Specification and Refinement of Finite
Dataflow Networks — a Relational Approach®

Manfred Broy, Ketil Stolen

Abstract

We specify the black box behavior of dataflow components by characterizing the
relation between the input and the output histories. We distinguish between three
main classes of such specifications, namely time independent specifications, weakly
time dependent specifications and strongly time dependent specifications. Dataflow
components are semantically modeled by sets of timed stream processing functions.
Specifications describe such sets by logical formulas. We emphasize the treatment
of the well-known fair merge problem and the Brock/Ackermann anomaly. We
give refinement rules which allow specifications to be decomposed into networks of
specifications.

1 Introduction

Dataflow components can be specified by formulas with a free variable ranging over do-
mains of continuous functions — so-called stream processing functions [Kel78], [BDD192].
Both time independent and time dependent components can be described this way. In the
latter case, the functions are timed in the sense that the input/output streams may have
occurrences of a special message representing a time signal. For such specifications elegant
refinement calculi [Bro92a], [Bro93] can be formulated, which allow dataflow networks to
be developed in the same way as the methods suggested in [Jon90], [Mor90] allow for the
development of sequential programs.

The set of functions characterized by a component is called the component’s denota-
tion. Components modeled by timed stream processing functions can be classified as time
independent, weakly time dependent or strongly time dependent. A component is time
independent if at most the timing of the output depends upon the timing of the input.
Weakly time dependent components are always nondeterministic, and their output (not
only the timing of the output) depends upon the timing of the input. However, due to the
nondeterminism this time dependency is hidden in the sense that for inputs, which are
identical apart from the timing, we get the same set of outputs, when the time signals are
abstracted away. A strongly time dependent component is a component that is neither
time independent nor weakly time dependent.

*This work is supported by the Sonderforschungsbereich 342 “Werkzeuge und Methoden fir die
Nutzung paralleler Rechnerarchitekturen”.

In the case of weakly time dependent components explicit timing is not really needed in
order to specify the black box behavior. A famous example of such a component is an
agent which outputs a fair merge of the messages it receives on two input channels.

It is well-known that, because of the continuity constraint imposed on stream processing
functions, a fair merge component cannot be modeled by a set of (monotonic) untimed
stream processing functions [Kel78]. On the other hand, to specify components of this
type in terms of timed stream processing functions is a bit like shooting sparrows with a
shotgun, since explicit timing is not needed in order to characterize their behavior.

In an attempt to abstract from unnecessary time-dependency, this paper advocates a
technique, where the black box behavior of dataflow networks is specified by character-
izing the relation between the input and the output histories. We distinguish between
three main classes of such specifications, namely time independent specifications, weakly
time dependent specifications and strongly time dependent specifications — from now on
shortened to ti-specifications, wtd-specifications and std-specifications.

Although ti-, wtd- and std-specifications are mainly intended for the specification of time
independent, weakly time dependent and strongly time dependent components, respec-
tively, a wtd-specification may also be used to specify a time independent component, and
a std-specification may also be used to specify a time independent or a weakly time depen-
dent component. In fact, as we will see later, in some sense a wtd-specification is a special
case of an std-specification, and a ti-specification is a special case of a wtd-specification
and an std-specification.

Specifications are semantically modeled by sets of timed stream processing functions.
For each specification class refinement rules are given, which allow specifications to be
decomposed into networks of specifications. Rules, which allow a specification of one class
to be translated into a specification of another class, are also given.

Finally, it is explained how the well-known Brock/Ackermann anomaly [BAS81] can be
overcome by distinguishing between simple and general specifications.

Section 2 describes the underlying formalism. Then we introduce ti-specifications, wtd-
specifications and std-specifications in Sections 3, 4 and 5, respectively. In Section 6 the
three main types of specifications are divided into simple and general specifications. A
brief summary and discussion can be found in Section 7. Finally, there is an appendix
containing some soundness and completeness proofs.

2 Underlying Formalism

N denotes the set of natural numbers, and N* denotes N\ {0}. We assume the availability
of the standard logical operators. As usual, = binds weaker than A,V,— which again
bind weaker than all other operators and function symbols.

