
The Logical Framework of Spectrum �

Radu Grosu
Franz Regensburger

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
����� M�unchen � Germany

E�Mail� spectrum	informatik
tu�muenchen
de

March ��� ���

�This work is sponsored by the German Ministry of Research and Technology
�BMFT� as part of the compound project �KORSO � Korrekte Software� and by the
German Research Community �DFG� project SPECTRUM�

Abstract

The Spectrum project concentrates on the process of developing well�struc�
tured� precise system speci�cations� Spectrum is a speci�cation language� with
a deduction calculus and a development methodology� An informal presentation
of the Spectrum language with many examples illustrating its properties is
given in �BFG���a� BFG���b�� The purpose of this article is to describe its
formal semantics�

Contents

� Introduction �

��� In	uences from algebra �

��
 In	uences from type theory �

� The Spectrum Institution �

�� The category of Signatures �

���� Signatures �

���
 Signature Morphisms ��

�
 The Sen Functor ��

�
�� The language of Terms ��

�
�
 Terms and Sentences Translation � � � � � � � � � � � � � �

�� TheMod Functor �
�

���� Algebras �
�

���
 The Homomorphisms �
�

���� The Reduct �
�

�� Models �

���� Interpretation of sort assertions � � � � � � � � � � � � � � � �

�

���
 Satisfaction and Models ��

� Conclusion and acknowledgement ��

��� Conclusions ��

��
 Acknowledgement ��

Chapter �

Introduction

The Spectrum speci�cation language is axiomatic and borrows concepts both
from algebraic languages �e�g� LARCH �GHW���� as well as from type theoretic
languages �e�g� LCF �CWMG����� An informal presentation with many exam�
ples illustrating its properties is given in �BFG���a� BFG���b�� We brie	y
summarize its principal characteristics�

��� In�uences from algebra

In Spectrum speci�cations the in	uence of algebraic techniques is evident�
Every speci�cation consists of a signature and an axioms part� However� in
contrast to most algebraic speci�cation languages� the semantics of a speci��
cation in Spectrum is loose� i�e� it is not restricted to initial models or even
term generated ones� Moreover� Spectrum is not restricted to equational or
conditional equational axioms� since it does not primarily aim at executable
speci�cations� One can use full �rst order logic to write very abstract and non�
executable speci�cations or only use its constructive part to write speci�cations
which can be understood and executed as programs�

Loose semantics leaves a large degree of freedom for later implementations� It
also allows the simple de�nition of re�nement as the reduction of the class of
models� This reduction is achieved by imposing new axioms which result from
design decisions occurring in the stepwise development of the data structures
and algorithms�

Since writing well structured speci�cations is one of our main goals� a 	exible
language for structuring speci�cations has been designed for Spectrum� This
structuring is achieved by using so called speci�cation building operators which
map a list of argument speci�cations into a result speci�cation� The language

�

for these operators was originally inspired by ASL �SW���� The current version
borrows concepts also from Haskell �HJW�
�� LARCH and PLUSS �Gau����

��� In�uences from type theory

The in	uence from type theory is twofold� On the type level Spectrum uses
shallow predicative polymorphism with type classes in the style of Isabelle
�Nip���� The theory of type classes was introduced by Wadler and Blott �WB���
and originally realized in the functional programming language Haskell� Type
classes may be used both to model overloading �CW��� Str��� as well as many
instances of parameterized speci�cations� Like in object oriented languages type
classes can be organized in hierarchies such that every class inherits properties
from its parent classes� This gives our language an object oriented 	avour�

The other in	uence of type theory can be seen in the language of terms and their
underlying semantics� Spectrum incorporates the entire notation for typed
��terms� The de�nition of the semantics and the proof system was heavily
in	uenced by LCF� Therefore Spectrum supports a notion for partial and
non�strict functions as well as higher order functions in the sense of domain
theory� The models of Spectrum speci�cations are assumed to be certain
continuous algebras� All the statements about the expressiveness of LCF due
to its foundation in domain theory carry over to Spectrum�

Beside type classes there are also two features in the Spectrum logic which
distinguish Spectrum from LCF� Spectrum uses three valued logic and also
allows in a restricted form the use of non�continuous functions for speci�cation
purposes� These non�continuous functions are an extension of predicates and
allow to express facts in a functional style that would otherwise have to be
coded as relations� The practical usefulness of these features has to be proved
in case studies�

In conclusion� all the above features make Spectrum a very powerful general
purpose speci�cation language� It can be used successfully in data base appli�
cations� computationally intensive applications or even distributed applications
since it can easily incorporate a theory for streams and stream processing func�
tions �Bro����

The purpose of this report is to describe the formal semantics of the Spectrum
kernel language� This semantics incorporates in a uniform and coherent way
the properties already mentioned� In comparison with other logics for higher
order functions �e�g� LCF family� our main contributions are�

� a denotational semantics based on order sorted algebras for type classes
�we are only aware of an operational semantics for Haskell��

�

� the use of non�continuous functions for speci�cation purposes�

� the identi�cation of predicates with �strong� boolean functions in the
context of a three valued logic�

�

Chapter �

The Spectrum Institution

In this report we concentrate on the formal semantics of the kernel language
of Spectrum which is pure predicate logic in the style of LCF� Viewed as a
speci�cation language Spectrum provides constructs for specifying in the large
e�g� renaming� hiding� enrichment and parameterisation� Also various induction
principles can be coded in Spectrum using the techniques known from LCF
�Pau����

In order to give a meaning to the �specifying in the large� constructs� one
needs additionally to signatures� sentences and algebras also constructs allow�
ing to relate sentences over di�erent signatures and algebras over either the
same or di�erent signatures� These constructs are the signature morphisms�
the homomorphisms and the reducts� A logical framework that supports all
this constructs is that of institutions �BG���� The mathematical language for
presenting institutions is by tradition that of category theory and therefore we
present the semantics of Spectrum to some extend in categorical terms�

The Spectrum institution is shown in �gure
��� The di�erent parts of this
institution are introduced in the subsequent sections of this chapter�

The language of Spectrum consists of two closely interacting parts� The �rst
one is the language of sorts which describes a universe of sorts using sort con�
structors� sort variables and kinds�� The second one is the language on the
object level that is used to describe elements living in the above speci�ed sorts��
the carrier sets� These two levels cannot easily be separated since in our frame�
work of loose model theoretic semantics the semantics of the sorts depends on
the semantics of the elements that are speci�ed to inhabit the sorts and vice
versa�

�in order to avoid �or produce� confusion we will use kind for class and sort for type
�in a logic with higher order elements functions are also elements of carriers�

�

B�B

Mod���
h�h

�
�

�

�

�

��

Sen����Mod����

SenMod

j�

�

�

�

Mod���

Cat Set

Sen���
�
�

Sen���

�� � �

A A�

Sign

Figure
��� The Spectrum Institution

This concept of two levels is present in all subsequent parts of the paper and will
be symptomatic for all the de�nitions� We �rst give a notion of sort signature
and then de�ne the concept of a signature on the object level with respect to a
given sort signature� We de�ne object terms with respect to a given language
for sort terms and interpret these object terms in an algebra with respect to an
interpretation for the sorts involved�

�

��� The category of Signatures

����� Signatures

Signatures introduce a typed alphabet both for building terms and in the sort
language and for building terms �and sentences� in the object language� Terms
in the sort language are used to type terms in the object language� The more
powerful the sort language is the more powerful object terms can be written�

The sort language of Spectrum is restrictive enough to assure the existence
of static type checking and type inference algorithms but is powerful enough
to support advanced features like functional �and user de�ned� types� shallow
polymorphism and type classes� This expressivity is achieved by putting enough
structure in the sort signatures�

De�nition ��� Sort Signature�

A sort signature � � �K��� SC� is an order sorted signature�� where

� �K��� is a partial order on kinds �

� SC � fSCw�kgw��Knfmapg�� �k�K is an indexed set of sort constructors
with monotonic functionalities i�e��

�sc � SCw�k � SCw��k��� �w � w��� �k � k��

A sort signature must satisfy the following additional constraints�

� It is regular� coregular and downward complete� These properties�

guarantee the existence of principal kinds and sorts�

� It includes the standard sort signature �see below��

� All kinds except map and cpo� which are in the standard signature�
are below cpo with respect to �� In other words� cpo is the top kind
for all kinds a user may introduce�

�

Kinds are introduced to model Haskell�like type classes� Like type classes they
�sort� the types� The subsort order on kinds is intended to model the subclass
order� The sort constructors are used to build sort terms�

De�nition ��� The standard �prede�ned	 sort signature

�Order kinded would be more precise� see �GM��� Gog��	 for order sorted algebras� In the
sequel we will use order sorted and mean order sorted on the level of kinds�

�See �SNGM�
	 for a de�nition� �NP	 use slightly di�erent criteria�

�

The standard sort signature�

�standard � � fcpo�mapg� ��
ffBoolgcpo�
f�gcpo cpo� cpo�
ftogcpo cpo� map�

f�ngcpo���cpo� �z �
n times

� cpo

g
�

contains two kinds and four sort constructors �actually� we have for each
n a sort constructor �n��

� cpo represents the kind of all complete partial orders �map represents
the kind of all full function spaces��

� Bool is the type of booleans� � is the constructor for lifted contin�
uous function spaces� to is the constructor for full function spaces
and �n for n �
 is the constructor for Cartesian product spaces�

�

The sort signatures together with a disjoint family X of sort variables indexed
by kinds �a sort context� allows us to de�ne the set of monomorphic sort terms�

De�nition ��� Monomorphic Sort Terms�

T��X � is the freely generated order sorted term algebra over X � �

Example ��� Some sort terms

Let Set � SCcpo� cpo� Then�
Set � � Bool� Bool � Bool � T��f�gcpo� �

The sort expressions obtained by binding the sort variables occurring in the
monomorphic sort terms with a universal quanti�er �written as �� are called
polymorphic �or �� sort terms� A polymorphic sort term of the form �� �

�Complete partial orders are used to model continuous functions and full function spaces
are used to model non
continuous functions� The latter ones are never implemented but are
extremely useful for speci�cation purposes� An alternative approach is to use only full function
spaces in the semantics and to encode continuity of functions in the logic� In �Reg
�	 HOLCF
a higher order version of LCF is embedded into the logic HOL using the generic framework of
Isabelle� In this thesis it is shown that the full function space and its subspace of continuous
functions over cpo�s can live together in one type frame without problems�

�

U�e��� denotes the Cartesian product of the family fe�t� j t � Ug	
� In
languages with predicative polymorphism the universe U� of polymorphic sorts
is introduced only after all elements of the universe U of monomorphic sorts
are de�ned� As a consequence polymorphic sorts can neither be nested in
sort expressions nor used to instantiate sort variables�� The use of predicative
polymorphism assures both the existence of classical� set theoretic models and
the existence of type inference algorithms �see next section for a discussion
about type inference�� In our case the role of U is taken by kinds� Moreover�
since we do not want to nest the �to�s we allow only kinds below cpo to be
used in ��expressions

De�nition ��
 ��Sort Terms�

��� � k�� � � � � �n � kn�e � T�
� if�

� e � T��X �

� Free�e� � f��� � � � � �ng

� ki � cpo for ki � K� � � i � n

�

Example ��� A ��Sort Term�

�� � cpo�Set ��Bool � T�
� �

In a signature every constant or mapping will have a sort without free sort
variables� This motivates the following de�nition�

De�nition ��� Closed Sort Terms�

T� � T����
T closed
� � T� 	 T�

�

�

Note that T closed
��cpo will contain valid sorts for constants while T closed

��map will contain
valid sorts for mappings�

Having de�ned the notion of a signature at the sort level we are able to de�ne
polymorphic signatures at the object level�

�For simplicity we use the same syntax for terms and their meaning� They will be distin

guished when giving the semantics�

�Note the similarity with logic by reading �Cartesian product� as �conjunction� and a
�sort� as a �formula��

�This is why this kind of polymorphism is also known as shallow polymorphism�

�

De�nition ��� Polymorphic Signature�

A polymorphic signature � � ��� F� O� is a triple where�

� � � �K��� SC� is a sort signature�

� F � fF�g��T closed
��cpo

is an indexed set of constant symbols�

� O � fO�g��T closed
��map

is an indexed set of mapping symbols�

It must include the standard signature
�standard � ��standard� Fstandard� Ostandard� which is de�ned as follows�

� Prede�ned Constants �Fstandard��

� ftrue� falseg � FBool� f
g � FBool�Bool�
f�����g � FBool�Bool�Bool are the boolean constants and
connectives�

� f�g � F�� � cpo� � is the polymorphic bottom symbol�

� f�xg � F
�� � cpo� ������� is the polymorphic �xed point

operator�

� Prede�ned mappings �Ostandard��

� f��vg � O
�� � cpo� ��� to Bool are the polymorphic equality

and approximation predicates�

� f�g � O
�� � cpo� � to Bool is the polymorphic de�nedness pred�

icate�

�

The constant and mapping symbols are the typed alphabet for building ob�
ject terms� They can be either monomorphic �e�g� true� false�
� or poly�
morphic �e�g� �� �x or ��� Since a polymorphic sort �� � k�e denotes the
Cartesian product of the family fe�t� j t � kg� an element of this product
is a tuple �at� � at�� � � �� such that at � e�t�� In other words� this is a func�
tion mapping monomorphic sorts t into elements a�t� � e�t� where e�t� is also
monomorphic� The elements a�t� are also called the instances of a� For example
��Nat����Bool� and ��Nat
 Nat� are instances of the polymorphic element
��

����� Signature Morphisms

In the speci�cation development process we often need to rename a speci�cation
or to relate it with a speci�cation over another signature� The connection
between an abstract speci�cation and a more concrete version possibly having
additional functionality is an example of such a relation�

��

The basic ingredient for relating speci�cations are the signature morphisms�
Based on signature morphisms we will show how to to translate �or rename�
sentences over a signature into sentences over another signature� Signature
morphisms will also be used when relating models over di�erent signatures�

Signature morphisms map signatures into signatures� Since a signature is built
in two steps� �rst the sort signature and then the polymorphic signature� the
de�nition of morphisms is also done in two steps�

De�nition ��
 Sort Signature Morphism�

A sort signature morphism �� �
 �� is an order sorted signature mor�
phism � � ��K � �SC� �see �GM��� Gog���� where�

� �K is a monotonic map on kinds�

�K � �K���
 �K���
�

�

k � l � �K�k� �
�

�K�l�

� �SC is a family of maps respecting the types and the overloading of
sort constructors� More precisely�

�SC � f�w�k � SCw�k
 SC�
�
�

K
�w���K �k�gw�K��k�K

sc � SCw�k � �SC�sc� � SC�
�
�
K
�w���K�k� where

��K�k� � � � kn� � �K�k�� � � ��K�kn�

sc � SCw�k � SCv�l � �SC�sc� � SC�
�
�

K
�w���K�k� � SC�

�
�

K
�v���K �l�

�

Sort signature morphisms allow us to de�ne sort terms translation�

De�nition ��� Sort Terms Translation

Given a sort signature morphism � we denote as usual by �� its homo�
morphic extension to sort terms in T��X �� We will also denote by �

� the
extension to terms in T�

� which is de�ned as follows�

������ � k�� � � � � �n � kn� e� � ��� � ��k��� � � � � �n � ��kn�� �
��e�

�

A polymorphic signature morphisms i�e� a signature morphism between two
polymorphic signatures consists of three components� a sort signature mor�
phism � and two functions �F � F
 F � and �O � O
 O� mapping con�
stants and respectively operations from the �rst signature into constants and
respectively operations from the second signature� As for the sort signature
morphisms we require that �F and �O are �type� preserving�

�

De�nition ��� Signature Morphisms�

A signature morphism � � �
 �� is a triple � � ��� �F � �O� where�

� � � �
 �� is a sort signature morphism

� �F � F
 F � is a T closed
��cpo indexed function�

�F � f�F�� � F�
 F
�

�
�
���
g
��T closed

��cpo

� �O � O
 O� is a T closed
��map indexed function�

�F � f�O�� � O�
 O
�

�
�
���
g
��T closed

��map

�

��� The Sen Functor

����� The language of Terms

In the previous section we introduced the polymorphic signatures which serve
to construct terms in the object language� The construction itself is the purpose
of this section�

Like in �Mit�
� the core language used to de�ne the semantics of Spectrum
is explicitly typed i�e� the application of polymorphic constants to sort terms
is explicit and the ��bounded variables are written together with their sorts�
This assures that every well formed term has a unique sort in a given context
and that the semantics of this term� although given with respect to one of its
derivations� is independent from the particular derivation if the sorts of the free
variables are the same in all derivation contexts�

For convenience� the concrete language of Spectrum is like ML� HOL� LCF
and Isabelle implicitly typed i�e� the type information is erased from terms�
However� like all the above languages� Spectrum has principles types i�e� every
implicitly typed term t has a corresponding explicitly typed term t� such that
erasing all type information from t� yields again t and for every other explicitly
typed term t�� having the above property� the type of t�� is an instance of the type
of t� for some special notion of instance� Having principles types guaranteed�
the semantics of an implicitly typed term t is simply de�ned to be the semantics
of t�
� The set of well formed terms is de�ned in two steps� First we de�ne the

�The advantage of this technique is that the problem of de�ning and �nding �rsp� deciding�
the principal type property is separated from the de�nition of the semantics� The drawback is
the introduction of two languages namely the one with implicit typing and the one with explicit
types� An alternative would be to de�ne the semantics directly on well formed derivations for
implicitly typed terms avoiding the introduction of an explicitly typed language� However�
since the type system of Spectrum is an instance of the type system of Isabelle� we preferred
to use an explicit type system and refer to �Nip
�� NP	 for results about principal typings�

��

context free syntax of pre terms via a BNF like grammar� In the second step we
introduce a calculus for well formed terms that uses formation rules to express
the context sensitive part of the syntax�

Context Free Language �Pre Terms	

�term� ��� 	 �Variables�
j �id� �Constants�
j ��id� �f�sortexp� ���g�� �Polyconstant�Inst�

j �map� �term� �Mapping application�
j ��map� �f�sortexp� ���g���term� �Polymapping�Inst�

j hf�term� ���g��i �Tuple n �
�

j � �pattern� � �term� ���abstraction�
j �term� �term� �Application�
j Q �tid� � �term� �Q � f�����g�
j � �term� 	 �Priority�

�tid� ��� 	 � �sortexp� �sortexp� ��� T� �X �

�pattern� ��� �tid� j hf�tid� ���g��i

�id� ��� FT�� cpo
�map� ��� OT�� map

��id� ��� FT�

�� cpo
��map� ��� OT�

�� map

In addition all object variables x � 	 are di�erent from sort variables � � X
and all variables are di�erent from identi�ers in F and O�

Context Sensitive Language

With the pre terms at hand we can now de�ne the well formed terms� We
use a technique similar to �Mit�
� and give a calculus of formation rules� Since
for sort variables there is only a binding mechanism in the language of sort
terms but not in the language of object terms� we need no dynamic context
for sort variables� The disjoint family X of sort variables �the sort context�
carries enough information� For the object variables� however� there are several
binders and therefore we need an explicit variable context�

De�nition ���� Sort Assertions

The set of sort assertions � is a set of tuples �X ��� e�
� where�

��

� X is a sort context�

� � � fx� �
�� � � � � xn �
ng is a set of sort assumptions �a variable
context�� such that
i � T��cpo�X � and no xi occurs twice in the sort
assumptions contained in � �valid context condition�� This prohibits
overloading of variables in one scope�

� e is the pre term to be sorted�

�
 � T��cpo�X � is the derived sort for e�

We de�ne�
�X ��� e�
� � � if and only if there is a �nite proof tree D for this fact
according to the natural deduction system below� �

When we write � �� e ��
 in the text we actually mean that there is a proof
tree �sort derivation� for �X ��� e�
� � �� If we want to refer to a special deriva�
tion D we write D � � �� e ��
 � The intuitive meaning of the sort assertion
�X ��� e�
� with � � fx� �
�� � � � � xn �
ng is that if the variables x�� � � � � xn have
sorts
�� � � � �
n then the pre term e is well formed and has sort
 �

Formation rules for well formed terms

Axioms�

�var�
x �
 �� x ��

�const�
� �� c ��

�
c � F�

���inst�
� �� f �
�� � � � �
n� ��
 �
����� � � � �
n��n�

�
f � F����k�������n�kn��

�i � ki �
i � ki

Note that in the above axiom f �
�� � � � �
n� is part of the syntax
whereas
 �
����� � � � �
n��n� is a meta notation for this presentation of the cal�
culus� The axiom states that given a polymorphic constant f � F����k�������n�kn��

every instance of f via the sort expressions
i � ki yields an explicitly typed term
f �
�� � � � �
n� of sort
 �
����� � � � �
n��n� which is
 after simultaneous replace�
ment of all sort variables �i by sort expressions
i of appropriate kind�

Inference Rules�

�weak�
� �� e ��

� 	 fx� �
�� � � � � xn �
ng �� e ��

��

The �valid context condition� in the rule �weak� prevents us from building con�
texts � with x �
� x �� � � and
 �� �

�map�appl�
� �� e ��
�
� �� oe ��
�

�
o � O��to��

��map�appl�
� �� e �� ���
����� � � � �
n��n�

� �� o�
�� � � � �
n�e �� ���
����� � � � �
n��n�

�
o � O����k�������n�kn���to��

�i � ki �
i � ki

The rules �map�appl� and ��map�appl� are the formation rules for application
of �polymorphic� mappings to terms� They ensure that a symbol for a mapping
alone is not a well formed term which means that mappings may only occur in
application context� This is another example for the restricted use of the full
function space in Spectrum�

�tuple�
� �� e� ��
� � � �� �� en ��
n
� �� he�� � � � � eni ��
�� � � ��
n

�
n �

�abstr�
�� x �
� �� e ��
�

� �� �x �
��e ��
��
�
fe y x

�patt�abstr�
�� x� �
�� � � � � xn �
n �� e ��

� �� �hx� �
�� � � � � xn �
ni�e ��
�� � � ��
n�

�
e y xi
� � i � n

where e y x is a property of pre terms� A calculus for e y x is presented below�

�appl�
� �� e� ��
��
� � �� e� ��
�

� �� e�e� ��
�

Note that formations for �map�appl� ��map�appl� and �appl� use implicit but
di�erent application mechanisms� There is no problem in determining the last
step in a derivation for a term e�e�� If e� is not a constant then rule �appl�
must be used since there are no variables or composed terms for mappings� If
on the other hand e� is a constant then the choice is also clear since F and O

are disjoint� Of course there remains the problem of guessing the right type

� for the term e� in rule �appl� if e� is a composed term� But this is another
problem of type inference not concerning the distinction between mappings and
functions in application context�

�quanti�er�
�� x �
 �� e �� Bool

� �� Qx �
�e �� Bool

�
Q � f�����g

��

�priority�
� �� e ��

� �� �e� ��

This concludes the de�nition of sort derivations� We now present the calculus
for eyx� The purpose of this side condition is to prohibit the building of ��terms
that do not have a continuous interpretation� Consider the term�

�x �Bool���Bool�hx� xi

In our semantics the interpretation of the symbol � is the polymorphic identity
which is by de�nition not monotonic� If we allowed the above expression as a
well formed term its interpretation would have to be a non�monotonic function�

The property e yx is recursively de�ned on the structure of the pre term e� It�s
reading is �e dagger x� and means �e is continuous in x�� In the calculus below
the set �e� represents the set of free variables with respect to the binders ���
�� and � with the obvious de�nition�

�y � var�
x y x

�y � notfree�
x �� �e�

e y x

�y � tuple�
e� y x � � � en y x

he�� � � � � eni y x

�y � abstr�
e y x e y y

�y �
�e y x

�y � patt�abstr�
e y x e y x� � � � e y xn

�hx� �
�� � � � � xn �
ni�e y x

�y � appl�
e� y x e� y x

e�e� y x

�y � quant�
e y x e y y

Qy �
�e y x

�
Q � f�����g

��

�y � prio�
e y x

�e� y x

As we will see later in section
�� the quanti�ers get a three valued Kleene
interpretation� If e is continuous in x and y also ��y �
�e and ��y �
�e are
continuous in x� Therefore we can allow terms like �x �����y �
�e provided the
dagger test ��y �
�e y x succeeds� For example the test ��y �
��y�e y x will fail
since �y�e y y fails�

In the report �BFG���b� we used the phrase �where x is not free on a mappings
argument position� as a context condition for the formation rules �abstr� and
�patt�abstr�� Looking at the example �x �����y �
��y�e we see that this is too
weak for terms with quanti�ers inside�

Well formed Terms and Sentences

With the context sensitive syntax of the previous paragraph we are now able
to de�ne the notion of well formed terms over a polymorphic signature� Since
we use an explicitly typed system� a well formed term is a pre term e together
with a sort context X � a variable context � and a sort
 �

De�nition ���� Well formed terms

Let � be a polymorphic signature� The set of well formed terms over �
in sort context X and variable context � with sort
 is de�ned as follows�

T����X ��� � f�X ��� e�
� j � �� e ��
g

The set of all well formed terms in context �X ��� is de�ned to be the
family

T��X ��� � fT����X ���g��T��X �

In addition we de�ne the following abbreviations�

T��X � � T��X � �� �closed object terms�

T� � T���� �non�polymorphic closed object terms�

�

Considering a well formed term �X ��� e�
� � T����X ��� we see that all the sort
derivations D � � �� e ��
 for this term can only di�er in the applications of

��

the formation rule �weak�� Due to the vast type information contained in our
pre terms e there are no other possibilities for di�erent sort derivations�

In section
�� we will de�ne the interpretation of a well formed term �X ��� e�
� �
T����X ��� with respect to the inductive structure of some sort derivation for
this term� To guarantee the uniqueness of our de�nition we now distinguish the
unique and always existing normal form of a sort derivation�

De�nition ���� Normal Sort Derivation

Let �X ��� e�
� � T����X ��� be a well formed term� The Normal Sort
Derivation ND � � �� e ��
 is that derivation where introductions of sort
assumptions via the formation rule �weak� occur as late as possible� �

A formal de�nition of the normal form together with a proof for the existence
and uniqueness result is pretty obvious� A thorough discussion of a slightly
di�erent technique containing all the de�nitions and proofs can be found in
�Mit����

Next we de�ne formulae Form���X ��� and sentences Sen���X � over a poly�
morphic signature � and sort context X � In Spectrum the set of formulae
Form���X ��� is the set of well formed terms in context �X ��� of sort Bool�
This leads to a three valued logic� The sentences are as usual the closed formu�
lae�

De�nition ���� Formulae and Sentences

Form���X ��� � T
��Bool�X ���

Sen���X � � Form���X � �� �closed formulae are sentences�

Sen��� � Sen��� �� �non�polymorphic sentences�

�

Example ���

��x �������hx� xi � Sen��� f�g�

��x �Nat���Nat�hx� xi � Sen���

�

��

De�nition ���
 Speci�cation

A polymorphic speci�cation S � ��� E� is a pair where � � ��� F� O� is a
polymorphic signature and E � Sen���X � is a set of sentences for some
sort context X � �

����� Terms and Sentences Translation

Remember that a term is a quadruple �X ��� e�
�� As a consequence we �rst
have to de�ne how we translate contexts and pre terms� Remember that sort
terms translation was given in section
���

De�nition ���� Sort Context Translation

Let X be a sort context�

X � fX k j k � Kg

and � � �
 �� be a sort signature morphism� The translation of this
context by �� is de�ned as follows�

���X � � f���X �j j j � K�g
���X �j �

S
fX k j ��k� � jg

In other words x � X k is translated by �� to x � X �
��k�� �

De�nition ���� Context Translation

Let � be a context�

� � fx� �
�� � � � � xn �
ng

The translation of this context by �� is de�ned as follows�

����� � fx� � ���
��� � � � � xn � ���
n�g

�

De�nition ���
 Pre Terms Translation

Let � � �
 �� be a signature morphism with � � ��� �F � �O�� The

extension �� of � to pre terms is de�ned inductively on their structure as
follows�

���x� � x� variable
���c� � �F �c�� c � FT��cpo
���pf �
�� � � � �
n�� � �F �pf���

��
��� � � � � �
��
n��� pf � FT�

��cpo
���oe� � �O�o��

��e�� o � OT��ops
���po�
�� � � � �
n�e� � �O�po���

��
��� � � � � �
��
n���

��e�� po � OT�
��ops

���he�� � � � � eni� � h���e��� � � � � �
��en�i� tuple

����x �
�e� � �x ����
�����e�� abstr

dito pat � abstr
���Qx �
�e� � Qx ����
�����e�� quantifier
����e�� � ����e��� priority

�

Now we can de�ne well formed terms translation�

De�nition ���� Well Formed Terms Translation

Let �X ��� e�
� be a well formed term and � � �
 �� be a signature
morphism with � � ��� �F � �O�� The translation function is also denoted
by �� and is de�ned as follows�

����X ��� e�
�� � ����X �� ������ ���e�� ���
��

�

��� The Mod Functor

����� Algebras

The following de�nitions are standard de�nitions of domain theory �see �Gun�
���
We include them here to get a self�contained presentation�

De�nition ���� Partial Order

A partial order A is a pair �A��� where A is a set and ��� � A�A is a
re	exive� transitive and antisymmetric relation� �

De�nition ���� Chain Complete Partial Order

�

A partial order A is ��chain complete i� every chain a� � � � � � an �
� � � � n � N has a least upper bound in A� We denote it by ti�N xi� �

De�nition ���� Pointed Chain Complete Partial Order �PCPO	

A chain complete partial order A is pointed i� it has a least element� In
the sequel we denote this least element by uuA� �

De�nition ���� Monotonic Functions

Let A � �A��A� and B � �B��B� be two PCPOs� A function�� f � BA

is monotonic i�

d �A d� � f�d� �B f�d��

�

De�nition ���� Continuous Functions�

A monotonic function f between PCPOs A and B is continuous i� for
every ��chain a� � � � � � an � � � � in A�

f�
G
i�N

ai� �
G
i�N

f�ai�

Since f is monotonic and A and B are PCPOs the least upper bound on
the right hand side exists� �

De�nition ���
 Product PCPO

If A � �A��A� and B � �B��B� are two PCPOs then the product PCPO
A� B � �A� B��A�B� is de�ned as follows�

� A�B is the usual cartesian product of sets�

� �d� e� �A�B �d�� e�� i� �d �A d�� �e �B e���

� uuA�B � �uuA� uuB�

This de�nitions may be generalized to n�ary products in a straight forward
way�

�

De�nition ���� Function PCPO

If A � �A��A� and B � �B��B� are two PCPOs then the function PCPO
A

c

B � �A

c

B��

A
c

�B
� is de�ned as follows�

�	We write BA for all functions from A to B�

� A
c

B is the set of all continuous functions from A to B�

� f �
A

c

�B
g i� �a � A�f�a� �B g�a��

� uu
A

c

�B
� �x �A�uuB

�

De�nition ���� Lift PCPO

If A � �A��A� is a PCPO then the lifted PCPO A lift � �A lift��A lift�
is de�ned as follows�

� A lift � �A� f
g� 	 fuuA liftg where uuA lift is a new element which
is not a pair�

� �x�
� �A lift �y�
� i� x �A y

�z � A lift�uuA lift �A lift z

� We also de�ne an extraction function � from A lift to A such that

� uuA lift � uuA ! � �x�
� � x

�

We will call the PCPOs also domains �note that in the literature domains are
usually algebraic directed complete po�s �Gun�
���

The Sort Algebras

De�nition ���
 Sort�Algebras

Let � � �K��� SC� be a sort�signature� An ��algebra SA is an order
sorted algebra�� of domains i�e��

� For the kind cpo � K we have a set of domains cpoSA� For the kind
map � K we have a set of full functions spaces mapSA�

� For all kinds k � K with k � cpo we have a nonempty subset kSA �
cpoSA�

� For all kinds k�� k� � K with k� � k� we have kSA� � kSA� �

� For each sort constructor sc � SCk����kn�k there is a domain construc�
tor scSA � kSA� � � � �� kSAn
 kSA such that if sc � SCw�s � SCw��s�

and w � w� then

scSAw��s� jwSA� scSAw�s

In other words overloaded domain constructors must be equal on the
smaller domain wSA � kSA� � � � �� kSAn where w � k� � � � kn�

��See �GM��� Gog��	�

�

We further require the following interpretation for the sort constructors
occurring in the standard sort�signature�

� BoolSA � �fuuBool� ff� ttg��Bool� is the 	at three�valued boolean do�
main�

� For�SA
n � cpoSA � � � �� cpoSA
 cpoSA�

�SA
n �d�� � � � � dn� � d� � � � �� dn� n �

is the n�ary cartesian product of domains�

� For�SA � cpoSA � cpoSA
 cpoSA�

�SA�d�� d�� � �d�
c

d��lift

is the lifted domain of continuous functions� We lift this domain
because we want to distinguish between � and �x� ��

� For toSA � cpoSA � cpoSA
 mapSA

toSA�d�� d�� � dd��

is the full space of functions between d� and d��

�

De�nition ���� Interpretation of sort terms

Let � � X
 SA be a sort environment and �� � T��X �
 SA its
homomorphic extension� Then SA � � is de�ned as follows�

� SA e � � ���e� if e � T��X �

� SA ��� � k�� � � � � �n � kn�e �
ff j f������� � � � � ���n�� � SA e � for all �g

For closed terms we write for SA e also eSA� �

Sort terms in T�

� are interpreted as generalized cartesian products �dependent
products�� By using n�ary dependent products we can interpret ��terms in one
step� This leads to simpler models as the ones for the polymorphic ��calculus�

Polymorphic Algebras

De�nition ���� Polymorphic Algebra

Let � � ��� F� O� be a polymorphic signature with � � �K��� SC� the
sort�signature� A polymorphic ��algebra A � �SA�F �O� is a triple
where�

�

� SA is an � sort algebra�

� F � fF�g��T closed

��cpo

is an indexed set of constants �or functions��

with�

F� � ffA �
SA j f � F�g

such that if f � F� is not the constant � � �� � cpo� � then its
interpretation fA is di�erent from uu in
SA� If f is polymorphic
then all its instances must be di�erent from the corresponding least
element�

� O � fO�g��T closed

��map

is an indexed set of mappings� with�

O� � foA � �SA j o � O�g

We further require a �xed interpretation for the symbols in the standard
signature� In order to simplify notation we will write fAd� �����dn for the
instance fA�d�� � � � � dn� of a polymorphic function and oAd������dn for the
instance oA�d�� � � � � dn� of a polymorphic mapping�

� Prede�ned Mappings �Ostandard��

� f��vg � O���cpo� ��� to Bool are interpreted as identity and partial
order � More formally� for every domain d � cpoA and x� y � d�

x �A
d y ��

�
tt if x is identical to y
ff otherwise

xvA
d y ��

�
tt if x �d y

ff otherwise

� f�g � O���cpo� � to Bool is the polymorphic de�nedness predicate�
For every d � cpoA and x � d�

�Ad �x� ��

�
tt if x is di�erent from uud
ff otherwise

� Prede�ned Constants �Fstandard��

� ftrue� falseg � FBool are interpreted in the BoolSA domain as
follows�

trueA � tt ! falseA � ff

� The interpretations of f
g � FBool�Bool� f�����g � FBool�Bool�Bool

are pairs in the lifted function spaces such that the function com�
ponents behave like three�valued Kleene connectives on BoolSA

�

as follows�
x y ��
A��x� x�� �A�y x�� �A�y x�� �A�y

tt tt ff tt tt tt

tt ff ff ff tt ff
ff tt tt ff tt tt

ff ff tt ff ff tt

uu tt uu uu tt tt
uu ff uu ff uu uu

uu uu uu uu uu uu
tt uu ff uu tt uu

ff uu tt ff uu tt

� f�g � F���cpo� � is interpreted in each domain as the least ele�
ment of this domain� For every d � cpoSA�

�A
d �� uud

� f�xg � F���cpo� ������� is interpreted for each domain d as a
pair �xAd � �d
SA d�
SA d such that the function component
behaves as follows�

�� �xAd ��f� ��
G
i�N

fn�uud�

where�

f��uud� �� uud

fn���uud� �� �� f��f
n�uud��

Note that � uu
�d

c

�d� lift
� uu

�d
c

�d�
and therefore the above de��

nition is sound�

�

����� The Homomorphisms

Homomorphisms are used to relate algebras over the same signature� They are
in our framework di�erent from the algebraic homomorphisms because they
are not only required to be compatible with function application but also with
function abstraction� This condition is usual for applicative structures and
allows inductive reasoning on the term structure �see �Mit�
� MM�����

Similarly with polymorphic algebras� polymorphic homomorphisms are built in
two steps� �rst starting with a homomorphism between sort algebras� More
formally�

De�nition ���� Sort Homomorphisms

Let SA and SB be two � sort algebras� with � � �K��� SC�� An ��
homomorphism s � SA�SB is an order sorted homomorphism between

�

sort algebras satisfying�

s � fsk � kSA�kSB j k � Kg
sk�sc

SA� � scSB� sc � SCk

sk�sc
SA�d�� � � � � dn�� � scSB�sk��d��� � � � � skn�dn��� sc � SCk����kn�k

k� � k� � sk� � sk� jkSA�

where d� � kSA� � � � � � dn � kSAn � �

Sort algebras and sort homomorphisms form a category�

De�nition ���� Polymorphic Homomorphisms

Let A� � �SA�F�O� and B� � �SB�F ��O�� be two ��algebras�
with � � ��� F� O� and � � �K��� SC�� A polymorphic homo�
morphism H � �s� h� is a pair with s an ��homomorphism and
h � fhd � d
 s�d� j d � kSA � k � Kg an indexed function between do�
mains� This function is

logical on constants �

� It preserves constants i�e� for every non polymorphic constant f �
F�� polymorphic constant pf � F����k�������n�kn�� and sort environ�
ment � � X
 SA such that �k����� � d�� � � � � �kn��n� � dn and
d � SA
 � the following holds�

h�SA�f
SA� � fSB

hd�pf
SA�d�� � � � � dn�� � pfSB�sk��d��� � � � � skn�dn��

� It is compatible both with application and abstraction i�e� for all
functions f � d
SA e and g � s�d�
SB s�e� the following holds�

hd�SAe�f� � g i� �a � d� he��f a� ��g hd�a�

and algebraic on operations �

� It is compatible with application i�e� for every non polymorphic oper�
ation o � O� to � � polymorphic operation po � O����k�������n�kn��� to � � �
sort environment � � X
 SA such that �k����� � d�� � � � � �kn��n� �
dn� d � SA �� �� e � SA
 � � and elements a � �SA� b � d the
following holds�

h�SA�o
A�a�� � oB�h�SA�a��

he�poA�d�� � � � � dn��b�� � poB�s�d��� � � � � s�dn���hd�b��

�

Homomorphisms are less useful in our framework because they are always re�
quired to be bijective�

�

� Surjectivity is imposed by the right to left direction of the i� condition
�compatibility with abstraction�� Suppose g� g� � s�d�
 s�e� and �a �
d� he�� f a� �� g hd�a�� If �a � d� � g hd�a� �� g� hd�a� then both
h�f� � g and h�f� � g�� Since h is a function g � g�� However if h was
not surjective we could have easily constructed two functions g� g� which
are distinct on s�d� but equal on the image h�d� of d under h�

� Injectivity is imposed by the left to right direction of the i� condition
�compatibility with application� and the identi�cation of Bool with Truth�
Since Bool has in every model only the values f�� ff� ttg� then for every
function fSA � sSA
 BoolSA and every a � sSA the value f�a� must
be either �� ff or tt� Hence identi�cation of values in sSA �congruences�
cannot be accomplished by identi�cation of values in BoolSA� For example�
suppose a� b � sSA� are distinct elements in SA i�e� �a��SAb� � ff � Now�
if h is not injective and it identi�es a and b i�e� �h�a���SBh�b�� � tt then
we get a contradiction� On the one hand h���SA� � ���SB� implies that
h�a��SAb� � �h�a���SBh�b�� � tt� On the other hand h�a��SAb� �
h�ff� � h�falseSA� � falseSB � ff �

����� The Reduct

Signature morphisms are used not only to translate sentences over one signa�
ture into sentences over another signature but also to relate algebras over dif�
ferent signatures� Having a signature morphism � � ���� we can forget some
structure of the algebras and homomorphisms over the signature �� and obtain
algebras and homomorphisms over the the signature �� This construction is
known as reduct and it is also done in two steps�

De�nition ���� Sort�Reduct

Let � � �
 �� be a a sort morphism between � � �K��� SC� and
�� � �K���

�

� SC��� The sort reduct functor � �Mod����
 Mod��� is
de�ned as follows�

� For every ���sort algebra SA� the algebra ��SA�� is a ��sort algebra
de�ned by�

k	�SA
�� � ��k�SA

�

k � K

sc
	�SA��
k����kn�k

� ��sc�SA
�

�
�
�k����kn����k�

sc � SCk����kn�k

� For every �� sort homomorphism s� � fs�k � k
SA

�

 kSB
�

j k � K�g
the homomorphism ��s�� is a � sort homomorphism de�ned by�

��s�� � f��s��k � k
	�SA��
 k	�SB

�� j k � Kg
��s��k � s�

��k�

�

�

We now de�ne the polymorphic reducts�

De�nition ���� Polymorphic�Reduct

Let � � �
 �� be a signature morphism between � � ��� F� O� and
�� � ���� F �� O��� The polymorphic reduct � � Mod����
 Mod��� is
de�ned as follows�

� For every �� polymorphic algebra A� the algebra ��A�� is a � poly�
morphic algebra and it is de�ned by�

��SA�� � ��SA��
f��A

��
� � ��f�A

�

�
�
���

f� � F�

o��A
��

� � ��o�A
�

�
�
���

o� � O�

� For every ���homomorphism H� � �s�� h�� the homomorphism
��H�� � �s� h� is a ��homomorphism and it is de�ned by�

s � ��s��

h � fhd � d
 s�d� j d � k	�SA
�� � k � Kg

hd � h�d

�

Example ��
 Reducts

As an example consider that we have the following signatures and signa�
ture morphism���

� � f

sort ��� �� �� k��
sort rc �� �k�� k��
f � ������

g

�� � f

sort
��
� �� l��
sort sc �� �l�� l��
g �
��
��

g

� � �
k� to l�� k� to l��
�� to
�� �� to
��
f to g

�

��In order to improve readability we use a the Spectrum syntax instead of the abstract
de�nition�

�

Suppose that A and B are ���algebras and that H � �s� h� is a ���
homorpism between A and B� Then we can get the ��algebras ��A� and
��B� and the ��homorphism ��H� as shown in the �gure
�
� In this
�gure d � �

��SA�
� �
SA� and e � �

��SA�
� �
SA� �

�

k
��SA�
�

rc��SA�

rc��SB�

k
��SB�
�

k
��SB�
�

hd

��A�

��B�

k
��SA�
�

sl� sl���h�d

d

e
d

e

��s�k���s�k�

lSA�

lSA�

scSA

scSB

lSB�

lSB�

f��A�

f��B�

gA

gB

A

B

��Algebras ���Algebras

Figure
�
� Graphical Presentation of Reducts

�

��� Models

����� Interpretation of sort assertions

In this section we de�ne the interpretation of well�formed terms� The interpre�
tation of �X ��� e�
� � T����X ��� is de�ned inductively on the structure of the
normal sort derivation ND � � �� e ��
 � The technique used is again due to
�Mit�
��

De�nition
��
 Satisfaction of a variable context

�

Let � � ��� F� O� be a polymorphic signature with � � �K��� SC� and
let A � �SA�F�O� be a a polymorphic ��algebra�

If � is a variable context and

� � f�k � X k
 kSAgk�Knfmapg sort environment �order�sorted�
� � 	

S
d�cpoSA

d object environment �unsorted�

then � satis�es � in sort environment � �in symbols � j�� �� i�

� j�� �� for all x �
 � ����x� � ���
�

�

De�nition
��� Update of object environments

��a�x��y� ��

�
a if x � y
��y� otherwise

�

Now we de�ne an order sorted meaning function A � ��
 that maps normal sort
derivations ND � � �� e ��
 to elements in A� Since normal sort derivations
always exist and are unique this leads to a total meaning function A � ��
 �
T��X ���
 A�

De�nition
��� Meaning of a sort derivation

The meaning of a normal sort derivation ND � � �� e ��
 in a polymor�
phic algebra A in sort context � and variable context � such that � j�� �
is A ND � � �� e ��
 ��
 which is recursively de�ned on the structure of
ND� The de�ning clauses are given below� �

Base cases�

�var� A x �
 �� x ��
 ��
 � ��x� �const� A � �� c ��
 ��
 � cA

���inst�

A � �� f �
�� � � � �
n� ��
 ��
 �

fA����
��� � � � � �
��
n��

��

Inductive cases�

�weak�

A � 	 fx� �
�� � � � � xn �
ng �� e ��
 ��
 � A � �� e ��
 ��

�map�appl�

A � �� oe ��
� ��
 � oA�A � �� e ��
� ��
�

��map�appl�

A � �� o�
�� � � � �
n�e �� �� ��
 �

oA����
��� � � � � �
��
n���A � �� e �� �� ��
�

�tuple�

A � �� he�� � � � � eni ��
�� � � ��
n ��
 �

�A � �� e� ��
� ��
� � � � �A � �� en ��
n ��
�

�abstr���

A � �� �x �
��e ��
��
� ��
 �

the unique pair �f�
� � ���
��
�� with

�a � ���
���f�a� � A �� x �
� �� e ��
� ��
�a�x�

�patt�abstr�

A � �� �hx� �
�� � � � � xn �
ni�e ��
�� � � ��
n�
 ��
 �

the unique pair �f�
� � ���
�� � � ��
n�
� with

�a� � ���
��� � � � � an � ���
n��f��a�� � � � � an�� �

A �� x� �
�� � � � � xn �
n �� e ��
 ��
�a��x������an�xn�

�appl�

A � �� e�e� ��
� ��
 �� �A � �� e� ��
��
� ��
��A � �� e� ��
� ��
�

��the y
test ensures that the clauses for �abstr� and �patt
abstr� are well de�ned�

�

�universal quanti�er�

A � �� �
�x �
�e �� Bool ��
 �

�

������
�����

tt if �a � ���
���A �� x �
 �� e �� Bool ��
�a�x� � tt�

ff if �a � ���
���A �� x �
 �� e �� Bool ��
�a�x� � ff�

uu otherwise

�existential quanti�er�

A � �� �
�x �
�e �� Bool ��
 �

�

������
�����

tt if �a � ���
���A �� x �
 �� e �� Bool ��
�a�x� � tt�

ff if �a � ���
���A �� x �
 �� e �� Bool ��
�a�x� � ff�

uu otherwise

����� Satisfaction and Models

In this subsection we de�ne the satisfaction relation for boolean terms and
sentences �closed boolean terms� and also the notion of a model�

De�nition
��
 Satisfaction

Let

A � �SA�F�O� ��Algebra
� � f�k � X k
 kSAgk�Knfmapg sort environment �order�sorted�
� � 	

S
d�cpoSA

d object environment �unsorted�

and � a variable context with � j�� � then�

A satis�es �X ��� e�Bool� � Form���X ��� wrt� sort environment � and
object environment � �in symbols A j���
 �X ��� e�Bool�� i�

A j���
 �X ��� e�Bool�� A � �� e �� Bool ��
 � tt

A special case of the above de�nition is the satisfaction of sentences� Let
�X � �� e�Bool� � Sen���X � and �� an arbitrary environment� then�

A j�� �X � �� e�Bool�� A � �� e �� Bool ��
� � tt

A j� �X � �� e�Bool�� A j�� �X � �� e�Bool� for every �

�

��

The satisfaction relation is invariant under translation� More precisely the fol�
lowing institution property holds�

Lemma
�� Satisfaction Invariance

Let �X ��� e�Bool� be a boolean term over � and �� ���� a signature
morphism� Let X � � ���X � and �� � ����� be the translations of X and
� under �� Let A be a �� algebra� � a sort environment for X � in A and
� an object environment for �� in A� De�ne � � � � �� and � � � � ���
Then the following holds�

��A� j���
 �X ��� e�Bool�� A j���
 �
���X ��� e�Bool��

Proof Sketch

The theorem is a particular case of the more general formula�

��A� � �� e ��
 ��
 � A ���� �� e ��
� ��

This formula is proved by induction on the object terms derivation� In
order to do this proof we need a similar condition for the sort terms�
namely�

��A�
 � � A ���
� �

This condition is also proved by induction� on the sort terms structure�
It also holds for � sort terms� �

Now we are able to de�ne models A of speci�cations S � ��� E��

De�nition
��� Models

Let S � ��� E� be a speci�cation� A polymorphic ��algebra A is a model
of S �in symbols A j� S� i�

A j� S � �p � E� A j� p

�

��

Chapter �

Conclusion and

acknowledgement

��� Conclusions

We have presented the semantics of the kernel part of the Spectrum language�
Our work di�ers in many respects from other approaches� In contrast to LCF
we allow the use of type classes� Moreover arbitrary non continuous functions
can be used for speci�cation purposes� This also permits to handle predicates
and boolean functions in a uniform manner� In contrast with other semantics
for polymorphic lambda calculus �e�g� �Mit�
�� we did not provide an explicit
type binding operator on the object level� This is not a restriction for languages
having an ML�like polymorphism but allows a more simple treatment of the
sort language� More precisely we used order sorted algebras instead of the more
complex applicative structures� Order sorted algebras were also essential in the
description of type classes�

��� Acknowledgement

For comments on draft versions and stimulating discussions we like to thank
M� L"owe� B� M"oller� F� Nickl� B� Reus� D� Sannella� T� Streicher� A� Tarlecki�
M� Wirsing and U� Wolter�

Special thanks go also to our colleagues H� Hussmann� C� Facchi� R� Hettler and
D� Nazareth to Tobias Nipkow whose work inspired our treatment of type classes
and to Manfred Broy whose role was decisive in the design of the Spectrum
language�

��

Bibliography

�BFG���a� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hussmann�
D� Nazareth� F� Regensburger� O� Slotosch� and K� St#len� The
Requirement and Design Seci�cation Language Spectrum� An In�
formal Introduction� Version ��
� Part I� Technical Report TUM�
I����� Technische Universit"at M"unchen� Institut f"ur Informatik�
May �����

�BFG���b� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hussmann�
D� Nazareth� F� Regensburger� O� Slotosch� and K� St#len� The
Requirement and Design Seci�cation Language Spectrum� An In�
formal Introduction� Version ��
� Part II� Technical Report TUM�
I���
� Technische Universit"at M"unchen� Institut f"ur Informatik�
May �����

�BG��� R� M� Burstall and J� A� Goguen� Introducing institutions� volume
��� of LNCS� ������

�Bro��� M� Broy� Requirement and Design Speci�cation for Distributed
Systems� LNCS� ��������
� �����

�CW��� L� Cardelli and P� Wegner� On Understanding Types� Data
Abstraction� and Polymorphism� ACM Computing Surveys�
�����������
�� December �����

�CWMG��� R� Milner C Wadsworth M� Gordon� Edinburgh LCF� A Mecha�
nised Logic of Computation� volume �� of LNCS� Springer� �����

�Gau��� M��C� Gaudel� Towards Structured Algebraic Speci�cations� ES�
PRIT ����� Status Report of Continuing Work �North�Holland��
pages ������
� �����

�GHW��� J�V� Guttag� J�J� Horning� and J�M� Wing� Larch in Five Easy
Pieces� Technical report� Digital� Systems Research Center� Paolo
Alto� California� �����

�GM��� J�A� Goguen and J� Meseguer� Order�Sorted Algebra Solves the
Constructor�Selector� Multiple Representation and Coercion Prob�
lems� In Logic in Computer Science� IEEE� �����

��

�Gog��� M� Gogolla� Partially Ordered Sorts in Algebraic Speci�cations� In
B� Courcelle� editor� Proc	
th CAAP �
��� Bordeaux� Cambridge
University Press� �����

�Gun�
� C� A� Gunter� Semantics of Programming Languages� Structures
and Techniques� MIT Press� ���
�

�HJW�
� P� Hudak� S� Peyton Jones� and P� Wadler� editors� Report on the
Programming Language Haskell� A Non�strict Purely Functional
Language �Version �	
�� ACM SIGPLAN Notices� May ���
�

�Mit�
� J�C� Mitchell� Type Systems for Programming Languages� In Hand�
book of Theoretical Computer Science� chapter �� pages ��������
Elsevier Science Publisher� ���
�

�Mit��� J� C� Mitchell� Introduction to Programming Language Theory�
MIT Press� �����

�MM��� J�C� Mitchell and A�R� Meyer� Second�Order Logical Relations�
In Logic of Programs� volume ��� of LNCS� pages

��
��� Berlin�
June ����� Springer�Verlag�

�Nip��� T� Nipkow� Order�Sorted Polymorphism in Isabelle� In G� Huet and
G� Plotkin� editors� Logical Environments� pages �������� CUP�
�����

�NP� Tobias Nipkow and Christian Prehofer� Type checking type classes�
In Proc	
�th ACM Symp	 Principles of Programming Languages�
pages �
������

�Pau��� L� Paulson� Deriving Structural Induction in LCF� volume ��� of
LNCS� Springer� �����

�Reg��� F� Regensburger� HOLCF� Eine konservative Erweiterung von
HOL durch LCF� PhD thesis� Technische Universit"at M"unchen�
����� to appear�

�SNGM��� G� Smolka� W� Nutt� J� Goguen� and J� Meseguer� Order�Sorted
Equational Computation� In Resolution of Equations in Algebraic
Structures� Academic Press� �����

�Str��� C� Strachey� Fundamental Concepts in Programming Languages�
In Lecture Notes for International Summer School in Computer
Programming� Copenhagen� �����

�SW��� D� Sannella and M� Wirsing� A Kernel Language for Algebraic
Speci�cation and Implementation� Technical Report CSR��������
University of Edinburgh� Edinburgh EH� �JZ� September �����

�WB��� P� Wadler and S� Blott� How to Make Ad�hoc Polymorphism Less
Ad hoc� In ��th ACM Symposium on Principles of Programming
Languages� pages �
���� �����

��

