
Assumption�Commitment Rules
for Networks of

Asynchronously Communicating Agents�

Ketil St�len� Frank Dederichs� Rainer Weber

Institut f�ur Informatik

Technische Universit�at M�unchen

Postfach �� �� ��� ���� M�unchen �

�This work is supported by the Sonderforschungsbereich ��� �Werkzeuge und Methoden f�ur

die Nutzung paralleler Rechnerarchitekturen�



Abstract

This report presents an assumption�commitment speci�cation technique and a re�nement
calculus for networks of agents communicating asynchronously via unbounded FIFO chan�
nels in the tradition of �Kah���� �Kel���� �BDD�	
��

� We de�ne two di�erent types of 
explicit� assumption�commitment speci�cations�
namely simple and general speci�cations�

� It is shown that semantically� any deterministic agent can be uniquely characterized
by a simple speci�cation� and any nondeterministic agent can be uniquely charac�
terized by a general speci�cation�

� We de�ne two sets of re�nement rules� one for simple speci�cations and one for
general speci�cations� The rules are Hoare�logic inspired� In particular the feedback
rules employ an invariant in the style of a traditional while�rule�

� Both sets of rules have been proved to be sound and also semantically complete
with respect to a chosen set of composition operators�

� Conversion rules allow the two logics to be combined� This means that general
speci�cations and the rules for general speci�cations have to be introduced only at
the point in a system development where they are really needed�

The proposed speci�cation formalism and re�nement rules together with a number of
related design principles presented in �Bro	
d�� �Bro	
a� constitute a powerful design
method which allows distributed systems to be developed in the same style as methods
like �Jon	��� �Mor	�� allow for the design of sequential systems�
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Chapter �

Introduction

Ever since formal program development became a major research direction some 
� years
ago� it has been common to write speci�cations in an assumption�commitment form�
The assumption characterizes the essential properties of the environment in which the
speci�ed program� from now on referred to as the agent� is supposed to run� while the
commitment is a requirement which must be ful�lled by the agent whenever it is executed
in an environment which satis�es the assumption�

For example� in Hoare�logic �Hoa�	� the post�condition characterizes the states in which
the agent is allowed to terminate when executed in an initial state which satis�es the pre�
condition� Thus� the pre�condition makes an assumption about the environment� while
the post�condition states a commitment which must be ful�lled by the agent�

In general� the popularity of the assumption�commitment paradigm is due to the fact
that an agent is normally not supposed to work in an arbitrary environment� in which
case speci�cations and agent designs can be simpli�ed by �restricting� the environment
in terms of assumptions�

There are many di�erent techniques for writing assumption�commitment speci�cations�
Roughly speaking� they can be split into two main categories� those which require an
explicit assumption�commitment form� and those which are content with an implicit as�
sumption�commitment form�

In the �rst category� the assumption is clearly separated from the commitment� A speci�
�cation can be thought of as a pair �A�C�� where A is the assumption about the environ�
ment� and C is the commitment to the agent� The pre�post speci�cations of Hoare�logic
belong to this category� so does Jones� rely�guarantee method �Jon���� the Misra�Chandy
technique �MC��� for hierarchical decomposition of networks� and a number of other con�
tributions like �Pnu���� �Sta���� �Pan	��� �AL	��� �St�	��� �PJ	���

In the second category� speci�cations still make assumptions about the environment and
state commitments to the agent� but the assumptions and the commitments are mixed
together and stated more implicitly� Examples of such methods are �BKP���� �CM��� and
�BDD�	
��

The motivation for insisting on an explicit assumption�commitment form varies from ap�
proach to approach� For example� in some methods like �Jon��� and �MC��� this structure
is mainly employed to ensure compositionality 
�dR���� �Zwi�	�� of the design rules� namely
that the speci�cation of an agent always can be veri�ed on the basis of the speci�cations

�



of its subagents� without knowledge of the interior construction of those subagents�

In other methods� with a richer assertion language� an explicit assumption�commitment
form is not needed in order to ensure compositionality� Nevertheless� an explicit assump�
tion�commitment form is still favored by many researchers� Abadi�Lamport �AL	��� for
example� argue as below��

� �Why write a speci�cation of the form �A�C� when we can simply write C� The
answer lies in the practical matter of what the speci�cation looks like� If we eliminate
the explicit environment assumption� then that assumption appears implicitly in the
properties C describing the system� Instead of C describing only the behavior of
the system when the environment behaves correctly� C must also allow arbitrary
behavior when the environment behaves incorrectly� Eliminating A makes C too
complicated� and it is not a practical alternative to writing speci�cations in the form
�A�C���

The object of this report is to present a set of decomposition rules for explicit as�
sumption�commitment speci�cations with respect to networks of agents communicating
asynchronously via unbounded FIFO channels in the style of �Kah���� �KM���� �Kel����
Agents are modeled as sets of stream processing functions as explained in �Kel���� �Bro�	��
�BDD�	
��

We distinguish between two types of such speci�cations� namely simple and general spec�
i�cations� A simple speci�cation can be used to specify any deterministic agent� while
any nondeterministic agent can be speci�ed by a general speci�cation�

Our approach is compositional� This means that�

� Design decisions can be veri�ed at the point where they are taken� This reduces the
amount of backtracking needed during the design process�

� Speci�cations can be split into subspeci�cations which can be implemented sepa�
rately�

We are interested in rules which can be used to reason about both safety and liveness
properties� The report concentrates on the theoretical aspects� The authors plan to
investigate the usefulness of the proposed rules in a number of case�studies�

The rest of the report is divided into four chapters and one appendix� The basic notation
and the semantic model are introduced in Chapter 
� Chapter � presents decomposition
rules for simple speci�cations� while the decomposition of general speci�cations is the
topic of Chapter �� Chapter � relates our approach to other proposals known from the
literature� Proofs of soundness and semantic completeness can be found in the appendix�

�In the quotation �A�C�� A and C have been substituted for E �M � E and M � respectively�

�



Chapter �

Basic Concepts and Notation

In this chapter we brie�y explain the basic concepts of our approach and introduce some
notation�

��� Streams

N denotes the set of natural numbers with � removed� B denotes the set ftrue� falseg�

A stream is a �nite or in�nite sequence of data� It models the history of a communication
channel� i�e� it represents the sequence of messages sent along the channel� hi stands for
the empty stream� and hd�� d�� � � � � dni stands for a �nite stream whose �rst element is
d�� and whose n�th and last element is dn� Given a set of data D� D� denotes the set of
all �nite streams generated from D� D� denotes the set of all in�nite streams generated
from D� and D� denotes D� �D��

This notation is overloaded to tuples of data sets in a straightforward way� hi denotes
any empty stream tuple� moreover� if T � 
D��D�� � � � �Dn� then T � denotes 
D�

� �D�
� �

� � ��D�
n�� T

� denotes 
D�
� �D�

� � � � ��D�
n �� and T

� denotes 
D�
� �D�

� � � � ��D�
n ��

Observe that T �� T� and T � are sets of stream tuples and not sets of streams of data
tuples�

There are a number of standard operators on streams and stream tuples� If d � D�
r � D�� j � N� s� t � T �� and A � D then�

� s � t denotes the result of concatenating s and t� i�e� the j�th component 
s � t�j is
equal to the result of pre�xing tj with sj if sj is �nite� and is equal to sj otherwise�

� s v t denotes that s is a pre�x of t� i�e� �p � T �� s � p � t�

� A c�r denotes the projection of r on A� data not occurring in A are deleted�
e�g� f�� �g c� h�� �� 
� �� �i � h�� �� �i�

� �r denotes the number of elements in r if r � D�� and � otherwise�

� rj denotes the j�th element of r if j 	 �r�

� dom
r� denotes the set of indices corresponding to r� i�e� dom
r� � fj j j 	 �rg�

�



A chain �c is an in�nite sequence of stream tuples �c�� �c�� � � � such that for all j � N�
�cj v �cj��� For any chain �c� t�c denotes its least upper bound� Since streams may be
in�nite such least upper bounds always exist� Ch
T �� denotes the set of chains over T ��

��� Predicates

A predicate is a boolean�valued function

P � T � 
 B�

When convenient the argument tuple of a predicate will be split into several argument
tuples� For example a predicate of the form P 
s� t� will often be used to express the
relation between stream tuples s and t�

Predicates will be expressed in �rst order predicate logic� As usual�� binds weaker than
�� 
� � which again bind weaker that all other function symbols� P �at � denotes the result
of substituting t for all occurrences of the variable a in P �

P is a safety predicate i�

�P 
s�� �t � T �� t v s � �P 
t��

This means� if some stream tuple s violates P � then there is a �nite pre�x of s that violates
P � Thus the violation of safety predicates can always be detected by �nite observations�

P is admissible i� for all chains �c in T �


�j � N� P 
�cj��� P 
t�c��

An admissible predicate holds for the least upper bound of a chain �c if it holds for all mem�
bers of �c� All safety predicates are admissible� However� there are admissible predicates
which are not safety predicates� For example �i mod 
 � � 
 �i � � is an admissible
predicate but no safety predicate� adm
P � holds i� P is admissible�

P is a liveness predicate i�

�s � T ���t � T �� P 
s � t��

This means� any �nite stream tuple s can be extended by a stream tuple t such that P is
ful�lled� Therefore� complete observations are necessary to detect the violation of liveness
predicates�

��� Stream Processing Functions

A function

�



f � I� 
 O�

is called a stream processing function i� it is pre�x continuous� i�e� i� for all chains �c in
I��

f
t�c� � tff
�cj� j j � Ng�

Since continuity implies monotonicity� any stream processing function f is also pre�x
monotonic�

�s� t � I�� s v t� f
s� v f
t��

As pointed out by �Kah���� a stream processing function is an adequate means for de�
scribing 
deterministic� agents that communicate asynchronously via unbounded FIFO�
channels� The continuity constraint re�ects the computational behavior of an agent� it
consumes its input and produces its output in a step�wise manner� For partial output only
partial input is necessary� This ensures that communicating agents can work in parallel�
The set of all stream processing functions in I� 
 O� is denoted by

I�
c

 O��

In the same way as for predicates� input and output tuples will be split into several tuples
when convenient�

��� Agents

An agent

F � I� 
 O�

receives messages through a �nite number of input channels of type I� and sends messages
through a �nite number of output channels of type O�� An agent may have no input
channels but has always at least one output channel� The reason for the latter is of course
that an agent without output channels is completely useless�

The denotation of an agent F � written �� F ��� is a set of type correct stream processing
functions� Hence� from the declaration above it follows that

�� F �� � I�
c

 O��

Agents may be nondeterministic� This is re�ected by the fact that sets of functions are
used as denotations� Any function f � �� F �� represents a possible behavior of F � The
agent may �choose� freely among these functions� Obviously� if there is no choice� the
agent is deterministic� Hence� we call F deterministic if its denotation is a unary set and
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nondeterministic otherwise�

Agents can be composed by three basic operators� These are introduced below�

����� Sequential Composition

Given two agents

F� � I� 
 X� and F� � X� 
 O��

then F� � F� is of type I� 
 O� and represents the sequential composition of F� and F��
Its denotation is

�� F� � F� ��
def
� ff� � f� j f� � �� F� �� � f� � �� F� ��g�

where

f� � f�
i�
def
� f�
f�
i���

F� F�� � �i x o

Figure 
��� Sequential Composition�

Figure 
�� shows the situation� Each arrow stands for a �nite number of channels� Se�
quential composition is based on function composition� In contrast to e�g� CSP�programs
or sequential programs� F� need not terminate before F� starts to compute� Instead F�
and F� work in a pipelined manner� F� reads some data from its input channels and
produces some data on its output channels� while F� reads these data� F� can continue to
work� e�g� read new inputs�

����� Parallel Composition

Given two agents

F� � I� 
 O� and F� � R� 
 S��

then F� k F� is of type I� �R� 
 O� � S� and represents the parallel composition of F�
and F�� Its denotation is

�� F� k F� ��
def
� ff� k f� j f� � �� F� ��� f� � �� F� ��g�

�



where

f� k f�
i� r�
def
� 
f�
i�� f�
r���

F� F�

� �

� �

i r

o s

Figure 
�
� Parallel Composition�

Parallel composition is shown in Figure 
�
� F� and F� are simply put side by side and
work independently without any mutual communication�

����� Feedback

Let

F � I� � Y � �R� 
 O� � Y � � S�

be an agent� where I denotes a 
p����ary tuple of data sets� O a 
q����ary tuple of data
sets and Y � for the time being� a data set� Then the p�th input channel of F has the same
type as the q�th output channel� and they can be connected as depicted in Figure 
���
This is called feedback � The resulting construct �pq F is of type I

��R� 
 O� �Y ��S��
and its denotation is

F

� � �

� � �

i

x

r

o y s

Figure 
��� Feedback�

�� �pq� F ��
def
� f�pq f j f � �� F ��g�

where

	



�pq f
i� r�
def
� 
o� y� s�

i�

� f
i� y� r� � 
o� y� s��

� �o� � O���y� � Y ���s� � S�� f
i� y�� r� � 
o�� y�� s��� 
o� y� s� v 
o�� y�� s���

In other words� 
o� y� s� is the smallest stream tuple that satis�es the recursive equation
f
o� x�� r� � 
o�� y�� s��� Obviously� for di�erent inputs i� r di�erent solutions will be ob�
tained� 
o� y� s� is called the least �xed point of f with respect to i� r� The continuity of
stream processing functions ensures that there is a least �xed point�

It is easy to generalize the ��operator to enable the feedback of more than one channel�
For instance� if in the feedback de�nition above Y is not a single data set but an r�ary
tuple of data sets we can write

�
r�pq F

to denote that r streams are fed back� Whenever it is clear from the context� which
output channels are fed back to which input channels� we will just write � without any
decoration�

Kleene�s theorem �Kle�
� provides another characterization of least �xed points� It will
be used in our soundness proofs�

Proposition � Let f � I� �Y � �R� c

 O� �Y � �S� be a stream processing function�

Then for every i � I�� r � R�� f possesses a least �xed point 
o� y� s� for which it holds


o� y� s� � tf
�oj � �yj� �sj� j j � Ng�

where 
�o�� �y�� �s�� � 
hi� hi� hi� and for all j � �� 
�oj � �yj� �sj� � f
i� �yj��� r�� This chain is
called the Kleene�chain�

The composition operators can be used to construct networks of agents � networks which
themselves are agents�

Proposition � The denotation of any network generated from some given basic agents
using the operators �� k and � is a set of stream processing functions� If all constituents
of a network are deterministic agents the denotation of the network is a singleton set�

This is a well�known result� which dates back to �Kah���� It makes it possible to replace
an agent by a network of simpler agents that has the same denotation� This is the key
concept that enables modular top�down development�

��



��� Basic Agents

In this report we distinguish between agents which are syntactic entities and their semantic
representation as sets of stream processing functions� Networks of agents can be built
using the operators for sequential and parallel composition plus feedback� These three
operators can be thought of as constructs in a programming language� Thus� given some
notation for characterizing the basic agents of a network� i�e� the �atomic� building blocks�
networks can be represented in a program�like notation�

However� since we are concerned with agents which are embedded in environments� a
basic agent is not always a program� It may also be a speci�cation representing some
sort of physical device� like� for instance� an unreliable wire connecting two computers� or
even a human being working in front of a terminal� Of course� such agents do not always
correspond to computable functions� and it is not the task of the program designer to
develop such agents� However� in a program design it is often useful to be able to specify
agents of this type�

Programming notation for coding basic agents of the implementable sort can be de�ned in
many ways� For example� �Ded	
� proposes both a functional and a procedural language
for this purpose� In this paper� we just assume that we have some sort of notation
for describing basic agents� When we later prove semantic completeness of our logics� we
assume that we can carry out certain deductions for basic agents� If we choose a particular
representation� then this has to be shown�
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Chapter �

Decomposing Simple Speci�cations

As already pointed out� this report is concerned with explicit assumption�commitment
speci�cations only� We distinguish between two di�erent types of such speci�cations�
namely simple and general speci�cations� This chapter deals with the former type� which
can be used to specify any deterministic agent� It is �rst explained what a simple speci��
cation is� Then we introduce a set of re�nement rules which allows simple speci�cations
to be re�ned in a stepwise� top�down manner� The rules are semantically complete 
in a
weak sense� with respect to deterministic agents�

��� Simple Speci�cations

In our approach an agent communicates with its environment via unbounded FIFO chan�
nels� It receives input through a �nite number of input channels and sends output through
a �nite number of output channels� An agent does not necessarily have any input chan�
nels� but has at least one output channel� Clearly� the only way an agent can be in�uenced
by its environment is through its input channels� and the only way an agent can in�uence
its environment is through its output channels� i�e� an agent is related to its environment
as shown in Figure ����

Agent� �

Environment

Input Output

Figure ���� Assumption�Commitment Paradigm

Given this framework� at least in the case of deterministic agents� it seems natural to
de�ne the environment assumption as a predicate on the history of the input channels�
i�e� on the input streams� and the commitment as a predicate on the history of the input
and output channels� i�e� as a relation between the input and output streams� The result
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is what we call a simple speci�cation�

More formally� a simple speci�cation is a pair of predicates

�A�C��

where A � I� 
 B and C � I� �O� 
 B� Its denotation �� �A�C� �� is the set of all type
correct stream processing functions which satis�es the speci�cation�

�� �A�C� ��
def
� ff � I�

c

 O� j �i � I�� A
i�� C
i� f
i��g�

In other words� the denotation is the set of all type correct stream processing functions f
such that whenever the input i of f ful�lls the assumption A� the output f
i� is related
to i in accordance with the commitment C�

Example � One Element Bu�er�

As a �rst example� consider the task of specifying a bu�er capable of storing exactly one
data element� The environment may either send a data element to be stored or a request
for the data element currently stored� The environment is assumed to be such that no
data element is sent when the bu�er is full� and no request is sent when the bu�er is
empty� The bu�er� on the other hand� is required to store any received data element and
to output the stored data element and become empty after receiving a request�

Let D be the set of data� and let � represent a request� then it is enough to require the
bu�er to satisfy the speci�cation BUF� where

ABUF
i�
def
� �i� � 
D � f�g��� i� v i� �f�g c�i� 	 �D c�i� 	 �f�g c�i�  ��

CBUF
i� o�
def
� o v D c�i ��o � �f�g c�i�

The assumption states that no request is sent to an empty bu�er 
�rst inequality�� and
that no data element is sent to a full bu�er 
second inequality�� The commitment requires
that the bu�er transmits data elements in the order they are received 
�rst conjunct��
and moreover that the bu�er always eventually responds to a request 
second conjunct��

It follows from the continuity constraint imposed on stream processing functions that the
bu�er will produce output� which satis�es the �rst conjunct of the commitment� as long
as the input satis�es the assumption� Thus the above speci�cation also constrains the
bu�er�s behavior for inputs which falsify the assumption� �

During program development it is important that the speci�cations which are to be im�
plemented remain implementable� i�e� that they remain ful�llable by computer programs�
From a practical point of view� it is generally accepted that it does not make much sense
to formally check the implementability of a speci�cation� The reason is that to prove im�
plementability it is often necessary to construct a program which ful�lls the speci�cation�
and that is of course the goal of the whole program design exercise�

A weaker and more easily provable constraint is what we call feasibility� A simple speci�
�cation �A�C� is feasible i� its denotation is nonempty� i�e� i� �� �A�C� �� �� ��
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Feasibility corresponds to what is called feasibility in �Mor���� satis�ability in VDM
�Jon	�� and realizability in �AL	��� A non�feasible speci�cation is inconsistent and can
therefore not be ful�lled by any agent� On the other hand� there are stream processing
functions that cannot be expressed in any algorithmic language� Thus� that a speci�ca�
tion is feasible does not guarantee that it is implementable� See �Bro	
b� for a detailed
discussion of feasibility and techniques for proving that a speci�cation is feasible�

Example � Non	Feasible Speci�cation�

An example of a non�feasible speci�cation is �A�C� where

A
i�
def
� true�

C
i� o�
def
� �i ��� �o ���

To see that this speci�cation is non�feasible� assume the opposite� This means it is satis�ed
by at least one stream processing function f � f is continuous which implies that for every
strictly increasing chain �i we have�

f
t�i� � tff
�ij� j j � Ng�

Since �i is strictly increasing� it follows for all j � �� ��ij ��� and therefore also �f
�ij� �
�� Hence�

�f
t�i� � � t ff
�ij� j j � Ng ���

On the other hand� since �i is strictly increasing we have �
t�i� � � which implies
�f
t�i� ��� This is a contradiction� Thus the speci�cation is not feasible� �

The operators �� k and � can be used to compose speci�cations� and also speci�cations
and agents in a straightforward way� By a mixed speci�cation we mean an agent� a simple
speci�cation or any network built from agents and simple speci�cations using the three
composition operators� For example� a mixed speci�cation can be of the form


�A�� C�� k �A�� C��� � 
F� k � �A�� C����

Since simple speci�cations denote sets of stream processing functions� the denotation of
a mixed speci�cation is de�ned in exactly the same way as for networks of agents 
see
Section 
����� 
���
 and 
������

��� Re�nement

A simple speci�cation �A�� C�� is said to re�ne a simple speci�cation �A�� C��� written

�A�� C��� �A�� C���
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i� the denotation of the former is contained in or equal to the denotation of the latter�
i�e� i�

�� �A�� C�� �� � �� �A�� C�� ���

This relation can be generalized to mixed speci�cations in a straightforward way� a mixed
speci�cation Spec� re�nes another mixed speci�cation Spec� i� the denotation of Spec�
is contained in or equal to the denotation of Spec��

Given a requirement speci�cation �A�C�� the goal of a system design is to construct an
agent F such that �A�C�� F holds� In the next section� we will give a number of re�ne�
ment rules geared towards a methodology of formal� stepwise� top�down re�nement� i�e�
an agent is designed from a speci�cation in a series of re�nement steps using mathemati�
cal tools� A stepwise re�nement is depicted in Figure ��
� The requirement speci�cation
�A�� C�� is �nally re�ned by a network of three agents� namely � 
F� k 
F� � F����

�A�� C�� � F�
�A�� C�� � �

�A�� C�� � F�
�A�� C�� � � �A�� C�� � k

�A�� C�� � F�

Figure ��
� Stepwise Re�nement

The re�nement relation � is re�exive� transitive and a congruence with respect to the
composition operators� Hence�� admits compositional system development� once a spec�
i�cation is decomposed into a network of subspeci�cations� each of these subspeci�cations
can be further re�ned in isolation�

��� Re�nement Rules

Ideally� when developing an agent� one starts with a quite abstract speci�cation which in
a step�wise� top�down fashion is decomposed into a network of subspeci�cations amenable
to be re�ned by communicating agents of adequate complexity� Re�nement rules can be
used to check the correctness of each decomposition step at the point where it is taken�
As mentioned before� this report concentrates on the design of networks of agents� and
rules 
and program constructs� for implementing basic agents will not be given�

Generally our rules have the following form

Premise�
���

Premisen
Spec�� Spec�
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stating� that provided the n premises hold� Spec� can be re�ned by Spec�� The rules are
sound in the following sense� given that the premises hold� then the conclusion holds� We
distinguish between two kinds of rules� namely consequence and decomposition rules�

����� Consequence Rules

The �rst rule states that a speci�cation�s assumption can be weakened and its commitment
can be strengthened�

Rule � �

A� � A�

A� � C� � C�
�A�� C��� �A�� C��

To see that Rule � is sound� observe that if f is a stream processing function such that
f � �� �A�� C�� ��� then since the �rst premise implies that the new assumption A� is weaker
than the old assumption A�� and the second premise implies that the new commitment
C� is stronger than the old commitment C� for any input which satis�es A�� it is clear
that f � �� �A�� C�� ���

That � is transitive and a congruence with respect to the composition operators can of
course also be stated as re�nement rules�

Rule � �

Spec� � Spec�
Spec� � Spec�
Spec� � Spec�

Rule � �

Spec� � Spec�
Spec� Spec
Spec��Spec��

Spec�� Spec� and Spec� denote mixed speci�cations� In Rule � Spec
Spec��Spec�� denotes
some mixed speci�cation which can be obtained from the mixed speci�cation Spec by
substituting Spec� for one occurrence of Spec��

����� Decomposition Rules

There is one rule for each of the composition operators �� k and �� Each of them de�
scribes under which conditions the actual operator can be used to decompose a simple
speci�cation�

Given that the input�output variables are named in accordance with Figure 
�� on Page
�� then the rule for sequential composition can be formulated as follows�
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Rule � �

A� A�

A � C� � A�

A � 
�x�C� � C��� C

�A�C�� �A�� C�� � �A�� C��

This rules states that in any environment� a speci�cation can be replaced by the sequential
composition of two component speci�cations provided the three premises hold�

Observe that all stream variables occurring in a premise are local with respect to that
premise� This means that Rule � is a short�hand for the following rule�

�i � I�� A
i�� A�
i�
�i � I���x � X�� A
i� � C�
i� x�� A�
x�
�i � I���o � O�� A
i� � 
�x � X�� C�
i� x� � C�
x� o��� C
i� o�
�A�C�� �A�� C�� � �A�� C��

Throughout this report� all free variables occurring in the premises of re�nement rules are
universally quanti�ed in this way�

To prove soundness it is necessary to show that for any pair of stream processing functions
f� and f� in the denotations of the �rst and second component speci�cation� respectively�
their sequential composition satis�es the overall speci�cation� To see that this is the case�
�rstly observe that the assumption A is at least as restrictive as A�� the assumption of
f�� Since f� satis�es �A�� C��� this ensures that whenever A
i� holds� f��s output x is such
that C�
i� x�� Now� the second premise implies that any such x also meets the assumption
A� of f�� Since f� satis�es �A�� C��� it follows that the output o of f� is such that C�
x� o��
Thus we have shown that �x�C�
i� x� � C�
x� o� characterizes the overall e�ect of f� � f�
when the overall input stream satis�es A� in which case the desired result follows from
premise three�

If the input and output variables are named in accordance with Figure 
�
 on Page 	� i�e�
the input variables are disjoint from the output variables� and the variables of the left�
hand side component are disjoint from the variables of the right�hand side component�
the parallel rule

Rule � �

A� A� � A�

A � C� � C� � C

�A�C�� �A�� C�� k �A�� C��

is almost trivial� Since the overall assumption A implies the component assumptions A�

and A�� and moreover the component commitments C� and C�� together with the overall
assumption imply the overall commitment C� the overall speci�cation can be replaced by
the parallel composition of the two component speci�cations�
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Also in the case of the feedback rule the variable lists are implicitly given� this time with
respect to Figure 
�� on Page 	� This means that the component speci�cation �A�� C��
has 
i� x� r��
o� y� s� as input�output variables� and that the overall speci�cation �A�C�
has 
i� r��
o� y� s� as input�output variables�

Rule 
 �

A� adm
�x�A��
A� A��xhi�

A �A��xy � � C��xy �� C
A �A� � C� � A��

x
y�

�A�C�� � �A�� C��

The rule is based on the stepwise computation of the feedback streams formally char�
acterized by Proposition �� Initially the feedback streams are empty� Then the agent
starts to work by consuming input and producing output in a stepwise manner� Output
on the feedback channels becomes input again� triggering the agent to produce additional
output� This process goes on until a �stable situation� is reached 
which implies that it
may go on forever�� Formally a �stable situation� corresponds to the least �xpoint of the
recursive equation in the feedback de�nition on page ���

The feedback rule has a close similarity to the while�rule of Hoare logic� A� can be thought
of as the invariant� The invariant holds initially 
second premise�� and is maintained by
each computation step 
fourth premise�� in which case it also holds after in�nitely many
computation steps 
�rst premise�� The conclusion is then a consequence of premise three�

The parallel composition with mutual feedback� depicted in Figure ���� can be modeled
by combining the agents in parallel and then applying the feedback operator twice� i�e�
by an agent of the form � 
� 
f� k f���� from now on shortened to � 
f� k f��� It is
possible to handle any such construct using the rules already introduced� However� from
a methodological point of view� it is sensible to have a special rule

F� F�

� � � �

� � � �

�
�
�
�
�
��

B
B
B
B
B
BB

i

x y

r

o w z s

Figure ���� Parallel Composition with Mutual Feedback�
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Rule � �

A� adm
�x�A�� 
 adm
�y�A��
A� A��xhi� 
 A��

y

hi�

A �A��xz � � C��xz � �A��yw� � C��yw�� C
A �A� � C� � A��yw�
A �A� � C� � A��xz �
�A�C�� � 
��r�A�� C�� k ��i� A�� C���

which applies to this coupling of two agents� The component speci�cations have respec�
tively 
i� x��
o�w� and 
y� r��
z� s� as input�output variables� The overall speci�cation
has 
i� r��
o�w� z� s� as input�output variables� In some sense� this rule can be seen as a
�generalisation� of Rule �� Due to the continuity constraint on stream processing func�
tions� it is enough if one of the agents �kicks o��� This means that we may use A�
A� as
invariant instead of A� � A�� The invariant is now A� 
 A�� The invariant holds initially

second premise� and is maintained by each computation step 
fourth and �fth premise��
in which case it also holds after in�nitely many computation steps 
�rst premise�� The
conclusion is then a consequence of premise three� four and �ve�

Note� that without the existential quanti�ers occurring in the component speci�cations�
the rule becomes too weak� The problem is that input received on x may depend upon
the value of r� and that the input received on y may depend upon the value of i� In the
above rule these dependencies can be expressed due to the fact that r may occur in A�

and i may occur in A��

Example � Summation Agent�

The task is to design an agent which for each natural number received through its input
channel� outputs the sum of all numbers received up to the actual point in time� The
environment is assumed always eventually to send a new number� In other words� we
want to design an agent which re�nes the speci�cation SUM where

ASUM
r�
def
� �r ���

CSUM
r� o�
def
� �o ��� �j � N� oj �

Pj
k�� rk�

SUM can be re�ned by a network � 
PR� k ADD� � STR as depicted in Figure ���� ADD
is supposed to describe an agent which� given two input streams of natural numbers�
generates an output stream where each element is the sum of the corresponding elements
of the input streams� e�g� the n�th element of the output stream is equal to the sum of
n�th elements of the two input streams� PR�� on the other hand� is required to specify an
agent which outputs its input stream pre�xed with �� This means that if ASUM
r� then

z � h!�j��rji � h!
�
j��rji � � � � � h!n

j��rji � � � � �

where z is the right�hand side output stream of � 
PR� k ADD�� Hence� it is enough
to require STR to characterize an agent which outputs its second input stream� More
formally�
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Figure ���� Network Re�ning SUM�

�APR�� CPR���
�AADD� CADD��
�ASTR� CSTR��

where

APR�
x�
def
� true�

CPR�
x�w�
def
� w � h�i � x�

AADD
y� r�
def
� �r ���

CADD
y� r� z�
def
� �z � �y � �j � dom
z�� zj � rj  yj�

ASTR
w� z�
def
� true�

CSTR
w� z� o�
def
� o � z�

The rules introduced above can be used to prove formally that this decomposition is
correct� Let

A�
r�
def
� ASUM
r��

C �
r� w� z�
def
� CSUM
r� z��

Since

ASUM
r�� A�
r��
C �
r� w� z�� ASTR
w� z��
�w� z � N�� C �
r� w� z� � CSTR
w� z� o�� CSUM
r� o��

it follows from Rule � that
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�ASUM� CSUM�� �A�� C �� � �ASTR� CSTR�� 
��

The right�hand side component �A�� C �� can be re�ned further by observing that

adm
APR�
x�� 
 adm
�y�AADD
y� r��
A�
r�� APR�
hi� 
AADD
hi� r��
CPR�
x�w� �AADD
y� r� � CADD
y� r� z�� C �
r� w� z��
A�
r� � AADD
y� r� � CADD
y� r� z�� APR�
z��
A�
r� � CPR�
x�w�� AADD
w� r��

in which case it follows from Rule � that

�A�� C ��� � 
�APR�� CPR�� k �AADD� CADD���

This� 
�� and Rule 
 and � imply

�ASUM� CSUM�� � 
�APR�� CPR�� k �AADD� CADD�� � �ASTR� CSTR��

Thus� the proposed decomposition is valid� Further re�nements of the three component
speci�cations ADD� PR� and STR may now be carried out in isolation� �

��� Completeness

Informal soundness proofs have been given above� More detailed proofs for Rule � and
� can be found in Section A���� of the appendix� In this section we will deal with com�
pleteness issues�

����� Semantic Completeness

In the examples above a predicate calculus related assertion language has been employed
for writing speci�cations� However� in this report no assertion language has been formally
de�ned� nor have we formulated any assertion logic for discharging the premises of our
rules� we have just implicitly assumed the existence of these things� This will continue�
We are just mentioning these concepts here because they play a role in the discussion
below�

The logic introduced in this chapter is semantically complete in the following sense� if
F is a deterministic agent built from basic deterministic agents using the operators for
sequential composition� parallel composition and feedback� and

�A�C�� F�

then F can be deduced from �A�C� using Rule ���� given that


�



� such a deduction can always be carried out for a basic deterministic agent�

� any valid formula in the assertion logic is provable�

� any predicate we need can be expressed in the assertion language�

See section A���
 of the appendix for a detailed proof� Proposition 	 shows that Rule �
is complete in a similar sense�

Note that under the same expressiveness assumption as above� for any deterministic agent
F � there is a simple speci�cation Spec such that �� F �� � �� Spec ��� Let �� F �� � ffg then
�true� f
i� � o� is semantically equivalent to F �

����� Adaptation Completeness

Another completeness result we would have liked our logic to satisfy is what is usually
referred to as adaptation completeness �Zwi�	�� For our logic to be adaptation complete
it must be possible to show that whenever

�A�� C��� �A�� C���

then �A�� C�� can be deduced from �A�� C��� using Rule � � �� Unfortunately this is not
possible�

Example � �

Let

A�
i�
def
� true�

C�
i� o�
def
� �i � �o � 
�i ��� o � f�g�� � 
�i ���� o � f�g���

A�
i�
def
� true�

C�
i� o�
def
� �i � �o � 
�i ��� o � f�g���

then it follows from the continuity of stream processing functions that

�A�� C��� �A�� C���

However� �A�� C�� cannot be deduced from �A�� C�� using Rule � � �� �

If we assume� as for example in �BDD�	
�� that our assertion language has variables
over domains of stream processing functions� then we can get adaptation completeness by
adding the following rule�

Rule � �

�f� 
�i�A�� C��of�i	��� 
�i� A�� C��of�i	��

�A�� C��� �A�� C��







which basically restates the semantics of a simple speci�cation in the assertion language�
Here f ranges over the set of type�correct stream processing functions� and both speci�
�cations are assumed to have i�o as input�output variables� Rule � is a special case of
Rule �� Unfortunately� Rule � is often di"cult to use in practice� which is why it has not
been introduced earlier� Moreover� we believe that in most practical situations Rule � is
su"ciently strong�

In some sense Rule � is just transferring a problem from our speci�cation formalism into
the assertion language without really giving any strategy for how to �nd a proof� Rule �
� � on the other hand� depend upon premises which are relatively easy to discharge�

Observe� that if the assertion language has operators corresponding to �� k and �� then
the premises of Rule ��� could have been formulated in a similar style� But again� these
rules would not be very helpful from a practical point of view�
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Chapter �

Decomposing General Speci�cations

In the previous chapter we introduced a formalism for the speci�cation of and reasoning
about networks of agents� It can be used to derive networks of agents from assump�
tion�commitment speci�cations by stepwise re�nement� It has been proved that the given
development rules are semantically complete with respect to deterministic agents� i�e� for
any deterministic agent F � if there is a simple speci�cation �A�C� such that

�A�C�� F�

then under the assumptions stated above� F can be deduced from �A�C� using Rule � �
�� For nondeterministic agents this does not hold� In this chapter we introduce a more
general formalism which provides semantic completeness also for nondeterministic agents�

��� Symmetric Speci�cations

In Section ��
 it is explained what it means for an agent F � either deterministic or non�
deterministic� to ful�ll a simple speci�cation �A�C�� Thus� simple speci�cations can quite
naturally be used to specify nondeterministic agents� too� However� they are not expres�
sive enough� i�e� not every nondeterministic agent can be speci�ed by a simple speci�ca�
tion� One problem is that for certain nondeterministic agents� the assumption cannot be
formulated without some knowledge about the output� To understand the point� consider
a modi�ed version of the one element bu�er�

Example � One Element Unreliable Bu�er�

Basically the bu�er should exhibit the same behavior as the one element bu�er described
in Example �� In addition we now assume that it is unreliable in the sense that data
communicated by the environment can be rejected� Special messages are issued to inform
the environment about the outcome� namely fail if a data element is rejected and ok if
it is accepted� Again the environment is assumed to send a request only if the bu�er is
full and a data element only if the bu�er is empty� It follows from this description that
the environment has to take the bu�er�s output into account in order to make sure that
the messages it sends to the bu�er are consistent with the bu�er�s input assumption� The
example is worked out formally on page 
�� �
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At a �rst glance it seems that the weakness of simple speci�cations can be �xed by allowing
assumptions to depend upon the output� too� i�e� by allowing speci�cations like �A�C��
with A�C � I� �O� 
 B� and

�� �A�C� �� � ff � I�
c

 O� j �i � I�� A
i� f
i��� C
i� f
i��g

We call such speci�cations symmetric since A and C are now treated symmetrically with
respect to the input�output streams� Unfortunately� we may then write strange speci��
cations like

��i �����i � �o� i � o� 
��

which is not only satis�ed by the identity agent� but also for example by any agent which
for all inputs falsi�es the assumption��

Another more serious problem is that also symmetric speci�cations are insu"ciently ex�
pressive� Consider the following example 
taken from �Bro	
c���

Example 
 �

Let f�� f�� f�� f� � f�g�
c

 f�g� be such that

f�
hi�
def
� f�
hi�

def
� h�i�

f�
h�i�
def
� f�
h�i�

def
� h�� �i�

f�
hi�
def
� f�
hi�

def
� hi�

f�
h�i�
def
� f�
h�i�

def
� h�i�

y � h�� �i � x� f�
y�
def
� f�
y�

def
� f�
y�

def
� f�
y�

def
� h�� �i�

Assume that F� and F� are agents such that �� F� �� � ff�� f�g and �� F� �� � ff�� f�g� Then
F� and F� determine exactly the same input�output relation� Thus for any symmetric
speci�cation Spec� Spec � F� i� Spec � F�� In other words� there is no symmetric
speci�cation which distinguishes F� from F��

Nevertheless� semantically the di�erence between F� and F� is not insigni�cant� because
the two agents have di�erent behaviors with respect to the feedback operator� To see this�
�rstly observe that � f� � h�� �i� � f� � h�i and � f� � � f� � hi� Thus �F� may either
output h�� �i or hi� while �F� may either output h�i or hi� �

The expressiveness problem described in Example � is basically the Brock�Ackermann
�BA��� anomaly� Due to the lack of expressiveness it can be shown that for symmet�
ric speci�cations no deduction system can be found that is semantically complete for
nondeterministic agents in the sense explained on Page 
��

�It can be argued that the simple speci�cation �false� P � su�ers from exactly the same problem� How�
ever� there is a slight di�erence� �false� P � is satis�ed by any agent� The same does not hold for ���� As
argued in �Bro	
b�� if any assumption A of a symmetric speci�cation is required to satisfy �i� A�i� f�i��
for any type�correct stream processing function f � and any assumption A of a simple speci�cation is
required to satisfy �i� A�i�� then this di�erence disappears�


�



Given a speci�cation Spec and an agent F � and assume we know that Spec � �F
holds� A deduction system is compositional i� the speci�cation of an agent can always be
veri�ed on the basis of the speci�cations of its subagents� without knowledge of the interior
construction of those subagents �Zwi�	�� This means that in a complete and compositional
deduction system there must be a speci�cation Spec�� such that Spec � �Spec� and
Spec� � F are provable� For symmetric speci�cations no such deduction system can be
found� To prove this fact we may use the agents F�� F� de�ned in Example �� where

�� �F� �� � f�f�� �f�g � f��h��i� ��hig� �� �F� �� � f�f�� �f�g � f��h�i� ��hig�

Note that �F�� �F� have no input channels� Let �A�C� with A�C � f�g� 
 B be de�ned
by

A
o�
def
� true� C
o�

def
� o � h��i 
 o � hi�

Obviously� �A�C� � �F� is valid� Now� if there is a complete compositional deduction
system then there must be a symmetric speci�cation �A�� C�� such that

�A�C�� � �A�� C��� 
�� �A�� C��� F�� 
���

However� because F� and F� have exactly the same input�output behavior� there is no
symmetric speci�cation that distinguishes F� from F�� Thus� it follows from 
��� that
�A�� C��� F�� as well as � �A�� C��� �F�� From this� 
��� and the transitivity of � we
can conclude �A�C�� �F�� which does not hold�

��� General Speci�cations

The problem with symmetric speci�cations is that they are not su"ciently expressive�
Roughly speaking� we need a speci�cation concept capable of distinguishing F� from F��
Since as shown in Section ������ any deterministic agent can be uniquely characterized by
a simple speci�cation� we de�ne a general speci�cation as a set of simple speci�cations�

f�Ah� Ch� jH
h�g�

H is a predicate characterizing a set of indices� and for each index h� �Ah� Ch� is a simple
speci�cation � from now on called a simple descendant of the above general speci�cation�
More formally� and in a slightly simpler notation� a general speci�cation is of the form

�A�C�H�

where
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A � I� � T 
 B�
C � I� � T �O� 
 B�
H � T 
 B�

T is the type of the indices and H� the hypothesis predicate� is a predicate of this type�
Its denotation

�� �A�C�H ��
def
�
S
f�� �Ah� Ch� �� jH
h�g�

with Ah
i�
def
� A
i� h� and Ch
i� o�

def
� C
i� h� o�� is the union of the denotations of the

corresponding simple speci�cations�

Any index h can be thought of as a hypothesis about the agents internal behavior� It is
interesting to note the close relationship between hypotheses and what are called oracles
in �Kel��� and prophecy variables in �AL����

To see how these hypotheses can be used� let us go back to the unreliable bu�er of Example
��

Example � One Element Unreliable Bu�er
 continued�

As in Example �� let D be the set of data� and let � represent a request� ok� fail are
additional output messages� The bu�er outputs fail if a data element is rejected and ok
if a data element is accepted� Let fok� failg� be the hypothesis type with

HUB
h�
def
� true

as hypothesis predicate� Thus� every in�nite stream over fok� failg is a legal hypothesis�
Since any hypothesis h is in�nite� the n�th data element occurring in an input stream i
straightforwardly corresponds to the n�th element of h� which is either equal to ok or fail�
Now� if for a particular pair of input i and hypothesis h a data element d in i corresponds
to fail� it will be rejected� if it corresponds to ok� it will be accepted� Thus� h predicts
which data elements the bu�er will accept and which it will reject� We say that the bu�er
behaves according to h�

In order to describe its behavior� two auxiliary functions are needed� Let

state � 
D � f�g�� � fok� failg� 
 fempty� fullg�
accept � 
D � f�g�� � fok� failg�

c

 D��

be such that for all d � D� i � 
D � f�g�� and h � fok� failg��
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state
hi� h� � empty�
state
i � h�i� h� � empty�
h
�D c�i	�� � fail� state
i � hdi� h� � state
i� h��
h
�D c�i	�� � ok � state
i � hdi� h� � full�

accept
hi� h� � hi�
accept
h�i � i� h� � accept
i� h��
accept
hdi � i� hfaili � h� � accept
i� h��
accept
hdi � i� hoki � h� � hdi � accept
i� h��

state is used to keep track of the bu�er�s state� The �rst equation expresses that initially
the bu�er is empty� The others describe how the state changes when new input arrives and
the bu�er behaves according to hypothesis h� In the third and fourth equation h
�D c�i	��

denotes the element of the hypothesis streamwhich corresponds to d in the sense explained
above� For any �nite input stream i and any hypothesis h� state
i� h� returns the bu�er�s
state after it has processed i according to h� Obviously� it does not make sense to de�ne
state for in�nite input streams� since no bu�er state can be attributed to them�

accept returns the stream of accepted data for a given input and a given hypothesis� In
contrast to state� accept is de�ned on in�nite input streams although no equation is given
explicitly� Since it is de�ned to be a continuous function� its behavior on in�nite streams
follows by continuity from its behavior on �nite streams�

The unreliable bu�er is speci�ed by the following general speci�cation�

�AUB� CUB�HUB

where

AUB
i� h�
def
� �i� � 
D � f�g����d � D�

i� � h�i v i� state
i�� h� � full� � 
i� � hdi v i� state
i�� h� � empty��

CUB
i� h� o�
def
� D c�o v accept
i� h� � fok� failg c�o v h ��fok� failg c�o � �D c�i
��D c�o � �f�g c�i�

Intuitively� the assumption states that the environment is only allowed to send a request
� when the bu�er is full and a data element d when the bu�er is empty�

The commitment states in its �rst conjunct that each data element in the output must
previously have been accepted� in its second and third conjunct that the environment is
properly informed about the bu�er�s internal decisions� and in its fourth conjunct that
every request will eventually be satis�ed�

Note that the assumption is a safety property while the commitment also contains a live�
ness part� Although ok and fail occur in the bu�er�s output as well as in the hypothesis�
there is a fundamental di�erence between these two kinds of use� In the �rst case ok and
fail represent messages the bu�er sends to the environment� In the second case ok and
fail model internal decisions� Since the messages are supposed to inform the environment
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about the internal decisions� the same symbols have been used�

The speci�cation UB is satis�ed by a bu�er which rejects all data elements it receives�
To avoid that it is enough to strengthen the hypotheseses predicate as follows�

HUB�
h�
def
� �fokg c�h ���

�

Since the denotation of a general speci�cation is a set of type correct stream processing
functions� mixed speci�cations and the re�nement relation can be de�ned in exactly the
same way as for simple speci�cations�

As the following example shows� the relationship between the assumption� the commit�
ment and the hypothesis predicate of a general speci�cation can be quite subtle�

Example � �

Let T � feven� oddg be the hypothesis type� and let

A � N� � T 
 B�
C � N� � T � N� 
 B�

be two predicates such that

A
i� even�
def
� �j � dom
i�� ij mod 
 � ��

A
i� odd�
def
� �j � dom
i�� ij mod 
 � ��

C
i� h� o�
def
� i � o�

Then� the following statement is true�

�A�C��h�even�h�odd	 � �A�C��h�even	�

In the �rst speci�cation the assumption admits as input a stream of even numbers as well
as a stream of odd numbers� whereas in the second speci�cation only an even stream is
allowed� In fact� by changing the hypothesis predicate we have implicitly strengthened
the assumption� and thus restricted the environment� Is this a legal re�nement� It is�
not only formally� but also in an intuitive sense� In the �rst speci�cation� whatever
the environment sends as input� it can never be sure that the agent�s output ful�lls the
commitment� if it sends a stream of even numbers� the agent may choose to react properly
only to streams of odd numbers� and if it sends a stream of odd numbers� the agent may
choose the other alternative� There is no way for the environment to in�uence the agent�s
choice� So this speci�cation is not very helpful� The second speci�cation� on the other
hand� is more demanding with respect to the input� If the environment sends a stream of
even numbers� then it knows that the output will be in accordance with the commitment�

�


	



The following observation is helpful for relating the re�nement rules of the previous chap�
ter to those for general speci�cations given in the next section�

Proposition � Given two general speci�cations Spec� Spec�� with respectively T � T � as
hypothesis types and H� H � as hypothesis predicates� then Spec � Spec� if there is a
mapping l � T � 
 T � such that for all h � T �

�� H �
h�� H
l
h���

�� H �
h�� Specl�h	 � Spec�h�

Here Specl�h	 and Spec�h are the simple descendants of Spec and Spec� determined by h
and l
h�� respectively�

The importance of this proposition is that since a simple descendant is a simple spec�
i�cation� the rules of the previous chapter can be used to verify the second condition�
Thus the logic for simple speci�cations� which has been proved sound� can be employed
to prove soundness of the logic for general speci�cations�

To see that the proposition is valid� assume that the two conditions 
�� 
� hold� and
let f � �� Spec� ��� Then� by the de�nition of �� ��� there is an hypothesis h such that
f � �� Spec�h �� and H

�
h�� It follows from the two conditions thatH
l
h���f � �� Specl�h	 ���
Thus� again by the de�nition of �� ��� f � �� Spec ���

Proposition � can of course easily be generalized to the case where Spec� is the result of
composing several general speci�cations using the three basic composition operators� The
proof is again straightforward�

��� Re�nement Rules

This section presents a set of re�nement rules for general speci�cations� Most of these
rules are straightforward translations of the rules for simple speci�cations�

����� Relationship to Previous Logic

In the preceding section the close relationship between simple and general speci�cations
was described� This is re�ected by the following two rules�

Rule � �

H � A� � A�

H � A� � C� � C�
�A�� C��� �A�� C��H

��



Rule �� �

�h�H
H � A� � A�

H � A� � C� � C�
�A�� C��H � �A�� C��

Rule 	 can be used to re�ne a simple speci�cation by a general speci�cation� while Rule
�� allows a general speci�cation to be re�ned by a simple speci�cation�

For the special case that H holds for exactly one h� � T � the two rules can be used to
deduce the equivalence of �A�C�H and �Ah�� Ch� �� where �Ah�� Ch�� is a simple descendant
as de�ned on Page 
��

����� Consequence Rules

Rule � states that a simple speci�cation can be re�ned by weakening the assumption
and�or strengthening the commitment� For general speci�cations still another aspect
must be considered� two general speci�cations may rely on di�erent hypothesis types T�
and T� or� if T� and T� coincide� di�erent hypothesis predicates H� and H�� The general
rule captures all these aspects�

Rule �� �

H� � H��
q

l�h	�

H� �A��
q

l�h	�� A�

H� �A��
q

l�h	� � C� � C��
q

l�h	�

�A�� C��H�
� �A�� C��H�

Here l � T� 
 T� is a mapping between the two hypothesis types� and h and q are the
corresponding hypotheseses� Rule � can be seen as a special case of ��� Simply choose
T� � T�� H� � H� � true� and let l denote the identity function� Since the �rst premise
implies the �rst condition of Proposition � on page ��� and premise two and three together
with Rule � imply the second condition of Proposition �� it follows that the rule is sound�

Rule 
 and � remain valid�

����� Decomposition Rules

As in the case of simple speci�cations there are three basic decomposition rules plus one
rule for parallel composition with mutual feedback� As for Rule �� their soundness follows
straightforwardly from 
the general version of� Proposition � and the corresponding rules
of the previous chapter�

��



Rule �� �

H �A� A�

H �A � C� � A�

H �A � 
�h�C� � C��� C

�A�C�H � �A�� C��H � �A�� C��H

Rule �� �

H � A� A� �A�

H � A � C� � C� � C

�A�C�H � �A�� C��H k �A�� C��H

Rule �� �

H � A� adm
�x�A��
H � A� A��xhi�

H � A � A��xy� � C��xy�� C
H � A � A� � C� � A��

x
y�

�A�C�H � � �A�� C��H

Rule �� �

H �A� adm
�x�A�� 
 adm
�y�A��
H �A� A��xhi� 
A��

y

hi�

H �A �A��xz � � C��xz � � A��yw� � C��yw�� C
H �A �A� � C� � A��yw�
H �A �A� � C� � A��xz �
�A�C�H � � 
��r�A�� C��H k ��i� A�� C��H�

��� Completeness

The completeness results of Chapter � can now be generalized�

����� Semantic Completeness

The logic for general speci�cations is semantically complete with respect to nondetermin�
istic agents� if F is an agent built from basic agents using the operators for sequential
composition� parallel composition and feedback� and

�A�C�� F�

then F can be deduced from �A�C� using Rule 
� �� ��� �
� �� and ��� given that

�




� such a deduction can always be carried out for basic agents�

� any valid formula in the assertion logic is provable�

� any predicate we need can be expressed in the assertion language�

See section A�
�
 for a proof� Rule �� is complete in a similar sense�

Given a nondeterministic agent F � it is straightforward to write a general speci�cation
Spec which is semantically equivalent to F � It is enough to choose I�

c

 O� as the

hypothesis type� Then

�� Spec �� � �� F ��

if

HSpec
h�
def
� h � F�

ASpec
i� h�
def
� true�

CSpec
i� h� o�
def
� h
i� � o�

Hence� for any function f � �� F ��� �ASpec� CSpec�HSpec
contains a simple descendant which

characterizes only f � Roughly speaking� our speci�cation technique uses a set of relations
in the same sense as �BDD�	
� employs a set of functions to get around the composition�
ality problems of relations reported in �BA����

����� Adaptation Completeness

As for simple speci�cations it is easy to formulate a su"ciently strong adaptation rule�

Rule �
 �

�f� 
�h�H� � 
�i� A�� C��of�i	���� 
�h�H� � 
�i� A�� C��of�i	���

�A�� C��H�
� �A�� C��H�

This rule deals with general speci�cations� Rules which relate simple and general speci��
cations can be formulated in a similar way�

��



Chapter �

Conclusions

Logics for explicit assumption�commitment speci�cations have been studied for a long
time� To begin with� the emphasize was on sequential program design in the style of
Hoare�logic� Then the interest turned towards development of parallel programs� Of the
latter� many approaches� like �MC���� �Jon��� and �St�	��� deal only with safety predicates
and restricted types of liveness predicates and are therefore less general than the logic
described in this paper�

�Pnu���� which presents a rule for a shared�state parallel operator� was the �rst to handle
general safety and liveness predicates in a compositional style� Roughly speaking� this
operator corresponds to our construct for mutual feedback as depicted in Figure ���� The
rule di�ers from our Rule � 
and ��� in that the induction is explicit� i�e� the user must
himself �nd an appropriate well�orderering� A related rule is formulated in �Pan	��� There
is a 
naive� translation of these rules into our formalism� where the state is interpreted as
the tuple of input�output streams� but the rules we then get are quite weak in the sense
that we can only prove properties which hold for all �xpoints� i�e� not properties which
hold for the least �xpoint only�

More recently� �AL	�� has proposed a general composition principle with respect to a
shared�state model� This principle is similar to Rule � in that the induction is only im�
plicit� but di�ers from Rule � in that the assumptions are required to be safety properties�
It is shown in their paper that any �sensible� speci�cation can be written in a normal form
where the assumption is a safety property� A similar result holds for our speci�cations�
However� at least with respect to our speci�cation formalism� it is often an advantage to
be able to state liveness constraints also in the assumptions� In fact it can be argued that
also our rules are to restrictive in this respect� For example it is often helpful to state
that the lengths of the input streams are related in a certain way� When using Rule � this
can lead to di"culties 
see the second premise where the empty stream is inserted for the
feedback input�� One way to handle this problem is to simulate the stepwise consumption
of the overall input by restating Rule � as below�
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Rule 
� �
adm
A��
A� A��xhi

i
t�i	�
�

A �A��xy � � C��xy �� C
A �A��

i
t�i	j
� � C��

i
t�i	j
�� A��

x
y

i
t�i	j��

�

�A�C�� � �A�� C��

Here t is a function which takes a stream tuple as argument and returns a chain such
that for all i� tt
i� � i� The idea is that t partitions i in accordance with how the input
is consumed� Thus� the �rst element of t
i� represents the consumption of input w�r�t�
the �rst element of the Kleene chain� i�e� the empty stream� the second element of t
i�
represents the consumption of input w�r�t� the second element of the Kleene chain� etc�
Rule �� �� and �� can be reformulated in a similar style� The rules are semantically
complete in the same sense as earlier� As for all such deduction systems� there are many
variations of these rules� We have at the moment not su"cient experience to say which set
of rules is the better one from a practical point of view� Some case�studies are currently
being carried out�

The P�A logic of �PJ	�� gives rules for both asynchronous and synchronous communication
with respect to a CSP�like language� Also in this approach the assumptions are safety
predicates� Moreover� general liveness predicates can only be derived indirectly from the
commitment via a number of additional rules�

We are using sets of continuous stream processing functions to model agents� There are
certain time dependent programs like non�strict fair merge which cannot be modeled in
this type of semantics �Kel���� i�e� they are not agents as agents are de�ned here� As
explained in �Bro	
c�� such programs can be handled by using timed stream processing
functions at the semantic level� The speci�cation formalism and re�nement calculus
introduced above carry over straightforwardly�
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Appendix A

Proofs

The object of this appendix is to give proofs for claims made elsewhere in the report�

A�� Logic for Simple Speci�cations

This section contains proofs related to the logic for simple speci�cations�

A���� Soundness

Theorem � The logic for simple speci�cations is sound�

Proof� The soundness proofs for Rule �� 
� �� �� � and � should by now be trivial� The
soundness of Rule � and � follow from Proposition � and ��

end of proof

In Proposition � we consider only the case that there are no channels corresponding to r
and s of Figure 
��� The proposition can easily be extended to handle the full generality
of the feedback operator�

Proposition � If

A
i�� adm
�x � Y �� A�
i� x��� 
A���

A
i�� A�
i� hi�� 
A�
�

A
i� �A�
i� y� � C�
i� y� o� y�� C
i� o� y�� 
A���

A
i� �A�
i� x� � C�
i� x� o� y�� A�
i� y�� 
A���

then

�A�C�� � �A�� C��� 
A���

Proof� Assume that A�� � A�� hold� and that f � i� o and y are such that

f � �� �A�� C�� ��� 
A���

A
i� � � f
i� � 
o� y�� 
A���

�	



The monotonicity of f implies that there are chains �o� �y such that


�o�� �y��
def
� 
hi� hi�� 
A���


�oj � �yj�
def
� f
i� �yj��� if j � �� 
A�	�

Proposition � on Page �� implies

t
�o� �y� � 
o� y�� 
A����

Assume for an arbitrary j � �

A�
i� �yj�� 
A����

A��� A��� A�	 and A��� imply

C�
i� �yj� �oj��� �yj���� 
A��
�

A��� A��� A��� and A��
 imply

A�
i� �yj����

Thus� for all j � �

A�
i� �yj�� A�
i� �yj���� 
A����

A�
� A��� A��� and induction on j imply for all j � �

A�
i� �yj�� 
A����

A��� A��� A��� and A��� imply

A�
i� y�� 
A����

A��� A�� and A��� imply

C�
i� y� o� y�� 
A����

A��� A��� A��� and A��� imply

C
i� o� y��

Thus� it has been shown that

A
i� � � f
i� � 
o� y�� C
i� o� y�� 
A����

A��� and the way f � i� o and y were chosen imply A���

end of proof

Proposition � If

A
i� r�� adm
�x � Z�� A�
i� x� r�� 
 adm
�y � W �� A�
y� r� i��� 
A����

A
i� r�� A�
i� hi� r� 
 A�
hi� r� i�� 
A��	�

A
i� r� � A�
i� z� r� � A�
w� r� i� � C�
i� z� o� w� � C�
w� r� z� s��

C
i� r� o� w� z� s�� 
A�
��

A
i� r� � A�
i� x� r� � C�
i� x� o� w�� A�
w� r� i�� 
A�
��

A
i� r� � A�
y� r� i�� C�
y� r� z� s�� A�
i� z� r�� 
A�

�

then

�A�C�� � 
��r � R�� A�� C�� k ��i � I�� A�� C���� 
A�
��

��



Proof� Assume that A��� � A�

 hold� and that f�� f�� i� r� o� w� z and s are such that

f� � �� ��r � R�� A�� C�� ��� 
A�
��

f� � �� ��i � I�� A�� C�� ��� 
A�
��

A
i� r� � � f� k f�
i� r� � 
o�w� z� s�� 
A�
��

The monotonicity of f� and f� implies that there are chains �o� �w� �z and �s such that


�o�� �w�� �z�� �s��
def
� 
hi� hi� hi� hi�� 
A�
��


�oj � �wj� �zj� �sj�
def
� f�
i� �zj��� k f�
 �wj��� r� if j � �� 
A�
��

Proposition � on Page �� implies

t
�o� �w� �z� �s� � 
o�w� z� s�� 
A�
	�

Assume for an arbitrary j � �

A�
i� �zj� r� 
A�
 �wj� r� i�� 
A����

A�
�� A�
�� A�
�� A�
� and A��� imply


A�
i� �zj� r� � C�
i� �zj� �oj��� �wj���� 
 
A�
 �wj� r� i� � C�
 �wj� r� �zj��� �sj���� 
A����

A�
�� A�

� A�
� and A��� imply

A�
i� �zj��� r� 
A�
 �wj��� r� i��

Thus� for all j � �

A�
i� �zj� r� 
A�
 �wj� r� i�� A�
i� �zj��� r� 
A�
 �wj��� r� i�� 
A��
�

A��	� A�
�� A��
 and induction on j imply that for all j � �

A�
i� �zj� r� 
A�
 �wj� r� i�� 
A����

A���� A�
�� A�
	 and A��� imply

A�
i� z� r� 
A�
w� r� i��

Without loss of generality� assume

A�
i� z� r�� 
A����

A�
�� A�
� and A��� imply

C�
i� z� o� w�� 
A����

A�
�� A�
�� A��� and A��� imply

A�
w� r� i�� 
A����

A�
�� A�
� and A��� imply

C�
w� r� z� s�� 
A����

A�
�� A�
�� A���� A���� A��� and A��� imply

C
i� r� o� w� z� s��

Thus� it has been shown that

A
i� r� � � f� k f�
i� r� � 
o�w� z� s�� C
i� r� o� w� z� s�� 
A����

A��� and the way f�� f�� i� r� o� w� z and s were chosen imply A�
��

end of proof
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A���� Semantic Completeness

