The Logical Framework of SPECTRUM !

Radu Grosu

Franz Regensburger

Fakultat fir Informatik, Technische Universitat Miinchen

80290 Miinchen , Germany

E-Mail: spectrum@informatik.tu-muenchen.de

March 15, 1994

!This work is sponsored by the German Ministry of Research and Technology
(BMFT) as part of the compound project “KORSO - Korrekte Software” and by the
German Research Community (DFG) project SPECTRUM.

Abstract

The SPECTRUM project concentrates on the process of developing well-struc-
tured, precise system specifications. SPECTRUM is a specification language, with
a deduction calculus and a development methodology. An informal presentation
of the SPECTRUM language with many examples illustrating its properties is
given in [BFG*93a, BFG193b]. The purpose of this article is to describe its
formal semantics.

Contents

1 Introduction 3
1.1 Influences from algebra L. 3
1.2 Influences from type theory 4

2 The SpecTRUM Institution 6
2.1 The category of Signatures, 8

2.1.1 Signatures oL 8
2.1.2 Signature Morphisms oL 11
2.2 The Sen Functor o 13
2.2.1 The language of Terms 13
2.2.2 Terms and Sentences Translation 20
2.3 The Mod Functor 21
2.3.1 Algebras L 21
2.3.2 The Homomorphisms 26
2.3.3 The Reduct o oo 28
2.4 Modelso L 30
2.4.1 Interpretation of sort assertions 30

2.4.2 Satisfaction and Models

3 Conclusion and acknowledgement
3.1 Conclusions e

3.2 Acknowledgement oo oo

Chapter 1

Introduction

The SPECTRUM specification language is axiomatic and borrows concepts both
from algebraic languages (e.g. LARCH [GHWS85]) as well as from type theoretic
languages (e.g. LCF [CWMGT9]). An informal presentation with many exam-
ples illustrating its properties is given in [BFG193a, BFG193b]. We briefly
summarize its principal characteristics.

1.1 Influences from algebra

In SPECTRUM specifications the influence of algebraic techniques is evident.
Every specification consists of a signature and an axioms part. However, in
contrast to most algebraic specification languages, the semantics of a specifi-
cation in SPECTRUM is loose, i.e. it is not restricted to initial models or even
term generated ones. Moreover, SPECTRUM is not restricted to equational or
conditional equational axioms, since it does not primarily aim at executable
specifications. One can use full first order logic to write very abstract and non-
executable specifications or only use its constructive part to write specifications
which can be understood and executed as programs.

Loose semantics leaves a large degree of freedom for later implementations. It
also allows the simple definition of refinement as the reduction of the class of
models. This reduction is achieved by imposing new axioms which result from
design decisions occurring in the stepwise development of the data structures
and algorithms.

Since writing well structured specifications is one of our main goals, a flexible
language for structuring specifications has been designed for SPEcTRUM. This
structuring is achieved by using so called specification building operators which
map a list of argument specifications into a result specification. The language

for these operators was originally inspired by ASL [SW83]. The current version
borrows concepts also from Haskell [HJIW92], LARCH and PLUSS [Gau86].

1.2 Influences from type theory

The influence from type theory is twofold. On the type level SPECTRUM uses
shallow predicative polymorphism with type classes in the style of Isabelle
[Nip93]. The theory of type classes was introduced by Wadler and Blott [WB89]
and originally realized in the functional programming language Haskell. Type
classes may be used both to model overloading [CW85, Str67] as well as many
instances of parameterized specifications. Like in object oriented languages type
classes can be organized in hierarchies such that every class inherits properties
from its parent classes. This gives our language an object oriented flavour.

The other influence of type theory can be seen in the language of terms and their
underlying semantics. SPECTRUM incorporates the entire notation for typed
A-terms. The definition of the semantics and the proof system was heavily
influenced by LCEF. Therefore SPECTRUM supports a notion for partial and
non-strict functions as well as higher order functions in the sense of domain
theory. The models of SPECTRUM specifications are assumed to be certain
continuous algebras. All the statements about the expressiveness of LCF due
to its foundation in domain theory carry over to SPECTRUM.

Beside type classes there are also two features in the SPECTRUM logic which
distinguish SPECTRUM from LCF. SPECTRUM uses three valued logic and also
allows in a restricted form the use of non-continuous functions for specification
purposes. These non-continuous functions are an extension of predicates and
allow to express facts in a functional style that would otherwise have to be
coded as relations. The practical usefulness of these features has to be proved
in case studies.

In conclusion, all the above features make SPECTRUM a very powerful general
purpose specification language. It can be used successfully in data base appli-
cations, computationally intensive applications or even distributed applications
since it can easily incorporate a theory for streams and stream processing func-
tions [Bro&8|.

The purpose of this report is to describe the formal semantics of the SPECTRUM
kernel language. This semantics incorporates in a uniform and coherent way
the properties already mentioned. In comparison with other logics for higher
order functions (e.g. LCF family) our main contributions are:

e a denotational semantics based on order sorted algebras for type classes
(we are only aware of an operational semantics for Haskell),

e the use of non-continuous functions for specification purposes,

e the identification of predicates with (strong) boolean functions in the
context of a three valued logic.

Chapter 2

The SPECTRUM Institution

In this report we concentrate on the formal semantics of the kernel language
of SPECTRUM which is pure predicate logic in the style of LCF. Viewed as a
specification language SPECTRUM provides constructs for specifying in the large
e.g. renaming, hiding, enrichment and parameterisation. Also various induction
principles can be coded in SPECTRUM using the techniques known from LCF
[Pau84].

In order to give a meaning to the “specifying in the large” constructs, one
needs additionally to signatures, sentences and algebras also constructs allow-
ing to relate sentences over different signatures and algebras over either the
same or different signatures. These constructs are the signature morphisms,
the homomorphisms and the reducts. A logical framework that supports all
this constructs is that of institutions [BG84]. The mathematical language for
presenting institutions is by tradition that of category theory and therefore we
present the semantics of SPECTRUM to some extend in categorical terms.

The SPECTRUM institution is shown in figure 2.1. The different parts of this
institution are introduced in the subsequent sections of this chapter.

The language of SPECTRUM consists of two closely interacting parts. The first
one is the language of sorts which describes a universe of sorts using sort con-
structors, sort variables and kinds'. The second one is the language on the
object level that is used to describe elements living in the above specified sorts?,
the carrier sets. These two levels cannot easily be separated since in our frame-
work of loose model theoretic semantics the semantics of the sorts depends on
the semantics of the elements that are specified to inhabit the sorts and vice
versa.

lin order to avoid (or produce) confusion we will use kind for class and sort for type
%in a logic with higher order elements functions are also elements of carriers.