A stream is a finite or infinite sequence of messages. It models the history of a communi-
cation channel by representing the sequence of messages sent along the channel. Given a
set of messages [, D* denotes the set of all finite streams generated from D; D> denotes
the set of all infinite streams generated from D, and D* denotes D* U D>

Let d € D, r,s € D¥, and j be a natural number, then:

¢ denotes the empty stream;

(dy,...,d,) denotes a stream of length n, whose first message is dy, whose second
message 1s dy, etc. ;

e ft(r) denotes the first element of r if r is not empty;

o #r denotes the length of r;

o d" where n € NU {oo}, denotes a stream of length n consisting of only d’s;

e r|; denotes the prefix of r of length j if j < #r, and r otherwise;

e d& s denotes the result of appending d to s;

o r— s denotes r if r is infinite and the result of concatenating r with s, otherwise;

e r C s holds if r is a prefix of s.

Some of the stream operators defined above are overloaded to tuples of streams in a
straightforward way. e will also be used to denote tuples of empty streams when the size
of the tuple is clear from the context. If d is an n-tuple of messages, and r, s are n-tuples
of streams, then #r denotes the length of the shortest stream in r; d & s denotes the result
of applying & pointwisely to the components of d and s; r ~ s and r C s are generalized
in the same pointwise way.

If s, s" and r are stream tuples such that s = s’ ~r then s’} s = r. For any stream s, and
natural number n, [s]" denotes an n-tuple consisting of n copies of s.

A chain cis an infinite sequence of stream tuples ¢q, ¢, ... such that forall y > 1, ¢; T ¢;44.
Lc denotes ¢’s least upper bound. Since streams may be infinite such least upper bounds
always exist.

A Boolean function P : (D*)* — B is admissible iff whenever it yields true for each
element of a chain, then it yields true for the least upper bound of the chain. We write

adm(P) iff P is admissible.

A Boolean function P : (D“)" — B is prefix-closed iff whenever it yields true for a stream
tuple, then it also yields true for any prefix of this stream tuple.

A Boolean function P : (D*)" — B is safe iff it is admissible and prefix-closed. We write
safe(P) iff P is safe.

For formulas we need a substitution operator. Given a variable a and term ¢, then P[¢]
denotes the result of substituting ¢ for every free occurrence of @ in P. The operator is
generalized in an obvious way in the case that a and ¢ are lists.

A function 7 € (D*)" — (D¥)™ is called a stream processing function iff it is prefix
continuous:

for all chains ¢ generated from (D¥)" : 7(Uc) = U{7(¢;)|s € NT}.
That a function is prefix continuous implies first of all that the function’s behavior for

infinite inputs is completely determined by its behavior for finite inputs. Secondly, prefix
continuity implies prefix monotonicity which basically means that if the input is increased

then the output may at most be increased. Thus what has already been output can never
be removed later on.

A stream processing function 7 € (D¥)" — (D)™ is pulse-driven iff:
for all stream tuples 7 in (D¥)": #i # 0o = #7(1) < F#4.

That a function is pulse-driven means that the length of the shortest output stream is
infinite or greater than the shortest input stream. This property is interesting in the
context of feedback constructs because it guarantees that the least fixpoint is always
infinite for infinite input streams. For a more detailed discussion, see [Bro92c].

cp
The arrows —, — and — are used to tag domains of ordinary functions, domains of
continuous functions, and domains of continuous, pulse-driven functions, respectively.

To model timeouts we need a special message +/, called “tick”. There are several ways
to interpret streams with ticks. In this paper, all messages should be understood to
represent the same time interval — the least observable time unit. / occurs in a stream
whenever no ordinary message is sent within a time unit. A stream or a stream tuple
with occurrences of /’s are said to be timed. Similarly, a stream processing function is
said to be timed when it operates on domains of timed streams. Observe that in the case
of a timed, pulse-driven, stream processing function the output during the first n+1 time
intervals is completely determined by the input during the first n time intervals.

For any stream or stream tuple ¢, ot denotes the result of removing all occurrences of /
in ¢. For example:

ola&b&\/&aks)=a&kb&ak os.

In the more theoretical parts of this paper, to avoid unnecessary complications, we dis-
tinguish between only two sets of messages, namely the set D denoting the set of all
messages minus /, and T" denoting DU{\/}. However, the proposed formalism can easily
be generalized to deal with general sorting, and this is exploited in the examples.

