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Abstract

This paper gives a short introduction to the algebraic specification language
SPECTRUM. Using simple, well-known examples, the objectives and concepts
of SPECTRUM are explained.

The SPECTRUM language is based on axiomatic specification techniques and is
oriented towards functional programs. SPECTRUM includes the following features:

e partial functions, definedness logic and fixed point theory
e higher-order elements and typed A-abstraction

e non-strict functions and infinite objects

full first-order predicate logic with induction principles
e predicative polymorphism with sort classes
e parameterization and modularization

SPECTRUM is based on the concept of loose semantics.
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Chapter 1

Introduction

Software adequacy and reliability are two of the main goals in software pro-
duction. Unfortunately, given the current state of the art in software engineer-
ing, these goals are very hard to achieve. The systematic use of correctness-
oriented, stepwise development techniques based on formal derivation and verifi-
cation methods has been proposed as a step forward.

A necessary prerequisite for correctness-oriented program development is a
formal description of the program’s task. This description is often called require-
ment specification. In fact, the requirement specification forms the borderline
between informal program description and formal program development with
specification and verification. A simple and well-structured requirement specifi-
cation may considerably ease coding and verification phases.

The SPECTRUM project concentrates on the process of developing well-struc-
tured, precise specifications. SPECTRUM comprises a specification language, a
deduction calculus and a development methodology. As the name of the project
indicates, a wide range of specification styles is envisaged, including means to
describe concurrent systems. SPECTRUM allows the user to write very abstract
(and definitely non-executable) specifications as well as specifications which can
be read and executed as functional programs.

SPECTRUM is based on algebraic specification techniques and on the experi-
ence gained in the project CIP [BBB*85]. However, in contrast to most algebraic
specification languages (like e.g. OBJ [JKKMS88], LARCH [GHWS5], ACT ONE
[EMS85], OBSCURE [LL88] and ACT TWO [EM90]), it contains explicit support
for partial functions (as a generalization of [BW82]). Moreover, SPECTRUM is
not restricted to equational or conditional-equational axioms, since it does not
primarily aim at executable specifications.

SPECTRUM does not feature any built-in notion of a program state, and the
whole specification style is oriented towards functional programming. As a conse-
quence of this dedication a number of functional language concepts have been in-
tegrated into the specification language. SPECTRUM s sort system provides para-
metric polymorphism and sort classes in the style of functional programming lan-



guages like Haskell [HJW92] or theorem provers like ISABELLE [Nip91]. Further-
more the language supports the denotation of functions by typed A-abstraction
and higher-order functions. Also the semantics have been adapted to recursion
in functional programming using complete partial orderings for carrier sets.

Since writing well-structured specifications is one of our main goals, a flexible
language for structuring of specifications has been designed for SPECTRUM. This
language was originally inspired by ASL [SW83]. The current version is more
closely related to functional programs, to LARCH and to PLUSS [Gau86].

There are only a few specification languages available which are comparable
with SPECTRUM. PLUSS has many similarities with SPECTRUM (e.g. partial
functions). In fact, PLUSS has influenced the design of SPECTRUM in a num-
ber of ways (e.g. concerning the treatment of hiding and of term generation
conditions). Nevertheless, many of the SPECTRUM features are not supported
by PLUSS, in particular non-strict functions, higher-order functions and the ad-
vanced sort system. The language Pannda-S developed in the PROSPECTRA
project [KBH91] can be seen as a predecessor of SPECTRUM.

The definition of the semantics and the proof system was influenced by lan-
guages and systems of the LCF family [Pau87]. The expressiveness of SPECTRUM
is close to that of Cambridge LCF but in contrast to this system SPECTRUM uses
a three-valued logic, supports sort classes and offers a concrete syntax for a lan-
guage that is to be used in the process of system specification.

The paper at hand is an update of the previous informal introduction paper.
It describes informally the concepts and syntax of the language. A number of
papers giving a more formal definition are in preparation.

The document is organized as follows: Chapter 2 introduces the most ba-
sic specification constructs. The handling of partial, non-strict and higher-order
functions is the topic of Chapter 3. In SPECTRUM a function is always contin-
uous. What is usually meant by noncontinuous function is called mapping in
SPECTRUM. Mappings are used only for specification purposes. Chapter 4 is
devoted to the specification of mappings. The sort system of SPECTRUM is de-
scribed in Chapter 5. Chapter 6 introduces some constructs that do not have
a direct algebraic semantics but have a semantics that is defined in terms of
more basic constructs. Instead they are syntactically checked and expanded into
SPECTRUM text which could be written without them. Chapter 7 deals with the
structuring of specifications, and with parameterization. Chapter 8 addresses
the executable sublanguage of SPECTRUM that builds the borderline to target
languages like Haskell or ML.

Appendix A contains the concrete syntax and the ASCII representations of
graphic symbols, respectively. Appendix B gives a brief introduction to the se-
mantics and underlying logic of SPECTRUM. Finally, the predefined signature
and a standard library that defines often used sorts and functions can be found
in Appendix D.



Chapter 2
Specifying in the Small

Within SPECTRUM the notation for specifying a component “in the small” and
the notation for structuring a specification “in the large” are carefully separated.
The latter notation may be used to combine and adapt specifications into new
and often more complex specifications. Moreover, this notation is intended for
building-up and structuring large and complicated system descriptions. For the
design of a single specification unit, i.e. a basic component, on the other hand,
only the first notation is employed.

This chapter gives a brief introduction to specifying a component “in the
small”. A more detailed discussion of specific features follows in Chapters 3, 4
and 5. The structuring of a specification “in the large” is the topic of Chapter 7.

2.1 General Structure of a SPECTRUM Specifica-
tion
We start by giving a specification of the natural numbers. This simple example

is well-suited for introducing the most basic constructs of a SPECTRUM specifi-
cation.

NAT = {

——All defined functions are strict and total
strict;
total;

sort Nat;
——CGenerator functions

zero : Nat;
succ : Nat — Nat;



——Non-generator functions
. 1 Nat X Nat — Nat prio 6:left;
. 1 Nat X Nat — Nat prio 7:left;

——Induction principle for natural numbers
Nat generated by zero, succ;

axioms V n, m : Nat in

{freel} zero # succ n;
{free2} succn =succm = n=m;

{plusl} n + zero = n;
{plus2} n 4 succ m = succ (n 4+ m);

{timesl} n x zero = zero;
{times2} n xsuccm =n 4+ n* m;

endaxioms;

The first thing to observe is that in SPECTRUM every comment starts with a
“——"_ In this paper we use a bold font to distinguish keywords from other
specification text!. A SPECTRUM specification “in the small”, as usual within
the algebraic framework, consists of a signature part and an azioms part. A basic
specification can, however, contain more than one signature or axioms part. A
signature part contains defined sorts as well as defined constant and function
symbols together with their sorts and functionalities (argument and result sorts),

respectively. The following should be observed:

Strictness and Totality: The keywords total and strict restrict all functions
of a basic specification to be total and strict. These terms are abbreviations
of axioms and will be explained in Chapter 3.

Infix Function Symbols: Binary function symbols can be defined as infix func-
tion symbols with an user-definable priority and associativity, like in many
modern functional and logic programming languages. The keyword prio
followed by a natural number p assigns the priority p to the infix symbol
in question. The function symbol with the higher priority binds stronger.

!The SPECTRUM syntax employs graphic symbols like V as we intend to use the language
in a graphic environment. There is also an ASCII version of the syntax (see Appendix A.1).



Given the above specification this means for example that | + m * n is an
abbreviation for | + (m * n). The parsing of flattened terms like | + m + n
is declared with the keywords right and left (right and left bracketing),
respectively. With respect to NAT this means that | + m + n is an abbre-
viation for (I + m) + n .

Generators: The generated by-phrase can be thought of as an axiom scheme.
It basically allows the usual structural induction. This concept will be
discussed in more detail in Sections 2.3 and 3.4.

Built-in Equality: A universal equality predicate denoted by .=. and its nega-
tion .#. are automatically available for all sorts (see Appendix D).

General Predicate Logic: The axioms are not restricted to equations or con-
ditional equations. They may contain arbitrary formulae from a predicate
logic calculus (with equality) built over the given signature. They may
contain even, for instance, nested quantifiers.

Scope of Variables: The scope of the universally quantified variables of the
axioms-construct includes the whole list of axioms. In our introduction
example these are the variables n and m, both declared to be of sort Nat.

Identifier for Axioms: Every axiom may be labeled with an identifier. For the
definition of identifier see Appendix A.

2.2 Loose Semantics

The semantics of a SPECTRUM specification is denoted by the class of all algebras?
with appropriate signature which fulfill the given axioms. This is known as loose
semantics (cf. CIP-L [BBB*85], LARCH [GHWS&5], ASL [Wir86]) and differs
from the approach taken in many other algebraic specification languages (e.g.
ACT ONE [EMS85], ACT TWO [EM90], ASF [BHKS89], OBJ [JKKMS88]), where
a particular model, the initial one, is chosen. Loose semantics allows the user to
write down very abstract specifications, which leaves a large degree of freedom
for later implementation. By reducing the number of models, e.g. by giving
more axioms, and thereby imposing design decisions, a refinement notion for the
stepwise development of data structures and algorithms can be achieved. There
is also another reason for using a loose semantics: for the general class of axioms
admitted in SPECTRUM initial models do not always exist.

?The notion of algebra is clarified in Appendix B.



2.3 Generation Principles and Freeness

As already indicated, the model class may be restricted not only by axioms of
first-order predicate logic, but also by a statement of the form

S generated by G;

where S is a list of sorts and G is a list of constants and function symbols. All
constants have a sort s € S and the functions have argument sorts a € (SUP) and
range s € S where P is a set of primitive sorts not occurring in S. At the syntactic
level this phrase allows the use of simultaneous structural induction on all sorts
listed in S with respect to the constructors listed in G. Semantically, this means
that all carriers for the sorts in S are generated by the primitive sorts in P and
the functions and constants in G. In the literature this is also called the inductive
closure of P and G (cf. [Gal86]). This semantics ensures that structural induction
is sound and it is an extension of the usual notion of term generatedness because
structural induction may be sound for a sort s even if there are no term models
for s at all. Suppose the case where s is built on top of a primitive sort p € P
that is not representable by terms.

In Section 3.4 we will see a further extension of the concept of term genera-
tion. In SPECTRUM all carriers are complete partial orderings and therefore it is
possible to extend the principle of structural induction. All properties which are
compatible with the partial ordering (cf. admissible or chain complete predicates
[Pau87]) can be proved inductively for all elements that are expressible by the
constructors and then the property is propagated to the limit points of chains
which yields the universality of the property. In Section 3.4 we give examples for
sorts with limit points and appropriate induction rules.

In SPECTRUM a freely generated structure may be specified by the following
phrase

S freely generated by G;

This scheme imposes exactly the same generation principle as generated by,
but with the additional constraint that the carriers for the sorts in S are freely
generated by the primitive sorts in P and the functions and constants in G (cf.
[Gal86]). Roughly speaking, different constructors generate different elements
and all constructor functions are injective. In SPECTRUM it is possible to express
the additional freeness constraints directly by axioms® although it is boring to
write down all the necessary axioms. The keyword freely generated by was
added for the sake of readability and it is simply an abbreviation for these axioms.
This means for example, that if

3In the special case of free generation even the principle of structural induction can be
formalized directly by axioms. This technique is used by LCF and is described in [Pau87].



Nat freely generated by zero, succ;
is substituted for
Nat generated by zero, succ;
in the NAT specification, then the two axioms

zero # succ n;
succ n = succm = N = m;

are no longer needed since they are implied by the freely generated by phrase.



Chapter 3

Functions

In the previous chapter it was not necessary to mention partial functions, the
values of undefined terms and how the specified functions deal with them. More-
over, functions which take other functions as arguments were not specified. This
is no coincidence — actually, Chapter 2 presents only one facet of SPECTRUM,
namely the specification of first-order functions which are both total and strict:

Total: A function f is total iff f yields a defined result whenever all arguments
are defined.

Strict: A function fis strict iff f yields an undefined result whenever f is applied
to at least one undefined argument.

First-order: A function f is first-order iff no functional sorts appear in a param-
eter sort or the result sort of f. In other words, the sort of f contains the
function sort constructor — only at the top level.

On many occasions, however, more general instances of functions are needed.
Functions that are not (necessarily) total are called partial functions. This defi-
nition of partiality contains the total functions as a special case. A function that
does not need to obey the above strictness requirement is called non-strict. As
before, this includes strict functions as special case. A function that is not first-
order is called higher-order. Obviously, according to this definition, first-order
functions cannot be seen as a special case of higher-order functions.

The objective of this chapter is to explain how SPECTRUM can be used to de-
fine the latter sorts of functions. In SPECTRUM functions are always contin-
uous. What is usually meant by noncontinuous function is called mapping in
SPECTRUM. They are used for specification purposes. The specification of map-
pings is the topic of Chapter 4.

Remark:  From now on we do not distinguish between function symbols
and the semantic values they denote where this distinction is clear from the

10



context. In other words, instead of writing “the function denoted by f yields ...”

we will often write “the function f yields ...”.

3.1 Partial Functions

The specification NAT of Chapter 2 was an example of a specification that con-
tains only strict and total functions. In this example, totality of all functions was
enforced by the line reading

total;

at the top of the specification. This line is called a totality axiom. It demands
totality of all functions introduced in the signature!. To specify partial functions
we use a variant of this totality axiom that requires totality only of some func-
tions. As an example we give an extended version of the specification of natural
numbers:

NAT' = {

strict;
sort Nat;
zero : Nat;

succ : Nat — Nat;
pred : Nat — Nat;

.<.,.<.: Nat X Nat — Bool prio 6;
. 1 Nat X Nat — Nat prio 6:left;
.—. : Nat X Nat — Nat prio 6;
. 1 Nat X Nat — Nat prio 7:left;
div.,.mod. : Nat X Nat — Nat prio 7;

suce,.<.,.<.,.4+.,.x. total;
Nat freely generated by zero, succ;
axioms V n, m : Nat in

6 (pred n) & n # zero;
pred(succ n) = n;

! Properties like totality and strictness can, of course, be stated in terms of axioms using the
definedness predicate § (see Section 6.1). However, for concepts which are as commonly used
as totality and strictness, the more comfortable shorthand notations of strictness and totality
axioms have been introduced into SPECTRUM.

11



zero < n;

—(succ n < zero);

succn <succm <& n < m;
n<m=(n<mAn#m);

n 4+ zero = n;
n + succ m = succ (n + m);

b6(n—m)em<n;
(n+m)—m=n;

n * Zero = Zzero;
ns*ksuccm=n -4 n*x m;

6 (n div m) & m # zero;

6 (n mod m) & m # zero;

m =% zero = n mod m < m;

m # zero = n = (n div m) * m + n mod m;

endaxioms;

In this example the following details should be observed:

Strictness: As in NAT the line reading
strict;

requires all functions that are introduced in the signature of NAT' to be
strict.

Totality: The totality axiom
suce,.<.,.<.,.4+.,*. total;

demands totality of the functions succ, .<., .<., .+. and ... No such
requirement is made for pred, .—., .div. and .mod., therefore those functions

are partial (i.e. may yield an undefined result for defined arguments).

Universal Quantifier: The universal quantifier in the axioms construct ranges
over defined values only.

12



Definedness Predicate: In order to deal with partial functions, a standard

predicate symbol ¢ is available for all sorts. Its interpretation evaluates
to true if the interpretation of its argument term is defined and to false
otherwise. This definedness predicate is mainly used to describe which
arguments of a function lead to defined results. For example, the strictness
of pred and the third axiom in the above specification imply that pred is
defined whenever its argument is defined and not equal to zero.

