A Requirement Specification for a Lexical Analyzer*

Rudolf Hettler*
February 25, 1994

Abstract

This report gives an abstract requirement specification of lexical analysis as it
is employed in compiler construction. We focus on the behaviour of a special lexi-
cal analyzer, the UNIX tool LEX. Using the high-level axiomatic specification lan-
guage SPECTRUM we show the importance of abstract specifications for formalizing
a problem domain and the necessity of keeping such a requirement specification
as clear and understandable as possible, despite its formality and mathematical
rigour.

1 Introduction

In this case study we give a requirement specification for a lexical analysing tool similar
to UNIX LEX in the specification language SPECTRUM. SPECTRUM is an axiomatic
specification language supporting full first-order logic. Its loose semantics allows for
stepwise development as it is possible to refine specifications by adding additional axioms
(properties). This has the effect that the class of models of the refined specification is
always included in the class of models of the original one. The expressiveness of its full
first-order logic makes it suited for giving highly abstract (and definitely not executable)
requirement specifications. A few hints on how to read a SPECTRUM specification will be
given in this paper. For a detailed description of SPECTRUM see [BFGT93a, BEG193b].

In performing this case study we mainly have to cope with two quite different speci-
fication tasks:

1. We have to formalize regular expressions and regular expression matching. For
the concept of regular languages abstract mathematical definitions can be found
in many books on formal languages and automata theory. Thus, our main task is
here to transform those abstract definitions into our formal language.

{This work was sponsored by the German Ministry of Research and Technology (BMFT) as part of
the compound project “Korrekte Software (KORSO)”.
*Fakultat fur Informatik der TU Miinchen, D-80290 Miinchen

2. We have to specify the behaviour of the lexical analyzer itself. Books on compiler
construction often do this by explaining how to use a certain scanner. Like [ASU86]
we will use the UNIX scanner generator LEX as a model for our scanning function.
The main task here is to analyze the behaviour of scanners generated by LEX, find
out the essential parts of it and finally formalize them using SPECTRUM.

The rest of this paper is organized as follows. Section 2 introduces all the basic
concepts we need for specifying the lexical analyzer. In section 3 regular expressions
and their languages are formalized. Based on this specification section 4 develops and
discusses a requirement specification of a LEX-like lexical analyzer. Section 5 draws
some conclusions and relates this case study to other work done in this area.

2 Prerequisites

In order to be able to do our main work (specify the concepts of lexical analysis), we
need formal specifications of some primitive concepts which are not tightly connected
to our problem domain. Instead, they are general concepts which serve as a basis for
formalizing the concepts we are interested in. Although these specifications are given
collectively in this chapter, this does not mean that they all were completely worked
out before the main work was started. Parts of them evolved together with the main
specification and are collected here to allow for a smooth presentation of our results.

To start with, we need the concepts of natural numbers, lists, characters and, as a
special case of lists, character strings. The specification of these concepts is taken from
SPECTRUM’s standard library which can be found in Appendix A.

List = {
data List a = [] | cons(!first: a,!rest: List a);
List::(EQ)EQ;

.++.:List a X List a@ — List a prio 10: left;
.++4+. strict total;

axioms V s,s’:List «, e:a in

(1) [++s=s
{12} cons(e,s’) ++ s = cons(e,s’ ++ s8);
endaxioms;

Figure 1: A SPECTRUM specification of lists

With the example of the specification List taken from the standard library (see

Figure 1) we now give some remarks which should help in understanding SPECTRUM
specifications (for a detailed introduction to SPECTRUM see [BFGT93a, BFG193b]):

e Comments are preceded by ——.

e All sorts in this case study are introduced as free data types via the data construct.

This construct is similar to the data or datatype constructs in functional languages
like MLL or Haskell. It introduces the new sort together with its constructors and
selectors.