Sign

Cat Set

Figure 2.1: The SPECTRUM Institution

This concept of two levels is present in all subsequent parts of the paper and will
be symptomatic for all the definitions. We first give a notion of sort signature
and then define the concept of a signature on the object level with respect to a
given sort signature. We define object terms with respect to a given language
for sort terms and interpret these object terms in an algebra with respect to an
interpretation for the sorts involved.

2.1 The category of Signatures

2.1.1 Signatures

Signatures introduce a typed alphabet both for building terms and in the sort
language and for building terms (and sentences) in the object language. Terms
in the sort language are used to type terms in the object language. The more
powerful the sort language is the more powerful object terms can be written.

The sort language of SPECTRUM is restrictive enough to assure the existence
of static type checking and type inference algorithms but is powerful enough
to support advanced features like functional (and user defined) types, shallow
polymorphism and type classes. This expressivity is achieved by putting enough
structure in the sort signatures.

Definition 1.1 Sort Signature:
A sort signature Q@ = (K, <, 5C) is an order sorted signature®, where

o (K,<)is a partial order on kinds,

o SC ={5Cy r}wek\{map})* kek is an indexed set of sort constructors
with monotonic functionalities i.e.:

(s¢ € SCw N SCyrp) AN (w < w') = (kE<E)
A sort signature must satisfy the following additional constraints:
o It is reqular, coregular and downward complete. These properties?
guarantee the existence of principal kinds and sorts.

e It includes the standard sort signature (see below).

o All kinds except map and ¢po, which are in the standard signature,
are below ¢po with respect to <. In other words, ¢po is the top kind
for all kinds a user may introduce.

Kinds are introduced to model Haskell-like type classes. Like type classes they
“sort” the types. The subsort order on kinds is intended to model the subclass
order. The sort constructors are used to build sort terms.

Definition 1.2 The standard (predefined) sort signature

#Order kinded would be more precise; see [GM87, Gog76] for order sorted algebras. In the
sequel we will use order sorted and mean order sorted on the level of kinds.
*See [SNGMS89] for a definition. [NP] use slightly different criteria.

The standard sort signature:

Qstandard = ({Cp07 map}v ®7
{{Bool}p,,
{_>}cpo epo, cpos
{to}cpo epo, map
{Xn}cpo...cpo, epo
——

n times

contains two kinds and four sort constructors (actually, we have for each
n a sort constructor X,):

e cpo represents the kind of all complete partial orders, map represents
the kind of all full function spaces®,

e Bool is the type of booleans, — is the constructor for lifted contin-
uous function spaces, to is the constructor for full function spaces
and X, for n > 2 is the constructor for Cartesian product spaces.

a

The sort signatures together with a disjoint family A" of sort variables indexed
by kinds (a sort context) allows us to define the set of monomorphic sort terms.

Definition 1.3 Monomorphic Sort Terms:

Ta(X) is the freely generated order sorted term algebra over X'. O

Example 1.1 Some sort terms

Let Set € SC.,0, cpo. Then:
Set @ — Bool, Bool X Bool € T({a}.p,) a

The sort expressions obtained by binding the sort variables occurring in the
monomorphic sort terms with a universal quantifier (written as II) are called
polymorphic (or II) sort terms. A polymorphic sort term of the form Ila :

®Complete partial orders are used to model continuous functions and full function spaces
are used to model non-continuous functions. The latter ones are never implemented but are
extremely useful for specification purposes. An alternative approach is to use only full function
spaces in the semantics and to encode continuity of functions in the logic. In [Reg94] HOLCF
a higher order version of LCF is embedded into the logic HOL using the generic framework of
Isabelle. In this thesis it is shown that the full function space and its subspace of continuous
functions over cpo’s can live together in one type frame without problems.

U.e(a) denotes the Cartesian product of the family {e(t) | ¢ € U}°". In
languages with predicative polymorphism the universe U, of polymorphic sorts
is introduced only after all elements of the universe U of monomorphic sorts
are defined. As a consequence polymorphic sorts can neither be nested in
sort expressions nor used to instantiate sort variables®. The use of predicative
polymorphism assures both the existence of classical, set theoretic models and
the existence of type inference algorithms (see next section for a discussion
about type inference). In our case the role of U is taken by kinds. Moreover,
since we do not want to nest the “to”s we allow only kinds below cpo to be
used in Il-expressions

Definition 1.4 II-Sort Terms:
Moy s kyyeooyay kye € T f:

[) €€TQ(X)
o Free(e) C{ay,...,a,}
o k; < cpo fork; e K,1<:1<n

Example 1.2 A II-Sort Term:

Il : cpo.Set a—Bool € T} O

In a signature every constant or mapping will have a sort without free sort
variables. This motivates the following definition.

Definition 1.5 Closed Sort Terms:

To = TQ(@)
Télosed — TQ U Tfl‘_zl

Note that T52¢? will contain valid sorts for constants while 7¢'7? will contain

valid sorts for mappings.

Having defined the notion of a signature at the sort level we are able to define
polymorphic signatures at the object level.

5For simplicity we use the same syntax for terms and their meaning. They will be distin-
guished when giving the semantics.

"Note the similarity with logic by reading “Cartesian product” as “conjunction” and a
“sort” as a “formula”.

8This is why this kind of polymorphism is also known as shallow polymorphism.

10

Definition 1.6 Polymorphic Signature:
A polymorphic signature ¥ = (2, F,0) is a triple where:

o Q= (K,<,5C)is asort signature.

o F'= {F“}NETélZ;id is an indexed set of constant symbols.

e 0= {O"}ueTé"’sed is an indexed set of mapping symbols.

ymap

It must include the standard signature
Estandard = (Qstandardv Fstandardv Ostandard) which is defined as follows:

o Predefined Constants (Fiiandara):

— {true,false} C Fpoop, {7} € FBool—Bool’
{AV, =} € FBoolx Bool—s Bool e the boolean constants and
connectives.

— {1} € Fua : epo. a is the polymorphic bottom symbol.

— {fix} C I

operator.

a:epo. (a—a)—a is the polymorphic fixed point

o Predefined mappings (Osiandara):

- {=CE}CO0p, - epo. axa to Bool aT€ the polymorphic equality
and approximation predicates.
- {6} CO

icate.

Ma : epo. a to Bool is the polymorphic definedness pred-

The constant and mapping symbols are the typed alphabet for building ob-
ject terms. They can be either monomorphic (e.g. true, false, =) or poly-
morphic (e.g. L, fix or =). Since a polymorphic sort Ila : k.e denotes the
Cartesian product of the family {e(t) | t € k}, an element of this product
is a tuple (ay,,ay,,...) such that a, € e(t). In other words, this is a func-
tion mapping monomorphic sorts ¢ into elements a(t) € e(t) where e(t) is also
monomorphic. The elements a(t) are also called the instances of a. For example
L(Nat), L(Bool) and L(Nat — Nat) are instances of the polymorphic element
L.