Strong Equality: As already mentioned, a universal equality predicate denoted

by .=. and its negation .#. are automatically available for all sorts. This
standard equality is strong by definition, i.e. it always yields true or false,
considering all “undefined values” of identical sort to be equal, and all
“defined values” to be different from “undefined values”. This means for
example that

“O(x) A= dy) = x=y

3.2 Non-Strict Functions

The possibility to specify non-strict functions has been integrated into SPECTRUM

for several reasons. First, they support the logical level (as explained in Appendix
B the logical connectives .A., .V. and .=. are all non-strict). A second reason is

that non-strict functions allow to specify infinite elements®. Moreover, non-strict

functions can be used to extend the specification language in a very convenient

way. As a first example, suppose we want to specify an if_then_else function for

the sort Nat®. The signature of this function is

nat_if : Bool X Nat X Nat — Nat;

Totality of nat_if is expressed by

nat_if total;

Furthermore, we observe that nat_if is non-strict (e.g. nat_if(true,e, L) yields e).
However, as nat_if(L,e,f) always yields L, it is strict in the first argument. Note
that in SPECTRUM every sort has an undefined value which is denoted by L, i.e.
—(6L) always holds. The notion of strictness axioms in SPECTRUM is able to
express strictness on the argument level. In our example we can write

nat_f strict in 1;

?This will be shown in Section 3 .4.
3In Appendix D we will introduce a more general if then_else function in almost the same

way.
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to express the strictness properties of nat_if*. Now we can specify the behaviour
of nat.f:

axioms V* t, e : Nat in
nat_if(true, t, e) = t;
nat_if(false, t, e) = ¢;

endaxioms;

The following should be observed:

Quantification over Undefined Values: It has already been pointed out that
V quantifies only over defined values, and the same is true for 4. However,
on many occasions quantification over both defined and undefined values
leads to considerably simpler specifications. For this purpose SPECTRUM
offers two additional quantifiers V+ and 3+, the universal quantifier and the
existential quantifier over both defined and undefined values, respectively®.
The “new” universal quantifier V* is used in the example above. If V had
been employed instead we would have needed 6 additional axioms to state
an equivalent specification (see also how V* is employed to quantify over
the empty stream in the specification STREAM on page 18).

3.3 Higher-Order Functions and A-Abstraction

As pointed out in the introduction, SPECTRUM aims at the development of func-
tional programs. Therefore a number of useful features of functional program-
ming languages (like ML [HMMS86], Haskell [HJW92], MIRANDA [Tur85], OPAL
[Gro91]) have been included in the language. Among these concepts are higher-
order functions. A function f is called higher-order if — occurs in its argument
and/or result sort.

As an example see the following specification fragment which extends the
NAT" specification of Section 3.1 by the higher-order function twice:

twice : (Nat — Nat) — (Nat — Nat);
twice strict total;
axioms V x : Nat, f : Nat — Nat in

twice f x = f(f x);
endaxioms;

10f course, the same fact could have been stated as a logical axiom using the definedness
predicate 6. Like totality axioms, strictness axioms are just convenient shorthand notations
(see Section 6.1).

®Note that ¥x. P(x) is only a shorthand for Vix. 6 x = P(x).
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For every function f of sort Nat— Nat, twice(f) yields a function of sort
Nat — Nat that has the same effect as the composition of f with itself. In the
above axioms the function twice is characterized by its application to a function
f and a natural number x. For denoting functions classical typed A-notation is
available in SPECTRUM. We can for example write

A x : Nat. succ x;

to denote the successor function by an explicit A-term. Thus, alternatively we
could have characterized the function twice by the axiom

twice = A f : Nat — Nat. A x : Nat. f(f x);

A specific higher-order function that is extremely useful is the fixed point
operator fix. In SPECTRUM it is predefined for every sort a. The functionality of
fix is

fix : (a—a)—aq;
It is characterized by the axioms

fix f = f(fix f);
y=fy=fixfCy;

The first axiom implies that fix f is a fixed point of f. The second axiom specifies
that this fixed point is the least one. In SPECTRUM all domains are partially
ordered with L as the least element. The symbol C is used to denote this ordering
relation (see Chapter 4 and Appendix B). It is predefined for every sort. Since in
SPECTRUM all functions are assumed to be continuous, least fixed points always
exist.

The fixed point operator supports the explicit use of recursively defined func-
tions. For example, we may represent the division on natural numbers by

div = fix(A f : Nat X Nat — Nat.
A X,y : Nat.
nat_if(x <y, zero, f(x — vy, y) + 1)

);

3.4 Infinite Elements

There is another reason for allowing non-strict functions in SPECTRUM: non-
strict constructor functions may be used to describe infinite elements [M6182]. It
has already been explained (see Section 2.3) what

S generated by G;

15



means semantically: all carriers for the sorts in S are generated by the primitive
sorts in P and the functions and constants in G. As all carriers have to be complete
partial orderings this means that the sorts in S are complete with respect to chains
and with respect to application of functions in G.

If all constructors in G are strict and all chains in the primitive sorts are finite®
then the inductive closures of the sorts in S with respect to the functions in G
are trivially chain-complete. This is due to the strictness of the constructors.
As an example consider the sort Nat specified in NAT. An appropriate rule for
structural induction on Nat is

H1 FVin.8(Pln/m])

H2+ P[L/m]

H3 F Plzero/m)]

H4 F V*+n.é(suce(n))AP[n/m]|= Plsucc(n)/m]

H1,H2, H3, HA - Y*n. Pln/m]

The first premise guarantees that the boolean term P characterizes a property in
Nat. The second premise is necessary since all carriers are pointed cpo’s. The L
term is a standard “constructor” for every sort although it is not mentioned ex-
plicitly in the generated by phrase. Therefore the second premise is a standard
base case of induction. The third premise is the base case for the constructor
zero and the fourth premise formalizes the induction step. The four premises
together prove the property P for all elements expressible by finite constructor
application. Since there are no other elements in the carrier of Nat it is sound to
conclude that P holds for all elements in Nat”. If the desired conclusion of the
induction is V*n.én=P[n/m] the rule can be refined using V instead of V*.

H1FEVYn.é6(P[n/m])
H2 + Plzero/m)]
H3 F VYn.P[n/m]= P[succ(n)/m]

H1,H2,H3 - Vn.P[n/m]

Infinite chains in primitive sorts together with strict constructors (e.g. lists of
functions) lead to infinite chains in the generated sorts but this is irrelevant for
structural induction. All elements in the generated sorts are still expressible by
finite constructor application using variables for elements of primitive sorts.

In the general case, when also non-strict functions may occur in G, the seman-
tics are more complicated. Non-strict constructors lead also to infinite chains,
but on top may be real limit points (infinite elements) that are not expressible by

In LCF such sorts are called chain-finite [Pau87].
“In the Appendix C we will justify the principle of induction on constructor terms.
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finite constructor application. These infinite chains and infinite elements require
special attention when formulating a principle for structural induction.

We now give an example for a sort with an infinite element to illustrate the
problem. We specify the natural numbers with the additional infinite element
w and the natural ordering L C succ(L)...C w. We use Inat (infinite naturals)
instead of Nat and isucc instead of succ to emphasize the difference.

INAT = {
sort Inat;
isucc : Inat — Inat;
Inat freely generated by isucc;

axioms V' n : Inat in
6(isuce L);
6 n = é(isucc n);
endaxioms;

}

First, observe that the two axioms state that isucc is total but not strict. Since
all carriers are cpo’s, L denotes the least element and isucc is continuous and
therefore monotonic with respect to C, we get a chain with

1 Cisuce(L) Cisucc?(L) C ... Cisucc™(L) ...,

where isucc’ represents isucc composed with itself i — 1 times. Due to the loose
semantics of SPECTRUM this chain may be trivial in some models. The in-
tended model of the above specification is the one where all the isucc’ terms
denote different elements in the carrier of INat which should also contain the up-
per bound w of this nontrivial chain. If we had used generated by instead of
freely generated by we would not get the desired result since generated by
simply means that Inat is generated by isucc but not how this is done. Being
more precise about .C. we can overcome this problem by explicitly adding the
axiom

V+m,n. isuce(n) = isucc(m) = n = m;

which states the injectivity of isucc. We used freely generated by because this

incorporates the semantics of generated by and automatically adds axioms that

allow to deduce the stronger theorem?®

8See Section 6.2 for a full description of freely generated by.
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V+m,n. isuce(n) C isucc(m) = n C m;

Now it can be inferred that the carrier set for Inat contains exactly one element
for each of these isucc’ terms plus one “infinite” element (the w) representing the
least upper bound of the resulting chain. Moreover, since there is a predefined
least fixed point operator fix such that

fix isucc = isucc(fix isucc)
y = isuccy = fix isucc C y

it follows that this infinite element is denoted by fix isucc. Therefore it is not
necessary to introduce w explicitly in the signature.

Now we have to be careful when formulating an induction principle. An appro-
priate rule for structural induction on Inat is

H1 FY*n.6(P[n/m))
H2+ P[L/m]
H3 F V*+n.é(isucce(n))AP[n/m]= Plisucc(n)/m]

(P admissible in m)

H1,H2, H3 b V*n.Pln/m]

The three premises together prove the property for all elements expressible by
finite constructor application. In order to establish the universality of the prop-
erty P we have to prove it for the limit points, too. In our example INAT we
know that there is exactly one limit point and we could add P[fix(isucc)/m] as an
additional premise and prove it directly by fixed point induction. This is not very
elegant and in general, if there are (infinitely) many limit points, also impossible.
The solution to this technical problem is to constrain P to be admissible which is
also natural since explicit fixed point induction for all the limit points (if possible
at all) would do the same.

A predicate is admissible if, whenever it holds for all elements of a chain,
it also holds for the least upper bound of the chain (see [Man74] for a detailed
treatment). Therefore if P is admissible it is sound by definition of admissibility
to conclude the universality of P if only P has been proved for all elements ex-
pressible by constructor terms since the generated sort is nothing but the closure
with respect to constructor application and chains.

A more interesting example for infinite elements is that of streams. Streams
may represent possibly infinite sequences of actions which are often used for the
specification of distributed systems (see for example [Bro88]). In SPECTRUM they
can be specified as below:

STREAM = {

sort Stream_Elem;
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&. : Elem X Stream_Elem — Stream _Elem prio 7:right;

ft ; Stream_Elem — Elem;
rt : Stream_Elem — Stream_Elem:

ft,rt strict; ft total;
Stream_Elem freely generated by .&.;

axioms V' a : Elem, s : Stream_Elem in
6(a & 's) =06 a;
6(a & s) = ft(a & s) = a;
6(a & s)=rt(a&s)=s;

endaxioms;

The undefined element L plays the role of the “empty” stream. The stream
constructor .&. is not strict in its second argument. However, when applied to
defined arguments, .&. always yields a defined result. Since L represents the
empty stream, it follows that the “first” function, denoted by ft, is total and
moreover ft is also strict. The “rest” function, denoted by rt, is strict but not
total. The reason for the latter is of course that

rt(a & L) = 1.

Due to the phrase freely generated by the approximation ordering .C. and
therefore also the equality .=. on Stream_Elem are completely determined by those
on Elem. From the axioms automatically added by freely generated by we may
derive

sCt=(-(6s)V(ftsTfttArtsCrtt));

which is the usual prefix ordering on streams. The rule for structural induction
on Stream _Elem is

H1 FV+s.8(P[s/ds])

H2+ P[L/ds]

H3 F Vs, a.6(a&es)A\Pls/ds|=Pla&s/ds]

(P admissible in ds)

H1,H2, H3 +V*s.P[s/ds]
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Chapter 4

Predicates and non—continuous
Functions

In SPECTRUM functions are assumed to be continuous with respect to .C.. In
particular all elements of carrier sets associated with functional sorts have to be
continuous, because a function is assumed to be an object for computation and
thus continuous.

SPECTRUM uses predicate logic as a core language for specifications and there-
fore needs the concept of predicates. For technical reasons we decided to use
characteristic functions instead of relations to code predicates which are subsets
in the semantics. Besides this we use the carrier set Bool also as the space of
truth values which leads to an identification of boolean terms and formulae. Of
course the characteristic function of a predicate is seldom continuous.

So far we have used the following builtin symbols for predicates:

0 “definedness”,
=. “strong equality”,
.L. “approximation with respect to definedness”.

In very abstract specifications it may be convenient to introduce functions
that are not continuous but have a range different from Bool. In order to avoid
confusion we use the term mapping for functions that do not need to be contin-
uous. This includes the special case of characteristic functions for predicates.

In SPECTRUM there is a clear distinction between mappings and their subset
of continuous functions (objects to be implemented):

e In SPECTRUM the signature
f:sl—s2;

restricts the denotation of f to be continuous. The elements of sl —s2 are
first class citizens in our algebras, and they may be passed to or returned by
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higher-order functions. The sort expression s1 —s2 denotes a carrier whose
elements behave like functions and are candidates for an implementation.

e On the other hand, the signature
g : sl to s2;

is used to specity a mapping. This means that it is always possible to
syntactically distinguish mappings from what SPECTRUM calls functions.
There are no constraints on mappings. They are only introduced for specifi-
cation purposes, and they are not intended to be implemented. An isolated
mapping symbol g is never a well-formed term. Thus, mappings may only
occur in an application context. As a consequence of this syntactic restric-
tion it is impossible to pass a mapping as an argument to a higher-order
function. Another consequence is that we cannot introduce variables for
mappings and cannot specify a mapping via A—abstraction. All mappings
that are available in a specification are those that are mentioned explicitly
in the signature.

As an example consider existential equality:

.=3.:s X s to Bool;

axioms V' x,y : s in
(x=3y)=(6xANdyAx=y)

endaxioms;

As a second example consider the non-continuous concatenation of streams:

.0. : Stream-Elem X Stream-Elem to Stream-Elem:;
axioms V' a : Elem, s,t : Stream-Elem in

1l os=s;

so l =s;

(a&s)ot=a& (sot)

endaxioms;
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Chapter 5

The Sort System of SPECTRUM

The main goal of specification languages is to increase the reliability of software
and hardware systems. The usage of sorts helps to achieve this goal by increas-
ing the readability and understandability of specifications. In languages with a
static sort concept the sort correctness of specifications can be determined by
static program analysis. Therefore specification errors with respect to the sort
correctness can be detected automatically in an early development phase.

In the previous chapters, we have only used basic sorts in our specification
examples. In the last ten years, however, many powerful sort systems have been
developed. The most well-known is parametric polymorphism, which can be found
in many modern functional programming languages, for instance ML.

A sort concept which closes the gap between traditional monomorphic func-
tions and polymorphic functions are sort classes'. The theory of sort classes was
introduced by Wadler and Blott [WB89] and originally realized in the functional
programming language Haskell. This polymorphic sort concept, which includes
parametric polymorphism as a special case, has been adapted for the specification
language SPECTRUM.

In this chapter the particular sorting facilities are introduced informally and
explained through a number of examples.

5.1 Sort Constructors

As SPECTRUM has an expressive sort system it has a powerful sort language to
build complex sort expressions. Sort constructors are function symbols on the
sort level denoting domain constructors which take a (possibly empty) sequence of
sorts as argument and yield a sort as result. The user can e.g. define a unary sort
constructor List which, applied to an arbitrary sort, yields the sort of lists where
the elements are of the sort given as parameter. Together with sort variables,
sort constructors are the basic elements of the sort language, which is used to

TAlso called type classes.
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build complex sort expressions. Sort constructors that take no sort as argument
like e.g. Nat are called basic sorts. Up to now we have only used basic sorts in
our specification examples.

Note that in SPECTRUM the sort language cannot be mixed with the term
language. Accordingly, sorts parameterized by values (“object dependent types”)
cannot be specified.

The sort constructor — is predefined in SPECTRUM and denotes the function
domain constructor. Because functions can only have one argument, n-ary tuples
are used to simulate n-ary functions. The n-ary tuple domains are denoted by
infinitely many predefined sort constructors .X., .X.X., .... These sort constructors
bind stronger than — and the prefix sort constructors bind stronger than the
predefined infix sort constructors.