SPECTRUM has a polymorphic type system with type classes very similar to the
type system of Haskell [HJW92]. In this case study we have to do with the three
type classes EQ, PO and TO which are used for sorts that provide equality, a partial
order or a total order, respectively.

Functions are defined by giving a signature and axioms they have to obey. In
specification List, for example, the function .4+ . has the signature

.++.:List @ X List @ — List a prio 10: left

This signature gives the sort of .44 . and states that it is an infix function with
a certain precedence which is left associative. For .++4., there are three axioms.
Two of them are given as logical formulae between axioms and endaxioms, the
third is given by the line .++. strict total, which demands .44 . to be strict
and total. If logical axioms start with an identifier enclosed in curly brackets, those
identifiers are names for the following axiom (the logical axioms of . + 4. have the
names 11 and 12).

Besides the standard library some more primitives will be needed for the study. For

convenience, we will use a . <. relation on natural numbers which is (based on a given
relation .<.) defined by:

Nat

<.
<.

= { enriches Naturals;

: Nat X Nat — Bool prio 6;
strict total;

axioms V n,m:Nat in
n<m=(n<mAn#m;
endaxioms;

}

As our specification will make heavy use of lists, we need some more functions on

lists than provided by List. The following specification extends List by all functions
we will need:

Ext Lists = {
enriches List + Nat;

—— all functions in this specification are strict

strict;

mklist : o — List «;

len : List a — Nat;

concat : List (List «) — List «;

mklist, len, concat total;

axioms Vs:List a,ss:List(List «),e:ca in

mklist e = cons(e,[]);

len [|] = 0;

len(cons(e,s)) = succ(len s);

concat [| = [];

concat (cons(s,ss)) = s ++ concat ss;

endaxioms;

.E€. a::EQ = o X List @ — Bool prio 6;
.is_prefix_ of. a::EQ = List a X List a — Bool prio 6;
.is_postfix of. a::EQ = List a X List a — Bool prio 6;
_precedes_in_ a::EQ = a X a X List a — Bool prio 6;

.€., .isprefix of., .is_postfix of., _precedes_in_ total;

axioms «::EQ = Vs,s’:List «

Ve,e’:a
in
e € s = ds1,82. s = s1 ++ mklist(e) ++ s82;
s’ is prefixof s = ds’’. 8 = 8’ ++ 8’°;
s’ is postfixof s = ds’’. 8 = 8’° +4 873

_precedes_in (e, e’, 8) = ds1,82,83. —(e’€ s1) A
s = 81 +4+ mklist(e) ++ s2 +4+ mklist(e’) ++ 83;
endaxioms;

}

3 Regular Expressions

Now we are ready to formalize the concept of regular expressions and the languages they
denote. We start by taking the definition of regular languages out of a book on compiler
construction and translate it into a SPECTRUM specification.

Books on compiler construction like [ASU86] define regular expressions and their
languages as follows:

Definition 1 Let ¥ be an alphabet (finite set of symbols). A language over ¥ is a (pos-
sibly infinite) set of ¥-strings. On languages L and M we define the following operations:

Union LUM = {s|seLvse M}
Concatenation LM = {st|se LAte M }
Exponentiation . {e} ifi=0
(¢ denotes the empty string) L= { LI else
Kleene Closure '

(Zero or more concatenations of L) Lm=Uzo L'

Given these operations we can define reqular expressions and the language they denote
by:

1. € is a reqular expression denoting the language {c}.
2. If a € ¥ is a symbol, then a is a regular expression denoting {a}.
3. If r and s are reqular expressions denoting the languages L(r) and L(s), then

(a) r|s is a regular expression denoting L(r) U L(s),
(b) rsis a regular expression denoting L(r)L(s),
(¢) ™ is a reqular expression denoting L(r)*,