We use two additional functions in our examples: a filter function (¢) and a function o
removing consecutive repetitions. More formally, if A is a set of n-tuples of messages,
d, e are n-tuples of messages, and r is an n-tuple of streams, then A(c) and o are stream
processing functions such that the following axioms hold:

de A= AQd&r =d& A©r,
dg¢ A= AQd&r = A©r,

x((d)) = (d),
d=e¢= x(d&e&r)=o(d&r),
d#e=x(d&e&r)=d&x(ekr).

When A = {d} we write d©r instead of {d}©r.

3 Time Independent Specifications

A ti-specification of a component with n input channels and m output channels is written
in the form

S (i:0) = R,

where S is the specification’s name; ¢ and o are disjoint, repetition free lists of identifiers
representing n respectively m streams; R is a formula with the elements of ¢ and o as its
only free variables. The formula R characterizes the input/output relation and is therefore
referred to as such. The denotation of the specification S is the set of all timed stream
processing functions, which fulfill R when time signals are abstracted away:

[S (i:0)] € {r € (1) S (%) |Vr € (T)" : B[, %]}

or o1(r)

Strictly speaking, the following denotation
N def wyn € w\m w\n 1 0
[5(:0) 1= {r e (D) = (D*)"|¥r € (D*)": R[, 2]}

is equivalent in the sense that it allows the same set of implementations. Thus timed
functions are not really required in order to model ti-specifications. However, in this
paper we stick to the former alternative because it is then easier to relate the different
classes of specifications.

For any specification S, Rg represents its input/output relation.

v |

:z;l ls
Figure 1: The Unreliable Receiver.

Example 1 Unreliable Receiver:

We specify a receiver UR that is unreliable in the sense that received data elements can
be lost. The receiver has two input channels and two output channels, as pictured in
Figure 1. It is assumed to communicate with a sender SND as indicated in Figure 4, on
Page 11. The sender is formally specified in Example 3. The data elements to be received
are input from the channel y.

The channel r models interference, which may cause a data element to be lost. When the
n-th message input from r is a fail, it means that the n’th data element input from y is

lost; on the other hand, if the n’th message input from r is an ok, it means that the n’th
data element input from y is properly received.

It is assumed that infinitely many copies of ok are sent along r. As indicated in Figure
4, the agent SND has no access to r. This means that UR must forward the information
input on r to the sender, so that the sender knows whether a data element sent along
y was received or not. The output channel x is used for this purpose. Finally, any
properly received data element is required to be output along s. More formally, given

that K = {ok,fail}, UR is specified by:
UR (ye D¥,re K¥:x € K¥,s € D¥) =
Hok(©r = oo
=
#r =gty Aw Er A dts = #0k©O(r|yy) A (6, 5) E {(ok, d)|d € D}O(r,y)

The antecedent states the environment assumption that infinitely many copies of ok are
sent along r. The first conjunct of the consequence requires that x is of the same length
as y; the second that x is a prefix of r; the third that s is of the same length as the stream
of properly received data elements; the fourth that the stream of data elements sent along
s is a prefix of the stream of properly received data elements. O

The operator " is used to compose two specifications by connecting the n last output
channels of the first specification with n first input channels of the second specification,
and by connecting the m first output channels of the second specification with the m
last input channels of the first specification. It can be seen as an operator for parallel
composition. For example, if "9 is used to compose Sy (¢,x:0,y) and Sz (y,r:x,s), and
y and x represent n and m channels, respectively, we get the network pictured in Figure
2. The channels represented by = and y are now hidden in the sense that they represent
local channels.

Sl 52

Figure 2: 51 (i,x:o,y)n®m52 (y,r:x,s).

More formally,

[S) (ia:0,9) 'Sy (y,rea,s) |

{T1n®m7'2|7'1 e[S (tyxioy) AT €] S2 (y,ria,s)]},

where for any pair of timed stream tuples 7 and r, (T1n®m7'2)(i, r) def (0,s) iff (0, s) is the
least fixpoint solution with respect to ¢ and r. This is logically expressed by the following
formula:

dz,y Vo, y 2, 8
Tl(ivx) = (Ovy) A TQ(yvr) = (1’78
(e, ") = (o, y") Ay, r) = (2, 8") = (0,y,2,8) C (o, 9,2, s). (2)

(1) requires (7,7, 0,) to represent a fixpoint; (2) requires this fixpoint to be the least.

When using n®m to build networks of specifications, one will often experience that the

operator needed is not n®m, but a slight modification of n®m, where for example the channels
represented by x are not hidden, or the order of the channels represented by y and r is
permuted in such a way that not all of the y-channels come before all the r-channels.