It the sort constructor List and the basic sort Nat are defined, the following
examples are correct sort expressions, where « is a sort variable:

List (List Nat)

List o X a« — List «

5.2 Polymorphism

In conventional languages with strong typing every function has a unique sort.
These languages are called monomorphic languages. In polymorphic languages,
values are allowed to have a set of valid sorts. These values are called polymorphic
values. Therefore polymorphic functions can be applied to operands of different
sort.

Strachey [Str67] distinguished between two major kinds of polymorphism.
Parametric polymorphism is obtained when a function works uniformly on an in-
finite range of sorts with a common structure. Ad-hoc polymorphism, in contrast,
allows a function to work differently on finitely many sorts not having necessarily
a related structure. This kind of polymorphism is better known as overloading
and can be simulated in SPECTRUM (see Section 5.3.2). This section, however,
deals with parametric polymorphism only.

Parametric polymorphism is an easy-to-use alternative to parameterized spec-
ification modules, as the following example shows.

LIST = {

——Sort constructor List
sort List a;
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——Constructors
[]: List a;
cons: o X List o — List «;

first: List « — «;
rest: List o — List «;
P.: List a X List « — List a prio 6:left;

cons, first, rest, .. strict;
cons, rest, .. total;

List « freely generated by [], cons;

axioms V a : «, |, m: List o in
first [] = L;
first(cons(a,l)) = a;

rest [] = [];
rest(cons(a,l)) = I

[Jel=1;
cons(a,m)®l = cons(a,mel);
endaxioms;

The first difference to a conventional specification of lists is the definition of
a sort constructor List. The sort variable « is used as a formal parameter, indi-
cating the unarity of the constructor. This definition allows us to build arbitrary
complex sort expressions (like List (List Nat)). The second difference is the decla-
ration of polymorphic functions in the signature. These functions are declared to
work on an infinite range of sorts. The common structure of the sorts is obtained
with the help of the sort constructors in combination with sort variables.

As soon as the LIST-specification is combined with another specification mod-
ule, the constructor List can be used to build complex sort expressions. The poly-
morphic functions can be applied to arbitrary operands matching the argument
sort.

This can be achieved without instantiating a parameterized specification or
renaming a function symbol. It is important for the design of proof support
systems that the specification LIST is needed only once in such a system. It is
not necessary to have various copies of the same specification in various instances.
In particular, it is quite easy to prove theorems “generically” (i.e. in the general
specification LIST).

In the polymorphic LIST-specification use is made of the fact that for every
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sort there exists a built-in equality. It is more difficult to express parameterized
specifications via parametric polymorphism if there are more specific require-
ments to the parameter, e.g. a partial order on the elements of a list. This can be
achieved with the help of the sort class concept. See Section 7.5 for the modeling
of more general parameterization in SPECTRUM.

As already mentioned, the polymorphism in SPECTRUM is an adaptation of
the parametric ML-polymorphism. Unfortunately, within a specification lan-
guage the uniform behaviour of polymorphic functions cannot be guaranteed. In
contrast to functional languages, where a function is defined by its body and
applied in its scope, within axioms there is no distinction between defining and
applied occurrence of a function symbol. Every application of a function also
defines properties of this function. Thus, a polymorphic function can be specified
to behave differently on different sorts. Therefore in SPECTRUM the polymor-
phism cannot really be called “parametric”. But nevertheless, this polymorphism
is not a kind of ad-hoc polymorphism, because the functions work on an infinite
range of sorts and therefore cannot be replaced by a finite set of monomorphic
functions.

It relies on the discipline of the specifier to use SPECTRUM’s polymorphism in
a parametric way, where the polymorphic values are specified homogeneously on
the sort parameter. The LIST-specification is an example of a homogeneous poly-
morphic specification. Homogeneous specifications are achieved by the generic
sort of the variables in the axioms part.

5.3 Sort Classes

The parametric polymorphism offers a kind of sort abstraction for functions. The
sort variables in the functionality of a function can be replaced by arbitrary sort
expressions yielding a specialized function. Sometimes, however, one wants to
restrict the replacement of sort variables to specific sort expressions. If the set
of these sort expressions is finite, the problem can be solved by introducing a
finite set of overloaded function symbols. But often one wants to restrict the
range of a sort variable to an infinite set of sorts. A typical example of such a
function is a decidable, weak equality relation. In contrast to the built-in strong
equality, which is available for all sorts, but undecidable, a decidable equality
must be restricted to appropriate sorts. On the one hand, this equality must not
be applicable to the function space. On the other hand, a decidable equality can
be defined for all lists, for which a decidable equality is available on the element
sort.

This fine grained polymorphism is achieved by partitioning the sort universe.
In SPECTRUM these partitions are called sort classes. The whole sort concept is
similar to the type class concept of Haskell. However, the Haskell classes and the
SPECTRUM classes are semantically not equivalent. With the help of sort classes
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we can now specify a decidable equality relation in the following way:
Equality = {
class EQ;

==.:a: EQ = a X a— Bool;
.==. strict total;

axioms « : EQ = Va,b:«ain
(a==b) = (a = b),

endaxioms;

With the help of the key word class we define a new sort class EQ. The
functionality of the equality function .==. is restricted by a premise. This premise
states, that in each application of .==. the sort variable can only be replaced by
a sort expression of class EQ. The same premise can be found in the axioms part.
The axioms are valid for all sorts of class EQ. The sort of the object variables
must be of class EQ, because otherwise the application of the equality function
.==. would result in a sort error.

Now we have defined a function that coincides with the strong equality on
defined values and that works on all sorts of class EQ. But we have not defined
any sort to be of a particular class. With the following expression we define the
sort Nat to be of class EQ.

Nat :: EQ;

Now the equality function .==. can be applied to elements of sort Nat like in
the following example:

fac = fix (Af : Nat — Nat . Ax : Nat .
if x == zero
then succ zero
else x * f(pred x)

endif);

It is important to use this weak equality in the A-abstraction. The built-
in strong .=. cannot be used in this case, because .=. is an mapping and in
SPECTRUM it is not allowed to apply mappings on A-bound variables (see Section
4).

As already mentioned, the weak equality should be available on a list, if the
weak equality is also available on the sort of the list elements. This can be
achieved by the following expression:
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List :: (EQ)EQ;

This means, that if the sort constructor List is applied to a sort of class EQ,
the result is also of class EQ. It defines the argument and result class of the sort
constructor List. If the sort Nat is of class EQ, the function .==. can now be
applied to elements of the sort List Nat, List List Nat, and so on.

In the previous chapters we used sort classes only implicitly, because every
sort constructor which is defined without class information has a default one.
There is a predefined sort class CPO which is the default class of the arguments
and the result of a sort constructor. The definitions

sort Nat;
sort List a;

imply

Nat :: CPO;
List :: (CPO)CPO;

If this is not desired, the default sort classes can be avoided as follows:

sort Nat :: EQ;
sort List :: (EQ)EQ;

But notice, that now the sort constructor List cannot be applied to sort
Nat — Nat, assuming Nat — Nat is of class CPO but not of class EQ.

Normally every sort constructor is defined with the default class information.
Further class information of a particular sort constructor are allowed and are
only additional information, i.e. a sort constructor can be overloaded with class
information, like in the following example:

Nat :: CPO;

Nat :: EQ;

List :: (CPO)CPO;
List :: (EQ)EQ;

This overloading of a sort constructor is the usual way to model the fact, that
a function is available on a constructed sort, if the function is also available on
the argument sort. Note that we allow for overloading basic sorts only if they
have a least sort class (in our example EQ).

It we use a sort variable without giving this variable an explicit class infor-
mation, the sort variable is also implicitly of class CPQO, like in the specification

LIST from Section 5.2.
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5.3.1 Partial Order on Sort Classes

In SPECTRUM the user can define a partial ordering on sort classes, namely that
a sort class is a subclass of another sort class. Semantically, this means that if a
sort belongs to a class, it also belongs to all superclasses of this class. This implies
that if a function is restricted to the sorts of a particular class, the function is also
available on the sorts of all subclasses. By default every declared sort class is a
subclass of CPO. The following example demonstrates this feature by extending
the specification Equality (see Section 5.3).

class PO subclass of EQ;:

PO = a X o — Bool;

.<. strict total,;

axioms a::PO = Va, b, c: ain

a<a; ——reflexivity

a<bAb<c=a<uqg ——transitivity

a<bAb<a=a==b; ——antisymmetry
endaxioms;

In the first line a new sort class PO is defined to be a subclass of EQ. The
next line defines an ordering symbol .<. for all sorts of class PO. The properties
of a partial ordering are specified in the axioms part. In the axiom specifying
the antisymmetry of the ordering relation the fact that PO is a subclass of EQ is
used, because the weak equality is applied on a sort of class PO. Since each sort
of class PO is also of class EQ this application is well-sorted.

The specification of an ordering relation between sort classes is not restricted
to the definition of a new sort class, but can take place independently. The same
result as above also could have been obtained by writing:

class PO;
PO subclass of EQ;

The only difference is, that PO is now by default a subclass of CPO and
additionally also a subclass of EQ. As EQ is a subclass of CPO, the semantics
remains unchanged.

Now we want to use this specification to define an ordering on the natural
numbers specified in Chapter 2.1. This can be achieved in the following way:
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Nat::PO;

axioms V x:Nat in
x < succ Xx;
endaxioms;

More examples for the use of sort classes can be found in the following chap-
ters.

5.3.2 Overloading with Sort Classes

With the help of sort classes we are able to simulate ad-hoc polymorphism. In
Section 5.2 we already explained that the parametric polymorphism can be mis-
used as a kind of ad-hoc polymorphism if the functions are not specified homo-
geneously on the sort parameter. Since in case of parametric polymorphism the
range of a sort variable is infinite, this leads necessarily to a highly underspecified
function. If we restrict, however, the range of sort variables by sort classes we
can control the degree of overloading exactly. Because this kind of overloading is
explicit it can be fully controlled by the specifier. Of course, a symbol cannot be
overloaded with functions of different arities. But, anyhow, in the era of graphic
displays overloading should be used only in suitable cases.

A typical example for a wise application of overloading are arithmetical op-
erations, like .4., .*., .—. and ./.. These operations are overloaded with the help
of sort class NUM. The specification Numericals in Appendix E contains the sig-
nature and a few axioms for these operations. In the specification Naturals the
operations are specified for Nat (see Appendix E). In the following specification
we now define the operations for Int.

Integers = {enriches Standard_Lib;
sort Int :: NUM;
——generator functions
izero : Int;
isucc : Int — Int;
ipred : Int — Int;

isucc, ipred strict total;

Int generated by izero, isucc, ipred;
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axioms x,y : Int in

ISUCC X = ISUCC y & X = V;
ipred (isucc x) = x;
isucc (ipred x) = x;

——addition
X + 1zero = x;
X + isucc y = isucc(x + y);

——subtraction
(x+y)—y=x

——multiplication;
X % izero = izero;
X % ISUCC Y = X + X*V;

——division
y # izero & 6(x/y);
y # izero = y * (x/y) < x A
(succ(x—y) <y * (x/y) V succ(x+y) <y * (x/y));

——0Ordering
x < isucc x;

endaxioms;

5.4 Sort Inference

SPECTRUM has a static sort system, i.e. the sort of every expression can be
determined by static analysis. A static sort system has the advantage that simple
specification errors with respect to sort correctness are detected automatically in
an early specification phase, before a time-consuming development is started.

The sort language of SPECTRUM has two levels. Therefore testing the sort
correctness of a specification is a two-level process. On the level of sort expressions
a sort class checker tests the well-formedness of sort expressions. In most cases
this will be only an arity check, because normally every sort constructor has at
least the class information (CPO,...,CPO)CPO.

On the object level, a sort inference system infers the most general sort of ev-
ery expression (including the “unsorted” variables), while still checking the sort
correctness of the expressions. The system accepts even a nearly sort-free spec-
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ification, while internally generating a fully sorted specification from the input
and therefore combines the advantages of static sorting with the convenience of
unsorted languages (like Lisp). Only for the identifiers in a signature explicit
sort declarations are required. In the specification Equality, for example, the sort
information as well as the class information can be omitted in the axioms part.
The sort inference system infers exactly this information.

Note that sometimes variables must be sorted explicitly as in the following
example which is an extension of the partial ordering specification from Section

5.3.1.

class TO subclass of PO:

axioms a:: 10 = V a,b; o In
a<b Vv b<a; ——Totality
endaxioms;

If we omit the sort and class information, the sort inference system infers the
following most general information

a::PO = V a,b:a
because the ordering relation can be applied to all those values. As we want

to specify a more specific case, we must restrict the axiom by explicitly giving a
sort and class information.
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Chapter 6

Derived Constructs

For the practical use of SPECTRUM it is indispensable to introduce adequately
chosen syntactic shorthands and to supply a standard library of commonly used
data types with their characteristic functions (e.g. natural numbers, characters).

Syntactic shorthands (or derived operators) are constructs which do not have
a direct algebraic semantics. Instead they are syntactically checked and expanded
into SPECTRUM code which could be written without them.

6.1 Semantics of strict, total and strong

In this section we define the expansion of the axioms strict, total and strong.
They are abbreviations for axioms about functions and mappings and their defi-
nitions are given in the following.

Definition 6.1 Expansion of the strict construct
Let f:s;—s5 be a function. We distinguish two cases:

e 51 is a product s11X... XS1,.
In this case the phrase ‘f strict’ is expanded to the following axiom:

Vi, ooy Xne (8 X))V V(6 %) = —(6(F(xase - - %0)));

If the user specifies ‘f strict in (p1,...,pn) such that 1 < p; <n for
1 <7 < m then the premise of the above axiom is restricted to the
positions p; and we expand to:

Vg, ooy X (8 X, )V V(6 %0 ) = (0 (X1 - - %0)));

e 51 is not a product.
In this case the phrase ‘f strict’ is expanded to the axiom:

VEx. =(8 x) = —=(6(f x))
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Definition 6.2  Expansion of the total construct

Let f:s;—s5 be a function. We distinguish two cases:

e 51 is a product s11X... XS1,.
In this case the phrase ‘f total’ is expanded to the axiom:

VX, ooy Xne 830 Ao A S X = S(F(x0,e -2 %))

e 51 is not a product.
In this case the phrase ‘f total’ is expanded to the axiom:

VEx. & x = 6(f x);

Definition 6.3 Expansion of the strong construct

Let g:s; to sy be a mapping. Here we don’t need to consider several cases
and simply define the expansion of ‘g strong’ to be:

Vix. (g x);

6.2 Semantics of freely generated by

As already indicated in Section 3.4 the phrase freely generated by is just a
macro for axioms ensuring that different constructors generate different elements
and all constructor functions are injective. We sketch the semantics by an exam-
ple. For further study we refer to [Pau87].

First we introduce the recursive sort Seq o with two constructor functions
and a generation principle.

SEQ ={
sort Seq a;
——Constructor functions
empty : Seq «;

cons : a X Seq a — Seq «;

Seq «a freely generated by empty, cons;
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In the following a semantic argumentation is used. To simplify the explana-
tion syntactic identifiers are used instead of their semantic representation. By
generated by we mean that each element of Seq « can be generated by iterating
the application of the constructor functions. This yields an inductive structure.
freely generated by in addition means that different constructors generate dif-
ferent elements and all constructor functions are injective. Technically this can
be achieved by constructing the domain denoted by Seq « as the sum of two
domains with two injection functions. This injection functions are represented

by:

empty : Seq «;
cons : a X Seq a — Seq «;

Freely generated structures ensure recursive function definition by pattern match-
ing to be sound. The existence of a functional which distinguishes the different
cases of a sum leads to those structures. Therefore for sequences the Seq_When
functional is introduced. The freely generated by statement is expanded to
the generated by statement and the Seq_When functional, which yields a result
of an arbitrary sort 3. Every freely generated sort has a specific When tfunctional.
This functional makes a distinction on the given argument (of the generated sort)
and applies a different function for every constructor. When the argument is con-
structed by cons; then apply the function f;. When the argument is constructed
by cons, then apply the function f,. Therefore the sort of the When functional
depends on the constructors.