(d) (r)is a reqular expression denoting L(r).
In order to save brackets we adopt the following precedence conventions:
o x has the highest precedence
e concatenation has the second highest precedence and is left associative
o | has the lowest precedence and is left associative

a

Now we have to transform this semi-formal definition into a SPECTRUM specification.
In our case ¥ is the set of characters defined by (the primitive specification) Character.
In an attempt to stick as close to the above definition as possible one might consider to
model languages as sets of character strings and specify the above mentioned operations
as SPECTRUM functions on them. The problem with this approach is that languages
often contain infinitely many elements and thus are infinite objects. All the standard
specifications of sets found in the literature, however, specity only finite sets. While
it is possible in SPECTRUM to specify infinite objects, a specification of infinite sets is

a tricky thing to do and would certainly not enhance understandability of the whole

specification. Because of this we prefer another way of specifying regular languages.
Instead of trying to specify the possibly infinite language L(r) generated by a regular
expression r, we specify a characteristic predicate for L(r) which decides for any string s
if s isin L(r). The test if a string is in a certain regular language is often called matching.

Thus, instead of saying “s is in L(r)

7 one usually says “r matches s”. We now have to

define this characteristic predicate.
From the definitions of the operations on languages we can deduce:

sel(e) & s=¢

s€l(a) & os="a

sE(L(rUL(t)) & sel(r)vselL(t)

sE(L(r)L(t)) & ds1,82.8 = s152A81EL(r)As2€ L(1)

seL(r)* & s =eVAsy, ..., 858 = 81 .. S ASIEL(F)A L NS, EL(7)

Using these equivalences we can rephrase our definition of regular languages along the

structure of regular expressions as follows:

Definition 2

1. ¢ is a reqular expression matching the string e.

2. If a € ¥ is a symbol, then a is a reqular expression matching the string 'a’.

3. If r and t are reqular expressions and s is a string, then

(@)
(t)
(¢)
(d)

|t is a reqular expression and matches a string s iff r matches s V t matches

Sy

rt is a reqular expression and matches s iff 3s1,85. s=s189 A r matches s; At

matches s,
1 is a reqular expression and matches s iff s=¢ V dsy,...,8,. s=8...5, A r
matches sy A ... A r matches s,,

(r) is a regular expression and matches s iff r matches s.

a

There are two points about this transformation of our definition of regular languages

that are worth noting:

o [t was not a formal transformation as we have not yet given a formal specification
for the whole topic. Rather it was a transformation to make formalization easier
and more understandable. It is only justified by our general knowledge about the
problem domain and not by a formal (machine checkable) proof.

o We have got rid of the notion of infinite sets. From now on we only have to deal
with finite objects.

Our second definition of regular expressions can now quite easily be transformed into
a SPECTRUM specification. For regular expressions we recursively specify a free data
type Regexp along the inductive structure of the definition. In order to obey the lexical
conventions of SPECTRUM we use the following naming conventions:

empty regular expression €

atomic regular expression a | mkreg(a)

r|s rlls
TS ros
r* *% (1)

The characteristic predicate “r matches s” is specified as a (infix) SPECTRUM function
.matches..

Regexp = {
enriches Character 4 String + Ext_Lists;
data Regexp = ¢
| mkreg (! Char)
| .o. (! Regexp,! Regexp) prio 11
| .]|. (' Regexp,! Regexp) prio 10
| #+ (! Regexp);
Regexp :: EQ;
.matches. : Regexp X String — Bool prio 6;

.matches. strict total;

axioms V ¢, rl1, r2, s, s’ in

¢ matches s = (s = "");

mkreg(c) matches s = (s = mklist c¢);

ri||r2 matches s = rl matches s V r2 matches s;

+*rl matches s = (s = " V dss : List String. s = concat ss A

Vs’ : String. s’ € ss = rl matches s’);
rlor2 matches s = Js1,s82. s = s1 +4+ 82 A rl matches s1 A r2 matches s2;
endaxioms;

}

4 Lexical Analysis

4.1 Informal Requirements

Informally, lexical analysis partitions a given string (for example a program text) into a
list of substrings called lexemes such that each substring belongs to one of a given set

of lexical categories. These categories are described via regular expressions. A string s
belongs to the lexical category described by a regular expression r iff. r matches s. The
lexical analyzer then outputs a list of tokens which are assigned to the lexical categories
of the respective lexemes. In order to keep things simple, we will from now on identify
tokens with the regular expressions they represent, which means that our scanner outputs
a list of regular expressions.

Unfortunately, the description given so far is not sufficient for a requirement specifi-
cation. It is incomplete in several ways:

1. Often there are a lot of different ways how a given string can be partitioned into
lexemes. Consider for example the set {a*, ab} of regular expressions and assume
that we want to scan the string “aaaab” with them. According to the above
definition there are many possible results for this scan as we can partition this
string in several ways such that each substring is matched by either a* or ab:

o [“a”,“a”,“a” “ab”] which is matched by [a*,a*,a*,ab]

e [“aaa”,“ab”] which is matched by [a*,ab]

amongst others. Note that according to this definition also the following partition-
ings are possible:

o [¢,%aaa” “ab”] which is matched by [a*,a*,ab]

o [c,6,“aaa”,“ab”] which is matched by [¢*,a*,a*,ab]

and so on. In order to avoid this last kind of ambiguity we strengthen our above
description of lexical analysis by demanding lexemes to be nonempty strings.

Even with this restriction, however, our characterization of lexical analysis is too
loose. Lexical analysis is mostly used to check text written by humans (for example
program texts written by programmers). For a human programmer to write correct
code it is vital to know how the lexical analyzer fragments his text. Therefore
scanners have to adopt a strategy for resolving ambiguity which is intuitive and
easily comprehensible. All scanners known to the author, especially the UNIX
tool LEX which serves as our example, have adopted the following longest-prefiz
straleqgy:

Process the input string from the left to the right. The next lexeme
to recognize is always the longest (nonempty) prefix of the unprocessed
input that is matched by one of the given regular expressions. If there
is more than one regular expression matching this longest prefix, choose
the regular expression which is the first according to a given order on
the set of regular expressions.

2. We have to determine for which values of the input we expect results as we have
characterized them above and what to do in the rest of the cases. Obviously, not

all strings can be broken into lexemes according to a set of regular expressions.
Suppose we have again the regular expressions {a*, ab} and want to scan the string
“abc”. It is clear that this scan has no solution as the letter ¢’ does not appear
in any of the regular expressions. The problem is even more subtle. There are
strings that can be broken into lexemes according to our first abstract definition
but not according to the longest-prefix strategy. Suppose again the example where
we want to scan the string “aaaab” with the regular expressions {a*, ab}. As we
have already seen there are many possibilities to break this string into lexemes
but none of them complies with the longest-prefix strategy, because the longest
prefix of “aaaab” which can be matched is “aaaa” matched by a¢*. Having matched
this prefix we are left with an unprocessed input “b” which cannot be matched by
neither ¢* nor ab. Thus there is no longest prefix solution for this scan. We can
therefore only demand our scanner to yield a result as characterized above if for
the given input string there is a longest prefix solution.

We have seen that for any given set of regular expressions there may be many
strings which cannot successfully be scanned according to the above definition. We
now have to decide what to do in those cases. From the scanner’s point of view,
on the one hand, those cases are error situations, because it cannot fulfill its task.
For a requirement specification it would be perfectly appropriate to work with
underspecification and to postpone all decisions regarding error recovery to later
development steps. On the other hand, seen from the user’s point of view, a string
which cannot be scanned is a quite normal input for a scanner, since it is one of
the scanner’s tasks to find lexically illegal constructs in the input. Therefore those
cases are more than simply erroneous situations for our scanner and so we have
to cope with them in the requirement specification. One of many possible ways to
deal with those situations is again to have a look at the UNIX scanner generator
LEX and mimic its behaviour, which is to scan the input string as far as possible
and to return the unprocessed postfix of the input string in case of an error.