The n®m—rules given below are valid for all these modified versions if the identifier lists in
the specifications are updated accordingly. Instead of introducing operators and rules for

each of these variations, we overload and use " for all of them — with one exception:

to simplify the discussions of the n®m—operator, we write
S (i,x:0)
as a short-hand for

S1 (ivx:ovy)n®n52 (yil'),

where Rg, L Rs A y = o and Rg, & y = z, as indicated in Figure 3. Clearly S,

characterizes the identity component. When n and m are fixed by the context, we just

write @ and g instead of "9 and p", respectively.

A specification Sy (i:0) refines another specification Sy (:0), written
Sy (i:0) ~ S (i:0),

iff the behaviors specified by Se form a subset of the behaviors specified by Sy, formally:
[Sz (ito)]S [51 (ixo)]

Given a requirement specification S (7:0), the goal of a system development is to construct
a network of components C' such that S (¢:0) ~» C holds. The refinement relation ~ is
reflexive, transitive and a congruence with respect to the composition operators. Hence,

def

Figure 3: ¢S (¢,2:0) = Sy (i,x:o,y)n®n52 (y:x).

~» allows compositional system development: once a specification is decomposed into
a network of subspecifications, each of these subspecifications can be further refined in
isolation.

Based on this definition it is clear that a specification with an empty denotation refines
any specification. Since specifications with empty denotations are inconsistent in the
sense that there is no program that fulfills them, such refinements are undesirable. Thus,
when formulating a specification S (i:0), one should always check whether it is consistent.
Consistency is logically expressed by:

dr e (T¥)" £ (T :¥r e (T“)" : Rs[, 2]

or or(r)

Or equivalently:
dr € (D¥)" S (D¥)™ :Vr € (D¥)" : Rs[! 2

In other words, a specification is consistent iff its denotation is nonempty. Note, the
consistency of a specification does not guarantee that there is a program that refines the
specification. There are namely non-computable stream processing functions that cannot
be expressed in any algorithmic language. It may therefore be argued that instead of
proving consistency one should prove that a specification is implementable by a program.
However, from a practical point of view, it is generally accepted that it does not make
much sense to formally check the implementability of a specification. The reason is that
to prove implementability it is often necessary to construct a program, which fulfills the
specification, and that is of course the goal of the whole program refinement exercise.

We have explained what we mean by refinement. The next step is to explain how refine-
ments can be proved correct. We give three rules for ti-specifications. The first one is a
straightforward consequence rule:

Rule 1 :
RS2 = Rsl
S1 (2:0) ~» Sy (2:0)

Its correctness should be obvious. Rule 2 and 3, which allow for decomposition modulo
the p- and the ®@-operators, respectively, are both based on fixpoint induction. In fact
they are also closely related to the while-rule of Hoare-logic.

Rule 2 :
adm(Az : 1)
I1[7]

I A RS2 =][g]

][gog] A RS2 [gog] = RS1
S1 (2:0) ~» pSy (2,2:0)

In this rule the stream tuples are named in accordance with Figure 3. The lambda
notation in the first premise is used to express that [only has to be admissible with
respect to @ when 7 is kept constant. It is a well-known result that the least fixpoint of
a feedback construct is equal to the least upper bound of the corresponding Kleene-chain
[Kle52]. This is what fixpoint induction is based on, and this is also the idea behind Rule
2. The formula I can be thought of as an invariant in the sense of Hoare-logic and has
the elements of ¢ and x as its only free variables. The second premise implies that the
invariant holds for the first element of the Kleene-chain. Then the third implies that the
invariant holds for each element of the Kleene-chain, in which case it is a consequence of
the first premise that it holds for the least upper bound of the Kleene-chain. Thus the
conclusion can be deduced from the fourth premise.

The following rule

RS2[900] = RS1
S1 (2:0) ~» pSy (2,2:0)

is of course also sound. We refer to this rule as the degenerated version of Rule 2. One
may ask, is it generally so that any decomposition provable by Rule 2 is also provable
by its degenerated version? The answer is “no”. With the degenerated version we can
only prove properties that hold for all fixpoints. Properties which hold only for the least
fixpoints can not be shown. In some sense the invariant of Rule 2 is used to characterize
the least fixpoint solutions. We now look at a simple example where the inductive nature
of Rule 2 is really needed.