In the example of SEQ n = 2 and the constructors are empty and cons. The
functional Seq_When has the following definition:

Seq When : —( a XSeq a— 3 )—Seq a— [3;

axioms V x:a,s:5eqa, fi:0, f : aXSeq a— 3 in
Seq When (f1) (f2) (L) = L
Seq-When (f1) (f2) (empty) = fi;
Seq When (f1) (f2) (cons(x, s)) = fa(x, s);

endaxioms;

With this function we can define other functions like first, rest and is_empty.
Furthermore we can show some properties of the generated sort.

first : Seq o — a;
rest : Seq a — Seq «;
is_empty : Seq o — Bool;

34



axioms

first = Seq_When(_L)(A(x,s).x);

rest = Seq_When(_L)(A(x,s).s);

is_empty = Seq_When(true)(\(x,s).false);
endaxioms;

The monotonicity of is_.empty and the facts that true [Z false and false IZ true
allow us to deduce the distinctness axioms by contradiction:

empty IZ cons(x, s)
cons(x, s) [Z empty
The invertability
cons(x, 1) T cons(y, k) & xCy AlC k

can be deduced with the monotonicity of first, rest and cons.
To summarize we give a specification SEQ" without the freely generated by
statement which is equivalent to the specification SEQ:

SEQ’ = {
sort Seq a;

——Constructor functions
empty : Seq «;
cons : a X Seq a — Seq «;

Seq « generated by empty, cons;

——WHEN functional for Sequences
Seq When : f—( a XSeq a— ) —Seq a— §3;

axioms V x:a,s:5qa, fi:0, f2 : aXSeq a— 3 in
Seq When (/1) (£2) (1) = L
Seq When (1) (f2) (empty) —
Seq_When (f1) (f2) (cons(x, s)) fz(x s);

endaxioms;
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6.3 Data Type

As in most functional languages a data type declaration is provided for introduc-
ing recursive sorts. For example:

data Tree « = emptytr

| mktree(!node : «, !branches : Branches «)
and Branches a@ = emptybr

|

mkbran(!first : Tree «, Irest : Branches «);

introduces two mutually recursive sort constructors: Tree and Branches.

The sort constructor Tree has two element constructors (or simply construc-
tors): emptytr and mktree. The first one is a tree constant. The second one
is strict in both arguments and constructs trees of the form mktree(n, br) from
elements n : «, br : Branches . Strictness is expressed by putting an exclamation
mark ! on the strict position (default is lazy). Infix constructors can additionally
be given priorities.

Beside the constructors, Tree also has by default two discriminators: is_emptytr
and is_mktree. Their names are built by prefixing the constructor names with is_.

Optionally it is also allowed to declare selectors for every argument position
of a constructor. Two selectors were declared for trees constructed by mktree:
node and branches.

Similarly, associated with the sort constructor Branches are the element con-
structors emptybr and mkbran, the two discriminators is_emptybr and is_mkbran as
well as the selectors first and rest.

The above declaration is equivalent to the following specification text:

——Introduced sort constructors
sort Tree «, Branches a;

——Tree constructors

emptytr : Tree «;

mktree : « X Branches o — Tree «;
mktree strict total;

——Tree selectors

node : Tree o — «;

branches : Tree &« — Branches «;
node, branches strict;

——Tree discriminators
is_emptytr : Tree a — Bool,
is_mktree : Tree o« — Bool;
is_emptytr, is_mktree strict total,
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——Branches constructors

emptybr : Branches ¢;

mkbran : Tree a X Branches o« — Branches «;
mkbran strict total;

——Branches selectors

first : Branches o — Tree «;

rest : Branches &« — Branches «;
first, rest strict;

——Branches discriminators
is_emptybr : Branches a — Bool;
is_-mkbran : Branches o« — Bool:
is_emptybr, is_mkbran strict total,

——Induction, Distinctness and Partial Order
Tree «, Branches o freely generated by emptytr, mktree, emptybr, mkbran;

——Azioms for selectors and discriminators

axioms
——freely generated by also introduces the _when functionals:
—— tree_when : f— (a X Branches o — 3) — Tree o — 3
—— branches_when : 3 — (Tree a X Branches a — [3) — Branches a — 3
—— Tree selectors
node = tree_when(L)(A(n,br).n);
branches = tree.when(L)(A(n,br).br);

——Tree discriminators
is_emptytr = tree_when(true)(A(n,br).false);
is_-mktree = tree_when(false)(A(n,br).true);

——Branches selectors
first = branches_.when(L)(A(e,rt).e);
rest = branches_when(L)(A(e,rt).rt);

——Branches discriminators

is_.emptybr = branches_when(true)(X(e,rt).false);

is_-mkbran = branches_when(false)(A(e,rt).true);
endaxioms;

The strictness and totality axioms for selectors and discriminators have only
documentation purpose since they are already included in the definition of the
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tree_when and branches_when functionals.

Selectors and discriminators could have been defined entirely without using
the _when functionals. However, this would have required considerably more
axioms, especially in cases where many constructors are defined for sort con-
structors.

Finally, unlike in functional languages, we do not allow to bury the defined
sort in a sort expression on the right hand side of the data declaration. For
example:

data Point = mkp(x: Int, mv: Int — Point);

is not allowed because the defined sort Point is buried in the sort expression
Int — Point. In other words, we require the defined sort to appear only on the
top level in the functionality of a constructor. This was not the case above
because we get:

mkp : Int X (Int — Point) — Point;

when we expand the declaration. This restriction also applies in LCF (see
[Pau87]) and assures that a structural induction rule can be generated for the
defined sorts.

In a datatype declaration it is also allowed to use a context. For example
writing:

data o :: EQ = Tree « = emptytr

| mktree(!node : «, !branches : Branches «)
and Branches @ = emptybr

|

mkbran(!first : Tree «, Irest : Branches «);

would restrict the « variable to range only over equality sorts in the signatures
of the constructors, selectors, discriminators and the when functional. The new
signatures are:

——Introduced sort constructors
sort Tree «, Branches a;

——Tree
emptytr : a - EQ = Tree a;

mktree : o ;; EQ = o X Branches a — Tree «;

node : o :: EQ = Tree o« — «;
branches : o :: EQ = Tree a« — Branches ¢;

is_emptytr : a :: EQ = Tree o« — Bool;
is_mktree : o :: EQ = Tree o« — Bool;
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——Branches
emptybr : o :: EQ = Branches ¢;
mkbran : « :: EQ = Tree o X Branches o« — Branches «;

first : o :: EQ = Branches o — Tree ¢;
rest : o ;: EQ = Branches a« — Branches «;

is_emptybr o :: EQ = : Branches a — Bool;
is_mkbran « :; EQ = : Branches o« — Bool;

—— When functionals
tree.when : « 1 EQ = 3 — (a X Branches o — 3) — Tree a — f3
branches when : o :: EQ = 3 — (Tree a X Branches o — 3) — Branches a — 3

The axioms and the generation principle remain the same modulo the variable
restriction for a.

6.4 Sort Synonyms

It is often convenient to introduce new sort names (or synonyms) for commonly
used sort expressions. The new names can be chosen to be shorter and more
mnemonic and therefore can considerably improve the readability of a specifica-
tion. For example:

sortsyn String = List Char;
sortsyn Name = String;

declares the synonyms String and Name. Sort synonyms can also be parameterized
over sort variables. For example:

sortsyn Symtab a = Stack Array «;

declares a generic symbol table by using generic stacks and arrays.

Unlike the data declaration, the sortsyn declaration neither defines a new
sort, nor can be recursive. It is merely a syntactic shorthand which will be
expanded before giving an algebraic semantics to the specification containing it.

As a consequence in a basic specification sort synonyms may only be used in
places where sort expressions are allowed. For example, a sort synonym is not
allowed in a generated by axiom.
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6.5 Let and Letrec Expressions

6.5.1 Let Expressions

When specifying a function, it is often convenient to introduce local names for
common subterms occurring in its body. This provides for an abstraction mech-
anism which is supported in SPECTRUM as in most functional languages via the
let construct. For example, the following specification of the function f:

axioms Vi, J : Nat in

(i, j) = let
a = Ikl 4+ 2kix) + J¥]
in
axa +a+ 1
endlet;
endaxioms;

is much more readable than the following one:
axioms Vi, J : Nat in
(i, J) = (i%1 + 2%k + Jj)k(isi + 2] + Jkj) + i1 4 2%i%) + j¥) + 1;

endaxioms;
The above let declaration introduces a local identifier a, bound to the term
kI 4+ 2x%i%) + k)] whose scope is the term axa + a + 1.

The corresponding SPECTRUM translation is':
(axa + a + 1) [(ixi + 2xi%) + J*)) / a]

Every occurrence of the local variable a is replaced by its definition in the term

axa + a + 1.
This corresponds operationally to a #-reduction. However, the above decla-
ration is not equivalent to:

(Aa. axa +a + 1) (ixi 4 2+i%j + j*j)

This is because the let declaration allows to define local polymorphic terms.
Consider the following specification:

axioms V i : List Nat, Ic ; List Char in

f(li, Ic) = let
&= Al length(l) * length(])
h( g(li) + g(lc), g(li) — g(lc) )
endlet;
endaxioms;

!This is not SPECTRUM syntax but the usual substitution notation.
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where h is an arbitrary function. The let declaration is equivalent with:

h(gli+glc,gli—glc)[ (Al length I x length 1) / g ]

By avoiding to declare the sort of the bounded variable | explicitly we give the sort
system the freedom to infer different sorts for Al. length | « length | at different
occurrences in h. For example the sort system infers:

(Al length | % length 1) : List Int — Nat
before applying it to li and:
(Al length | + length 1) : List Char — Nat

before applying it to lc. Since g stands for the above lambda terms it is equivalent
to say that g was defined polymorphically and used with different typings in g |i
and g lc.

Note that avoiding to type | is not equivalent with declaring it to have a
generic sort « as in:

g = Al : a. length | x length I;

In this case the sort system will bind « to List Int at the first application g li and
hence will reject the second application g lc as not well typed.

6.5.2 Letrec Expressions

In SPECTRUM supports also local recursive declarations. For this purpose the
letrec construct is provided. For example the polymorphic length function could
be declared and used as follows:

letrec
length = Al if | == empty
then 0
else 1 + length tail | endif
in

length lc * length Ic
endlet;

In order to give the translation, we first define the following functional:

F = Alength. Al if | == empty
then 0
else 1 + length tail | endif;

The letrec declaration corresponds then to:

(length Ic « length Ic) [ fix F / length ]
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It is also possible to define mutually recursive functions locally, as in the following

example:
letrec
odd = An. if n ==
then true
else even(n-1) endif
and

even = An. 1if n ==
then true

else odd(n-1) endif

in
e(odd, even)
endlet;
In order to give the translation, analogous to the simple case, we first define a
functional:
F = X(odd, even). (
An. if n ==
then true
else even(n-1) endif,
An.ifn==0
then true

else odd(n-1) endif
)i
The letrec declaration corresponds then to:
e(odd, even) [ry fix F / odd , 7 fix F / even]
where 7, and 7y are the standard polymorphic projection functions defined as:

T (aX f)—a;

7T2:(Oz><ﬂ)—>ﬂ;

axioms
T = XX y). x;
s = XX, ¥). y;
endaxioms;

6.5.3 If-Then—Else Expressions

The polymorphic function if _then_else_endif defined in SPECTRUM’s built in spec-
ification (see Appendix D) is very often used in specifications. We therefore
provide a mixfix notation for it:

if b then s else t endif is translated to if_then_else_endif(b, s, t)
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6.6 Built—in Data Types

The frequently used numeric data types, the data type List and the sort synonym
String are included in the standard library of the SPECTRUM language (See Ap-
pendix E). They are also provided with a more mnemonic notation as usually
allowed in specifications.

6.6.1 Numeric Data Types

Specifications of numeric data types and in particular for Nat are given in the
standard library in Appendix E. In order to improve the readability of numbers
we allow to write:

1 for (succ 0)
2 for (succ (succ 0))

n for (succ (...(succ 0)...))

n times

6.6.2 The Data Type List

The polymorphic LIST specification given in the standard library defines a sort
constructor List and the element constructors [|] and cons. In order to improve
the readability we allow lists to be written as:

[ell e21 AR | e?’L]
and translate them as:

cons( ey, cons( eq, ... cons(e,, [|)...))

6.6.3 Strings

As already explained in Section 6.4, String is a sort synonym for List Char. In
order to improve the readability we allow strings to be written as:

“a string”
and translate them to:

[11111111111'11111]

al lsltlrllln'g

43



Chapter 7
Specifying in the Large

Up to now we have only discussed basic specifications. As already explained,
these consist of three parts:

o A signature declaring the new sort classes, sorts and functions.
o A list of sort synonym declarations.

o A body consisting of axioms which state the properties of the new sort
1

classes, sorts and functions'.
Basic specifications are suited to describe small, “mind sized”, abstract data
types. However, it is more convenient to build large and complex specifications
in a structured way, by combining and modifying smaller specifications. This
facilitates construction, understanding, analysis and implementation of specifica-
tions. It also encourages their reuse.

Structuring is achieved by using so-called specification building operators
which map a list of argument specifications into a result specification. Among
these operators .4. has a direct, algebraic semantics. We describe it in Section
7.1. The operators rename, hide, export and enriches are derived opera-
tors. They have no direct algebraic semantics. Instead, specifications containing
them are syntactically checked and normalized into specifications using only the
operator .4. Derived operators are described in Sections 7.2-7.4.

Beside the specification building operators SPECTRUM provides additional
facilities for specification manipulation. One can extract the signature of a spec-
ification by using the SIG operator, can name a renaming list and can directly
declare hidden identifiers or signatures in the body of a specification. These
facilities are described in Sections 7.2 and 7.3.

In SPECTRUM the user is also allowed to abstract from sorts or from specifi-
cation expressions involving the above operators. In other words it is allowed to
build parameterized specifications. These can be later instantiated with actual

Tt is worth noting that generated by and freely generated by are also treated as axioms.
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sorts in the first case or applied to actual specifications which “fit” the signatures
of the formal parameters in the second case. We describe parameterization in
Section 7.5.

Relations between specifications (for e.g. the constructor-implementation re-
lation) are part of the methodology and not of the specification language. They
will be described in a methodological setting.

7.1 Combination

Two specifications SPy and SP; are combined by writing SP; + SP,. Combination
is modeled by taking the union of signatures, of sort synonym declarations and
of axioms.

Remember that sort synonyms are only shorthands and therefore we always
expand them before giving an algebraic semantics. This means that models are
defined wrt the expansion of the result specification. The models also satisfy the
expanded argument specifications.

In the previous chapter we wrote a specification of partial orders. In practice
however, a new specification is often built by using a library of specifications.
Suppose the library contains the following specifications defining the reflexive,
antisymmetric and transitive properties of relations:

Reflexive = {
class PO;
<.:a: PO = axa—Bool prio 6;
.<. strict total;
axioms a :: PO = Va:ain
a < a;
endaxioms;

}

Antisymmetric = {
class PO;
<.:a: PO = axa—Bool priob6;
.<. strict total;
axioms « : PO = Va,b:ain
a<bAb<a=a==b;
endaxioms;

}

Transitive = {
class PO;
<.:a: PO = axa—Bool prio 6;
.<. strict total;
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axioms a : PO = Va,b, c:ain
a<bAb<c=a<uqg
endaxioms;
}
We can combine them to obtain the specification of partial orders as follows?:

POrder = Reflexive + Antisymmetric + Transitive

The specification POrder is equivalent to the following specification POrder’.