Theorem � If F is a deterministic agent built from basic deterministic agents using the
operators for sequential composition� parallel composition and feedback� and

�A�C�� F�

then F can be deduced from �A�C� using Rule � 	 �� given that

� such a deduction can always be carried out for basic deterministic agents�

� any valid formula in the assertion logic is provable�

� any predicate we need can be expressed in the assertion language�

Proof� Follows straightforwardly from Proposition � � ��

end of proof

Proposition 
 If

f� � f� � �� �A�C� ��� 
A��	�

then there are A�� A�� C� and C� such that

f� � �� �A�� C�� ��� 
A����

f� � �� �A�� C�� ��� 
A����

A
i�� A�
i�� 
A��
�

A
i� � C�
i� x�� A�
x�� 
A����

A
i� � �x � X�� C�
i� x� � C�
x� o�� C
i� o�� 
A����

Proof� Assume A��	� Let

A�
i�
def
� true�

A�
x�
def
� true�

C�
i� x�
def
� f�
i� � x�

C�
x� o�
def
� f�
x� � o�

Since

A
i�� C�
i� f�
i��

is equivalent to

A
i�� f�
i� � f�
i�

it follows that A��� holds� A��� follows by a similar argument� A��
 and A��� hold
trivially� To prove A���� �rstly observe that the antecedent of A��� is equivalent to

A
i� � �x � X�� f�
i� � x � f�
x� � o� 
A����

�




A��� implies

A
i� � f� � f�
i� � o�

A��	 implies

A
i� � f� � f�
i� � o� C
i� o��

Thus� A��� holds�

end of proof

Proposition � If

f� k f� � �� �A�C� ��� 
A����

then there are A�� A�� C� and C� such that

f� � �� �A�� C�� ��� 
A����

f� � �� �A�� C�� ��� 
A����

A
i� r�� A�
i� �A�
r�� 
A��	�

A
i� r� � C�
i� o� � C�
r� s�� C
i� r� o� s�� 
A����

Proof� Assume A���� Let

A�
i�
def
� true�

A�
r�
def
� true�

C�
i� o�
def
� f�
i� � o�

C�
r� s�
def
� f�
r� � s�

It follows trivially that A����A��� hold�

end of proof

Proposition � If

� f � �� �A�C� ��� 
A����

then there are A� and C� such that

f � �A�� C��� 
A��
�

A
i�� adm
�x � Y �� A�
i� x��� 
A����

A
i�� A�
i� hi�� 
A����

A
i� �A�
i� y� � C�
i� y� o� y�� C
i� o� y�� 
A����

A
i� �A�
i� x� � C�
i� x� o� y�� A�
i� y�� 
A����

��



Proof� Assume A���� Let

A�
i� x�
def
� 
�j � N�Kj
i� x�� 
 
��y � Ch
Y ��� x � t�y � �j � N�Kj
i� �yj���

K�
i� x�
def
� x � hi�

Kj
i� x�
def
� �x� � Y ���o � O��Kj��
i� x

�� � f
i� x�� � 
o� x� if j � ��

C�
i� x� o� y�
def
� f
i� x� � 
o� y��

Basically� Kj
i� x� characterizes the j�th element x of the Kleene�chain for the function
f and the given input i 
see Page �� for the de�nition of the Kleene�chain�� This means
that 
i� x� satis�es A� i� x is an element of the Kleene�chain or its least upper bound for
the input i� A��
 holds trivially� A��� follows from the second disjunct of A��s de�nition�
while A��� is a direct consequence of the de�nition of K�� To prove A���� observe that
the antecedent of A��� is equivalent to

A
i� �A�
i� y� � f
i� y� � 
o� y�� 
A����

Since A� characterizes the Kleene�chain or its least upper bound for a given input i� A���
implies

A
i� �A�
i� y� � � f
i� � 
o� y�� 
A����

A��� implies

A
i� � � f
i� � 
o� y�� C
i� o� y��

Thus A��� holds� To prove A���� let i� x� o and y be such that

A
i� �A�
i� x� � C�
i� x� o� y�� 
A��	�

A��	 implies

A
i� �A�
i� x� � f
i� x� � 
o� y�� 
A����

It follows from the de�nition of A� that there are two cases to consider� If x is the least
upper bound of the Kleene�chain for the input i� it follows that x � y� in which case A���
implies

A�
i� y��

On the other hand� if x is an element of the Kleene�chain for the input i� then there is a
j � � such that

Kj
i� x�� 
A����

A��� and A��� imply

Kj��
i� y�� 
A��
�

A��
 implies

A�
i� y�� 
A����

This proves A����

end of proof
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A���� Additional Proofs

Proposition 	 shows that Rule � is complete in the same sense as Rule ����

Proposition � If

� 
f� k f�� � �� �A�C� �� 
A����

then there are A�� A�� C� and C� such that

f� � �� ��r � R�� A�� C�� ��� 
A����

f� � �� ��i � I�� A�� C�� ��� 
A����

A
i� r�� adm
�x � Z�� A�
i� x� r�� 
 adm
�y � W �� A�
y� r� i��� 
A����

A
i� r�� A�
i� hi� r� 
 A�
hi� r� i�� 
A����

A
i� r� � A�
i� z� r� � A�
w� r� i� � C�
i� z� o� w� � C�
w� r� z� s��

C
i� r� o� w� z� s�� 
A��	�

A
i� r� � A�
i� x� r� � C�
i� x� o� w�� A�
w� r� i�� 
A����

A
i� r� � A�
y� r� i�� C�
y� r� z� s�� A�
i� z� r�� 
A����

Proof� Let

A�
i� x� r�
def
� 
�j � N��y � W ��Kj
i� r� x� y��



��x � Ch
Z�����y � Ch
W ��� x � t�x � �j � N�Kj
i� r� �xj� �yj���

A�
y� r� i�
def
� 
�j � N��x � Z��Kj
i� r� x� y��



��x � Ch
Z�����y � Ch
W ��� y � t�y � �j � N�Kj
i� r� �xj� �yj���

K�
i� r� x� y�
def
� x � hi � y � hi�

Kj
i� r� x� y�
def
� �x� � Z���y� � W ���o � O���s � S��

Kj��
i� r� x
�� y�� � f�
i� x

�� � 
o� y� � f�
y
�� r� � 
x� s��

C�
i� x� o� w�
def
� f�
i� x� � 
o�w��

C�
y� r� z� s�
def
� f�
y� r� � 
z� s��

A����A��� can now be deduced from A��� by an argument similar to that of Proposition
��

end of proof

A�� Logic for General Speci�cations

This section contains proofs related to the logic for general speci�cations�

A���� Soundness

Theorem � The logic for general speci�cations is sound�

��



Proof� The soundness of Rule 	 and �� follow from Proposition �� and ��� The soundness
of Rule ����� follow easily from Proposition � and the soundness of the corresponding
rules for simple speci�cations� Rule �� is trivially sound�

end of proof

Proposition �� If

H
h� � A
i�� A�
i� h�� 
A��
�

H
h� � A
i� � C �
i� h� o�� C
i� o� 
A����

then

�A�C�� �A�� C ��H� 
A����

Proof� Assume that A��
�A��� hold� and that f is such that

f � �� �A�� C ��H ��� 
A����

A��� implies there is a hypotheses h such that

H
h� � f � �� �A�
h� C

�
h� ��� 
A����

A��
� A���� A��� and Rule � imply

f � �� �A�C� ��� 
A����

A��� and the way f and h were chosen imply A����

end of proof

Proposition �� If

�h � T�H
h�� 
A����

H
h� � A
i� h�� A�
i�� 
A��	�

H
h� � A
i� h� � C �
i� o�� C
i� h� o� 
A����

then

�A�C�H � �A�� C ��� 
A����

Proof� Assume that A����A��� hold� and that f is such that

f � �� �A�� C �� ��� 
A��
�

A��� and A��
 imply there is a hypotheses h such that

H
h� � f � �� �A�� C �� ��� 
A����

A��	� A���� A��� and Rule � imply

H
h� � f � �� �A�C� ��� 
A����

A��� and the way f and h were chosen imply A����

end of proof
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A���� Semantic Completeness

Theorem � If F is an agent built from basic agents using the operators for sequential
composition� parallel composition and feedback� and

�A�C�H � F�

then F can be deduced from �A�C�H using Rule �� �� ��� ��� �� and ��� given that

� such a deduction can always be carried out for basic agents�

� any valid formula in the assertion logic is provable�

� any predicate we need can be expressed in the assertion language�

Proof� Since Rule �� allows us to extend the set of hypotheses� we may assume that there
is an injective mapping m from �� F �� to the set of hypotheseses characterized by H such
that for all f � �� F ��

H
m
f�� � f � �� �Am�f	� Cm�f	� ���

Under this assumption Propositions ��� can be used to construct sets of simple speci�ca�
tions� i�e� general speci�cations� in the same way as they were used to construct simple
speci�cations in the proof of Theorem 
�

end of proof
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