Example 2 Elimination of Operationally Unfeasible Fixpoints:
Consider the following specification:

Sy (x:0)=a = o.

It is clear that the result of applying the p-operator to this specification is a network,

which deadlocks in the sense that it never produces any output, i.e. a network which
satisfies:

St (:0)

0=¢c.

Mathematically expressed, it should be possible to prove that:
S1 (:0) ~ pSsy (2:0). (%)

However,
Rs, 5] =o0=c¢

does not hold. This demonstrates that the degenerated version of Rule 2 is too weak. On
the other hand, with

as invariant, it is straightforward to deduce (*) using Rule 2.
O

The rule for the @-operator is a straightforward generalization of Rule 2:

Rule 3 :

adm(Az : 1) Vadm(Ay : I3)

LIETV L[]

]1/\351 =1,

]2/\R52 =1

]1/\351 /\]2/\1’%52 = Rg

S (i,r:0,8) ~ S (i,2:0,y) @ 52 (y,r:x,s)

I; and I, are formulas with the elements of 7,r, x and 7,7,y as their only free variables,
respectively. The third and the fourth premise implies that when one of the invariants
holds for one element of the Kleene-chain then the other invariant holds for the next
element of the Kleene-chain. The second premise then imply that both invariants hold
for infinitely many elements of the Kleene-chain, in which case the first premise can be
used to infer that at least one of the invariants hold for the least upper bound of the
Kleene-chain. It then follows from premises three and four that both invariants hold for
the least upper bound of the Kleene-chain. Thus, the conclusion can be deduced from
premise five. See Proposition 1 in the appendix for a more detailed proof.

Example 3 Sender for the Unreliable Receiver:
The sender SND is supposed to hide the unreliability of UR, specified in Example 1.
The unreliability can of course be hidden only under the assumption that infinitely many

10

SND UR

Figure 4: SND (¢, 2:y) @ UR (y,r:x,s).

ok’s are sent along r. In fact, we can only hope that the resulting network satisfies the
specification RR, which is specified as follows:

RR (e D¥,re K¥:s € D¥) = #ok(Or =00 = s =1

Clearly, SND must repeatedly send the same data element until an ok is received on z.
Formally, SND is specified as follows:

SND (1 € D¥ 2 € K¥:y € D¥) =

let

n = #ok(©x

n < #1

=
[(d,0k)ld € DY@y,) (5,0k™) A
((n=#iNFty = #2)V (n <H#i Nty = o +1))

The antecedent states the environment assumption, namely that the number of ok’s re-
ceived on x is less than or equal to the number of data elements received on ¢. This is a
sensible assumption, since UR only sends an acknowledgement along « for each properly
received data element. The first conjunct of the consequence states that the stream of
data elements sent along y, for which an ok is received on x, is a prefix of . This means
that for every received ok a fresh data element input from ¢ is output. The second con-
junct requires that either the length of 7 is equal to the number of ok’s received on = and
the length of y is equal to the length of x, or the length of ¢ is greater than the number of
ok’s received on x and the length of y is one greater than the length of x. Operationally
this means that the sender postpones outputting the next data element until it receives
a positive or negative acknowledgement for the previous one.

To prove that the network SND (¢,2:y) ® UR (y,r:a,s) is a refinement of RR (7,r:s),
it must be shown that

11

RR (i,r:5) ~ SND (i,z:y) @ UR (y,r:z,s). (%)
Let

I & (#ok@x < #i A x Tr)V #ok©r # oo,

I = k@ (r|gy) < #i V #okOr # oo,
then if

adm(Az : 1) Vadm(Ay : Iy),

LIZTV LY,

I A Rsnp = 1o,

Iy AN Rur = 14,

I A Rsxp A I A Rup = Rpg,

it follows by Rule 3 that (s*) holds. The two first premises hold trivially. The remaining
three can proved using straightforward predicate calculus.

a

Although Rule 2 and 3 are stronger than their degenerated versions, they are not as strong
as desired. This will be discussed in detail in Section 6.

Nevertheless, a restricted completeness result may be stated. For any timed, pulse-driven,
stream processing function 7 € (T%)" & (T9)™, let

ti(1) (¢:0)

be a ti-specification, whose input/output relation is characterized by the following equiv-
alence:

Ry & ' € (T9)" 11 =or' No =or(r').
Note, ti(7) is the strongest ti-specification whose denotation contains 7.
For any specification S (i:0) and timed, pulse-driven, stream processing function 7 such
that

[pti(r) (,2:0) TS TS (o)], (%)

it follows by Rule 2 that

12

S (i:0) ~ pti(r) (i,x:0),

under the assumption that any valid formula of the base-logic (in which the premises are
formulated) can be proved, and that the base-logic allows #i(7) (¢, 2:0) and the invariant

da'cx Ca' A pr(i) =2,

where p is overloaded to stream processing functions in a straightforward way, to be
syntactically expressed (this corresponds to relative, semantic completeness with respect
to deterministic components). The definition of the invariant implies that the three first
premises of Rule 2 are valid, which means that the invariant is satisfied by the least
fixpoint. Moreover, since the invariant holds for the least fixpoint only, it follows from the
assumption () that also the fourth premise is valid. A similar result holds in the case of

Rule 3.

When writing ti-specifications one has to be very careful because of the strong monotonic-
ity constraint imposed on their denotations. For example, consider the straightforward
specification of fair merge (not necessarily order preserving) given below:

RFEM (¢,r:0) =Vd € D : #{d}©i 4+ #{d}©Or = #{d}©o.

This specification is inconsistent due to the monotonicity constraint. To see this, assume
that there is a function 7 which fulfills the specification. This means that

T(a™,€) = a*,

bOT(a™,b>) = b>.
Clearly,

(a™,¢) & (a™,b™),
T(a®™,€) £ T(a™,b>),

which means that 7 is not monotonic and therefore not continuous. This contradicts the
assumption. Thus the specification is inconsistent.

The cause of this problem is that a ti-specification makes no distinction between the
behavior of a function for partial (finite) input and the behavior of a function for complete
(infinite) input. More precisely, since

o(a™, /") = o(a™,¢) = (a™,¢),
the specification above requires that

o1(a®, /") = or(a™,¢) = a*,

13

although strictly speaking we only want to specify that

ot(a®,€) C a®™,
or(a™, /™) = a*™.

Thus because we are not able to distinguish complete, infinite input streams with only
finitely many messages different from /, from finite, incomplete inputs, when time-ticks
are abstracted away, our requirements become too strong.

This observation was made already in [Par83]. In [Bro89] it led to the proposal of so-called
input choice specifications. In the next section we advocate a slightly different approach
with a semantically simpler foundation.

4 Weakly Time Dependent Specifications

A wtd-specification of a component with n input channels and m output channels is
written in the form

S (i:0) = R,

where S is the specification’s name; ¢ and o are disjoint, repetition free lists of identifiers
representing n respectively m streams; R is a formula with the elements of : and o as
its only free variables. As before R characterizes the relation between the input and
output streams. Syntactically, a wtd-specification differs from a ti-specification in that
the brackets () are used instead of () to embrace the lists of input/output identifiers.

The denotation of the specification S is the set of all timed, pulse-driven, stream processing
functions which fulfill R when time signals are abstracted away and only complete inputs
are considered:

[S (ir0)] € {7 € (T*)" & (T*)"|¥r € (T)" : B[, %)}

or o1(r)

Thus in contrast to a ti-specification, a wtd-specification constrains the behavior for com-
plete inputs (infinite inputs at the semantic level'). As before, for any wtd-specification
S, Rs denotes its input/output relation.

A wtd-specification S (i:0) is consistent iff

Ir € (T¥)" B (T9)™ :¥r € (T®)" : Rs[., ..

or o1(r)

Since, as in the time independent case, the denotation is a set of timed, pulse-driven,
stream processing functions, the composition operator @ and the refinement relation ~
can be defined in the same way as earlier.

As shown in the next four examples, weakly time dependent components can be specified

!Note that although the streams are infinite they may have only finitely many occurrences of messages

different from /.

14

in a very elegant way.