2.1.2 Signature Morphisms

In the specification development process we often need to rename a specification
or to relate it with a specification over another signature. The connection
between an abstract specification and a more concrete version possibly having
additional functionality is an example of such a relation.

11

The basic ingredient for relating specifications are the signature morphisms.
Based on signature morphisms we will show how to to translate (or rename)
sentences over a signature into sentences over another signature. Signature
morphisms will also be used when relating models over different signatures.

Signature morphisms map signatures into signatures. Since a signature is built
in two steps, first the sort signature and then the polymorphic signature, the
definition of morphisms is also done in two steps.

Definition 1.7 Sort Signature Morphism:

A sort signature morphism w: Q— ' is an order sorted signature mor-
phism w = (wg,wsc) (see [GMS87, Gog76]) where:

e Wy is a monotonic map on kinds:
wg (K,<)— (K', <))
k<l = wi(k) < wr(l)
o wsc is a family of maps respecting the types and the overloading of
sort constructors. More precisely:
wso = {wu k2 SCux — SCL;((w),wK(k)}weK*,kEK
sc € 5Cyx = wsc(sc) € SCle () w(r) Where
Wic(ky . ky) = wi(ky) .. owi(ky)
sc € §5C, N SC,; = wge(sc) € SC&R(w)wa(,ﬂ) N SC;;{(UWK(,)

O
Sort signature morphisms allow us to define sort terms translation.

Definition 1.8 Sort Terms Translation

Given a sort signature morphism w we denote as usual by w* its homo-
morphic extension to sort terms in To(X'). We will also denote by w* the
extension to terms in TE which is defined as follows:

wlay t by, ooyan tkyo €)= Moy tw(ky),. .o a, tw(ky). w(e)

a

A polymorphic signature morphisms i.e. a signature morphism between two
polymorphic signatures consists of three components: a sort signature mor-
phism w and two functions o : F — F' and o5 : O — O’ mapping con-
stants and respectively operations from the first signature into constants and
respectively operations from the second signature. As for the sort signature
morphisms we require that op and oo are “type” preserving.

12

Definition 1.9 Signature Morphisms:
A signature morphism o : ¥ — X' is a triple 0 = (w, 0p, 7o) where:

/. . .
o w:) — is asort signature morphism
o op : F — F'is a T indexed function:
r Q epo
7

op=4{op,: F,— F losed
r=A{on,: by w*(u)}ueTé,ii)i
¢ 05:0—=0"is a Tc";;;zz indexed function:

Op = {0'07,, . Oy — Ow*(u)}VETélosed

ymap

2.2 The Sen Functor

2.2.1 The language of Terms

In the previous section we introduced the polymorphic signatures which serve
to construct terms in the object language. The construction itself is the purpose
of this section.

Like in [Mit90] the core language used to define the semantics of SPECTRUM
is explicitly typed i.e. the application of polymorphic constants to sort terms
is explicit and the A-bounded variables are written together with their sorts.
This assures that every well formed term has a unique sort in a given context
and that the semantics of this term, although given with respect to one of its
derivations, is independent from the particular derivation if the sorts of the free
variables are the same in all derivation contexts.

For convenience, the concrete language of SPECTRUM is like ML, HOL, LCF
and Isabelle implicitly typed i.e. the type information is erased from terms.
However, like all the above languages, SPECTRUM has principles types i.e. every
implicitly typed term ¢ has a corresponding explicitly typed term t' such that
erasing all type information from ' yields again ¢ and for every other explicitly
typed term ¢/ having the above property, the type of t” is an instance of the type
of ¢/ for some special notion of instance. Having principles types guaranteed,
the semantics of an implicitly typed term ¢ is simply defined to be the semantics
of #°. The set of well formed terms is defined in two steps. First we define the

®The advantage of this technique is that the problem of defining and finding (rsp. deciding)
the principal type property is separated from the definition of the semantics. The drawback is
the introduction of two languages namely the one with implicit typing and the one with explicit
types. An alternative would be to define the semantics directly on well formed derivations for
implicitly typed terms avoiding the introduction of an explicitly typed language. However,
since the type system of SPECTRUM is an instance of the type system of Isabelle, we preferred
to use an explicit type system and refer to [Nip93, NP] for results about principal typings.

13

context free syntax of pre terms via a BNF like grammar. In the second step we
introduce a calculus for well formed terms that uses formation rules to express
the context sensitive part of the syntax.

Context Free Language (Pre Terms)

<term> 1=
<id>
<Ilid> [{<sortexp> //,}*]
<map>_<term>) Mapping application)
<ITmap> [{<sortexp> //,}T]<term> Polymapping-Inst)

(Variables)
| (
| (
| (
| (
I ({<term> //,}**) ETuple n > 2)
| (
| (
| (

Constants)
Polyconstant-Inst)

_A <pattern> . <term>
<term> <term>-

Q <tid> . <term>

(<term>)

A-abstraction)
Application)

Q € {v*.3})
Priority)

<tid> = 1) : <sortexp> <sortexp> = Tq (&)

<pattern> = <tid> | ({<tid> //,}**)

id n= B =0
<1d> TQ,CpO <map> TQ,map
<Ilid> w= Fpo <lImap> = Opn
T, T,
Q, cpo Q, map

In addition all object variables x € 1 are different from sort variables o € X
and all variables are different from identifiers in F and O.

Context Sensitive Language

With the pre terms at hand we can now define the well formed terms. We
use a technique similar to [Mit90] and give a calculus of formation rules. Since
for sort variables there is only a binding mechanism in the language of sort
terms but not in the language of object terms, we need no dynamic context
for sort variables. The disjoint family X" of sort variables (the sort context)
carries enough information. For the object variables, however, there are several
binders and therefore we need an explicit variable context.

Definition 2.10 Sort Assertions

The set of sort assertions > is a set of tuples (X', ', e, 7) where:

14

o X is a sort context.

o I' = {a,:7,...,2, : 7} is a set of sort assumptions (a variable
context), such that 7, € Ty .o(X') and no z; occurs twice in the sort
assumptions contained in I' (valid context condition). This prohibits
overloading of variables in one scope.

e ¢ is the pre term to be sorted.

o 7€ Tq . po(X)is the derived sort for e.

We define:
(X,I'ye,7) € > if and only if there is a finite proof tree D for this fact
according to the natural deduction system below. a

When we write I' >, e i1 7 in the text we actually mean that there is a proof
tree (sort derivation) for (X, I',e,7) € >. If we want to refer to a special deriva-
tion D we write D : I' >, e :: 7. The intuitive meaning of the sort assertion
(X, e, 7)with I'={a,:7,...,2,:7,} is that if the variables z,, ..., , have

sorts 71, ..., 7, then the pre term e is well formed and has sort 7.