POrder’ = {
class PO;
<.:a: PO = axa—Bool priob6;
.<. strict total;
axioms a : PO = Va,b, c:ain
a < a;
a<bAb<a=a==b;
a<bAb<c=a<uqg
endaxioms;

}

Note that the meaning of .<. in the resulting specification POrder is different
from the meaning of .<. in the argument specifications (it satisfies more axioms).
In other words the class of models satisfying POrder is, for each argument speci-
fication, different from the class of models satisfying that argument. In general,
neither the meaning of SPy nor of SP; is protected in SP; 4+ SP,. The generation
of proof obligations which ensures this protection is handled on the methodology
level.

7.2 Renaming

As already pointed out, the .4-. operator combines the properties of an iden-
tifier which occurs in both argument specifications. This effect was exploited
in building the specification POrder. To avoid this effect by keeping identifiers
from coinciding, to force it by making identifiers to coincide or to give a more
appropriate name to an identifier, SPECTRUM provides the rename operator.

For example, suppose Reflexive’, Antisymmetric’ and Transitive” were specified
by different teams which used the sort classes REF, ANT, TRA for PO and the
relations .ref., .ant., .tra. for .<.. To obtain the partial order specification we
would have to make the sort class and function identifiers to coincide by using
renaming before combining the specifications:

?Brackets were dropped because + is associative.
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POrder” = rename Reflexive’ by [ REF to PO, .ref. to .<|]
+ rename Antisymmetric’ by [ ANT to PO, .ant. to .<]
+ rename Transitive’ by [ TRA to PO, .tra. to .<]

Renaming can be used on all identifiers occurring in a signature (i.e. on sort
classes, sorts, and functions) and on sort synonyms. Renaming of sort classes,
sorts and sort synonyms automatically updates sort constructor, function and sort
synonym declarations. This assures the well definedness of both the signature and
the sort synonym declarations.

In order to increase the flexibility of the renaming operation we allow to
introduce a name for a renaming list. For example we could also have written:

TPo = [ REF to PO, ANT to PO, TRA to PO,
ref. to .<., .ant. to .<., tra. to .<.];

POrder” = rename Reflexive’ by TPo
+ rename Antisymmetric’ by TPo
+ rename Transitive’ by TPo

Note that renaming a identifier not occurring in the specification’s signature
leaves the specification unchanged.

Formally, every specification containing rename is normalized to a specifi-
cation without rename. As a consequence the semantics of rename is entirely
embedded in the static semantics of the SPECTRUM language. Renaming takes
place before the expansion of the sort synonyms.

7.3 Export and Hiding

When building large, structured specifications it is very important to be able
to control the scope of identifiers. Two operators are provided for this purpose:
export and its complement hide.

By default the scope of identifiers is not limited. More precisely, every iden-
tifier occurring in a specification is visible in a 4+ operation to the other specifi-
cation. We can restrict the scope of an identifier to the body of a specification
by hiding that identifier outside the specification.

As with renaming, it is allowed to hide/export every sort synonym and ev-
ery identifier occurring in a signature (i.e. sort classes, sorts, and functions). In
order to obtain a well defined signature and well defined sort synonym declara-
tions, hiding a sort class, a sort or a sort synonym automatically hides every sort
constructor, sort synonym or function which used them in their declaration.

In the following example:

NAT* = export Nat, zero, succ, .x. in NAT’
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we restrict the scope of all identifiers except zero, succ and * to the body of NAT*.
The same result could have been obtained also by writing:

NAT* = hide pred, .<., .<., .+., .—., div, mod in NAT’

The choice between these operators depends only on the number of identifiers
which have to remain visible.

Sometimes it is useful to hide or export an entire signature. For such purposes
SIG(SP) is also allowed in the position of an identifier. SIG(SP) is also allowed
in a basic specification.

Hiding identifiers with hide is normally performed when using a specification.
However, it is often desirable to explicitly declare identifiers or entire specifica-
tions as auxiliary when writing a specification. For example:

NAT* = {
——The NAT signature;
pred, .<., .<., .+., .—., div, mod hidden,;
——The NAT azioms

}

is equivalent to the above specification. Every identifier or signature which can
be hidden by using hide can be declared hidden. The formal treatment of hide,
export and hidden is analogous to the one adopted in PLUSS [Bid89]. Instead
of removing the identifiers from a specification, hiding merely renames them by
fresh identifiers not accessible to the specifier®. This renaming not only restricts
the use of the identifiers but also avoids unintended clashes with other visible
or hidden identifiers. This is analogous to an existential binding. Moreover, like
existentially quantified formulas, axioms involving hidden identifiers can be used
to reason about the enclosing specifications. In this way we avoid the technical
problems implied by using a calculus on structured specifications as for e.g. in
[SW383].

Finally, note that the algebraic (or logical) semantics of a specification is not
changed by hiding. More precisely, the visibility control mechanism is relegated
from the algebraic to the static semantics of the SPECTRUM language.

7.4 Enrichment

The process of building specifications hierarchically, by adding new sort and func-
tion symbols together with their corresponding axioms to a given specification,
can be expressed as follows:

SP" = SP 4 { SIG(SP); ... new spec. text ... }

3As a consequence, the user could not have written directly the specification by using only
rename.
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Since this not very user friendly, SPECTRUM offers the following shorthand:
SP" = { enriches SP; ... new spec. text ... }

Because the new spec. text alone is not a specification, the enrich sentence is
written as the first line between the curly brackets.

For example we can obtain the theory of total orders using the above theory
of partial orders:

TOrder = {
enriches rename POrder by [ PO to TO |;
axioms a : TO=Va,b:ain
a<bVb<a;
endaxioms;

}

We could have reused the code of POrder also by declaring the sort class TO to
be a subclass of PO i.e. by establishing a semantical relationship between the
two sort classes:

TOrder’ = {
enriches POrder;
class TO subclass of PO;
axioms a : TO=Va,b:ain
a<bVb<a;
endaxioms;

}

By using enriches and hidden in conjunction it is possible to declare entire
specifications as auxiliary. For example, the specification:

SP={
enriches SP; 4+ SPy;
SIG(SP;) hidden;

}

uses the specifications SP; and SP, but does not export SPy.

7.5 Parameterization

7.5.1 Parameterization with Sort Classes

A very important abstraction mechanism when writing specifications is sort ab-
straction. A rough or untyped version of this kind of abstraction is given by
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parametric polymorphism. When combined with user defined sort constructors
it gives in many cases an elegant alternative to the well known parameterization
mechanisms from the algebraic community.

An example of this kind of abstraction was the polymorphic list specification
from Section 5.2. In this specification, the sort variable o ranges over all possible
sorts. As a consequence, every specification importing LIST, has automatically
for each sort s a list List s together with the corresponding functions for lists. No
renaming and no multiple copies of the list specification are necessary. In fact,
the sort constructor List, taking sorts into sorts, is a more intuitive explanation
of parameterization as the pushout or the functorial semantics. Moreover, a
specification parameterized in this way is a usual specification and no special
mechanism is needed in order to give it a meaning.

Although very simple and elegant, parametric polymorphism alone is rarely
desired in practice. Normally, we do not want to abstract (or quantify) over all
possible sorts, but only over those which satisfy some (interface) requirements.

For example, suppose we want to define and implement a predicate .€. on
lists. Since .€. is not even monotonic on non flat sorts we would like to restrict
its domain.

But sort restriction is exactly what sort classes are doing for us. This observa-
tion was also used to control the degree of overloading. By adding sort classes we
shift from an “unsorted” to a “sorted parametric polymorphism”. For example
the LIST specification becomes:

LIST = {

enriches LIST;

€.« EQ = o X List « — Bool;

.€. strict total;

axioms « : EQ = Va, x: o, | ; List o In
—(a € []);
a€cons(xl) & (a==x)Vacl

endaxioms;

}

We use here the sort class EQ to restrict the range of the sort variable a. Which
sorts actually belong to the sort class EQ is explicitly controlled by the speci-
fier. Consequently, the specifier has control over the possible instances of the
polymorphic list operations. In the following example:

ListUser = {
enriches LIST' + CHAR 4 NAT ;
Char :; EQ;
Nat :: EQ;
Bool :: EQ;
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the .€. predicate is available for List Char, List Nat and List Bool beside the usual
functions on lists. If one of the sorts Char, Nat or Bool was already declared to
belong to the sort class EQ the corresponding declaration in ListUser would have
been superfluous.

Since Char, Nat and Bool are all flat sorts owning a boolean equality function
the specification ListUser is consistent. The generation of proof obligations is not
part of the language but part of the methodology. When supporting the language
with an interactive theorem prover like ISABELLE for example, proof obligations
can be automatically generated and added to the list of goals to be proven.

The parameterization mechanism described above is very flexible. For exam-
ple we can now refine the list specification to lists with a minimum function easily
by writing:

MinLIST = {
enriches TOrder 4+ LIST";
min ;o :; 1O = List a — ¢
min strict;
axioms « : TO = Ve:q,s: List o In
s # [] = min(s) € s A (e € s = min(s) < e);
endaxioms;

}

In this example it is important that TO is a subclass of EQ i.e. that every sort in
TO is also contained in EQ*. Consequently, the polymorphic list functions also
work properly when restricted to the sorts in TO i.e. we can reuse them. On the
other hand, the function min is only useful on lists over total orders. We therefore
restrict its domain.

In conclusion, the addition of sort classes and of a subclass relation signifi-
cantly improves the parametric polymorphism and increases the degree of speci-
fication reuse.

7.5.2 Classical Parameterization

Parametric polymorphism combined with sort classesi.e. “sorted parametric poly-
morphism” is powerful enough to model most of the classical examples for pa-
rameterized specifications. In all these examples sort abstraction is done only
over one sort or in other words the theories have only one sort of interest.

However, sometimes we want to abstract not only from one sort but from
n-tuples of sorts. A typical example is the theory of vector spaces. Here we
abstract from tuples of sorts of the form («, 3) :: scalars X vectors which satisfy
the vector space properties. There are also cases in which we want to abstract
from sort constructors. A typical example is the container specification:

4Tf this is not the case, then a subclass declaration has to be written.

51



CONTAINER = {
sort Elem, Container;
cons ; Elem X Container — Container;
nth : Container X Nat — Elem;
len : Container — Nat;
——Container azxioms

}

This specification has as instances for example lists and vectors.

For such cases, in order to keep the sort class mechanism simple, we pro-
vide another abstraction mechanism: specification abstraction. The basic idea
is to designate some specifications occurring in a specification expression as pa-
rameters (similar to A—abstraction for functions). Usually these parameters are
the requirement theories. The specification abstraction obtained, is called “pa-
rameterized specification”. We are now allowed to instantiate the parameterized
specification with actual specifications which “fit” the formal parameters.

More precisely, a parameterized specification written in SPECTRUM consists
of two parts: the formal parameters part describing the required properties for
the actual parameters and the body describing how the actual parameters are
used to build the result.

For example, a parameterized specification of the container theory is the fol-
lowing one:

PCONTAINER =

param
X = {sort Elem};

body {
enriches X;
sort Container;
cons ; Elem X Container — Container;
nth : Container X Nat — Elem;
len : Container — Nat;
——Container azxioms

}

PCONTAINER can subsequently be applied to any specification if it is also indi-
cated which sort in this specification corresponds to Elem. In general one has to
give a mapping (a renaming list) from the signature of the formal parameter to
the signature of the actual parameter if this is not an inclusion. Its form is iden-
tical to the one given in a renaming operation. As an example we can instantiate

PCONTAINER with NAT as follows:
NatPcont = PCONTAINER(NAT via [Elem to Nat])
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For specifications with more than one formal parameter, the actual parameters
must satisfy the following consistency condition: the concatenation of their re-
naming lists must be a valid renaming list. The result of the above instantiation
is:

NatContainer = PCONTAINER _body[NAT /X, Nat/Elem]
where PCONTAINER_body[NAT /X, Nat/Elem]® is the body of PCONTAINER with

NAT substituted for each occurrence of X and Nat substituted for each occurrence
of Elem.

Using the parameterized container theory we can write the following param-
eterized specification:

MAP =
param
X = { sort X_Elem };
Y = { sort Y_Elem };
Z = PCONTAINER;
body{
enriches X +Y
+ rename Z(X) by [ Container to X_Container,
cons to X_cons,
nth to X_nth, len to X_len ]
+ rename Z(Y) by [ Container to Y_Container,
cons to Y _cons,
nth to Y_nth, len to Y_len |;
map : (X_Elem — Y_Elem) X X_Container — Y_Container;
——Map axioms

}

We can subsequently instantiate this specification with actual specifications for
X, Y and Z. It is important to note that the instances of parameterized specifi-
cations have to be legal specification expressions. As a consequence, we do not
allow partial instantiations. Suppose we have given the parameterized specifi-
cations LIST, VECT of lists and vectors both having at least the PCONTAINER
functions and satisfying its axioms. Then we could build for example the follow-
ing instances:

ListMap = MAP(NAT via [X_Elem to Nat],
NAT via [Y_Elem to Nat],
LIST via [Container to List])

VectMap = MAP(NAT Via [X_Elem to Nat],
NAT Via [Y_Elem to Nat],
VECT via [Container to Vector])

>This is not SPECTRUM syntax.
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Because NAT satisfies the trivial theory and LIST, VECT satisfy the container
theory the instances have the properties we expect them to have. As with sort
classes, the proof obligations are treated at the methodology level.

As probably noted, classical parameterization alone involves a lot of compli-
cations. First, we have to allow parameterized specifications as parameters and
then we have to take care of name clashes. Furthermore, classical parameteriza-
tion alone does not take advantage of the new facilities of SPECTRUM by requiring
the specifications LIST and VECT to be parameterized in a classical way.

However, when combined with sort classes, parameterization becomes a simple
and very powerful mechanism. For example, we can write a polymorphic version
of containers as follows:

PCONTAINER" = {
sort Container «;
cons ; o X Container o« — Container «;
nth : Container a X Nat — ¢;
len : Container a« — Nat;
——Container azxioms

}

We can now use PCONTAINER’ to define the parameterized specification:

MAP' =
param
X = PCONTAINER’;
body{
enriches X
map : (a— ) X Container a — Container §3;
——Map axioms

}

Subsequently, MAP’" can be instantiated with the polymorphic versions of LIST
and VECTOR easily by writing:

ListMap = MAP’(LIST via [Container to List])
VectMap = MAP'(VECT via [Container to Vector])

Obviously, the second version is easier to write and to understand as the first
one. It also takes advantage of the new facilities of the language.

Finally, as with derived operators we do not give any autonomous semantics to
parameterized specifications. Instead, we check if they are correctly applied and
explain their meaning by substituting the arguments for the formal parameters
in the specification expression representing the body.
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Chapter 8

Executable Sublanguage

In SPECTRUM programs are developed by first giving an abstract requirement
specification, which in general is purely descriptive. Using the development
method of [Bro91] this specification is refined until we obtain a specification
completely written in the so called executable sublanguage of SPECTRUM. In the
following we refer to such specifications as executable specifications.

Executable specifications can be understood as functional programs!. More
precisely this means that there is a (automatic) translation from an executable
specification to a functional program whose denotational semantics lie in the
specification’s model class.

Functional programming languages can be divided into two main categories.

e In languages with eager evaluation strategy (such as ML, OPAL) all func-
tions are strict.

e In languages with lazy evaluation strategy (such as LML, HASKELL) all
functions are nonstrict.

In order to cope with both kinds of functional languages we have to give two
somewhat different definitions of an executable specification. Of course, every
functional target language requires a specific translator which respects the syntax
of this language.

