together and stated more implicitly. Examples of such methods are [BKP84], [CM88] and
[BDD*92].

The motivation for insisting on an explicit assumption/commitment form varies from ap-
proach to approach. For example, in some methods like [Jon83] and [MC81] this structure
is mainly employed to ensure compositionality ([dR85], [Zwi89]) of the design rules, namely
that the specification of an agent always can be verified on the basis of the specifications



of its subagents, without knowledge of the interior construction of those subagents.

In other methods, with a richer assertion language, an explicit assumption/commitment
form is not needed in order to ensure compositionality. Nevertheless, an explicit assump-
tion/commitment form is still favored by many researchers. Abadi/Lamport [AL90], for
example, argue as below!:

o “Why write a specification of the form [A, C] when we can simply write C'? The
answer lies in the practical matter of what the specification looks like. If we eliminate
the explicit environment assumption, then that assumption appears implicitly in the
properties C' describing the system. Instead of ' describing only the behavior of
the system when the environment behaves correctly, (' must also allow arbitrary
behavior when the environment behaves incorrectly. Eliminating A makes C' too
complicated, and it is not a practical alternative to writing specifications in the form

[A,C].7

The object of this report is to present a set of decomposition rules for explicit as-
sumption/commitment specifications with respect to networks of agents communicating
asynchronously via unbounded FIFO channels in the style of [Kah74], [KM77], [Kel78].
Agents are modeled as sets of stream processing functions as explained in [Kel78], [Bro89],
[BDD*92].

We distinguish between two types of such specifications, namely simple and general spec-
ifications. A simple specification can be used to specify any deterministic agent, while
any nondeterministic agent can be specified by a general specification.

Our approach is compositional. This means that:

e Design decisions can be verified at the point where they are taken. This reduces the
amount of backtracking needed during the design process.

e Specifications can be split into subspecifications which can be implemented sepa-
rately.

We are interested in rules which can be used to reason about both safety and liveness
properties. The report concentrates on the theoretical aspects. The authors plan to
investigate the usefulness of the proposed rules in a number of case-studies.

The rest of the report is divided into four chapters and one appendix. The basic notation
and the semantic model are introduced in Chapter 2. Chapter 3 presents decomposition
rules for simple specifications, while the decomposition of general specifications is the
topic of Chapter 4. Chapter 5 relates our approach to other proposals known from the
literature. Proofs of soundness and semantic completeness can be found in the appendix.

In the quotation [A4, C], A and C have been substituted for £ = M, E and M, respectively.

4



Chapter 2

Basic Concepts and Notation

In this chapter we briefly explain the basic concepts of our approach and introduce some
notation.

2.1 Streams

N denotes the set of natural numbers with 0 removed. B denotes the set {true, false}.

A stream is a finite or infinite sequence of data. It models the history of a communication
channel, i.e. it represents the sequence of messages sent along the channel. () stands for
the empty stream, and (dy,ds,...,d,) stands for a finite stream whose first element is
dy, and whose n’th and last element is d,,. Given a set of data ), D* denotes the set of
all finite streams generated from D; D denotes the set of all infinite streams generated
from D, and D* denotes D* U D*.

This notation is overloaded to tuples of data sets in a straightforward way: () denotes
any empty stream tuple; moreover, if T' = (Dy, Dz, ..., D,) then T denotes (D7 x D} x
.o x DX), T denotes (DY x D x ... x D), and T denotes (DY x DY x ... x D¥).
Observe that T, T and T are sets of stream tuples and not sets of streams of data
tuples.

There are a number of standard operators on streams and stream tuples. If d € D,
re DY €N, s,t €T and A C D then:

e s ot denotes the result of concatenating s and ¢, i.e. the j'th component (s o), is
equal to the result of prefixing ¢; with s; if s; is finite, and is equal to s; otherwise;

o s L ¢t denotes that s is a prefix of ¢, 1.e. Ap € T¥. s0p = 1;

e A(©r denotes the projection of r on A, data not occurring in A are deleted,

e.g. {0,1} © (0,1,2,0,4) = (0,1,0);
e #r denotes the number of elements in r if » € D*, and oo otherwise;
o r; denotes the j’th element of r if 7 < #r;

e dom(r) denotes the set of indices corresponding to r, i.e. dom(r) = {j|j < #r}.



A chain ¢ is an infinite sequence of stream tuples ¢y, ¢, ... such that for all j € N,
¢; C ¢j41. For any chain ¢, U¢ denotes its least upper bound. Since streams may be
infinite such least upper bounds always exist. Ch(T*) denotes the set of chains over 7.

2.2 Predicates

A predicate is a boolean-valued function
PeT”— B.

When convenient the argument tuple of a predicate will be split into several argument
tuples. For example a predicate of the form P(s,t) will often be used to express the
relation between stream tuples s and t.

Predicates will be expressed in first order predicate logic. As usual, = binds weaker than
A, V, = which again bind weaker that all other function symbols. P[f] denotes the result
of substituting ¢ for all occurrences of the variable a in P.

P is a safety predicate iff
—P(s) e el tCsA-P(1).

This means, if some stream tuple s violates P, then there is a finite prefix of s that violates
P. Thus the violation of safety predicates can always be detected by finite observations.

P is admissible iff for all chains ¢ in T%

(V5 € N. P(¢))) = P(Ué).
An admissible predicate holds for the least upper bound of a chain ¢ if it holds for all mem-
bers of ¢. All safety predicates are admissible. However, there are admissible predicates

which are not safety predicates. For example #2 mod 2 = 0V #: = oo is an admissible
predicate but no safety predicate. adm(P) holds iff P is admissible.

P is a liveness predicate iff
VseT*. It eT“ P(sot).

This means, any finite stream tuple s can be extended by a stream tuple ¢ such that P is
fulfilled. Therefore, complete observations are necessary to detect the violation of liveness
predicates.

2.3 Stream Processing Functions

A function



fEIW—>OW

is called a stream processing function iff it is prefix continuous, i.e. iff for all chains ¢ in

I
fue) =u{f(¢) | e N}

Since continuity implies monotonicity, any stream processing function f is also prefiz
monotonic:

Vs,t e I“.sCt= f(s)C f(1).

As pointed out by [Kah74], a stream processing function is an adequate means for de-
scribing (deterministic) agents that communicate asynchronously via unbounded FIFO-
channels. The continuity constraint reflects the computational behavior of an agent: it
consumes its input and produces its output in a step-wise manner. For partial output only
partial input is necessary. This ensures that communicating agents can work in parallel.
The set of all stream processing functions in /¥ — O% is denoted by

v 5 0v.

In the same way as for predicates, input and output tuples will be split into several tuples
when convenient.

2.4 Agents

An agent
F1v— oY

receives messages through a finite number of input channels of type ¥ and sends messages
through a finite number of output channels of type O“. An agent may have no input
channels but has always at least one output channel. The reason for the latter is of course
that an agent without output channels is completely useless.

The denotation of an agent F', written [ F' ], is a set of type correct stream processing
functions. Hence, from the declaration above it follows that

[F]C ¥ 5 0~

Agents may be nondeterministic. This is reflected by the fact that sets of functions are
used as denotations. Any function f € [ F' ] represents a possible behavior of F. The
agent may “choose” freely among these functions. Obviously, if there is no choice, the
agent is deterministic. Hence, we call F' deterministic if its denotation is a unary set and



nondeterministic otherwise.

Agents can be composed by three basic operators. These are introduced below.

2.4.1 Sequential Composition

Given two agents
1Y — XY and Fy: XY — 0¥,

then [y o Fy is of type I¥ — O¥ and represents the sequential composition of Fy and Fj.
Its denotation is

[FoR ] {fioklAclPAIAfLel BT,

where

fio (i) E f2(fi(D)).

Figure 2.1: Sequential Composition.

Figure 2.1 shows the situation. Each arrow stands for a finite number of channels. Se-
quential composition is based on function composition. In contrast to e.g. CSP-programs
or sequential programs, F; need not terminate before F; starts to compute. Instead F
and F5 work in a pipelined manner: F; reads some data from its input channels and
produces some data on its output channels; while F; reads these data, F; can continue to
work, e.g. read new inputs.