Formation rules for well formed terms

Axloms:

- t) ————— F,
(Var)x:rbxx::r (Cons)@bxczzr{ce

f € FHozlzkl,...,ozn:kn.T
D>y flr, . m) arln/an, .o mfan] | itk = 1tk

(I-inst)

Note that in the above axiom f[r,...,7,] is part of the syntax

whereas 7[7/ay,...,T,/a,] is a meta notation for this presentation of the cal-
culus. The axiom states that given a polymorphic constant f € Fria, ik, apihn.r
every instance of f via the sort expressions 7; : k; yields an explicitly typed term
flriy ..., m] of sort 7[r /ey, ..., 7,/a,] which is 7 after simultaneous replace-
ment of all sort variables «; by sort expressions 7; of appropriate kind.

Inference Rules:

'>yeuxr

TU{z im, .z Dy e T

(weak)

15

The ‘valid context condition’ in the rule (weak) prevents us from building con-
texts I' with 2:7,2:0 € T and 7 # o

'>yeunmn

-appl
(map-appl) I'>y oemy

{ o 6 OTltng

(Imap-appl) Loy enofn/an,..., 7/ o] { 0 € Ollay k. cnihn 01100

I'>yo[r,...,mlecos[m/ag, ... omofan] | itk =1k

The rules (map-appl) and (Ilmap-appl) are the formation rules for application
of (polymorphic) mappings to terms. They ensure that a symbol for a mapping
alone is not a well formed term which means that mappings may only occur in
application context. This is another example for the restricted use of the full
function space in SPECTRUM.

I S ST >
(tuple) Px et Px n E T {n > 2
>y (e, ,6,) i TIX .. XT,
I' z: >
(abstr) P Py €T {efa

'y Az:imenmn—n

x>y et i
(patt-abstr) SR RARLARAL X {eJ[x

Iy Mayim, oz im)e X X7,—7 | 1<e<n
where e t ¢ is a property of pre terms. A calculus for e { z is presented below.

'y e im—m 'y e, nmy

1
(app) 'y e1e 07

Note that formations for (map-appl) (Ilmap-appl) and (appl) use implicit but
different application mechanisms. There is no problem in determining the last
step in a derivation for a term eje,. If €; is not a constant then rule (appl)
must be used since there are no variables or composed terms for mappings. If
on the other hand e; is a constant then the choice is also clear since F and O
are disjoint. Of course there remains the problem of guessing the right type
7, for the term e, in rule (appl) if €; is a composed term. But this is another
problem of type inference not concerning the distinction between mappings and
functions in application context.

I'yz:7 >, e :: Bool
I'>, Qz:7.e:: Bool

(quantifier) {Q e {vt 3}

16

I'>,enr
riority) ——2—"—
(p y)F >y (e)T

This concludes the definition of sort derivations. We now present the calculus
for ejz. The purpose of this side condition is to prohibit the building of A-terms
that do not have a continuous interpretation. Consider the term:

Az :Bool.=[Bool](z, z)

In our semantics the interpretation of the symbol = is the polymorphic identity
which is by definition not monotonic. If we allowed the above expression as a
well formed term its interpretation would have to be a non-monotonic function.

The property e iz is recursively defined on the structure of the pre term e. It’s
reading is ‘e dagger z’ and means ‘e is continuous in z’. In the calculus below
the set ®(e) represents the set of free variables with respect to the binders V*,
3+ and A with the obvious definition.

(t — var)

xta

z & &(e)

(1 — notfree) —/————

e fax entax
— tuple
(i = tuple) (e1,...,en) T

(t— abstr)M

Ay:tetx
et et ay et x,
— patt-abst
(1 = patt-abstr) MayiTy, o, @y iTh) et
€eiye erfa
- 1
(1 —appl) P

etz ety T
(1= aquant) S g e (w34

17

etz

(e)

(t — prio)

As we will see later in section 2.4 the quantifiers get a three valued Kleene
interpretation. If e is continuous in z and y also Vty:7.e and 3ty : T.e are
continuous in 2. Therefore we can allow terms like Az :0.V1y:7.e provided the
dagger test V1y:7.e | x succeeds. For example the test ILty:7.0yAe Tz will fail
since dyAe Ty fails.

In the report [BFGT93b] we used the phrase ‘where 2 is not free on a mappings
argument position” as a context condition for the formation rules (abstr) and
(patt-abstr). Looking at the example A\z:0.3y:7.6yAe we see that this is too
weak for terms with quantifiers inside.

Well formed Terms and Sentences

With the context sensitive syntax of the previous paragraph we are now able
to define the notion of well formed terms over a polymorphic signature. Since
we use an explicitly typed system, a well formed term is a pre term e together
with a sort context X', a variable context I' and a sort 7.

Definition 2.11 Well formed terms

Let X be a polymorphic signature. The set of well formed terms over X
in sort context A and variable context I" with sort 7 is defined as follows:

Te (X, T)={(X,T,e,7) [T >, eT}

The set of all well formed terms in context (X, I') is defined to be the
family

TE(Xv F) = {TE,T(Xv F)}TETQ(X)
In addition we define the following abbreviations:

Te(X) =Ts(X,0) (closed object terms)

Ts = Tx(0) (non-polymorphic closed object terms)

Considering a well formed term (X, I',e,7) € Tx (X, I') we see that all the sort
derivations D : I' >, e :: 7 for this term can only differ in the applications of

18

the formation rule (weak). Due to the vast type information contained in our
pre terms e there are no other possibilities for different sort derivations.

In section 2.4 we will define the interpretation of a well formed term (X', I', e, 7) €
Ts (X, I') with respect to the inductive structure of some sort derivation for
this term. To guarantee the uniqueness of our definition we now distinguish the
unique and always existing normal form of a sort derivation.

Definition 2.12 Normal Sort Derivation

Let (X,I',e,7) € T5 ,(X,I') be a well formed term. The Normal Sort
Derivation ND : 1" >, e :: 7 is that derivation where introductions of sort
assumptions via the formation rule (weak) occur as late as possible. O

A formal definition of the normal form together with a proof for the existence
and uniqueness result is pretty obvious. A thorough discussion of a slightly
different technique containing all the definitions and proofs can be found in

[Mit93].

Next we define formulae Form(X, X', I') and sentences Sen(X, X') over a poly-
morphic signature ¥ and sort context X'. In SPECTRUM the set of formulae
Form(X, X', I') is the set of well formed terms in context (X', I') of sort Bool.

This leads to a three valued logic. The sentences are as usual the closed formu-
lae.