In the following we sketch the notion of executable sublanguage for both
evaluation strategies. In this informal introduction we restrict ourselves to the
case of basic specifications.

!Remember that the design of SPECTRUM is oriented towards the specification and devel-
opment of functional programs.
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8.1 Executable Sublanguage for Strict Target
Languages
As an example for a strict target language in this section we choose the lan-

guage ML. A specification is executable wrt ML if it has the following syntactic
properties.

o All functions in the signature are declared to be strict.
e All sorts are defined using the data construct (with strict constructors).

e Every function f is defined using only axioms of the form f(t1,...,t,) = F
where
— the t; are constructor patterns
— the patterns in the axioms of one function do not overlap

— F is a term containing no quantifiers, A abstractions and mappings.
Since A abstraction is nonstrict in SPECTRUM it is not allowed in the
executable sublanguage for strict target languages.

e The only sort classes that are used are CPO and EQ

As an example we look at a part of the specification NAT" in Section 3.1. We
focus on the definition of .<. (we call the prefix symbol le) and pred:

LENAT = {
dataNat =  zero
| succ(!Nat);
strict;

pred : Nat — Nat;
le : Nat X Nat — Bool;

axioms V n, m : Nat in

le( zero , n ) = true ;

le( succ n , zero ) = false ;

le( succn ,succm )=1le(n,m);
pred( succn ) =n ;

endaxioms;

This specification may be translated into the following ML program. The help
functions (is_zero, is_succ, ... ) introduced by the expansion of data are omitted.
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datatype Nat =  zero
| succ of Nat ;

fun le( zero,n) = true
| le( succ n , zero ) = false
| le( succ n , succ m ) = le(n,m);

fun pred( succn ) =n;

That the definition of pred is not total causes a good ML-compiler to generate a
warning like “matches are not exhaustive“. A call of the function pred(zero) will
raise an exception.

8.2 Executable Sublanguage for Lazy Target
Languages

As an example for a lazy target language we chose in this section the language
HASKELL. A specification is executable wrt HASKELL if it has the following
syntactic properties.

e No function in the signature is declared to be strict.

o All sorts are defined using the data construct and none of the constructors
is declared to be strict.

e Every function f is defined using only axioms of the form f(t1,...,t,) = F
where
— the t; are constructor patterns
— the patterns in the axioms of one function do not overlap
— F is a term containing no quantifiers and no mappings
Note that SPECTRUM’s nonstrict A abstraction is allowed in the axioms since the
abstraction mechanism in HASKELL is nonstrict, too.
The above rules for the executable sublanguage for a lazy target language are

less restrictive as those of Section 8.1. Therefore the class of specifications that
are executable in a lazy language is bigger than the one for strict languages.
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Appendix A

Concrete Syntax of SPECTRUM

A.1 Notational Conventions

The concrete syntax of SPECTRUM is presented as an EBNF-like grammar. The
notations used are summed up below:

[rhs] rhs is optional
{rhs}* zero or more repetitions of rhs
{rhs |/ sep}* zero or more repetitions of rhs separated by sep
{rhs}* one or more repetitions of rhs
{rhs // sep}T one or more repetitions of rhs separated by sep
{rhs} grouping
rhsy|rhsy choice
rhsgys,  difference: elements generated by rhs
except those generated by rhs
terminal terminal syntax is given in boldface
(nonterminal) nonterminals are enclosed in angle brackets
(nonterminal) emphasized nonterminals are not defined in the
grammar but represent a non-printable letter of the
ASCII character set or are given informally

Remark: It is important to distinguish the metasymbols [, |, {, }, (, ) and
| introduced above from the corresponding terminal symbols [, ], {, }, (, ) and |
printed in boldface font.
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A.2 Lexical Syntax

(spectext) =
(lexeme) =

Whitespace
(whitespace) =

Syntactic Categories
(letter)

(digit)
(sym)

spel)
graph-spcl)
graph-sym)
ext-graph-sym)

symbol)
special)
alphanum)
any) BES

{
{
{
{
{
{
{
(an

Comments
(line-comment) =
(line-end)
(nest-comment)
(

(

no-nest)

comment)

Character Constants

(char) =
(escapes) =
(charconst) =

{(lexeme)|(whitespace)|{(comment) }*
(charconst) |(num)|(string)|(alphanumid)
(symbolid)|(special)|(reserved)

(space)|(newline)|(carriage return)|(tab)

(form feed)|(vtab)

a|b|c|d|e[f|g|hli|j[k[][m|n]o|p|q]r|s|t|u
v|w|x|y|z|A|B|C|D|E|F|GH|I|J|K|LM
N[O[P|Q[R[S|T|U|VIW|X|Y|Z
0/1/|2(3|4/5|6|7|8|9

(11177 | &8 |+ /| <[> |=[71@]"["]I]"
\ {(letter)}*

DL N

MAAIEERIDY

61 LIC IV IA|— = |2

(additional graphic symbols)

{sym) {graph-sym) |{ext-graph-sym)
(spel)|{graph-spcl)

(letter)|(digit)| |-
(alphanum)|(symbol}|(special)|({space)|(tab)

—— {(any) }* (line-end)

(newline)|(carriage return)|(formfeed)|(vtab)

(: {{no-nest)|(nest-comment)}* :)

{(any>}*{{any}* 1G]} {(any) }7}

(line-comment)|(nest-comment)

(letter)|(digit)|(sym)|(spcl)|_|{space)|{escapes)

\n\t\vAr\f\a\\\[\”
“ (char) *
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String Constants

(string) =7 {{(char)}*”

Natural Numbers

(num) n= (digit) oy {(digit)}"

Identifiers

(alphanumid) = {(alphanum)}* {{char)|{num}|{reserved) }

(symbolid) = {<Symb01>}+{{(symbol)}* —— {{symbol)}*|{reserved) }
(id) = (alphanumid)|(symbolid}|(num}|(charconst)|(string)

Reserved Words
(reserved) enriches|export|in|hide|rename|SIG|to|let
letreclendlet| ALL|ALL+|EX|EX+|LAM
if/then|else|endif|and |axioms|endaxioms
data|strong|strict|total|freely|generated|by
prio|sortsyn|class|subclass|of|sort/hidden

param|body|vial!|[|]

Remarks on implementations: In order to increase readability, the design
of SPECTRUM makes use of nonstandard graphic symbols (i.e. symbols that are
not defined in the ASCII standard) like V, 3, .... Thus, an implementation of
SPECTRUM has to provide at least all the graphic symbols used in the language
definition. However, as we do not want to exclude (nongraphic) ASCII implemen-
tations completely’, we allow for so-called restricted implementations (in contrast
to the above mentioned full implementations) according to the following concept:

o A restricted implementation may safely leave out the symbols defined under
(graph-sym), (graph-spcl) and (ext-graph-sym). Instead of the (not imple-
mented) graphic symbols their ASCII representations according to table
A.1 can be used.

e Any full implementation has to implement the symbols of (graph-sym)
and (graph-spcl). In addition, it may provide arbitrarily many additional
graphic symbols. In the above grammar, those symbols are represented by
(ext-graph-sym). It is completely up to the implementor which additional
graphic symbols are provided. The only restriction is that they have to be
different from the ASCII symbols and the symbols defined in (graph-sym)
and (graph-spcl).

!For example for hardware without graphic capabilities.
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‘ Graphic Symbol ‘ ASCII-Representation

>»X | FNesWLwaig | <>
=
—
—
+

LAM

Table A.1: ASCII-representation of graphic symbols

A.3 Contextfree Syntax

Specifying in the Large

(system) = {(sys-part)}*

(sys-part) = (specid) = (specexp)

| (morphid) = (sigmorph)
| (abstrid) = (specabstr)

Stgnature Morphisms

(morph) = (morphid) | (sigmorph)
(sigmorph) == [ {(rename) // ,}* ]
(rename) (opn) to (opn)

(sortcon) to (sortcon)
(sortsyn) to (sortsyn)
(classid) to (classid)
(id)

(morphid)
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Structured Specifications

(specexp)

(aspecexp)

(sigel)

(specid)

(aspecexp)

(aspecexp) + (specexp) (Union)

(abstr) ( {{specesp) [via {morphl] // }* )
(Application)

(specid)

(specbody) (Basic Specification)

{ enriches (specexp) ; (decls) }  (Enrichment)
export {(sigel) // ,}T in (aspecexp)  (Ezport)

hide {(sigel) // ,}* in (aspecexp) (Hiding)
rename (specexp) by {(morphid)|(sigmorph)}
(Renaming)

( (specexp) )
(opn)
(sortcon)
(

(

sortsyn>

SIG ( (specexp) )
(id)

Parameterized Specifications

(abstr)
(specabstr)

(abstrid)

Specifying in

(specbody)
(decls) =

Stgnatures
(signature) =

(abstrid) | (specabstr)

param {(specid) = (specexp) // ,}T
body (aspecexp)
(id)

the Small
{ (decls) }

{(signature) ;|(axioms) ;}*

class (classid) [subclass of {(classid) // ,}T]
(classid) subclass of {(classid) // ,}*

sort (sortcon){{(sortvar) }*|:: (classexp)}
{(sortcon) // ,}* :: (classexp)

sortsyn (sortsyn) {(sortvar)}* = (sortexp)

SIG ( (specexp) )

{(sigel) // ,}* hidden

(opns) : [(context)] (sortexp) to (sortexp) [(prio)]
(opns) : [{context)] (sortexp) [(prio)]
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(classexp)
(prio)

Sort Frpressions
(sortexp)

(sortexpl)

(sortexp2)

(asort)

Sort Contexts
(context)
(scontext)

Axioms
(axioms)

axid)
simplesorts)
varlist)

opdecls)

{
{
{
{

Data Types
(datadecl)
(product)

[( {(classid) // ,}T )] (classid)
prio (num) [: {left|right}]

(sortexpl)

(sortexpl) — (sortexp) (Functional Sort)
(sortexp2)

(sortexp2) {X (sortexp2)}* (Product Sort)
(asort)

(sortcon) {(asort)}* (Applied Sort Constructor)
(sortsyn) {(asort)}* (Applied Sort Synonym)
(sortvar)

(sortcon) (Basic Type)
(sortsyn

( (sortexp) )

{(scontext) // ,}T =
{(sortvar) // ,}T :: (classid)

axioms [(varlist)] {[(axid)] (expl) ;}* endaxioms
data [(context)] {(datadecl) // and}*

[(opns)] (attrdecl)

(simplesorts) [freely] generated by (opns)

{ Gd) }

{(sortcon) {(sortvar)}* // ,}*

[(context)] {{V|V*} (opdecls)}T in

() 1/ }F + (sortexp) 1/ o}

{d) /1

§§§§tcon> {(sortvar) }* = {(product) // |}t
{opn) ({[1) [(id) :] (sortexp) // ,}T ) [{prio)]
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Totality, Strictness and Strongness Azioms

(attrdecl)

(strictdecl)

Terms
(expl)

(exp2)
(exp3)

(acxp)

(defs)
(pat)

Identifiers
classid)

sortcon)

strong
{total | (strictdecl)}*
strict [in {{(num) | ( (num) {, (num)}* )}]

(exp2)

V (opdecls) . (expl) (V-Quantification)

v+ (opdecls) . (expl) (V*-Quantification)
3 (opdecls) . (expl) (3-Quantification)
3+ (opdecls) . (expl) (3*+-Quantification)

A (pat) . (expl) (X-Abstraction)

(exp3)
éexp2§ (id) [z (asort)] (expl)  (Infix-Application)
aexp
(exp3) (aexp) (Prefiz-Application)
{opn)

if (expl) then (expl) else (expl) endif
let (defs) in (expl) endlet
letrec (defs) in (expl) endlet

((expl) {, {expl)}*) (Tuples)
((expl)) (Grouping)
[ {(expl) // ,}"] (Lists)

(aexp) : (asort) (Sorted Erpression)
{(id) = (expl) // and}*
(id) [z (sortexp)]

( (id) [: {sortexp)] {, (id) [z (sortexp)[}* )

d)

i) x| - | >}
() (x| | >}
(i) ffa| | >}
(d) | .(id).
{(opn) // ,}*

69



Appendix B
Models and Logic

The purpose of this appendix is to give an introduction to the semantics and
the underlying logic of SPECTRUM. For a detailed description of the logical
framework of SPECTRUM see [GR93].

From an abstract point of view SPECTRUM is nothing but a notation for pred-
icate logic. More specifically SPECTRUM is a many sorted LCF-like logic (see
[Pau87]) that allows functions as elements in carrier sets and supports polymor-
phism. Since SPECTRUM was designed as a specification language there are some
conceptual details, motivated by methodological aspects, experimental ideas and
also by personal taste, that influenced not only the syntax but also the semantics
of SPECTRUM (e.g. identification of boolean terms and formulae lead to three—
valued logic, concrete implementations of functional programming languages mo-
tivated the lifting of the function space). Therefore the logic of SPECTRUM differs
in a few technical details from PP, the logic of computable functions as intro-
duced by Dana Scott [Sto77]. Besides these minor differences there is one concept
in SPECTRUM that is beyond the expressiveness of PP, that of sort classes. In
the concrete language of SPECTRUM we use the notion ‘sort class’ but for the
description of the semantics we adopt the convention of type theory and use the
notion ‘kind’.

This appendix on the semantics and logic of SPECTRUM is organized as fol-
lows. First we introduce polymorphic signatures with partially ordered kinds
(B.1) and well-formed terms (B.2). Then we sketch the mathematical struc-
tures, the algebras we use for the interpretation of terms and formulae (B.3).
Next we define the interpretation of terms in those algebras and conclude with
the notion of satisfaction and models (B.4).

B.1 Signatures

As an abstraction from the concrete syntax a specification S = (¥, F) is a pair
where ¥ = (Q, F, O) is a polymorphic signature and F is a set of ¥-formulae. We
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now sketch the definitions and refer to [GR93] for a detailed presentation.

Definition 2.1  Sort Signature:
A sort-signature ) = (K, <, SC') is an order sorted signature', where

e (K, <) is a partial order on kinds,

o SC = {SCu 1} we(r\{maph)-kek is an indexed set of sort constructors
with monotonic functionalities i.e.:

(sc € SCux NSCup) A (w <w') = (k<)

A sort—signature must satisfy the following additional constraints:

o It is reqular, coreqular and downward complete. These properties?
guarantee the existence of principal kinds.

e [t includes the standard sort-signature (see below).

o All kinds except map and ¢po, which are in the standard signature,
are below cpo with respect to <. In other words, ¢po is the top kind
for all kinds a user may introduce.

Definition 2.2  The standard (predefined) sort—signature

The standard sort—signature:

Dstandard = ( {Cp07 map}v 0,
{{Bool} o,
{="}epo cpo, cpos
{to}epo cpo, map,
{ XY epo..cpo, epo
——

n times

)

contains two kinds and four sort constructors (actually, we have for every
natural number n a sort constructor X, ):

e cpo represents the kind of all complete partial orders, map represents
the kind of all full function spaces,

LOrder kinded would be more precise; see [GM87, Gog76] for order sorted algebras.
2See [SNGMS8Y] for a definition.
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e Bool is the sort of booleans, — is the constructor for lifted continuous
function spaces, to is the constructor for full function spaces and X,
for n > 2 is the constructor for cartesian product spaces.

a

The sort—signatures together with a disjoint family y of sort variables indexed
by kinds (a sort context) allows us to define the set of sort terms.