2.4.2 Parallel Composition

Given two agents
1Y — 0¥ and Fy: RY — SY,

then Fi || Fy is of type I¥ X R — O x S“ and represents the parallel composition of Fy
and F5,. Its denotation is

[ £ HF2]]d§f{f1 | folfiel AN el Fy 1),



where

full falisr) = (@), falr)).

2 r
Fy Fy
o S
Y Y

Figure 2.2: Parallel Composition.

Parallel composition is shown in Figure 2.2. F; and F; are simply put side by side and
work independently without any mutual communication.

2.4.3 Feedback

Let
FIlYxYYx RY - 0% xYY x S¥

be an agent, where [ denotes a (p— 1)-ary tuple of data sets, O a (¢ — 1)-ary tuple of data
sets and Y, for the time being, a data set. Then the p-th input channel of F' has the same
type as the g-th output channel, and they can be connected as depicted in Figure 2.3.
This is called feedback. The resulting construct pb F'is of type I¥ x B — O X Y x 5%,
and its denotation is

Figure 2.3: Feedback.

[un, F1E (e flf e F 1,

where



it f(ior) < (0,y,5)
iff

o fli,y,r)=(o.y,s),
o Vo' € OY.Vy' € Y¥. Vs € S f(i,y/,r) = (¢, s") = (0,y,s) C (o, 9y, 5).

In other words, (o0,y, s) is the smallest stream tuple that satisfies the recursive equation
flo,a',r) = (o, y',s"). Obviously, for different inputs ¢,r different solutions will be ob-
tained. (o,y,s) is called the least fized point of f with respect to ¢,7. The continuity of
stream processing functions ensures that there is a least fixed point.

It is easy to generalize the p-operator to enable the feedback of more than one channel.
For instance, if in the feedback definition above Y is not a single data set but an r-ary
tuple of data sets we can write

p(r)y

to denote that r streams are fed back. Whenever it is clear from the context, which
output channels are fed back to which input channels, we will just write g without any
decoration.

Kleene’s theorem [Kle52] provides another characterization of least fixed points. It will
be used in our soundness proofs.

Proposition 1 Let f € [¥ x Y¥ x R 5 0¥ x Y% x S¥ be a stream processing function.
Then for every i € I, r € R, f possesses a least fized point (o0,y,s) for which it holds

(o,y,s) = u{(éjvﬁjvéj) |] € N}v

where (6173)17‘§1) = (<>7<>7<>) and f07“ CLH] > 1, (6j73)j7‘§j) = f(ivgjj—lvr)' This chain s
called the Kleene-chain.

The composition operators can be used to construct networks of agents — networks which
themselves are agents.

Proposition 2 The denotation of any network generated from some given basic agents
using the operators o, || and p is a set of stream processing functions. If all constituents
of a network are deterministic agents the denotation of the network is a singleton set.

This is a well-known result, which dates back to [Kah74]. It makes it possible to replace
an agent by a network of simpler agents that has the same denotation. This is the key
concept that enables modular top-down development.
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2.5 Basic Agents

In this report we distinguish between agents which are syntactic entities and their semantic
representation as sets of stream processing functions. Networks of agents can be built
using the operators for sequential and parallel composition plus feedback. These three
operators can be thought of as constructs in a programming language. Thus, given some
notation for characterizing the basic agents of a network, i.e. the “atomic” building blocks,
networks can be represented in a program-like notation.

However, since we are concerned with agents which are embedded in environments, a
basic agent is not always a program. It may also be a specification representing some
sort of physical device, like, for instance, an unreliable wire connecting two computers, or
even a human being working in front of a terminal. Of course, such agents do not always
correspond to computable functions, and it is not the task of the program designer to
develop such agents. However, in a program design it is often useful to be able to specity
agents of this type.

Programming notation for coding basic agents of the implementable sort can be defined in
many ways. For example, [Ded92] proposes both a functional and a procedural language
for this purpose. In this paper, we just assume that we have some sort of notation
for describing basic agents. When we later prove semantic completeness of our logics, we
assume that we can carry out certain deductions for basic agents. If we choose a particular
representation, then this has to be shown.

11



Chapter 3

Decomposing Simple Specifications

As already pointed out, this report is concerned with explicit assumption/commitment
specifications only. We distinguish between two different types of such specifications,
namely simple and general specifications. This chapter deals with the former type, which
can be used to specify any deterministic agent. It is first explained what a simple specifi-
cation is. Then we introduce a set of refinement rules which allows simple specifications
to be refined in a stepwise, top-down manner. The rules are semantically complete (in a
weak sense) with respect to deterministic agents.

3.1 Simple Specifications

In our approach an agent communicates with its environment via unbounded FIFO chan-
nels. It receives input through a finite number of input channels and sends output through
a finite number of output channels. An agent does not necessarily have any input chan-
nels, but has at least one output channel. Clearly, the only way an agent can be influenced
by its environment is through its input channels, and the only way an agent can influence
its environment is through its output channels, i.e. an agent is related to its environment
as shown in Figure 3.1.

Environment

Input Output

Agent

Figure 3.1: Assumption/Commitment Paradigm

Given this framework, at least in the case of deterministic agents, it seems natural to
define the environment assumption as a predicate on the history of the input channels,
i.e. on the input streams, and the commitment as a predicate on the history of the input
and output channels, i.e. as a relation between the input and output streams. The result

12



is what we call a simple specification.

More formally, a simple specification is a pair of predicates
[A,C],

where A € [¥ — B and C € [¥ x 0¥ — B. Its denotation [ [A,C] ] is the set of all type
correct stream processing functions which satisfies the specification:

[[A,C]]TE {fer S 0v|Vie I Al) = C(i, f(i))}.

In other words, the denotation is the set of all type correct stream processing functions f
such that whenever the input ¢ of f fulfills the assumption A, the output f(z) is related
to ¢ in accordance with the commitment C'.

Example 1 One Element Buffer:

As a first example, consider the task of specifying a buffer capable of storing exactly one
data element. The environment may either send a data element to be stored or a request
for the data element currently stored. The environment is assumed to be such that no
data element is sent when the buffer is full, and no request is sent when the buffer is
empty. The buffer, on the other hand, is required to store any received data element and
to output the stored data element and become empty after receiving a request.

Let D be the set of data, and let 7 represent a request, then it is enough to require the
buffer to satisfy the specification BUF, where

Apur(D) € Vil e (DU} ' Ci= #{7}O0 < #D©@i' < #{7}O + 1,
Ceur(i,0) & 0 T D©i A #o = #{7}©i.

The assumption states that no request is sent to an empty buffer (first inequality), and
that no data element is sent to a full buffer (second inequality). The commitment requires
that the buffer transmits data elements in the order they are received (first conjunct),
and moreover that the buffer always eventually responds to a request (second conjunct).

It follows from the continuity constraint imposed on stream processing functions that the
buffer will produce output, which satisfies the first conjunct of the commitment, as long
as the input satisfies the assumption. Thus the above specification also constrains the
buffer’s behavior for inputs which falsify the assumption. O

During program development it is important that the specifications which are to be im-
plemented remain implementable, i.e. that they remain fulfillable by computer programs.
From a practical point of view, it is generally accepted that it does not make much sense
to formally check the implementability of a specification. The reason is that to prove im-
plementability it is often necessary to construct a program which fulfills the specification,
and that is of course the goal of the whole program design exercise.

A weaker and more easily provable constraint is what we call feasibility. A simple speci-
fication [A, C] is feasible iff its denotation is nonempty, i.e. iff [ [A,C] ] # 0.

13



Feasibility corresponds to what is called feasibility in [Mor88], satisfiability in VDM
[Jon90] and realizability in [AL90]. A non-feasible specification is inconsistent and can
therefore not be fulfilled by any agent. On the other hand, there are stream processing
functions that cannot be expressed in any algorithmic language. Thus, that a specifica-
tion is feasible does not guarantee that it is implementable. See [Bro92b] for a detailed
discussion of feasibility and techniques for proving that a specification is feasible.

Example 2 Non-Feasible Specification:
An example of a non-feasible specification is [A, C'] where

To see that this specification is non-feasible, assume the opposite. This means it is satisfied
by at least one stream processing function f. f is continuous which implies that for every
strictly increasing chain ¢ we have:

F(U) = U{f(;) | j € N}

Since 7 is strictly increasing, it follows for all 7 > 1, #2] < 00, and therefore also #f(gj) =
oo. Hence:

#I(Le) =#U{f(;)]j €N} = cc.

On the other hand, since ¢ is strictly increasing we have #(I_Ig) = oo which implies
# f(U1) < oo. This is a contradiction. Thus the specification is not feasible. O

The operators o, || and g can be used to compose specifications, and also specifications
and agents in a straightforward way. By a mized specification we mean an agent, a simple
specification or any network built from agents and simple specifications using the three
composition operators. For example, a mixed specification can be of the form

([A1, Ci] || [A2, Co]) o (F1 || 1 [As, Cs]).

Since simple specifications denote sets of stream processing functions, the denotation of
a mixed specification is defined in exactly the same way as for networks of agents (see
Section 2.4.1, 2.4.2 and 2.4.3).

3.2 Refinement

A simple specification [Ay, (3] is said to refine a simple specification [Ay, C1], written

[A1, C1] ~ [Ay, O],

14



iff the denotation of the former is contained in or equal to the denotation of the latter,

le. iff
[[Az,Co) ] €[ [A1,CH] ]

This relation can be generalized to mixed specifications in a straightforward way: a mixed
specification Spec, refines another mixed specification Spec; iff the denotation of Spec,
is contained in or equal to the denotation of Spec;.

Given a requirement specification [A, C], the goal of a system design is to construct an
agent F' such that [A, C] ~» F holds. In the next section, we will give a number of refine-
ment rules geared towards a methodology of formal, stepwise, top-down refinement, i.e.
an agent is designed from a specification in a series of refinement steps using mathemati-
cal tools. A stepwise refinement is depicted in Figure 3.2. The requirement specification
[Ag, Co] is finally refined by a network of three agents, namely p (F5 || (Fi o Fy)).

[A4,C4] 2 Fl
[AQ,CQ] ~ o]
[Asacs] 2 F2
[Ao, Co]  ~  p[A,Ci] ~ |

[A37 03] ~ Iy

Figure 3.2: Stepwise Refinement

The refinement relation ~» is reflexive, transitive and a congruence with respect to the
composition operators. Hence, ~» admits compositional system development: once a spec-
ification is decomposed into a network of subspecifications, each of these subspecifications
can be further refined in isolation.

3.3 Refinement Rules

Ideally, when developing an agent, one starts with a quite abstract specification which in
a step-wise, top-down fashion is decomposed into a network of subspecifications amenable
to be refined by communicating agents of adequate complexity. Refinement rules can be
used to check the correctness of each decomposition step at the point where it is taken.
As mentioned before, this report concentrates on the design of networks of agents, and
rules (and program constructs) for implementing basic agents will not be given.

Generally our rules have the following form

Premise;

Premuise,

Speey ~» Specy

15



stating, that provided the n premises hold, Spec; can be refined by Specy. The rules are
sound in the following sense: given that the premises hold, then the conclusion holds. We
distinguish between two kinds of rules, namely consequence and decomposition rules.

3.3.1 Consequence Rules

The first rule states that a specification’s assumption can be weakened and its commitment
can be strengthened.

Rule 1 :

A= A,
Al A CQ = Cl
[Alvcl] ~ [A2702]

To see that Rule 1 is sound, observe that if f is a stream processing function such that
f €[ [Az,C3] ], then since the first premise implies that the new assumption A, is weaker
than the old assumption A, and the second premise implies that the new commitment
Cy is stronger than the old commitment C; for any input which satisfies Ay, it is clear

that f € [ [A1,C4] ]

That ~» is transitive and a congruence with respect to the composition operators can of
course also be stated as refinement rules:

Rule 2 :

Specy ~ Speey
Specy ~» Specs

Speecy ~» Specs

Rule 3 :

Specy ~ Speey
Spec ~» Spec(Speey/Speey)

Specy, Specy and Spees denote mixed specifications. In Rule 3 Spec(Specs/Specy) denotes
some mixed specification which can be obtained from the mixed specification Spec by
substituting Specsy for one occurrence of Spec;.

3.3.2 Decomposition Rules

There is one rule for each of the composition operators o, || and p. Each of them de-
scribes under which conditions the actual operator can be used to decompose a simple
specification.

Given that the input/output variables are named in accordance with Figure 2.1 on Page
8, then the rule for sequential composition can be formulated as follows:

16



Rule 4 :

A= A

ANCL = Ay
AN(Fze.C1ANCy) = C
[A, O]~ [Ar, Ch] 0 [Ag, O]

This rules states that in any environment, a specification can be replaced by the sequential
composition of two component specifications provided the three premises hold.

Observe that all stream variables occurring in a premise are local with respect to that
premise. This means that Rule 1 is a short-hand for the following rule:

Vie 1Y A(l) = Ai(D)

Vie I Ve e XY A A Ci(i,2) = As(x)

Vie I Yoe O¥ A(i) A (o € XY Cy(t,2) A Cyx,0)) = C(1,0)
[A, O]~ [A1, Ci] 0 [Az, (]

Throughout this report, all free variables occurring in the premises of refinement rules are
universally quantified in this way.

To prove soundness it is necessary to show that for any pair of stream processing functions
f1 and f; in the denotations of the first and second component specification, respectively,
their sequential composition satisfies the overall specification. To see that this is the case,
firstly observe that the assumption A is at least as restrictive as A;, the assumption of
f1. Since fi satisfies [Aq, C4], this ensures that whenever A(¢) holds, fi’s output « is such
that C'y(7, ). Now, the second premise implies that any such @ also meets the assumption
Ay of fy. Since fy satisfies [Az, Cs], it follows that the output o of f is such that Cy(x, o).
Thus we have shown that Jx. Cy(¢, ) A Cx(x, 0) characterizes the overall effect of f; o fo
when the overall input stream satisfies A, in which case the desired result follows from
premise three.

If the input and output variables are named in accordance with Figure 2.2 on Page 9, i.e.
the input variables are disjoint from the output variables, and the variables of the left-
hand side component are disjoint from the variables of the right-hand side component,
the parallel rule

Rule 5 :

A= AN Ay
AN Cl A CQ = (C
[Av C] ~ [Alvcl] H [A2702]

is almost trivial. Since the overall assumption A implies the component assumptions Ay
and Aj, and moreover the component commitments C'; and C5, together with the overall
assumption imply the overall commitment C', the overall specification can be replaced by
the parallel composition of the two component specifications.
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Also in the case of the feedback rule the variable lists are implicitly given — this time with
respect to Figure 2.3 on Page 9. This means that the component specification [Ay, (]
has (¢,x,7)/(0,y,s) as input/output variables, and that the overall specification [A, C]
has (¢,7)/(0,y,s) as input/output variables.

Rule 6 :

A = adm(Az.Ay)
A= Afj]
ANARTACE] = C
ANANC = Al[gj]
[Av C] ~ [Alv Cl]

The rule is based on the stepwise computation of the feedback streams formally char-
acterized by Proposition 1. Initially the feedback streams are empty. Then the agent
starts to work by consuming input and producing output in a stepwise manner. Qutput
on the feedback channels becomes input again, triggering the agent to produce additional
output. This process goes on until a “stable situation” is reached (which implies that it
may go on forever). Formally a “stable situation” corresponds to the least fixpoint of the
recursive equation in the feedback definition on page 10.

The feedback rule has a close similarity to the while-rule of Hoare logic. A; can be thought
of as the invariant. The invariant holds initially (second premise), and is maintained by
each computation step (fourth premise), in which case it also holds after infinitely many
computation steps (first premise). The conclusion is then a consequence of premise three.