Definition 2.13 Formulae and Sentences
Form(X, X, I') = T, gool(X, 1)

Sen(Y,) = Form(X, X,0) (closed formulae are sentences)

Sen(Y) = Sen(X,) (non-polymorphic sentences)

a
Example 2.3
Vie:a.=[a](z,z) € Sen(X, {a})
V+z:Nat.=[Nat](z,z) € Sen(%)
a

19

Definition 2.14 Specification

A polymorphic specification S = (X, F) is a pair where ¥ = (, F,0) is a
polymorphic signature and £ C Sen(X, X') is a set of sentences for some
sort context A'. a

2.2.2 Terms and Sentences Translation

Remember that a term is a quadruple (X, I',e,7). As a consequence we first
have to define how we translate contexts and pre terms. Remember that sort
terms translation was given in section 2.1.2

Definition 2.15 Sort Context Translation
Let X be a sort context:
X={X, | ke K}

and w : © — Q' be a sort signature morphism. The translation of this
context by w* is defined as follows:

wi(X) = Ao (X); | e K}
wi(X); = UL | w(k) =3}

In other words # € X' is translated by w” to x € X[, O

Definition 2.16 Context Translation
Let T' be a context:
F=A{ay:m,.. .z, :70}
The translation of this context by w* is defined as follows:

W) ={z rw (m1)s . xn w0 (1)}

Definition 2.17 Pre Terms Translation

Let ¢ : ¥ — X' be a signature morphism with ¢ = (w,0p,00). The

20

extension ¢* of ¢ to pre terms is defined inductively on their structure as

follows:
o*(x) = uz, variable
o*(c) = op(c), c € FTQ,cpo
U*(pf[Tl,.. ,Tn]) = UF(pf)[W*(Tl)a--'7W*(Tn)]7 pf € Fng[
,CPO
o*(0e) = oo(0)o*(e), o€ OTQ,ops
o (polti,...,Tm]e) = oo(po)w*(m),...,w"(m,)]o"(e), po€ OTS
,Ops
o*({e1,...,€n)) = (o*(e1),...,0%(e,)), tuple
o*(Ax:T.€) = Az:w*(1).0%(e), abstr
dvto pat — abstr
o*(Qu:T.€) = Qu:w*(1).0%(e), quanti fier
a*((e)) = (o%(e)), priority
a

Now we can define well formed terms translation.

Definition 2.18 Well Formed Terms Translation

Let (X, e,7) be a well formed term and o : ¥ — Y’ be a signature
morphism with ¢ = (w,0p,00). The translation function is also denoted
by ¢ and is defined as follows:

o (X, T, e, 7)) = (W (), (1), 07(e),0"(7))

2.3 The Mod Functor

2.3.1 Algebras

The following definitions are standard definitions of domain theory (see [Gun92]).
We include them here to get a self-contained presentation.

Definition 3.19 Partial Order

A partial order A is a pair (A4, <) where A is a set and (<) C A x A is a
reflexive, transitive and antisymmetric relation. a

Definition 3.20 Chain Complete Partial Order

21

A partial order A is w-chain complete iff every chain a; < ... < q, <
.., n € N has a least upper bound in A. We denote it by U;cyz;. a

Definition 3.21 Pointed Chain Complete Partial Order (PCPO)

A chain complete partial order A is pointed iff it has a least element. In
the sequel we denote this least element by wu 4. a

Definition 3.22 Monotonic Functions

Let A = (A,<4) and B = (B,<g) be two PCPOs. A function'® f € B4
is monotonic iff

d<jsd = f(d)<p f(d)

Definition 3.23 Continuous Functions:

A monotonic function f between PCPOs A and B is continuous iff for

every w-chain a; <...<a, <...in A:
f(l_l a;) = |_| fa;)
€N €N

Since f is monotonic and A and B are PCPOs the least upper bound on
the right hand side exists. a

Definition 3.24 Product PCPO

If A= (A,<,)and B =(B,<g) are two PCPOs then the product PCPO
Ax B =(AX B,<4xp)is defined as follows:

e A X B is the usual cartesian product of sets,
L] (d,@) SAXB (d’,e’) iff (d SA d)/\(@ SB 6/),
o Ulanp = (U4, uug)

This definitions may be generalized to n-ary products in a straight forward
way.

a

Definition 3.25 Function PCPO

If A= (A,<4)and B = (B, <g) are two PCPOs then the function PCPO
ASB = (A5B, < <) is defined as follows:

10We write B* for all functions from A4 to B.

22

e ASB is the set of all continuous functions from A to B,
o [<, 9 iff Yac A f(a)<pg(a),

o uu = A\x:Auug

ASB

Definition 3.26 Lift PCPO

If A= (A,<,4)is a PCPO then the lifted PCPO Alift = (A lift, <, 1)

is defined as follows:

o Alift = (A x {0}) U{uuane} where wua g is a new element which
is not a pair.

o (2,0) <aus (y,0) Hf <,y

Vze A liftuuA lift SA lift <

o We also define an extraction function | from A lift to A such that

| wug g = g ; J (9570) =T

We will call the PCPOs also domains (note that in the literature domains are
usually algebraic directed complete po’s [Gun92]).

The Sort Algebras

Definition 3.27 Sort—Algebras

Let Q@ = (K, <, 5C) be a sort-signature. An Q-algebra SA is an order
sorted algebra!® of domains i.e.:

e For the kind ¢po € K we have a set of domains epoS?. For the kind
map € K we have a set of full functions spaces mapS4.

e For all kinds k € K with k < epo we have a nonempty subset k54 C
SA
cpo°t.
e For all kinds k;, k. € K with k; < k, we have k‘f““ C k‘;A.

.....

tor scSA ka X ... X ka — k54 such that if sc € SCy s NSCyr s
and w < w’ then

80‘37‘}51 SA

lwsa= scy7;

In other words overloaded domain constructors must be equal on the

SA Z ESA < L x ESA

smaller domain w where w = k1 ... k,.

HGee [GM87, GogT6].

23

We further require the following interpretation for the sort constructors
occurring in the standard sort—signature:

e Bool®* = ({ oo, ff 1}, <gow) is the flat three—valued boolean do-
main.

e For ><f“4 € cpoSA X ... X cpoSA — cpoSA:
SEAdy, . ydy) =dy X oo X dyy 1> 2
is the n-ary cartesian product of domains.
o For—54 ¢ cpoSA X cpoSA — cpoSA:
—SA(dy, dy) = (dy5dy)Nift

is the lifted domain of continuous functions. We lift this domain
because we want to distinguish between L and Az. L.

e For toS4 ¢ cpoSA X cpoSA — mapSA
toSA(dy, dy) = d

is the full space of functions between d; and d-.

Definition 3.28 Interpretation of sort terms

Let v : X — SA be a sort environment and v* : T(X) — SA its
homomorphic extension. Then SAy.qv is defined as follows:

o SAfelv =v*(e) if e Tq(X)
. SA[[Hal Y IR :kn.e]] =
{f | fw(ew),...,v(a,)) € SAlelv for all v}

For closed terms we write for SA[e] also eS4. a

Sort terms in Ty are interpreted as generalized cartesian products (dependent
products). By using n-ary dependent products we can interpret I[-terms in one
step. This leads to simpler models as the ones for the polymorphic A—calculus.