Definition 2.3  Sort Terms:
Ta(x) is the freely generated order kinded term algebra over . a

Example 2.1 Some sort terms

Let Set € SCops. cpo. Then:
Set @ — Bool, Bool X Bool € To({a}epo) O

The idea behind polymorphic elements is to describe families of non-polymorphic
elements. In the semantics this is represented with the concept of the generalized
cartesian product. For the syntax however there are several techniques to indi-
cate this fact. E.g. in HOL ([Cam89]) the sort of a polymorphic constant in the
signature is treated as a template that may be arbitrarily instantiated to build
terms. This technique is also used for the concrete syntax of SPECTRUM. In the
technical paper [GR93] we decided to make this mechanism explicit in the syntax
too and introduced a binding operator II for sorts and an application mecha-
nism on the syntactic level. For a system with simple predicative polymorphism
this is just a matter of taste. For a language with local polymorphic elements
(ML—polymorphism) or even deep polymorphism such binding mechanisms are
essential.

Definition 2.4 Il — Sort Terms:

Moy s kyyeoy kn.eeTg if:

e ccTo(x)
o Free(e) C{ay,...,an}
o kb < cpo fork; e K,1<:<n
O
Note that the third condition rules out bound sort variables of kind map.
Example 2.2 Some Il — Sort Terms:
e : epo.Set a—Bool € T O

72



The idea of the template and its instantiation is made precise by Il-abstraction
and application of such I-sorts to non—polymorphic sorts s € To(x).

In a signature every constant or mapping will have a sort without free sort
variables. This motivates the following definition.

Definition 2.5 Closed Sort Terms:

Ta =Ta(0)
Télosed — TQ U Tgl;[
O

Note that Té{ﬁ;id will contain valid sorts for constants while Té{ﬁnschj will contain

valid sorts for mappings.
Now we are able to define polymorphic signatures.

Definition 2.6  Polymorphic Signature:
A polymorphic signature ¥ = (Q, F, O) is a triple where:

o () =(K,<,5C) is a sort-signature.

o F={F,} Trelosed is an indexed set of constant symbols.
we Q,cpo
e O={0,} Trelosed is an indexed set of mapping symbols.
velQmap
It must include the standard signature
Zstandard = (Qstandarda Fstandarda Ostandard) which is defined as follows:

e Predefined Constants (Fiandard):

= {true false} C Fgoop, {7} € FBool—Bool:
AV, =1 € FBool x Bool—sBool are the boolean constants and

connectives.
— {L} € Fria : epo. « is the polymorphic bottom symbol.
- {fix} C I,

erator.

a:epo. (a—a)—a is the polymorphic fixed point op-

e Predefined mappings (Ostandard):

—{=E} € Opq . cpo. aXa to Boo
and approximation predicates.

| are the polymorphic equality

— {0} € Oy, - epo. a to Bool is the polymorphic definedness predi-
cate.
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B.2 The Language of Terms

Next we introduce terms over a polymorphic signature. The language we define

serves as a core language for specifications in the small written in the concrete
syntax of SPECTRUM. All constructs, except the generated by phrases which
are treated semantically, may be translated into this language.

B.2.1

<term> ::=
|
|
|
|
|
|
|
|
|

<tid>
<pattern>::

<id>

<Ilid>

= F

W

<id>

<IIid> [{<sortexp> //,}*]

<map> <term>

Context Free Language (Pre-Terms)

<IImap> [{<sortexp> //,}t]<term>

<{<term> //1}2+>

i <pattern> . <t_erm>
<term> <term>

Q <tid> . <term>

g <term> 2

n= 1 : <sortexp>

= <tid> | ({<tid> //,}*T)

F
TQ, cpo

i
TQ, cpo

<sortexp> ::

<map>

<lImap>

=0

(Variables)
(Constants)
(Polyconstant-Inst)
(Mapping application)
(Polymapping-Inst)
(Tuple n > 2)
(A-abstraction)
(Application)

(Q € {v+,3})
(Priority)

Tq (x)

N OTQ, map

i
TQ, map

Note that object variables « € v are all different from sort variables a € y and

that all variables are different from identifiers in /' and O.

B.2.2 Context Sensitive Language

With the pre-terms at hand we can now define the well-formed terms. We use a
technique similar to [Mit90] and give a calculus of formation rules. Since for sort
variables there is only a binding mechanism in the language of sort terms but not

in the language of object terms, we need no dynamic context for sort variables.
The disjoint family y of sort variables (the sort context) carries enough informa-
tion. For the object variables however there are several binders and therefore we
need an explicit variable context.
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Definition 2.7 Sort Assertions
The set of sort assertions > is a set of tuples (v, ', e, 7) where:

e Y\ is a sort context.

o I' = {x1:7,...,2,: 7} is a set of sort assumptions (a variable con-
text), such that 7, € Tq.p(x) and no x; occurs twice in the sort
assumptions contained in I' (valid context condition). This prohibits
overloading of variables in one scope.

e ¢ is the pre-term to be sorted.

o 7 € Tqpo(x) is the derived sort for e.

(xv,I,e,7) € > if and only if there is a finite proof tree D for this fact
according to the natural deduction system below. O

When we write I >, e :: 7 in the text we actually mean that there is a proof tree
(sort derivation) for (x, [, e, 7) € i>. If we want to refer to a special derivation D
we write D : I' >, e :: 7. The intuitive meaning of the sort assertion (v, I, e, 7)
with I' = {ay:7,...,2,:7,} is that if the variables x4, ..., x, have sorts 7, ...,
7, then the pre-term e is well-formed and has sort 7.

Axioms:
- @ t - FT
(Var)x:TDXx::T (COHS)@DXC::T{CE
f € FHalzkl,...,an:kn.T
) s:6—=1Tq(x) where
[T-inst
(Il-ns )@ >y fls(ar),....s(an)] i s%(r) | = {Skifk—>TgL 00 rer
with  «; € &,
Note that it is essential to use an order kinded family of functions s = {s; :

§—Tq 1.(X)}rex for the instantiation because the bound sort variables o; of
2

kind £; have to be instantiated with a sort term of appropriate kind. Due to
order sorted notation s:{—Tq(x) on the level of sort terms this kind-correct in-
stantiation comes for free. Note that the above definition also guarantees shallow
polymorphism [Sok89].

Inference Rules:

'>yenr

(weak)

ru{ T (Note valid context condition!)
1Ty e y3 i Ty Xe::T
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'>yenn

cappl) X C L
(map-appl) I'>y oeimy

{0 E OTltoTQ

o< OHalzkl,...,an:kn.Tltng
['>y e s™(m) s:6—=1Tq(x) where
I'>yols(ar),...,s(ay)]e s (m) | $= {5k3€k_>TQ7 1 (X) Y rex
with «o; € sz

(Ilmap-appl)

n>2

(tuple) 'byegum.. . I'dye, i, {

>y (€1, en) 5T X oo XTy

x is not free on a
Lovim>yenn mapping’s argument
I'>y Azimen m—my position. No abstraction

(abstr)

over mappings!

No z; 1s free on
Fozyim, ..o,z D>yen T a mappings’s
>y Mag i, oo @piTy)€ T X oo X Ty —T argument
position.

(patt-abstr)

I'>yegim—n '>yeyunm

1
(appl) I'>yereg i

I'e:7 >, e:: Bool
I' >y Qx:7.e:: Bool

(quantifier) { Q € {vt, 3t}

I'>yenr
'y (e)r
Example 2.3 Restricted M-abstraction

(priority)

The side conditions of rules (abstr) and (patt-abstr) prohibits the build-

ing of terms like:

Az : Bool.=[Bool](z, )

The reason for this restriction is that we want A-terms always to denote
continuous functions. On the other hand the interpretation of a mapping
symbol may be a non-continuous mapping in our semantics. In the example
above, the mapping’s interpretation is the polymorphic identity which is by
definition not monotonic. If we allow the above expression as component
in a well-formed term its interpretation would have to be a non-monotonic

function.
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B.2.3 Well-formed Terms and Sentences

With the context-sensitive syntax of the previous paragraph we are now able to
define the notion of well-formed terms over a polymorphic signature. Since we
use an explicitly sorted system, a well-formed term is a pre—term e together with
a sort context y, a variable context I' and a sort 7. Erasing all sort information
from the pre—terms yields terms in an implicit sort system without explicit typing
for bound variables and no explicit instantiation of polymorphic objects. This
leads to the well known problem of relating an explicitly sorted system with its
implicit version (ref. [Gun92]). We do not address this problem here and go on
with our explicit sort system.

Definition 2.8 Well-formed terms

Let ¥ be a polymorphic signature. The set of well-formed terms over ¥ in
sort context y and variable context I" with sort 7 is defined as follows:

To (1) ={0T e, 7) [Ty e}
The set of all well-formed terms in context (, ') is defined to be the family
Te(61) = {Te (D) ey
In addition we define the following abbreviations:

Ts(x) = Tx(x,0) (closed object terms)

Ts =1T%(0) (non-polymorphic closed object terms)
O

Next we define formulae Form(¥, y,I") and sentences Sen(X, y) over a poly-
morphic signature ¥ and sort context y. In SPECTRUM the set of formulae
Form(X, x,I') is the set of well-formed terms in context (v, ') of sort Bool. This
leads to a three-valued logic. Sentences are as usual closed formulae.

Definition 2.9 Formulae and Sentences

Form(X, y,I') = T27Boo| (1)
Sen(X, y) = Form(X, x,0) (closed formulae are sentences)

Sen(X) = Sen(X, () (non-polymorphic sentences)
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Example 2.4

Vto:a.=[a](z,z) € Sen(X, {a})
V+a:Nat.=[Nat](x,z) € Sen(X)

Definition 2.10  Specification

A polymorphic specification S = (X, ) is a pair where ¥ = (Q, F,O) is a
polymorphic signature and £ C Sen(X, y) is a set of sentences for some
sort context y O

B.3 Algebras

The following definitions are standard definitions of domain theory (see [Gun92]).
We include them here to get a self contained presentation.

Definition 2.11 Partial Order

A partial order A is a pair (A, <) where A is a set and (<) C A x A is a
reflexive, transitive and antisymmetric relation. a

Definition 2.12 Chain Complete Partial Order

A partial order A is (countably) chain complete iff every chain a; < ... <
a, < ..., n € N has a least upper bound in A. We denote it by L;ena;. O

Definition 2.13  Pointed Chain Complete Partial Order (PCPO)

A chain complete partial order A is pointed iff it has a least element. In
the sequel we denote this least element by uwu 4. a

Definition 2.14 Monotonic Functions

Let A= (A, <) and B = (B,<g) be two PCPOs. A function® f € B4 is
monotonic iff

d<sd = f(d)<p f(d)

3We write B4 for all functions from A to B.
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Definition 2.15 Continuous Functions:

A function between PCPOs A and B is continuous (and therefore mono-
tonic) iff for every chain ¢y < ... <a, <...in A:

f(La) = | fla)

1€N 1€N

Definition 2.16 Product PCPO

If A= (A,<4) and B = (B, <p) are two PCPOs then the product PCPO
A x B = (A x B,<axp) is defined as follows:

e A x B is the usual cartesian product of sets,
L] (d, 6) SAXB (d’,e’) lff (d SA d) A (6 SB 6/),
o ulsxp = (Utg,uup)

This definitions may be generalized to n-ary products in a straight forward
way.

a

Definition 2.17 Function PCPO

If A= (A, <4)and B = (B,<p) are two PCPOs then the function PCPO
A=B = (A5B, <, ¢ ) is defined as follows:

o A5 B is the set of all continuous functions from A to B,
o [ < iff VYae A.f(a) <p g(a),

= \r: Auug

a<p Y

¢ UU,<ep
Definition 2.18 Lift PCPO
If A=(A,<4)isa PCPO then the lifted PCPO Alift = (A lift, <sug) is

defined as follows:

o Alift = (A x {0}) U{uuang} where uuapg is a new element which is
not a pair.

i (1?,0) < Alift (y,()) iff x<sy

Vz e Aliftouuanr <ang 2
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o We also define an extraction function | from A lift to A such that
L wuange = vug ; L (z,0) ==
O

We will call the PCPOs also domains (note that in the literature domains are
usually algebraic directed complete po’s [Gun92]).

B.3.1 The Sort Algebras
Definition 2.19  Sort—Algebras

Let Q = (K, <,5C) be a sort-signature. An Q-algebra SA = (K, C,DC)

is an order sorted algebra* of domains i.e.:

e For each kind k£ € K with k& < ¢po we have a set of domains &4 C K.
For the kind map € K we have a set of full functions spaces mapS4.

e For all kinds k1, ky € K with & < ky we have ka C k‘;A.

o DC = {DCy,. i,k }kk ek is an indexed set of domain constructors with:
DChy e = {4 ESA S X BSA - BSA | se € SChy k)

such that if sc € SC, s N SCy ¢ and w < w' then

SA

SA —
SC g | psa= 5C,

In other words overloaded domain constructors must be equal on the
smaller domain w4 = k$4 x ... x k54 where w = ky ... k,.

We further require the following interpretation for the sort constructors
occurring in the standard sort—signature:

e Bool®* = ({tttpoer, [}, <poo) is the flat three—valued boolean domain.
e For X‘;A € cpot x ... X cpott — epoSh:
SEA(dy, ... dy) =dy X ... X dy, n> 2

is the n-ary cartesian product of domains.
o For —°4 € epot x cpo®t — epoSA:
—>$A(d1,d2) = (dli)dQ)lift

is the lifted domain of continuous functions. We lift this domain be-
cause we want to distinguish between L and Az. L.

1See [GMS87, GogT6].
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o For to®* € cpo®t x cpost — mapSA
to®4(dy, dy) = di!

is the full function space between d; and d,.

Definition 2.20 Interpretation of sort terms

Let v : Y — SA be a sort environment and v* : T(x) — SA its homo-
morphic extension. Then SAy.qv is defined as follows:

o SA[elv =v*(e) if ec TQ(X)
. S.A[[Hozl sy o kn.eﬂ =
{f | flv(en),...,v(a,)] € SALelr for all v}

For closed terms we write for SA[e] also eS4. O

Sort terms in Tg are interpreted as generalized cartesian products (dependent
products). By using n-ary dependent products we can interpret II-terms in one
step. This leads to simpler models as the ones for the polymorphic A-calculus.

Polymorphic Algebras
Definition 2.21  Polymorphic Algebra

Let ¥ = (@, F,0) be a polymorphic signature with Q = (K, <, 5C) the
sort—signature. A polymorphic ¥-algebra A = (S A, F, Q) is a triple where:
o SA=(K,C,DC) is an Q sort algebra,

o F={F,} Telosed is an indexed set of constants (or functions), with:
1

,CPO
Fo={ftep? | feF,}

e O = {O”}ueTﬁosed is an indexed set of mappings, with:

7map

O,={c"cv* | 0€0,}

We further require a fixed interpretation for the symbols in the standard
signature. In order to simplify notation we will write fcﬁ,...,dn for the in-
stance fA[dy, ..., d,] of a polymorphic function and 0:1417.“75[” for the instance
0A[dy, ..., d,] of a polymorphic mapping.
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e Predefined Mappings (Ostandard):

— {=,C} C Omlacpo. axa to Boa are interpreted as identity and partial
order. More formally, for every domain d € cpo? and .,y € d:

A # if = is identical to y
r =7 y:i= .
d ff otherwise

Coy = .
=y { ff otherwise

— {6} € Omlaicpo. o to Boar 18 the polymorphic definedness predicate.
For every d € e¢po® and z € d:

5“4(:1;) — tt if = is different from ey
4 ' Jf otherwise

e Predefined Constants (Fiandard):

— {true,false} C F,,, are interpreted in the Bool®# domain as fol-
lows:

; false? = ff

— The interpretations of {=} C Fyopeor; {A, Vs =} C Frooixpooi—os
are pairs in the lifted function spaces such that the function com-

true? = #

ponents behave like three—valued Kleene connectives on Bool# as

follows:
oy [ (LN e Ay [ vy |2l =)y
4 U i i i i
i ff I I it I
It i bil i i
I i bil bil i
w # U U 1/ 1/
t w I w it w
Ifow 1/ ff w i

— {L} € Flia:cpo. o 18 interpreted in each domain as the least element
of this domain. For every d € cpoS4:

J_:;‘ = Wiy

— {fix} € Fliaicpo. (a—a)—a 18 interpreted for each domain d as a pair
ﬁle4 € (d =54 d) =54 d such that the function component be-
haves as follows:
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(L) () = | f*(a)

€N
where:
fPlwg) = g
i wg) i= (L A" ()

Note that | uu and therefore the above defini-

tion is sound.