The parallel composition with mutual feedback, depicted in Figure 3.3, can be modeled
by combining the agents in parallel and then applying the feedback operator twice, i.e.
by an agent of the form p(u(f1 || f2)), from now on shortened to u(fi || f2). It is
possible to handle any such construct using the rules already introduced. However, from
a methodological point of view, it is sensible to have a special rule

2 r
x ¥
Fy Fy
o (o ¥4 S

Figure 3.3: Parallel Composition with Mutual Feedback.
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Rule 7 :

A = adm(Az. A1) V adm(Ay.A)
A=A [6] Y, AQ[%]
ANAINCEIN AL A Cofl] = C
ANAANC = AQ[Z;]
ANANC,) = Al[g]

[A, C] ~ p([3r. A1, Co] || [Fi. Ag, Co))

which applies to this coupling of two agents. The component specifications have respec-
tively (i,2)/(o,w) and (y,r)/(z,s) as input/output variables. The overall specification
has (¢,7)/(0,w, z, ) as input/output variables. In some sense, this rule can be seen as a
“generalisation” of Rule 6. Due to the continuity constraint on stream processing func-
tions, it is enough if one of the agents “kicks off”. This means that we may use A; V A, as
invariant instead of A; A Ay. The invariant is now A; V A,. The invariant holds initially
(second premise) and is maintained by each computation step (fourth and fifth premise),
in which case it also holds after infinitely many computation steps (first premise). The
conclusion is then a consequence of premise three, four and five.

Note, that without the existential quantifiers occurring in the component specifications,
the rule becomes too weak. The problem is that input received on & may depend upon
the value of r, and that the input received on y may depend upon the value of 7. In the
above rule these dependencies can be expressed due to the fact that » may occur in A,
and ¢ may occur in A,.

Example 3 Summation Agent:

The task is to design an agent which for each natural number received through its input
channel, outputs the sum of all numbers received up to the actual point in time. The
environment is assumed always eventually to send a new number. In other words, we
want to design an agent which refines the specification SUM where

Asum(r) e #r = oo, 4
Csum(r, 0) def #o=00AVjEN.oj =341

SUM can be refined by a network x (PRO || ADD) o STR as depicted in Figure 3.4. ADD
is supposed to describe an agent which, given two input streams of natural numbers,
generates an output stream where each element is the sum of the corresponding elements
of the input streams, e.g. the n’th element of the output stream is equal to the sum of
n’th elements of the two input streams. PR0O, on the other hand, is required to specify an
agent which outputs its input stream prefixed with 0. This means that if Agum(r) then

z= (Sl o (Mmoo ..o (Y o L.
where z is the right-hand side output stream of x(PRO || ADD). Hence, it is enough
to require STR to characterize an agent which outputs its second input stream. More

formally:
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PRO ADD

STR

Figure 3.4: Network Refining SUM.

[APRro, CPRo),
[AapD, CapD],
[Astr, CsTR],

where

AADD( )é #r =
CADD( ) def #Z—#y/\\V/] Edom( ) =1+ y;,

AsTr(W, 2) « true,

Csrr(w, 2, 0) & o= 2.

The rules introduced above can be used to prove formally that this decomposition is
correct. Let

A(r) = Asom(r),
C'(r,w,z) = def Csum(r, z).

Since

ASUM(T) = A/(T),

C'(r,w,z) = Astr(w, 2),

Jw,z € N*.C'(r,w, z) A Cstr(w, z,0) = Csum(r, o),
it follows from Rule 4 that
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[ASUMa CSUM] ~ [A', C'] © [ASTR, CSTR]- (*)
The right-hand side component [A’, C'] can be refined further by observing that

adm(Apro()) V adm(Ay.Axpp(y,7))

A'(r) = Apro(()) V Aapp((),7),

Cpro(x,w) A Aapp(y, ) A Capp(y, 7, 2) = C'(r,w, z),
A'(r) A Aapp(y,7) A Capp(y, 7, 2) = Apro(2),

A'(r) A Cpro(z,w) = Aapp(w,r),

in which case it follows from Rule 7 that

[Alv Cl] ~ ([APRoa CPRo] H [AADD7 CADD])-
This, (*) and Rule 2 and 3 imply

[Asum, Csum] ~ 1 ([Apro, Crro) || [Aapp, Capp]) o [AsTr, CsTr]-

Thus, the proposed decomposition is valid. Further refinements of the three component
specifications ADD, PRO and STR may now be carried out in isolation. O

3.4 Completeness

Informal soundness proofs have been given above. More detailed proofs for Rule 6 and
7 can be found in Section A.1.1 of the appendix. In this section we will deal with com-
pleteness issues.

3.4.1 Semantic Completeness

In the examples above a predicate calculus related assertion language has been employed
for writing specifications. However, in this report no assertion language has been formally
defined, nor have we formulated any assertion logic for discharging the premises of our
rules; we have just implicitly assumed the existence of these things. This will continue.
We are just mentioning these concepts here because they play a role in the discussion
below.

The logic introduced in this chapter is semantically complete in the following sense: if
F'is a deterministic agent built from basic deterministic agents using the operators for
sequential composition, parallel composition and feedback, and

[A, C]~ F,

then F' can be deduced from [A, C] using Rule 1-6, given that
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e such a deduction can always be carried out for a basic deterministic agent,
e any valid formula in the assertion logic is provable,
e any predicate we need can be expressed in the assertion language.

See section A.1.2 of the appendix for a detailed proof. Proposition 9 shows that Rule 7
is complete in a similar sense.

Note that under the same expressiveness assumption as above, for any deterministic agent
F', there is a simple specification Spec such that [ F'| =] Spec]. Let [ F ] = {f} then
[true, f(¢) = o] is semantically equivalent to F.

3.4.2 Adaptation Completeness

Another completeness result we would have liked our logic to satisfy is what is usually
referred to as adaptation completeness [Zwi89]. For our logic to be adaptation complete
it must be possible to show that whenever

[A1, C1] ~ [Ay, O],

then [Az, Cs] can be deduced from [Ay, Cy], using Rule 1 - 6. Unfortunately this is not
possible:

Example 4 :
Let

Ci(i,0) & #i = Ho A (#i=o00 = 0 € {1}7) A (#i# 0o = 0 € {1}7),

then it follows from the continuity of stream processing functions that
[Ar, Ch] ~ [As, Ca].

However, [As, C3] cannot be deduced from [Ay, (1] using Rule 1 - 6. O

If we assume, as for example in [BDD192], that our assertion language has variables
over domains of stream processing functions, then we can get adaptation completeness by
adding the following rule:

Rule 8 :

VI (Vii Ay = Cof)) = (Vi Ay = Gl ))
[Ah Cl] ~ [A27 02]
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which basically restates the semantics of a simple specification in the assertion language.
Here f ranges over the set of type-correct stream processing functions, and both speci-
fications are assumed to have /o as input/output variables. Rule 1 is a special case of
Rule 8. Unfortunately, Rule 8 is often difficult to use in practice, which is why it has not
been introduced earlier. Moreover, we believe that in most practical situations Rule 1 is
sufficiently strong.

In some sense Rule 8 is just transferring a problem from our specification formalism into
the assertion language without really giving any strategy for how to find a proof. Rule 1
- 7 on the other hand, depend upon premises which are relatively easy to discharge.

Observe, that if the assertion language has operators corresponding to o, || and g, then
the premises of Rule 4-7 could have been formulated in a similar style. But again, these
rules would not be very helpful from a practical point of view.
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Chapter 4

Decomposing General Specifications

In the previous chapter we introduced a formalism for the specification of and reasoning
about networks of agents. It can be used to derive networks of agents from assump-
tion/commitment specifications by stepwise refinement. It has been proved that the given
development rules are semantically complete with respect to deterministic agents, i.e. for
any deterministic agent F', if there is a simple specification [A, C] such that

[A, C]~ F,

then under the assumptions stated above, F' can be deduced from [A, C] using Rule 1 -
6. For nondeterministic agents this does not hold. In this chapter we introduce a more
general formalism which provides semantic completeness also for nondeterministic agents.