Polymorphic Algebras

Definition 3.29 Polymorphic Algebra

Let ¥ = (@, F,0) be a polymorphic signature with Q = (K, <,5C) the
sort—signature. A polymorphic Y-algebra A = (SA,F,0) is a triple
where:

24

e SAis an Q sort algebra,

o F = {f“}uETdosed is an indexed set of constants (or functions),

,EPo

with:

fu:{fAGNSA | fGFu}
such that if f € F), is not the constant L € Ila : ecpo. a then its
interpretation f4 is different from w in pSA. If f is polymorphic
then all its instances must be different from the corresponding least

element.

e 0= {(’),,}VETélosed is an indexed set of mappings, with:

,map
O,={0"crv’ | 0€0,}

We further require a fixed interpretation for the symbols in the standard
signature. In order to simplify notation we will write f(ﬁ,...,dn for the
instance fA4(dy,...,d,) of a polymorphic function and Oé,...,dn for the
instance 0*(dy, . ..,d,) of a polymorphic mapping.

o Predefined Mappings (Osiandara):

— {=,C} C Ona.cpo. axato oo are interpreted as identity and partial
order. More formally, for every domain d € cpo? and z,y € d:

A tt if « is identical to y
r =7 y:= .
d ff otherwise

CAy:= -,
t=a ¥ { If otherwise

— {0} € Ontaicpo. o to Boor 18 the polymorphic definedness predicate.
For every d € cpo* and z € d:

Jf otherwise
o Predefined Constants (Fiiandara):

6?(9@) . { tt if x is different from wu,

— {true,false} C Fg,, are interpreted in the Bool®A domain as
follows:
true =t ; false® = ff
— The interpretations of {=} € Faeaboots 1A Vs =} C FhooixBool— ool
are pairs in the lifted function spaces such that the function com-

ponents behave like three-valued Kleene connectives on BoolS4

25

as follows:

vy [(L=A)@) [o(l Ay |2l vA)y | o(l =4)y
t I # # #

¢ Jf I I 4 I
ot # fF # #
I U I I U
w1 i i /4 /4

we i i i i

t i wul t wul

I ow t i wul t

— {L} € Fliacpo o is interpreted in each domain as the least ele-
ment of this domain. For every d € epoSA:

J_Z? = g

— {fix} € Fliaucpo. (a—a)—a is interpreted for each domain d as a
pair fix} € (d =54 d) =54 d such that the function component
behaves as follows:

(L fix)(f) o= || ()
€N
where:
fouwug) := g
FH wa) = (1O ()
Note that | uu
nition is sound.

(@Sauge = Yt and therefore the above defi-

2.3.2 The Homomorphisms

Homomorphisms are used to relate algebras over the same signature. They are
in our framework different from the algebraic homomorphisms because they
are not only required to be compatible with function application but also with
function abstraction. This condition is usual for applicative structures and
allows inductive reasoning on the term structure (see [Mit90, MMS85]).

Similarly with polymorphic algebras, polymorphic homomorphisms are built in
two steps, first starting with a homomorphism between sort algebras. More
formally:

Definition 3.30 Sort Homomorphisms

Let SA and 8B be two § sort algebras, with Q@ = (K,<,5C). An Q-

homomorphism s : SA — S§B is an order sorted homomorphism between

26

sort algebras satisfying:

s = {sp 1 k54— k%% | ke K}

sp(8c®) = %5, sce SCy
sp(sc®A(dy, ... dy)) = sc®(sp,(dr), ..., 8,(dn)), sc€ SCk ko k

by < ky = Sk = Sk |psa

where d; € k$4, ... d, € k3. O

Sort algebras and sort homomorphisms form a category.

Definition 3.31 Polymorphic Homomorphisms

Let Ay = (SA,F,0) and By = (SB,F',0") be two Y-algebras,
with ¥ = (Q,F,0) and Q@ = (K,<,5C). A polymorphic homo-
morphism H = (s,h) is a pair with s an Q-homomorphism and
h={hs:d—s(d) | d€k* ANk € K} an indexed function between do-
mains. This function is

logical on constants:

o It preserves constants i.e. for every non polymorphic constant f €
F,, polymorphic constant pf € Flia, %, a,:k,.- and sort environ-
ment v : X — SA such that v, (o) = dy, ..., 1, (a,) = d, and
d=SA[7]v the following holds:

hUSA(fSA) — fSB
ha(pfA1dy, . .. da]) = pf*"[sp,(d1), - . ., 50, (dn)]

o It is compatible both with application and abstraction i.e. for all
functions f € d =54 e and g € s(d) —°” s(e) the following holds:

hy_sa (f)=g Uf Yaed h(lfa)=|g haa)
and algebraic on operations :

o It is compatible with application i.e. for every non polymorphic oper-
ation 0 € O, 4, ;, polymorphic operation po € Ona, by, ankn.o tor
sort environment v : X — SA such that v, (o)) = dy, ..., v, () =
d,,d =SA[o']v, e = SA[7]v and elements a € 054, b € d the
following holds:

hsa(o*(a)) = 0®(h,sa(a))
h.(po?[dy,...,d, (b)) = po®[s(d,),...,s(d,)](hqD))

Homomorphisms are less useful in our framework because they are always re-
quired to be bijective.

27

o Surjectivity is imposed by the right to left direction of the iff condition
(compatibility with abstraction). Suppose g,¢' : s(d) — s(e) and Va €
d. h(] f a) =g hg(a). If Va € d. | g hg(a) =] ¢ ha(a) then both
h(f) = g and h(f) = ¢'. Since h is a function g = ¢’. However if h was
not surjective we could have easily constructed two functions ¢, ¢’ which
are distinct on s(d) but equal on the image h(d) of d under h.

o Injectivity is imposed by the left to right direction of the iff condition
(compatibility with application) and the identification of Bool with Truth.
Since Bool has in every model only the values {L, ff,#}, then for every
function f54 : 554 — Bool®* and every a € s the value f(a) must
be either L, ff or #. Hence identification of values in s°# (congruences)
cannot be accomplished by identification of values in Bool*#. For example,
suppose a,b € s54, are distinct elements in SA i.e. (a==°4b) = ff. Now,
if h is not injective and it identifies @ and b i.e. (h(a)==""h(b)) = t# then
we get a contradiction. On the one hand h(==°4) = (==°") implies that
h(a=="2b) = (h(a)=="Fh(b)) = #. On the other hand h(a==°4b) =
R(ff) = h(false®") = false®® = ff.

2.3.3 The Reduct

Signature morphisms are used not only to translate sentences over one signa-
ture into sentences over another signature but also to relate algebras over dif-
ferent signatures. Having a signature morphism o : ¥ — ¥’ we can forget some
structure of the algebras and homomorphisms over the signature ¥’ and obtain
algebras and homomorphisms over the the signature Y. This construction is
known as reduct and it is also done in two steps.