4.2 Specification

We will now present a specification which fulfills all the informal requirements given
in section 4.1. We will then proceed with a discussion of the this specification and its
properties.

Based on the specification Regexp our scanner can be specified as follows:

Scan = { enriches Ext Lists + Regexp;

.is_prefix match of. : (String X Regexp) X String — Bool prio 6;
.is_prefixmatch of. strict total;

axioms V ri1, s, s’ in
(s,r1)is prefixmatchof s’ < rl matches s A s is_prefix of s’;

endaxioms;

.is_longest _prefix match_ of.
(String X Regexp) X (String x List Regexp) — Bool prio 6;
.is_longest prefixmatch_of. strict total;

axioms Vs, s’, t, rs in
(s’, t) is_longest prefixmatch of (s, rs) &
ters A (s’, t) is_prefixmatchof s A
Vsi,t1. t1 € rs A (s1, t1) is_prefixmatchof s A (s1, t1) # (s’, t) =
len s1 < len s’ V (len s1 = len s’ A _precedes_in (t, t1, rs));
endaxioms;

data Scan Result = mkres(! tokens: List Regexp, ! unprocessed: String);

scan : String X List Regexp — Scan_Result;
scan strict total;

axioms Vs, s’, rs, ts in
scan(s, rs) = mkres(ts, s8’) =
s’ is_postfixof s A
(Vr. r € ts = r € ra) A

(ts =[] = s=s’ A

Vs’’,r. r€rs As’? £ >

-((s?’, r) is_prefix match of s)

) A
(ts # [| = ds1,s2. s = s1 +4 s2 A

scan(s2, rs) = mkres(rest(ts), s’) A

(s1, first(ts)) is_longest prefix match of (s, rs)
);

endaxioms;

}

The specification of our scanner is split into the definition of two functions. The
main function scan describes the way in which the input is processed from left to
right searching for prefixes which can be matched and gives thus some kind of con-
trol structure to the scanner. The longest prefix criterion is formalized in the function
.is_longest prefix match_of., which checks for a given match (i.e. a string together
with a regular expression matching it) if it has the longest prefix property.

The function scan has two arguments: the input string that is to be scanned and
the regular expressions available for scanning. The regular expressions are organized in
a list as we need an order on them for expressing the longest prefix strategy. It yields a
composite result (Scan Result) which consists of a list of regular expressions standing
for the lexemes recognized during lexical analysis and a string which is the unprocessed
part of the input in case of error. If scanning is successful this string is empty. For better

10

understanding we will now translate the axiom of scan into english sentences:

The result mkres(ts,s’) of the lexical analysis scan(s,rs) of a string s
according to the regular expressions in rs has the following properties:

e the unprocessed rest s’ is a postfix of s

o the result ts contains only regular expressions which are already con-
tained in rs

e an empty regular expression sequence ts in the result implies that the
input string is completely unprocessed (s=s’) and is only possible if
there are no regular expressions in rs which match a nonempty prefix
of s

o if the result contains a nonempty regular expression list ts then s can
be split into a prefix s1 and a rest s2 such that

— mkres(rest ts, s’) is the result of scan(s2,rs)

— the tuple (s1,first ts) is a longest prefix match of s, which means
it fulfills the predicate .is_longest prefix match of. according to
s and rs

(s’,t)is longest prefix match of (s,rs) checks if a string s’ and a regular ex-
pression t form a longest prefix match of s according to the set of regular expressions
rs. For this the following facts have to be fulfilled:

e t is contained in rs

e s’ is a prefix of s and is indeed matched by t. This is checked by the function
.is_prefixmatch of..

e s’ is the longest prefix that can be matched by a regular expression from rs and
t is the first regular expression in rs matching s’

4.3 Discussion

The specification Scan from section 4.2 is in some way a quite typical requirement spec-
ification, in some other way it is not. In the following we will discuss this issue in more
detail.

Scan is not a typical requirement specification because it determines the scanner
uniquely. There is no freedom left concerning the behaviour of the scanner to an imple-
mentor. This property stems from the special kind of task we are dealing with which is to
specify the behaviour of a specific tool (LEX). If we had given ourselves the task of spec-
ifying some problem for which we do not know the solution beforehand, our specification
would much more likely contain underspecified cases.

It is, however, a typical requirement specification because it does not give an al-
gorithm for performing lexical analysis. All the sophisticated algorithms known from

11

automata theory do not appear in this specification. The specification is thus not exe-
cutable. Furthermore, in contrast to algorithmic specifications it contains redundancy.
The part s’ is_postfix_of sin the axiom of scan is redundant and could as well be de-
rived from the rest of the specification. It is quite normal for a requirement specification
to contain redundancy because in this early development phase the specifier is concerned
with simply collecting requirements and formalizing them as comprehensibly as possible.
Minimality is not important in this step, often it even affects understandability. On
the way to a design specification and finally to an executable program, however, this
redundancy has to be eliminated which means that the redundant parts of the axioms
have to be proven as theorems.

5 Conclusion

In this paper we have given a requirement specification for a lexical analyzer similar
to the UNIX tool LEX. As explained in Section 1 we had to tackle two quite different
specification problems.

When formalizing the concept of regular languages we have realized that not every
abstract mathematical definition is equally suited for formalisation in a specification
language like SPECTRUM. The reason for this is that such mathematical definitions
often work with quite difficult basic notions which turn out to be complex and not very
comprehensible when specified formally. In our example this was the case with the notion
of infinite sets. In such situations often it is better to look for some equivalent definition
which is based on simple and easily understandable concepts.

In the specification of the scanner we have seen that the attempt to specify some
already existing piece of software results in a quite concrete specification which is not
necessarily typical for a requirement specification.

The specification given in this paper has been the starting point for a lot of other
case studies concerning LEX throughout the compound project KORSO [Bey93, KLW93,
AFHL92, RSS93, DS93, Han93]. All of those publications regard the LEX example from

different points of view and thus give together a quite general treatment of this topic.

12

References

[AFHL9?]

[ASUS6]

[Bey93]

[BFG*93a]

[BFG*93b]

[DS93]

[Han93]
[HIW92]

[KLW93]

[RSS93]

A. Ayari, S. Friedrich, R. Heckler, and J. Loeckx. Das Fallbeispiel LEX.
Technical Report WP92/39, Uni Saarbriicken, 1992.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmann. Compilers. Principles,
Techniques and Tools. Addison-Wesley, 1986.

Martin Beyer. Specification of a LEX-like scanner. Technical report, TU
Berlin, 1993. To appear.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stglen. The Requirement and Design Seci-
fication Language SPECTRUM. An Informal Introduction. Version 1.0. Part
I. Technical Report TUM-19311, Technische Universitat Minchen. Institut
fir Informatik, May 1993.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Re-
gensburger, O. Slotosch, and K. Stglen. The Requirement and Design Seci-

fication Language SPECTRUM. An Informal Introduction. Version 1.0. Part
IT. Technical Report TUM-19312, Technische Universitat Miinchen. Institut
fir Informatik, May 1993.

A. Dold and M. Strecker. Program Development with Specification Opera-
tors — illustrated by a specification of the LEX scanner. Technical report,

Uni Ulm, 1993.
R. Handl. Verifikation eines Scanners. Master’s thesis, TU Minchen, 1993.

P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the Program-
ming Language Haskell, A Non-strict Purely Functional Language (Version
1.2). ACM SIGPLAN Notices, May 1992.

K. Kolyang, J. Liu, and B. Wolff. Transformational Development of an
Efficient Implementation of LEX. Internal Report, Uni Bremen, 1993.