4.1 Symmetric Specifications

In Section 3.2 it is explained what it means for an agent F', either deterministic or non-
deterministic, to fulfill a simple specification [A, C']. Thus, simple specifications can quite
naturally be used to specify nondeterministic agents, too. However, they are not expres-
sive enough, i.e. not every nondeterministic agent can be specified by a simple specifica-
tion. One problem is that for certain nondeterministic agents, the assumption cannot be
formulated without some knowledge about the output. To understand the point, consider
a modified version of the one element buffer:

Example 5 One Element Unreliable Buffer:

Basically the buffer should exhibit the same behavior as the one element buffer described
in Example 1. In addition we now assume that it is unreliable in the sense that data
communicated by the environment can be rejected. Special messages are issued to inform
the environment about the outcome, namely fail if a data element is rejected and ok if
it is accepted. Again the environment is assumed to send a request only if the buffer is
full and a data element only if the buffer is empty. It follows from this description that
the environment has to take the buffer’s output into account in order to make sure that
the messages it sends to the buffer are consistent with the buffer’s input assumption. The
example is worked out formally on page 27. O
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At afirst glance it seems that the weakness of simple specifications can be fixed by allowing
assumptions to depend upon the output, too, i.e. by allowing specifications like [A, (],

with A,C € I¥ x 0¥ — B, and
[[A,CT]={f € I* > O0“|Vie I A(i, f(i)) = C(i, f(i)}

We call such specifications symmetric since A and C' are now treated symmetrically with
respect to the input/output streams. Unfortunately, we may then write strange specifi-
cations like

[#i % 00 N #1 = #o,1 = 0] (%)

which is not only satisfied by the identity agent, but also for example by any agent which
for all inputs falsifies the assumption®.

Another more serious problem is that also symmetric specifications are insufficiently ex-
pressive. Consider the following example (taken from [Bro92c]):

Example 6 :
Let fi, fo, f3, f1 € {1}¥ = {1}¥ be such that

Assume that Fy and F; are agents such that [ F7 | = {f1, fz3} and [ F2> | = {f2, fa}. Then
Fy and F; determine exactly the same input/output relation. Thus for any symmetric
specification Spec, Spec ~ Fy iff Spec ~ F,. In other words, there is no symmetric
specification which distinguishes £} from F.

Nevertheless, semantically the difference between F; and F; is not insignificant, because
the two agents have different behaviors with respect to the feedback operator. To see this,
firstly observe that u fi = (1,1), p fo = (1) and p f3 = p fs = (). Thus p Fy may either
output (1,1) or (), while g F; may either output (1) or (). O

The expressiveness problem described in Example 6 is basically the Brock/Ackermann
[BA81] anomaly. Due to the lack of expressiveness it can be shown that for symmet-
ric specifications no deduction system can be found that is semantically complete for
nondeterministic agents in the sense explained on Page 21:

Tt can be argued that the simple specification [false, P] suffers from exactly the same problem. How-
ever, there is a slight difference. [false, P] is satisfied by any agent. The same does not hold for (). As
argued in [Bro92b], if any assumption 4 of a symmetric specification is required to satisfy 3i. A(%, f(¢))
for any type-correct stream processing function f, and any assumption A of a simple specification is
required to satisfy 3i. A(¢), then this difference disappears.
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Given a specification Spec and an agent F', and assume we know that Spec ~» pF
holds. A deduction system is compositional iff the specification of an agent can always be
verified on the basis of the specifications of its subagents, without knowledge of the interior
construction of those subagents [Zwi89]. This means that in a complete and compositional
deduction system there must be a specification Specy, such that Spec ~» pSpec; and
Specy ~» F' are provable. For symmetric specifications no such deduction system can be
found. To prove this fact we may use the agents Fy, Fy defined in Example 6, where

[pky ] =A{pfr, pfs} = {A(A1),A.01, [ nkz ] =A{pfo, pfa} = {A(1), A0

Note that ki, pFy have no input channels. Let [A, C] with A, C € {1}* — B be defined
by

[« N

A(0) ¥ true, Co) ¥ o= (11) Vo= ).

Obviously, [A, C] ~» pF} is valid. Now, if there is a complete compositional deduction
system then there must be a symmetric specification [A;, (7] such that

[Av C] M [Alv Cl]v (*) [Alv Cl] ~ . (**)

However, because F; and F; have exactly the same input/output behavior, there is no
symmetric specification that distinguishes Fy from Fy. Thus, it follows from (%) that
[A1, C1] ~ Fy, as well as p[Ay, C1] ~ pFy. From this, (x), and the transitivity of ~» we
can conclude [A, C] ~» pF5, which does not hold.

4.2 General Specifications

The problem with symmetric specifications is that they are not sufficiently expressive.
Roughly speaking, we need a specification concept capable of distinguishing F; from Fb.
Since as shown in Section 3.4.1, any deterministic agent can be uniquely characterized by
a simple specification, we define a general specification as a set of simple specifications:

{[An, Ch] | H(h)}.

H is a predicate characterizing a set of indices, and for each index h, [Aj, C}] is a simple
specification — from now on called a simple descendant of the above general specification.
More formally, and in a slightly simpler notation, a general specification is of the form

[Av C]H7

where
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Ael¥ xT — B,
Cel*“xTx0%—B,
HeT—B.

T is the type of the indices and H, the hypothesis predicate, is a predicate of this type.
Its denotation

[ A Clr T UL [An, Gl T H (R)),

with Ap(2) & A(i,h) and Ch(i,0) ot C(i,h,0), is the union of the denotations of the
corresponding simple specifications.

Any index h can be thought of as a hypothesis about the agents internal behavior. It is
interesting to note the close relationship between hypotheses and what are called oracles

in [Kel78] and prophecy variables in [ALSS].

To see how these hypotheses can be used, let us go back to the unreliable buffer of Example
3.

Example 7 One Element Unreliable Buffer, continued:

As in Example 1, let D be the set of data, and let 7 represent a request. ok, faul are
additional output messages. The buffer outputs fazl if a data element is rejected and ok
if a data element is accepted. Let {ok, fail}* be the hypothesis type with

Hug(h) ¥ true

as hypothesis predicate. Thus, every infinite stream over {ok, fail} is a legal hypothesis.
Since any hypothesis f is infinite, the n’th data element occurring in an input stream ¢
straightforwardly corresponds to the n’th element of &, which is either equal to ok or fazl.
Now, if for a particular pair of input ¢ and hypothesis h a data element d in ¢ corresponds
to fail, it will be rejected, if it corresponds to ok, it will be accepted. Thus, & predicts
which data elements the buffer will accept and which it will reject. We say that the buffer
behaves according to h.

In order to describe its behavior, two auxiliary functions are needed. Let

state € (D U{?})* x {ok, fail}> — {empty, full},
accept € (D U {7} x {ok, fail}>> = D¥,

be such that for all d € D, ¢ € (DU {?})* and h € {ok, farl}*>:
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state(vo (), h) = empty,

ha (D@41 = fail = state(io (d), h) = state(i, h),
ha(D©@)iy41 = ok = state(io(d), h) = full,
aceept({), ) = {),

accept((?) o4, h) = accept(i, h),

accept({d) o v, (fail) o h) = accept(i, h),

accept({d) o v, (ok) o h) = (d) o accept(i, h).

state is used to keep track of the buffer’s state. The first equation expresses that initially
the buffer is empty. The others describe how the state changes when new input arrives and
the buffer behaves according to hypothesis .. In the third and fourth equation h4p(©)i)41
denotes the element of the hypothesis stream which corresponds to d in the sense explained
above. For any finite input stream ¢ and any hypothesis h, state(i, h) returns the buffer’s
state after it has processed ¢ according to . Obviously, it does not make sense to define
state for infinite input streams, since no buffer state can be attributed to them.

accept returns the stream of accepted data for a given input and a given hypothesis. In
contrast to state, accept is defined on infinite input streams although no equation is given
explicitly. Since it is defined to be a continuous function, its behavior on infinite streams
follows by continuity from its behavior on finite streams.

The unreliable buffer is specified by the following general specification:

[Aus, CuBlays
where

Aup(i, h) © Vil e (D U{7}).Vd € D.
(¢ 0 (7) C ¢ = state(d,h) = full) A (' o (d) C i = state(d, h) = empty),

Cus(i, h,0) = e D(©o C accept(i, h) A {ok, fail}(©o T h A #{ok, fail}(©o = # D
AN#D@©o = #{1}(©):.

Intuitively, the assumption states that the environment is only allowed to send a request
7 when the buffer is full and a data element d when the buffer is empty.