Definition 3.32 Sort—Reduct

Let w : © — Q' be a a sort morphism between Q = (K,<,5C) and
Q = (K',<',8C"). The sort reduct functor @ : Mod(€') — Mod(9) is

defined as follows:

e For every Q'—sort algebra SA’ the algebra ©(SA") is a Q-sort algebra

defined by:
kw(s,a\’) — w(k)SA' ke K
w(sA /
Sckl(skn)k = w(sc)fjf(kl...kn),W(k) sc € SCx, gk
e For every ' sort homomorphism ' = {s} : k54 — k%5 | k€ K’}
the homomorphism @(s’) is a © sort homomorphism defined by:
w(s') = {T(8)y : k7S — BFEE) | ke K}
w(s) = S

28

We now define the polymorphic reducts.

Definition 3.33 Polymorphic—Reduct

Let 0 : ¥ — Y’ be a signature morphism between ¥ = (Q,F,0) and
Y = (Q,F',0"). The polymorphic reduct o : Mod(X') — Mod(X) is
defined as follows:

e Tor every Y’ polymorphic algebra A’ the algebra 7(.A") is a X poly-
morphic algebra and it is defined by:

7(SA) = ©(SA)

7 = o‘(f)?,;(u) f.€F,
o7 = g(o):j;(y) 0, €0,
e For every Y-homomorphism H' = (s/,h') the homomorphism

a(H') = (s,h)is a X-homomorphism and it is defined by:

s = w(s)
h o= {hg:d—s(d) | dek*SINke K}
hd - h/d

Example 3.4 Reducts

As an example consider that we have the following signatures and signa-
ture morphism!?:

¥ ={
sort oy, 05 @ ky;
sort rc i (ki) ko;
f:o0,—09;

}

Y=
sort 7, ™ o ly;
sort sc :z (I;) Is;
g: T — Ty

o=
k, to |, k, to |5,
o, to 1, 05 to 75,
ftog

]

12In order to improve readability we use a the SPECTRUM syntax instead of the abstract
definition.

29

Suppose that A and B are Y'-algebras and that H = (s,h) is a X'
homorpism between A and B. Then we can get the Y-algebras 7(.A) and
&(B) and the Y¥-homorphism @(H) as shown in the figure 2.2. In this
F(SA) _ 754 UZU(SA) S

figure d = o7 and e =

Y —Algebras ¥'~Algebras

Figure 2.2: Graphical Presentation of Reducts

2.4 Models

2.4.1 Interpretation of sort assertions

In this section we define the interpretation of well-formed terms. The interpre-
tation of (X, I',e,7) € I (X, 1) is defined inductively on the structure of the
normal sort derivation ND : I' >, e :: 7. The technique used is again due to

[Mit90].

Definition 4.34 Satisfaction of a variable context

30

Let ¥ = (2, F,0) be a polymorphic signature with @ = (K, <,5C) and
let A= (SA,F,0O) be a a polymorphic X-algebra.

If T' is a variable context and
v=Ay, : X} — kSA}keK\{map} sort environment (order-sorted)
n:v— U d object environment (unsorted)
dEcpoSA

then 7 satisfies I' in sort environment v (in symbols 5 |=, I') iff

nlE, I foralla:r e I'in(z) € v (1)

O
Definition 4.35 Update of object environments
(afalw)i=q 4 Y
K ' n(y) otherwise
O

Now we define an order sorted meaning function A[-J, , that maps normal sort
derivations ND : I' >, e :: 7 to elements in .A. Since normal sort derivations
always exist and are unique this leads to a total meaning function A[-],, :

To(X,T) — A.

Definition 4.36 Meaning of a sort derivation

The meaning of a normal sort derivation ND : I' >, e :: 7 in a polymor-
phic algebra A in sort context v and variable context I' such that n |=, T
is A[[ND I'>yen THM which is recursively defined on the structure of

N D. The defining clauses are given below. a
Base cases:

(var) Afz:7 >y @ 7]y = n(2) (const) A[[@ D>y c THM = A
(I-inst)

A[[(Z) >y flm, Tl THM =
fA(y*(Tl),...,l/*(Tn))

31

Inductive cases:

(weak)

AT U{ziim.. e pyent),, = AT by e],
(map-appl)

AT >y 0c]y = oAA[D By e]uy)

(IImap-appl)
A[[F Dy O[T1, ..., Tyle Uzﬂw =
0“4(1/*(7'1), .. .,V*(Tn))(A[[F >y e 01]],,777)

(tuple)
A[[F Dy (€1, €,) 1T X ...><7'n]],,777 =
(A[[F >y € i rl]]w,...,A[[r Dy €y i Tn]],,m)

(abstr)!?

A[[F Dy Az:iTy.€e 7'1—>7'2]],,7n =
the unique pair (f,0) € v*(1,—7) with
Va € v*(m).f(a) = A[[F,$:T1 D>y € Tz]],,yn[a/x]

(patt-abstr)

A[[F Dy A&7, o, Ty Ty) e i Ty XL ><7'n—>7']],,777 =
the unique pair (f,0) € v*(11X ... X7,—7) with
Va, € v*(1y),...,a, € v(7,).f((a1,...,a,)) =

A[[F,xl:rl, e T i Ty Dy e T]],,yn[al/xl an/on]
(appl)

A[[F D\ €1€3 7'2]],,777 =] (A[[F D € i 7'1_’7'2]]1/,77)(“4[[F D>y €2 i 7'1]]1/,77)

the {-test ensures that the clauses for (abstr) and (patt-abstr) are well defined.

32

(universal quantifier)
A[[F >, Via:T.e: Bool]],,ﬂ7 =
t if Vae V*(T).(A[[F,xzr D>y o€ Boolﬂyyn[a/x] =1)
= ffoif Jae V*(T).(A[[F,xzr D>y o€ Boolﬂyyn[a/x] =f)

me otherwise

(existential quantifier)
A[[F >, Fteire Bool]],,ﬂ7 =
t if Jae€ V*(T).(A[[F,xzr D>y o€ Boolﬂyyn[a/x] =1)
= i if Vae V*(T).(A[[F,xzr D>y o€ Boolﬂyyn[a/x] =f)

me otherwise

2.4.2 Satisfaction and Models

In this subsection we define the satisfaction relation for boolean terms and
sentences (closed boolean terms) and also the notion of a model.