= uu(

d-=-d) lift d=d)

B.4 Models

B.4.1 Interpretation of Sort Assertions

In this section we define the interpretation of well-formed terms. The interpre-
tation of (v, I',e,7) € Ty ;(x,I') is defined inductively on the structure of a sort
derivation D : I' >, e :: 7. The technique used is again due to [Mit90].

Definition 2.22 Satisfaction of a variable context

Let ¥ = (Q, F,O) be a polymorphic signature with = (K, <, 5C) and let
A= (SA,F,O) be a a polymorphic Y¥-algebra with SA = (K, C,DC).

If " is a variable context and
v=Avr: xr— kSA}keK\{map} sort environment (order-sorted)
n:p— U d object environment (unsorted)
dEcpoSA

then n satisfies I' in sort environment v (in symbols n =, I') iff

nE, T e foralla:rely(x) € v(r)

O
Definition 2.23 Update of object environments
afalw) =4 ¢ N
7 ' n(y) otherwise
O
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Now we define an order-sorted total meaning function A[-],,, that maps sort
derivations D : I' >, e :: 7 to elements in A. It may be proved that the meaning
of (x,I',e,7) €> is independent of the derivation D : ' >, e :: 7 we choose. This
leads to a total meaning function A[-],, : Tx(x,[') — A.

Definition 2.24 Meaning of a sort derivation

The meaning of a sort derivation D : I' >, e:: 7 in a polymorphic al-
gebra A in sort context v and variable context I' such that n |=, I is
AHD >y e THM which is recursively defined on the structure of D.

The defining clauses are given below. 0
Base cases:
(var) A[[:L':T D>y @ 7']]1,777 = n(x) (const) AH@ D>y C THM = c"4
(II-inst)

AH@ >y fls(ar), ..., s(ayn)] = 3*(7-)]]1,777 =
FAV(s(ar)), - ., v (s(am))]

Inductive cases:

(weak)
A[[F Uy T, @i T} Dy € i r]]ym = Al >y e 7],
(map-appl)
AT >y 0e ]y = oA(A[[F >y €7 uy)
(Ilmap-appl)
AL >y ofs(ar),.. .. s(an)le = 5°(72) [ =
A (s(an)), v (s(a)JA[T By e 5 57(m) o)

(tuple)

AHF D>y (€1, e €n) TIX L ><7'n]]1,777 =
(.A[[F D>y €1 i 7'1]]1,777, o ,A[[F D>y €, i Tnﬂym)

(abstr)

A[[F D>y Az:Ty.e 7'1—>7'2]]l,777 =
the unique pair (f,0) € v*(71—72) with
Va € v*(71).f(a) = A[[F,J}:Tl >, € Tg]]um[a/x]
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(patt-abstr)

A[[F Dy M@y T, 2 T T X XTn—m’Hym =
the unique pair (f,0) € v*(7 X ... X7,—7) with
Vay € vi(m),...,a, € V(7). f((a1,...,a,)) =
A[[F,l‘l STl ey Ty 2Ty Dy €1 Tﬂym[al/x17...7an/xn]

(appl)®
AT >y exes iy =L (AT >y er =72 [ (AT By €2 571 ]u)
(universal quantifier)
A[T >, V*a:7.e 2 Bool |, =
ttif Yae v (r).(A[l,z:7 >y e Bool |, sy = )
= [ if Jae v (r).(A[T,2:7 >, €1 Bool |y = fF)

w otherwise

(existential quantifier)
A[[F D> FLa:re: Boolﬂm77 =
tif da € V*(T).(A[[F,:L‘:T >, € Boolﬂ [a/z] = 1)
= ffif Vae V*(T).(A[[F,:L‘:T >, € Boolﬂym[a/gg] = 1)

w otherwise

B.4.2 Satisfaction and Models

In this subsection we define the satisfaction relation for boolean terms and sen-
tences (closed boolean terms) and also the notion of a model.

Definition 2.25 Satisfaction

Let
A= (SA F,0O) Y-Algebra
v=Avr: xr— kSA}keK\{map} sort environment (order-sorted)
n:p— U d object environment (unsorted)

dEcpoSA

®Note that we use an implicit apply function for the application of elements from the lifted
function space. Our algebras are a variation of what Mitchell calls {ype frames [Mit90].
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and I' a variable context with 5 =, I' then:

A satisfies (x, I, e, Bool) € Form(X, x, ') wrt sort environment v and ob-
ject environment 7 (in symbols A =, (x, ', e, Bool)) iff

A, (X, 1, e Bool) & A[[F >y e Bool]]%77 =i

A special case of the above definition is the satisfaction of sentences. Let
(x,0, e, Bool) € Sen(Y, x) and 5o an arbitrary environment, then:

AE, (x,0,¢,Bool) & AH@ >, € Bool]]%770 =1

A= (x,0,¢e,Bool) & A=, (x,0,¢,Bool) for every v

Now we are able to define models A of specifications S = (X, F).

Definition 2.26 Models

Let S = (X, F) be a specification. A polymorphic ¥-algebra A is a model
of S (in symbols A | 9) iff

AESevVpeE . AEp
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Appendix C

Generation Principles and
Induction

In this appendix we explain the semantics of the generated by phrases. We be-
gin with a very technical definition of reachable algebras that is based on [Wir90].
We extend the notion of algebra A is reachable by Cons to polymorphic algebras
with kinds.

C.1 Reachable Algebras

We assume here all definitions in Appendix B about polymorphic signatures and
algebras and let ¥ = (Q, F, O) be a polymorphic signature with Q = (K, <, 5C)
and let A = (SA, F,O) be a a polymorphic ¥-algebra with SA = (K, C,DC).
Further let GS C SC be a sub-family of sort constructors and C'F C I a sub-
family of function symbols. We call GGS the sort constructors for the generated
sorts and C'F the constructor functions.

We now define the notion of primitive sorts and sorts of interest.

Definition 3.1 Primitive Sorts and Sorts of Interest

Given a sort context y we define the set of primitive sorts P, to be
Pe=A{r|7 €T gsovas) (X))
The sorts of interest are defined as
SI,=A7|7=gsn(a1,...,aq1,);98, € GS;n,l, e N;1 <@ < ;4 € 1}

Note that the definition of ST, also covers sort constructors with arity 0
(basic sorts). O

We now define the reachable sorts in an algebra with respect to families G5
and C'F. In this definition we allow elementsin carriers that are not representable
by terms but may be approximated by a sequence of terms.
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Definition 3.2 (S is reachable in A with CF

(S is reachable in Y-algebra A with C'F iff for arbitrary sort context y
and sort environment v, given a sort of interest 7 € SI, and an element
a € SA[T]v there exists

e a sequence of well-formed terms (¢;);exy with

t;, = (X, @, €4, T) € T(Q,CFUFS,@),T(X? 6)
where

Fs= {J-}Hoz:cpo.oz and o€ P forallz:0 €0

e an object environment n with n =, ©

such that
(Altd,,)ien is a chain, and | ] Altd,, = «a
ieN
The sorts 7 € ST, and the carriers sA[7]v are called reachable (with C'F').
The terms ¢; are called constructor terms. Note that (Q, CFUFs, ) is only
a pseudo signature since it doesn’t contain the entire standard signature

Fstandard . u

Definition 3.3 Finite and infinite elements

An element « in a reachable carrier set is called finite iff there is a single
constructor term the interpretation of which is a. An element is called
infinite (limit element) iff it is not finite. O

The above definition of reachable carriers 7 ensures that the elementsa € SA[7]v
are reachable by chains whose elements are representable by terms. Note however
that these terms don’t need to have any structure in common. Often one wants
to talk about an infinite element that is approximated by finite elements in a
“canonical” way. Since the standard signature Fliip4ar4 contains the polymor-
phic fixed point operator fix:lla : epo. (a—«a)—a, this is no problem. Using fix
the only chains we get are those that result from the iteration of functions due
to the semantics of fix. This restriction is not covered in the present definition of
reachable (see [M6182] for the notion of fixed point algebras).

C.2 Induction on Constructor Terms

The definitions in C.1 give rise to an induction principle on the structure of the
constructor terms. Since we allow also limits of chains in reachable sorts the
induction principle has to be formulated with some care. First we define the
notion of a predicate which is not obvious since we use a three—valued logic.
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Definition 3.4 Predicates

Suppose we have a signature Y, a Y-algebra A, a formula
flz:0] € Form(X, v, 0) and a sorted variable x:0 € 0.

The formula f[x: 0] is called the characteristic function in @ of the predicate
pf[x : 0-] = {pf[x : 0-]1477} were pf[x : 0-]1477 = {Cl | Al[f]lym[a/x] = it}

If there arises no confusion we will not distinguish between f[z:0] (syntax)
and psla:o] (semantics) and will call f[z:0] a predicate in . 0

Note that a condition

Yuv,m,a € sSA[o]v. A|[f]|ym[a/x] # Uy,

is not needed here. Definedness is a problem of logical implication. If we try
to formulate an inductive step via logical implication, we have to ensure that
our chain of inductive steps doesn’t break down (compare the induction rules in
Chapter 3.4).

The above definition says that predicates are subsets of carriers. The next
definition is on closure properties of predicates with respect to limit elements.

Definition 3.5  Admissibility

A predicate flz:0] € Form(X, x, 0) is called admissible in « iff ps[z:0],.,
is chain complete for every v and 7. a

Now we have all we need to define the principle of structural induction on reach-
able sorts.

Definition 3.6 Structural induction on reachable sorts

Suppose G5 is reachable in A with C'F. If a predicate f[z:0o]is admissible
in z, 0 € 51, and we want to establish

Yv,n. psleiol,, = sAlo]v

it is enough to prove
Alfl,,,, € pslz:olu,

for every constructor term
t=(y,0,¢e,0)

by induction on the structure of the constructor terms. Since reachability
is defined with respect to a familiy G5, the above definition may easily be
extended to simultaneous structural induction. O
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C.3 Semantics of generated by

As was indicated in Appendix B, every specification in the concrete syntax of
SPECTRUM may be translated in a specification formulated in the core language
that was formalized in Appendix B. Since the process of translation is not pre-
sented in this paper we can only sketch the semantics of generated by.

Definition 3.7 Semantics of generated by (sketch)

Suppose we have a specification S in the concrete SPECTRUM syntax that
contains the pseudo axiom

GS generated by CF

and let S = (X, F) be the translated version of S in the core language,
then a Y—algebra A is a model of S iff

AE S and GS is reachable in A by C'F

a

Turning it the other way round, GS generated by CF means that simultaneous
induction on constructor terms with respect to GS and CF is required to be sound.

In [GR93] we present the explicitly sorted core language and its implicit com-
pagnon in full detail. There we also define the logical calculus for SPECTRUM
that is formulated in the implicit sort system. The induction rules, that originate
from generated by phrases, along with various context conditions are described
in this paper, too.
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Appendix D

SPECTRUM’s Predefined
Specification

In SPECTRUM a number of symbols have a fixed semantics (see Appendix B).
These symbols are defined in the following predefined signature which is part of
every SPECTRUM specification.

Predefined Signature = {

——"Top sort class CPO
class CPO;

——Sort Bool
sort Bool;

——Functions on Bool
true, false: Bool:
—: Bool — Bool;

.=.: Bool X Bool — Bool prio l:right;
.V.: Bool X Bool — Bool prio 2:left;
A.: Bool X Bool — Bool prio 3:left;

——polymorphic undefined element
1:a;

——polymorphic fixed point function
fix: (a —=a)—q;

——strong polymorphic equality
=..a X a to Bool prio 5:left;
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——polymorphic definedness predicate
6 o to Bool:;

——polymorphic less defined relation
C.:aX ato Bool prio 4:left;

In Predefined Specification a number of additional functions are specified. This
specification is also part of every SPECTRUM specification.

Predefined_Specification = {

—— Fquivalence
<. Bool X Bool — Bool prio l:right;
&, total strict;

——strong inequality
#.: a X «a to Bool prio 5:left;
.#. strong;

axioms X, y in
{eqv} (x & y)=((x=y)A(y=x))

{neq} (x#y)=-(x=y);

endaxioms;

——definition of a weak equality

class EQ;
Bool :: EQ;
==.:a: EQ = a X a— Bool; prio 5:left;

.==. strict total;
axioms o : EQ = Va, b, c:ailn

{weak eq} (a ==b)=(a=b)
endaxioms;
——built-in polymorphic if_then_else_endif

if_then_else_endif : Bool X o X o — «a;
if_then_else_endif total;
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axioms V7' el, €2 in
{ifl} if_then_else_endif (L, el, €2) = 1;
{if2} if_then_else_endif (true, el, e2) = el;
{if3} if_then_else_endif (false, el, €2) = e2;

endaxioms;
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Appendix E

Standard Library

This appendix provides a small library of frequently used specifications. The
specifications given here are (unlike the Predefined_Specification of Appendix D)
not part of every SPECTRUM specification. If needed, they have to be included
via an appropriate enriches statement.

Standard_Lib = Character + List + String + Ordering +
Numericals + Naturals;

Character = {

data Char="a" |['b’ | '¢|'d" || T |'g |'"h || |'k]|]T| m]|
o [ | s W |y
AR C D E R G R KL
MNP0 P QRS T UV WX
Y706 T8
TIT Y [% &8 [ [+ =" ] '< ]
Sep=tprpe ey ey e
S AR AN A AR A A \a
AN
Char :; EQ;
}
List = {

data List o = [] | cons(Mirst:a, !rest:List «);
List :: (EQ)EQ;

4. : List a X List a« — List « prio 10:left;
.++. strict total;
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axioms Vs,s' : ListaVe:ailn
[ ++s=s5;

cons(e,s’) ++ s = cons(e,s'++s);

endaxioms;

}

String = { enriches Character + List;

——=String is only an abbreviation for lists of characters

sortsyn String = List Char;

}
Ordering = {

class PO subclass of EQ;
<.:a:: PO = axa— Bool

axioms « :: PO = V x,y,z: ain
{refl} x <x;
{trans} x<yAy<z=x<z
{ant} x<yAy<x=x==y;
endaxioms;

class TO subclass of PO:

axioms o :: TO = Vxy:ain
{tot} x<yVvy<x
endaxioms;

b
Numericals = { enriches Ordering;

class NUM subclass of TO;

——functions for sort class NUM
4o NUM = aXa—a
a2 NUM = aXa—a
a2 NUM = aXa—a
a2 NUM = aXa—a

/

4., .—., ., ./. strict;
4., x. total;

prio 6;

prio 6:left;
prio 6;
prio 7:left;
prio 7;



axioms « :: NUM = ¥V a, b,c: aln
—— Associativity
(a+b)+c=a+(b+c)
(a*b)+xc=asx*(bx*c);

——Commutativity

a+b=>b+a;

a*xb=">bx*a;
endaxioms;

}

Naturals = {enriches Numericals;

data Nat = 0 | succ(!pred:Nat);
Nat :: NUM;

.mod.: Nat X Nat — Nat prio 7;
.mod. strict;

axioms V n, m : Nat in

——Addition
n+0=n;
n + succ m = succ (n + m);

——Subtraction
b6(n—m)em<n;
(n+m)—m=n;

—— Multiplication
n*x0=0;

ns*ksuccm=n -4 n*x m;

——Division

6(n/m) & m # 0;
m#0=nmodm<mAnmodm#*m;
m#0=n=(n/m)+*m+ nmodm;

——0Ordering

n < succ n;
endaxioms;
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