The commitment states in its first conjunct that each data element in the output must
previously have been accepted; in its second and third conjunct that the environment is
properly informed about the buffer’s internal decisions; and in its fourth conjunct that
every request will eventually be satisfied.

Note that the assumption is a safety property while the commitment also contains a live-
ness part. Although ok and fail occur in the buffer’s output as well as in the hypothesis,
there is a fundamental difference between these two kinds of use. In the first case ok and
fail represent messages the buffer sends to the environment. In the second case ok and
faitl model internal decisions. Since the messages are supposed to inform the environment
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about the internal decisions, the same symbols have been used.

The specification UB is satisfied by a buffer which rejects all data elements it receives.
To avoid that it is enough to strengthen the hypotheseses predicate as follows:

Hup (h) & #{ok}©h = .

a

Since the denotation of a general specification is a set of type correct stream processing
functions, mixed specifications and the refinement relation can be defined in exactly the
same way as for simple specifications.

As the following example shows, the relationship between the assumption, the commit-
ment and the hypothesis predicate of a general specification can be quite subtle.

Example 8 :
Let T' = {even, odd} be the hypothesis type, and let

A:NY xT — B,
C:NY xT x N* — B,

be two predicates such that

A(Z, even) & vy € dom(z).2; mod 2 =0,
A(i, 0dd) € Vi € dom(i).7; mod 2 = 1,
C(i,h,0) e =o.

Then, the following statement is true:
[A7 C](h:even\/h:odd) ~ [A7 C](h:even)-

In the first specification the assumption admits as input a stream of even numbers as well
as a stream of odd numbers, whereas in the second specification only an even stream is
allowed. In fact, by changing the hypothesis predicate we have implicitly strengthened
the assumption, and thus restricted the environment. Is this a legal refinement? It is,
not only formally, but also in an intuitive sense. In the first specification, whatever
the environment sends as input, it can never be sure that the agent’s output fulfills the
commitment: if it sends a stream of even numbers, the agent may choose to react properly
only to streams of odd numbers, and if it sends a stream of odd numbers, the agent may
choose the other alternative. There is no way for the environment to influence the agent’s
choice. So this specification is not very helpful. The second specification, on the other
hand, is more demanding with respect to the input. If the environment sends a stream of
even numbers, then it knows that the output will be in accordance with the commitment.

a
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The following observation is helpful for relating the refinement rules of the previous chap-
ter to those for general specifications given in the next section:

Proposition 3 Given two general specifications Spec, Spec’, with respectively T', T" as
hypothesis types and H, H' as hypothesis predicates, then Spec ~» Spec if there is a
mapping { : T" — T, such that for all h € T’

1. H'(h) = H(l(h)),
2. H'(h) = Specyy ~ Spec,.

Here Specyy and Spec) are the simple descendants of Spec and Spec’ determined by h
and I(h), respectively.

The importance of this proposition is that since a simple descendant is a simple spec-
ification, the rules of the previous chapter can be used to verify the second condition.
Thus the logic for simple specifications, which has been proved sound, can be employed
to prove soundness of the logic for general specifications.

To see that the proposition is valid, assume that the two conditions (1, 2) hold, and
let f € [ Sped ]. Then, by the definition of [ ], there is an hypothesis A such that
I €[ Spec;, ] and H'(h). 1t follows from the two conditions that H(I(h))Af € [ Specypy ]
Thus, again by the definition of [ [, f € [ Spec ].

Proposition 3 can of course easily be generalized to the case where Spec is the result of
composing several general specifications using the three basic composition operators. The
proof is again straightforward.

4.3 Refinement Rules

This section presents a set of refinement rules for general specifications. Most of these
rules are straightforward translations of the rules for simple specifications.

4.3.1 Relationship to Previous Logic

In the preceding section the close relationship between simple and general specifications
was described. This is reflected by the following two rules:

Rule 9 :

HANA = A,
HA Al A CQ = Cl
[Alvcl] ~ [A2702]H
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Rule 10 :

dh. H

HANA = A,

HA Al A CQ = Cl
[AhCl]H ~ [Azacz]

Rule 9 can be used to refine a simple specification by a general specification, while Rule
10 allows a general specification to be refined by a simple specification.
For the special case that H holds for exactly one hg € T', the two rules can be used to

deduce the equivalence of [A, O]y and [Ap,, Chy ], where [Apy, Ch,] is a simple descendant
as defined on Page 26.

4.3.2 Consequence Rules

Rule 1 states that a simple specification can be refined by weakening the assumption
and/or strengthening the commitment. For general specifications still another aspect
must be considered: two general specifications may rely on different hypothesis types T}
and T, or, if T} and Ty coincide, different hypothesis predicates H; and H,. The general
rule captures all these aspects:

Rule 11 :

Hy = Hi[y,,)]

Hy A Aifj)] = As

Hy A Aifjy] A Ca = Cifyy,)]
[A1,C1]H1 ~ [Azacz]HQ

Here | : T, — T} is a mapping between the two hypothesis types, and h and ¢ are the
corresponding hypotheseses. Rule 1 can be seen as a special case of 11. Simply choose
Ty =1T,, Hi = Hy = true, and let [ denote the identity function. Since the first premise
implies the first condition of Proposition 3 on page 30, and premise two and three together
with Rule 1 imply the second condition of Proposition 3, it follows that the rule is sound.

Rule 2 and 3 remain valid.

4.3.3 Decomposition Rules

As in the case of simple specifications there are three basic decomposition rules plus one
rule for parallel composition with mutual feedback. As for Rule 11 their soundness follows
straightforwardly from (the general version of) Proposition 3 and the corresponding rules
of the previous chapter.
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Rule 12 :

HANA= Ay
HANANC) = A,
[A, C]H ~ [Alvcl]Ho [A27C2]H

Rule 13 :

HANA= A NA,
[Av C]H ~ [Alvcl]H H [A2702]H

Rule 14 :

HA A= adm(Ax.Ay)
HANA= A4ff]
HNANAIANC] = C
H/\A/\Al/\01:>A1[§]
[Av C]HW ﬂ[Alvcl]H

Rule 15 :

HANA= adm(Ax.Ay) V adm(Ay.As)
HANA= Al[@] Y, AQ[%]
HNANAEIANCLEIN APIANCY]) = C
HNANA ANCy = AY)]
HNANANCy = A7

[A, Clg ~ p([3r. A1, Cilm || [Fi. A2, Csll)

4.4 Completeness

The completeness results of Chapter 3 can now be generalized.

4.4.1 Semantic Completeness

The logic for general specifications is semantically complete with respect to nondetermin-
istic agents: if F'is an agent built from basic agents using the operators for sequential
composition, parallel composition and feedback, and

[A,C]~ F,
then F' can be deduced from [A, C'] using Rule 2, 3, 11, 12, 13 and 14, given that
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e such a deduction can always be carried out for basic agents,
e any valid formula in the assertion logic is provable,

e any predicate we need can be expressed in the assertion language.

See section A.2.2 for a proof. Rule 15 is complete in a similar sense.

Given a nondeterministic agent [, it is straightforward to write a general specification
Spec which is semantically equivalent to F. It is enough to choose I¥ % O as the
hypothesis type. Then

[SpecT=T1F]

if

Hence, for any function f € [ F' [, [Aspec, CSpec]Hspec contains a simple descendant which
characterizes only f. Roughly speaking, our specification technique uses a set of relations
in the same sense as [BDD192] employs a set of functions to get around the composition-
ality problems of relations reported in [BASI].

4.4.2 Adaptation Completeness

As for simple specifications it is easy to formulate a sufficiently strong adaptation rule:

Rule 16 :

VEL(Fh Hy A (Vi Ay = Colo]) = (3 Hy A (Vi Ay = Ci%)
[Alv CI]H1 ~ [A27 02]H2

This rule deals with general specifications. Rules which relate simple and general specifi-
cations can be formulated in a similar way.
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Chapter 5

Conclusions

Logics for explicit assumption/commitment specifications have been studied for a long
time. To begin with, the emphasize was on sequential program design in the style of
Hoare-logic. Then the interest turned towards development of parallel programs. Of the
latter, many approaches, like [MC81], [Jon83] and [Stg91], deal only with safety predicates
and restricted types of liveness predicates and are therefore less general than the logic
described in this paper.