W. Reif, G. Schellhorn, and K. Stenzel. A Verified Lexical Scannner — a
Methodological Case Study with the Kiv System. Technical report, Uni
Karlsruhe, 1993. To appear.

13

A SPECTRUM’s Standard Library

This appendix contains SPECTRUM’s standard library as it is defined in [BFG'93a,
BFG*93b].

Character = {

data Char = ’3’ | b2 | ’e? | ’q° | ’g? | 12 |)g) | 'R | 142 |)j) | 'k
| 1] | ‘m? | ’n? | ’g? |)p) |)q) | Yy | ’g? | 12 | ‘u? | ry?
[) [[L) IR o) Y M Y [R n) [N)
| 2w | x> [2y’ |z | P& | °B” | °C’ | °D? | PE? | ’F’ | G
| g2 | 1T | Ak | K2 | 'L | ‘M2 | K | ’0° | p? |)Q) | ’R?
| ’go | ’T? | A | AR | AR | >& | ’y? | A | ’0° | 11 | 190
| 130 | 142 | ’52 | ’g? | 170 | ’8° | 192 |)[) |)]) | 110 | T H°
|)%; | 'y |)$) | o |)_I_) | y_ |)/) | 1 | 10 | ’=> | 1?0
| ’Q° | y~ | » =~ |)|) |] |){) |)}) |)(; |))) | L] |);)
|),) |). | ’ | > |)\n)|)\t)| ’\V’|)\b)| ’\I"|)\f;|)\a)
AP A

Char :: EQ;

List = {

data List a = [] | cons(!first: a,!rest: List a);
List::(EQ)EQ;

.++.:List o X List « — List a prio 10: left;
.+4+. strict total;

axioms V s,s’:List «, e:a in

{11}
{12}

] ++ s =s;

cons(e,s’) ++ s

cons(e,s’ ++ s8);

endaxioms;

}

String = { enriches Character + List;

—— String is only an abbreviation for lists of characters
sortsyn String = List Char;

}
Ordering = {
class PO subclass of EQ;

.<.: @::P0 = a X a — Bool prio 6;

14

axioms «::P0 = Vx,y,z:a in
{refl} =x<x;

{trans} x<y A y<z = x<z;

{ant} x<y A y<x = x==y;
endaxioms;

class TO subclass of PO;

axioms «::TO0 = Vx,y:a in
{tot} x<y V y<x;
endaxioms;

}

Numericals = { enriches Ordering;
class NUM subclass of TO;

—— functions for sort class NUM
.4.:a::NUM = a X @ — a prio 6: left;
—.:a::NUM = a X a — a prio 6;

Socan:NUM = a X a — a prio 7: left;
/.ot NUM = a X o — « prio 6;

A, .—., k., . /. strict;

.+.,.%x. total;

axioms «::NUM = Va,b,c:a in

—— Associativity

{assoc1} (a+b)+c = a+(b+c);
{assoc2} (a*xb)*c = ax(bkc);
—— Commutativity

{comml} a+b = b+a;
{comm2} a*b = bxa;
endaxioms;

}

Naturals = { enriches Numericals;
data Nat = 0 | succ(!pred:Nat);
Nat::NUM;

.mod.:Nat X Nat — Nat prio 7;
.mod. strict;

axioms Vn,m:Nat in
—— Addition

15

{al} n+0 = n;

{a2} n+succ m = succ(ntm);

—— Subtraction

{s1} 6(n—m) < m<n;

{s2} (n4m)—m = n;

—— Multiplication

{m1} nx0 = 0;

{m2} DkSUCC M = n-4nsm;

—— Division

{d1} 6(n/m) & m#0;

{d2} m#0 = n mod m<m A n mod m # m;
{d3} n#0 = n = (n/m)+m + n mod m;
—— 0Ordering

{o1} n<succ n;

endaxioms;

}

16