Definition 4.37 Satisfaction

Let
A=(SA,F,0) Y-Algebra
v=Ay, : X} — kSA}keK\{map} sort environment (order-sorted)
n:v— U d object environment (unsorted)
dEcpoSA

and I' a variable context with n |=, I' then:

A satisfies (X, ', e, Bool) € Form(X, X', T') wrt. sort environment v and
object environment 7 (in symbols A |=, , (X, 1, e, Bool)) iff

AlE,, (X, T, e, Bool) & A[[F >y € Bool]],,ﬂ7 =1

A special case of the above definition is the satisfaction of sentences. Let
(X,0,e,Bool) € Sen(X, X') and 1, an arbitrary environment, then:

A, (X,0,e,Bool) & A[[@ D>, e Bool]],,ﬂ70 =t

Al (X,0,e,Bool) & A=, (X,0,¢,Bool) for every v

33

The satisfaction relation is invariant under translation. More precisely the fol-
lowing institution property holds:

Lemma 4.1 Satisfaction Invariance

Let (X, T, e,Bool) be a boolean term over ¥ and o: ¥ — X' a signature
morphism. Let X’ = ¢*(X') and 1" = ¢*(I") be the translations of X" and
I' under o. Let A be a X' algebra, v a sort environment for A7 in A and
7 an object environment for I" in A. Define v = v o 6" and 7 = n o 0.

Then the following holds:
G(A) Erm (X, I',e,Bool) & A=, , 0" ((X,I',¢e,Bool))
Proof Sketch
The theorem is a particular case of the more general formula:
E(A)[[F D € T]]gﬁ = A[[O'*(F D € 7')]],,777
This formula is proved by induction on the object terms derivation. In

order to do this proof we need a similar condition for the sort terms,
namely:

O(A)[TI7 = A[[O'*(T)]]l/

This condition is also proved by induction, on the sort terms structure.
It also holds for = sort terms. a

Now we are able to define models A of specifications S = (X,).

Definition 4.38 Models

Let S = (X, F) be a specification. A polymorphic X-algebra A is a model
of § (in symbols A |= 5) iff

AESevVpeE Al=p

34

Chapter 3

Conclusion and
acknowledgement

3.1 Conclusions

We have presented the semantics of the kernel part of the SPECTRUM language.
Our work differs in many respects from other approaches. In contrast to LCF
we allow the use of type classes. Moreover arbitrary non continuous functions
can be used for specification purposes. This also permits to handle predicates
and boolean functions in a uniform manner. In contrast with other semantics
for polymorphic lambda calculus (e.g. [Mit90]) we did not provide an explicit
type binding operator on the object level. This is not a restriction for languages
having an ML-like polymorphism but allows a more simple treatment of the
sort language. More precisely we used order sorted algebras instead of the more
complex applicative structures. Order sorted algebras were also essential in the
description of type classes.

3.2 Acknowledgement

For comments on draft versions and stimulating discussions we like to thank
M. Lowe, B. Moller, F. Nickl, B. Reus, D. Sannella, T. Streicher, A. Tarlecki,
M. Wirsing and U. Wolter.

Special thanks go also to our colleagues H. Hussmann, C. Facchi, R. Hettler and
D. Nazareth to Tobias Nipkow whose work inspired our treatment of type classes
and to Manfred Broy whose role was decisive in the design of the SPECTRUM
language.

35

Bibliography

[BFG+93a]

[BFG+93b]

[BGS84]

[Bro8s]

[CWS5]

[CWMGTY]

[Gau&6]

[GHWSS5]

[GMST]

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann,
D. Nazareth, F. Regensburger, O. Slotosch, and K. Stglen. The
Requirement and Design Secification Language SPECTRUM. An In-
formal Introduction. Version 1.0. Part I. Technical Report TUM-
19311, Technische Universitdt Miinchen. Institut fiir Informatik,
May 1993.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann,
D. Nazareth, F. Regensburger, O. Slotosch, and K. Stglen. The
Requirement and Design Secification Language SPECTRUM. An In-
formal Introduction. Version 1.0. Part II. Technical Report TUM-
19312, Technische Universitdt Miinchen. Institut fiir Informatik,
May 1993.

R. M. Burstall and J. A. Goguen. Introducing institutions. volume
164 of LNCS. 11984.

M. Broy. Requirement and Design Specification for Distributed
Systems. LNCYS, 335:33-62, 1988.

L. Cardelli and P. Wegner. On Understanding Types, Data
Abstraction, and Polymorphism. ACM Computing Surveys,
17(4):471-523, December 1985.

R. Milner C Wadsworth M. Gordon. FEdinburgh LCF: A Mecha-
nised Logic of Computation, volume 78 of LNCS. Springer, 1979.

M.-C. Gaudel. Towards Structured Algebraic Specifications. F5S-
PRIT 85°, Status Report of Continuing Work (North-Holland),
pages 493-510, 1986.

J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy
Pieces. Technical report, Digital, Systems Research Center, Paolo
Alto, California, 1985.

J.A. Goguen and J. Meseguer. Order—Sorted Algebra Solves the
Constructor—Selector, Multiple Representation and Coercion Prob-
lems. In Logic in Computer Science, IEEE, 1987.

36

[GogT6]

[Gun92]

[HIW92]

[Mit90]

[Mit93]

[MMS5]

[Nip93]

[NP]

[Pau84]

[Reg94]

[SNGMS9]

[Str67]

[SWS3]

[WBS9]

M. Gogolla. Partially Ordered Sorts in Algebraic Specifications. In
B. Courcelle, editor, Proc. 9th CAAP 1984, Bordeauz. Cambridge
University Press, 1976.

C. A. Gunter. Semantics of Programming Languages: Structures
and Techniques. MIT Press, 1992.

P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the
Programming Language Haskell, A Non-strict Purely Functional
Language (Version 1.2). ACM SIGPLAN Notices, May 1992.

J.C. Mitchell. Type Systems for Programming Languages. In Hand-
book of Theoretical Computer Science, chapter 8, pages 365-458.
Elsevier Science Publisher, 1990.

J. C. Mitchell. Introduction to Programming Language Theory.
MIT Press, 1993.

J.C. Mitchell and A.R. Meyer. Second—Order Logical Relations.
In Logic of Programs, volume 193 of LNCS, pages 225-236, Berlin,
June 1985. Springer—Verlag.

T. Nipkow. Order-Sorted Polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164-188. CUP,
1993.

Tobias Nipkow and Christian Prehofer. Type checking type classes.
In Proc. 20th ACM Symp. Principles of Programming Languages,
pages 409-418.

L. Paulson. Deriving Structural Induction in LCF, volume 173 of
LNCS. Springer, 1984.

F. Regensburger. HOLCF: FEine konservative Erweiterung von
HOL durch LCF. PhD thesis, Technische Universitit Miinchen,
1994. to appear.

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-Sorted
Equational Computation. In Resolution of Equations in Algebraic
Structures. Academic Press, 1989.

C. Strachey. Fundamental Concepts in Programming Languages.
In Lecture Notes for International Summer School in Computer
Programming, Copenhagen, 1967.

D. Sannella and M. Wirsing. A Kernel Language for Algebraic
Specification and Implementation. Technical Report CSR-131-83,
University of Edinburgh, Edinburgh EH9 3J7Z, September 1983.

P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less
Ad hoc. In 16th ACM Symposium on Principles of Programming
Languages, pages 60-76, 1989.

37