[Pnu85], which presents a rule for a shared-state parallel operator, was the first to handle
general safety and liveness predicates in a compositional style. Roughly speaking, this
operator corresponds to our construct for mutual feedback as depicted in Figure 3.3. The
rule differs from our Rule 7 (and 14) in that the induction is explicit, i.e. the user must
himself find an appropriate well-orderering. A related rule is formulated in [Pan90]. There
is a (naive) translation of these rules into our formalism, where the state is interpreted as
the tuple of input/output streams, but the rules we then get are quite weak in the sense
that we can only prove properties which hold for all fixpoints, i.e. not properties which
hold for the least fixpoint only.

More recently, [AL90] has proposed a general composition principle with respect to a
shared-state model. This principle is similar to Rule 7 in that the induction is only im-
plicit, but differs from Rule 7 in that the assumptions are required to be safety properties.
It is shown in their paper that any “sensible” specification can be written in a normal form
where the assumption is a safety property. A similar result holds for our specifications.
However, at least with respect to our specification formalism, it is often an advantage to
be able to state liveness constraints also in the assumptions. In fact it can be argued that
also our rules are to restrictive in this respect. For example it is often helpful to state
that the lengths of the input streams are related in a certain way. When using Rule 6 this
can lead to difficulties (see the second premise where the empty stream is inserted for the
feedback input). One way to handle this problem is to simulate the stepwise consumption
of the overall input by restating Rule 6 as below:
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Rule 6’ :

adm(Aq)

A= Aff Yo,

ANAINCl = C '

AN AL N Cilig,) = Ay o,
[Av C] 2 [Alv Cl]

Here t is a function which takes a stream tuple as argument and returns a chain such
that for all 7, Ut(¢) = ¢. The idea is that ¢ partitions ¢ in accordance with how the input
is consumed. Thus, the first element of ¢(¢) represents the consumption of input w.r.t.
the first element of the Kleene chain, i.e. the empty stream; the second element of #(¢)
represents the consumption of input w.r.t. the second element of the Kleene chain; etc.
Rule 7, 13 and 14 can be reformulated in a similar style. The rules are semantically
complete in the same sense as earlier. As for all such deduction systems, there are many
variations of these rules. We have at the moment not sufficient experience to say which set
of rules is the better one from a practical point of view. Some case-studies are currently
being carried out.

The P-A logic of [PJ91] gives rules for both asynchronous and synchronous communication
with respect to a CSP-like language. Also in this approach the assumptions are safety
predicates. Moreover, general liveness predicates can only be derived indirectly from the
commitment via a number of additional rules.

We are using sets of continuous stream processing functions to model agents. There are
certain time dependent programs like non-strict fair merge which cannot be modeled in
this type of semantics [Kel78], i.e. they are not agents as agents are defined here. As
explained in [Bro92c|, such programs can be handled by using timed stream processing
functions at the semantic level. The specification formalism and refinement calculus
introduced above carry over straightforwardly.
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Appendix A

Proofs

The object of this appendix is to give proofs for claims made elsewhere in the report.

A.l

This section contains proofs related to the logic for simple specifications.

Al.1l

Logic for Simple Specifications

Soundness

Theorem 1 The logic for simple specifications is sound.

Proof: The soundness proofs for Rule 1, 2, 3, 4, 5 and 8 should by now be trivial. The
soundness of Rule 6 and 7 follow from Proposition 4 and 5.

end of proof

In Proposition 4 we consider only the case that there are no channels corresponding to r
and s of Figure 2.3. The proposition can easily be extended to handle the full generality

of the feedback operator.

Proposition 4 If

then

A() = adm(Ax € Y. Aq1(d, 2)),

A(d) = Au(2, (),

AN Ar(d,y) A Ci(i,y,0,y) = C(iy0,y),
AQ@) N A1t 2) AN Ci(e,2,0,y) = Ad(d,y),

4

[Av C] M [Alv Cl]

Proof: Assume that A.1 - A.4 hold, and that f, 7, 0 and y are such that

fellA, il
A(@) A f(1) = (o0,y).
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The monotonicity of f implies that there are chains o, 7 such that

A o~y def
(01,91) = (0, 0)
(65.9,) € Sigjma) i > 1.
Proposition 1 on Page 10 implies
U(o,9) = (0,y).
Assume for an arbitrary 7 > 1
Al(ivﬁj)‘
A6, A8, A9 and A.11 imply
C1(4s i 041, Gj1)-
A4, A7, A1l and A.12 imply
Al(ivﬁjﬁ-l)‘
Thus, for all y > 1
Al(iv 3)]) = Al(iv ﬁj-l-l)‘
A2, A7, A.13 and induction on j imply for all 7 > 1
Al(ivﬁj)‘
A1, A7, A10 and A.14 imply
Al(ivy)‘
A6, AT and A.15 imply
Cl(iv Y0, y)
A3, A7, A15 and A.16 imply
C(i,0,y).
Thus, it has been shown that
A() A p f(r) = (o,y) = Cli,0,y).
A.17 and the way f, ¢, 0 and y were chosen imply A.5.

end of proof

Proposition 5 If

Ali,r) = adm(Az € Z°. Ay(1,x,r)) V adm(Ay € W¥. Ay(y, r,1)),

A, r) = Ar(7, (), ) V Ax((), 7, 7),
A(i,r)
C(i,r,o,w,z,s),
AL, r) N Ag(e, 2, ) A Cr(i, 2, 0,w0) = As(w,r, 1),
AL, r) N As(y,ryi) A Coly,r 2z, 8) = Ag(d, z,1),
then
[A,C] ~ p([Fr € RY. Ay, C4] || [3i € 1%, Az, Cy]).

40

N A2, z,r) A Ag(w, i) A Ch(2, 2, 0,w) A Co(w,r, z,8) =

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

PN

A.19)
(A.20)

(A.21)
(A.22)

(A.23)



Proof: Assume that A.18 - A.22 hold, and that fi, fo, 2, 7, 0, w, z and s are such that

fiel[Fre R A0 ],
foef[Fee v Ay, O] ],
A(i,T) A :ufl H f2(i7r) = (o,w,z,s).

(A.24)
(A.25)
(A.26)

The monotonicity of f; and f, implies that there are chains 0, w, Z and § such that

(6,001, 21, 81) E (0,00, 0),
(65,0, 25, 85) & fili, 2500) || alibyoa,r) 305> 1.
Proposition 1 on Page 10 implies
U(o,,2,8) = (0, w, z, s).
Assume for an arbitrary 7 > 1
Aq(2, 25, )V Ag(wy, r 7).
A24, A25, A27, A.28 and A.30 imply
(Av(d, 25,m) A Cr(E, 255 0441, W) V (Az(yymy6) A Co(ays 7, 2, 841
A21, A.22, A.26 and A.31 imply
A2, 2ip1,m) V Ag(Wjq1, 7, 0).
Thus, for all y > 1
A2, 25, ) V Az, 0) = A1(4, Zi1,1) V Ag(Wj41, 7, 1),
A.19, A.26, A.32 and induction on j imply that for all j > 1
Aq(2, 25, )V Ag(wy, r 7).
A18, A.26, A.29 and A.33 imply
Aq(t,z,m) V Ag(w, r, 7).
Without loss of generality, assume
Aq(t, z,m).
A.24, A.26 and A.34 imply
Ci(i, 2, 0,w).
A.21, A.26, A.34 and A.35 imply
As(w,r, ).
A.25, A.26 and A.36 imply
Co(w,r, 2, 8).
A.20, A.26, A.34, A.35, A.36 and A.37 imply
C(i,r,o,w,z,s).
Thus, it has been shown that
AL, r) AN p fi || f2(e,7) = (0,w, 2,8) = C(2,7,0,w0, 2, 8).
A.38 and the way fi, fo, 2, 7, 0, w, z and s were chosen imply A.23.

end of proof
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(A.33)
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(A.35)

(A.36)

(A.37)
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A.1.2 Semantic Completeness

Theorem 2 If I is a deterministic agent built from basic deterministic agents using the
operators for sequential composition, parallel composition and feedback, and

[A, C]~ F,

then F' can be deduced from [A, C] using Rule 1 - 6, given that

o such a deduction can always be carried out for basic deterministic agents,
o any valid formula in the assertion logic is provable,

o any predicate we need can be expressed in the assertion language.

Proof: Follows straightforwardly from Proposition 6 - 8.

end of proof

Proposition 6 If

flonE [[ [A,C]]], (Agg)
then there are Ay, Ay, Cq and Cy such that
fHellAL i, A.40

(A.40)
f2 € [[ [A2702] ]]7 ( )
Ai) = Aa(d), (A.42)
A A Cy(i, x) = Ag(a), (A.43)
A() ANz € XY Cy(i,2) A Cyx,0) = C(1,0). ( )

Proof: Assume A.39. Let

Since

A7) = Ci(1, f1(2))
is equivalent to

A() = fi(1) = f(2)

it follows that A.40 holds. A.41 follows by a similar argument. A.42 and A.43 hold
trivially. To prove A.44, firstly observe that the antecedent of A.44 is equivalent to

A ATz € XY fi1(i) = a A foz) = o. (A.45)

42



A.45 implies

A(D) A fr o foli) = o.
A.39 implies

A(D) A fro foli) = 0= C(i,0).
Thus, A.44 holds.

end of proof

Proposition 7 If

fille[AC]],
then there are Ay, Ay, Cq and Cy such that
fre[[AL G T,
f2 €[ [A2,C] ],
A, r) = A1(1) A Ag(r),
A(z,r) AN Ci(i,0) A Co(r,s) = C(i,1,0,8).

Proof: Assume A.46. Let

It follows trivially that A.47-A.50 hold.

end of proof

Proposition 8 If

pfellACl],
then there are A, and C, such that

€ [Ay, (4],

(1) = adm(Ax € Y. A1(7, 2)),

A(d) = Au(2, (),

AN Ar(d,y) A Ci(i,y,0,y) = C(iy0,y),
A@) N Ar(d,2) AN Ci(e,2,0,y) = A1l y).

4
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Proof: Assume A.51. Let

(i,2) € (37 e N. K;(i,2)) V (3§ € Ch(Y®).x = Uj AVj € N. K;(1,8;)),
Ki(i,z) =z =),
() 3 e V¥ . Joe OY K1 (i, 2') A f(i,2") = (0,2)  if j>1,
i,2,0,y) € f(i,2) = (0,y).

Basically, K;(¢,2) characterizes the j’th element @ of the Kleene-chain for the function
f and the given input ¢ (see Page 10 for the definition of the Kleene-chain). This means
that (¢,2) satisfies Ay iff @ is an element of the Kleene-chain or its least upper bound for
the input . A.52 holds trivially. A.53 follows from the second disjunct of A;’s definition,
while A.54 is a direct consequence of the definition of Ky. To prove A.55, observe that
the antecedent of A.55 is equivalent to

A@@) N A y) A i y) = (o0,y). (A57)

Since A; characterizes the Kleene-chain or its least upper bound for a given input 2, A.57

def

e

[« N
m
=

Ch

implies

AN Ad(i,y) A f(2) = (0,). (A.58)
A.51 implies

A@) A p f(i) = (o,y) = C(i, 0,y).
Thus A.55 holds. To prove A.56, let 7, z, 0 and y be such that

A() N Ar(d,2) AN Ci(e, 2, 0,y). (A.59)
A.59 implies
AN Ar(d,2) A f(i,2) = (0, y). (A.60)

It follows from the definition of A; that there are two cases to consider. If x is the least
upper bound of the Kleene-chain for the input ¢, it follows that * = y, in which case A.60
implies

Ai(t,y).

On the other hand, if x is an element of the Kleene-chain for the input ¢, then there is a
7 > 1 such that

Ki(i,x). (A.61)
A.60 and A.61 imply

Kiyi(i,y). (A.62)
A.62 implies

A, y). (A.63)

This proves A.56.

end of proof
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A.1.3 Additional Proofs

Proposition 9 shows that Rule 7 is complete in the same sense as Rule 4-6.

Proposition 9 If

p(fill f2) e [[A,C]] (A.64)
then there are Ay, Ay, Cq and Cy such that

fie[3re R Ay, Ch] ], (A.65)
f2e[[3ie v Ay, Oy ], (A.66)
A, r) = adm(Aa € Z¥. A1(i,2,1)) V adm(Ay € W, Ay(y, 1, 1)), (A.67)
A, r) = Ar(7, (), ) V Ax((), 7, 7), (A.68)
AL, r) N Ag(e, z,m) N Ag(w, ry0) A Ci(t, z,0,w) A Co(w,r, z,8) =
C(i,r,o,w,z,s), (A.69)
AL, r) N Ag(e, 2, ) A Cr(i, 2, 0,w0) = As(w,r, 1), (A.70)
AL, r) N As(y,ri) A Coly,r, 2z, 8) = Ag(e, z,1). (A.71)

Proof: Let
Aq(t,x,r) e (37 e N.dy e WY K (4,7, 2,y)) V
(2 € Ch(Z¥).3g € CAH(W®).x = Uz AVy € N. K; (4,7, 35,7;)),
As(y,rye) ot (37 e N.Je € Z¥. K;(i,r,2,y)) V
(Fz € Ch(Z%). g € CR(W*).y = Uy AVj € N.K;(i,r,25,7;)),
Ki(i,ra,y) S o= Ay = (),
K;(i,r,o,y) ¥ 3’ € 2.3y e W¥. 3o € 0¥.3s € 5.
Ki_1(i,r, 2" y") A fi(i,2") = (0,y) A foly',r) = (2, 5),
Ci(i, 2, 0,w) & fi(i,x) = (0, w),

Coly,r,2,8) € faly,r) = (2,8).

A.65-A.71 can now be deduced from A.64 by an argument similar to that of Proposition
8.

end of proof

A.2 Logic for General Specifications

This section contains proofs related to the logic for general specifications.

A.2.1 Soundness

Theorem 3 The logic for general specifications is sound.
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Proof: The soundness of Rule 9 and 10 follow from Proposition 10 and 11. The soundness
of Rule 11-15 follow easily from Proposition 3 and the soundness of the corresponding

rules for simple specifications. Rule 16 is trivially sound.
end of proof
Proposition 10 If

H(h) A A(i) = A'(i, h),
H(h) A A(i) A C'(i, hy0) = C(i, 0)

then
[Av C] ~ [Alv C/]H

Proof: Assume that A.72-A.73 hold, and that f is such that
fellA.Cul

A.75 implies there is a hypotheses & such that
H(h) A f e [[ACrl ]

A.72, A.73, A.76 and Rule 1 imply
fellA.Cl].

A.77 and the way f and h were chosen imply A.74.

end of proof

Proposition 11 If

3h € T. H(h),
H(h) A A(i, h) = A'(i),
H(h) A A(i, ) A C'(iy0) = C(i, h, o)

then
[Av C]H ~ [Alv Cl]

Proof: Assume that A.78-A.80 hold, and that f is such that
fella.cnl.

A.78 and A.82 imply there is a hypotheses h such that
H(h)A fe[[A,C].

A.79, A.80, A.83 and Rule 1 imply
H(h) A f € [[A.C]].

A.84 and the way f and h were chosen imply A.81.

end of proof
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A.2.2 Semantic Completeness

Theorem 4 If I is an agent built from basic agents using the operators for sequential
composition, parallel composition and feedback, and

[Av C]H ~ F7

then F' can be deduced from [A, Cly using Rule 2, 3, 11, 12, 13 and 14, given that

o such a deduction can always be carried out for basic agents,
o any valid formula in the assertion logic is provable,

o any predicate we need can be expressed in the assertion language.

Proof: Since Rule 11 allows us to extend the set of hypotheses, we may assume that there

is an injective mapping m from [ F' ]| to the set of hypotheseses characterized by H such
that for all f €[ F |

H(m(f)) N €[ [An), Coun) -

Under this assumption Propositions 6-8 can be used to construct sets of simple specifica-
tions, i.e. general specifications, in the same way as they were used to construct simple
specifications in the proof of Theorem 2.

end of proof
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