Example 4 Fair Merge (with Reorderings):
The wtd-specification

RFM (i € D¥ ,r € D¥:0€ D*) =Vd e D : #{d}©i + #{d}©r = #{d}©o

specifies a component performing a (not necessarily order preserving) fair merge. Since
the specification constrains complete inputs only (infinite streams at the semantic level),
the monotonicity problem of the previous section does not apply here. O

Example 5 Fair Merge (without Reorderings):

A component, which not only outputs a fair merge of the streams of messages received
on its two input channels, but also preserves the ordering of the messages with respect to
the different input channels, is specified below:

FM (e € DY ,r € D¥:0€ D¥) = 3p € {1,2}* : splity(o,p) =i A splitzy(o,p) =1

where split; € D¥ x {1,2}* = D¥ is an auxiliary function which, based on a oracle (its
second argument), can be used to extract the stream of messages received on one of the
input channels:

J=b=splitj(a&o,b& p) = a & split;(o,p),
J # b= split;(a&o,b& p) = split;(o,p).

a

Example 6 Busy Sender:

A component, which sends requests, represented by the signal 7, along its output channel
until it receives a message on its input channel and then feeds this message along its
output channel, can be specified as follows:

BS(ie Do (DU{T})¥)=(=€eNo=")VIneN:o=7"~ft(i)

If no message is eventually received, then finally infinitely many requests are generated
as output. O

Example 7 Arbiter:

An arbiter is a component that reproduces its input data and in addition adds an infinite
number of tokens, here represented by e, to its output stream. More formally:

AR (i e D¥:0€ (DU {e})*) = Do =1 A#e(o=cc

It is assumed that e is not an element of D.
O

15

The rules for ti-specifications can be generalized to deal with wtd-specifications. The
consequence rule is unchanged if we adapt the brackets:

Rule 4 :
RS2 = Rsl
S1 (1:0) ~ Sy (1:0)

The modifications of the rules for the p- and ®@-operators are less trivial. The reason is
that wtd-specifications constrain the behavior for complete inputs (infinite inputs at the
semantic level) only, which means that it is no longer straightforward to carry out the
induction over the Kleene-chain. We first show that Rule 2, with () substituted for () in
the conclusion, is unsound for wtd-specifications.

Example 8 :
Consider the following wtd-specification

Sy (x eNY:0eNY)=0=1&2¥V(z#£ecNho=1&uz).
Let
def

[=x=evdn&eN:xz=1"~2%.

It holds that

adm(Az : 1),
17,
IA RS2 =][g]

I[Z] A Rs,[*] implies
o=1&2>.
Thus we may use Rule 2 to prove that

S1{:0) ~ Sy (x:0),

where Rg, & o = 1&2. To see that this deduction is unsound, note there is a 7 €

[Sg (x:0)] such that

7(e) = (1),
r(V&r) =1&2%,
a#/=T1la&kr)=1&akr.

16

Since 7 is pulse-driven, it has a unique, infinite fixpoint, namely
(1) = 1.
Unfortunately, this fixpoint does not satisfy Rg,, in which case it follows that Rule 2 is

unsound for wtd-specifications.
O

We now characterize a slightly modified version of fixpoint induction. Given a wtd-
specification Sy (¢,2 : o) with two input and one output channel. Assume that 7 €
[Sy (¢,2:0)]. Let be the infinite sequence of infinite streams #1,%3, ... such that:

tl — \/007

liy1 = T(T, tj)v
for some infinite, timed stream r. For the same input r, let s be 7’s Kleene-chain, i.e.:

S§1 = €,

Sj+1 = T(T, Sj)‘

Although ¢ is not (normally) a chain, we refer to ¢ as 7’s pseudo-chain with respect to r.
Since 7 is pulse-driven, and r is infinite, the equation

T(r,x) =

has a unique, infinite solution, and this solution is according to Kleene’s theorem [Kle52]
equal to the least upper bound of the Kleene-chain:

7(r,Us) = Us.

Since s; £ ¢; and 7 is monotonic, it follows by induction on j that
s; Lt

The monotonicity of ¢ implies
0s; T ot;. (%)

Let I be a formula with free variables ¢ and x such that Az : [is safe (which means that

Az : [is prefixed-closed). Then if for all j
I,)], ()
it follows from () and the fact that Az : [is safe

17

1z,).

OS]
Since ¢ is continuous and Az : [is admissible, we also have that

oUs.
Thus Az : [holds for 7’s least fixpoint solution, when all time ticks are removed. Con-

sequently, to make sure that (sk%) holds, it is enough to show that (s*) holds for each
element of the pseudo-chain, when time-ticks are removed. Since

IA RS2 =][g],
implies
][it1]7

]I:i}tj] j][it]+1]7

it follows by a slight generalization of the argumentation above that the following rule is
sound:

Rule 5 :
safe(Aa : [)
I1T7]

IA RS2 =][g]

][gog] A RS2 [gog] = RS1
S1 {(t:0) ~> Sy (t,2:0)

Recall that safe(P) expresses that P is safe.

An interesting question at this point is of course: how strong is Rule 57 We start by
showing that the invariant is really needed — needed in the sense that the degenerated
version

RS2[900] = RS1
S1 {(t:0) ~> Sy (t,2:0)

is strictly weaker.

Example 9 Elimination of Operationally Unfeasible Fixpoints:
Given the wtd-specification

18

S{xeN“:0oeN)=0o=1&aV (ft(x)=1ANo=uz).
From Rgs[Z] we can deduce only that
ft(o) = 1.

Let

1€y e {1}

Using Rule 5 we may deduce that
Si (20) v 1S (2:0),

if
Rs, & #o>1MN0€ {1}~

a

The rule for the @-operator can be restated in a similar way:

Rule 6 :

safe(Ax : [;) V safe(Ay : 1)

LIETV LY

]1/\351 =1,

]2/\R52 =1

]1/\351 /\]2/\1’%52 = Rg

S (i,r:0,8) ~ 51 (i,x:0,y) @5 (y,r:x,s)

I; and [are formulas with the elements of 7, r, x and ¢, r, y as free variables, respectively.
For any 7 @ 7 € [S1 ® S], the second, third and fourth premise imply that both Iy
and I, hold for infinitely many elements of 71 @ 75 s pseudo-chain. From the first premise
it then follows that at least one of the invariants holds for infinitely many elements of the
corresponding Kleene-chain, and therefore also for the least upper bound of the Kleene-
chain. Since this least upper bound is infinite (at the semantic level) it follows from
premise three and four that both invariants hold for the least upper bound of the Kleene-
chain. Thus the conclusion can be deduced from premise five. See Proposition 2 in the
appendix for a more detailed proof.

Rule 5 and 6 are quite useful, but they do not satisfy a completeness result similar to
that for ti-specifications. We now discuss this in more detail.

For any timed, pulse-driven, stream processing function 7 € (T%)" % (T%)™, let

19

wtd(T) (i:0)

be a wtd-specification, whose input/output relation is characterized by the following
equivalence:

Rutairy & i € (T*)" i =o' Ao = ot (7).

Note, wtd(7) is the strongest wtd-specification whose denotation contains 7. For example,
with respect to the specification S of Example 9, it holds that if

T(e)=1
a#zl=71(akr)=1&akr
r(l&r)=1&/ &,

then 7 € [S (x:0)]. Thus:
thd(ﬂ') = RS[?’]

In fact, since per definition

r(V&r)=1&/&r,
r(l&r)=1&/ &,

it also follows that

RS[?’] = thd(ﬂ')-
The set [wtd(7) (i:0)] is of course not unary, and its elements may have different fix-
points. In Example 9 we used Rule 5 to deduce that o is an element of {1}*, whose length

is greater than or equal to 1. As a matter of fact, for each such output solution 1", there
is a corresponding function 7, € [wtd(r) (i:0) |, such that

To(r) =r =or=1"
For example, 7, may be defined as follows:

Ta(€) =1,

k<n= 71,(1%F) = 1%,

(1" ~r)=1"~/ &,
k<nAa#1l=r(lF~ak&kr)=1"*~a&r.

To see that a completeness result similar to that for ti-specifications does not hold for wtd-
specifications with respect to the rules introduced above, consider the following example:

20

Example 10 :
Given K = {1,2,/}. Let 7 € K“ & K“ be a function such that:

7(e) = (1),

(1) = (L, 1),

r(V&in) =1&2%,
T(1&a&in)=1&1&(if a =1 then / else a) & in,
r(2&in) =1&2&in.

Rota(r) 1s equivalent to

0=1&2%V (A :i=1&1&'No=0)V(i#eNo=1&q1).
Let

1 3n e Nt U{oo} 2 T 17~ 2.

Then [is the strongest formula such that

safe(Ax : 1),

I A thd(r) =][g]
Moreover, I[7] A Ryyeq(7)[2] implies

o=1&2%VIze{l}¥: Jye{2}¥:0=1&1&zy.

Unfortunately, this formula is too weak in the sense that there are solutions for which
there are no corresponding functions in [wtd(7r) (i:0)]. For example, there is no 7/ €

[wtd(7) (i:0)] such that

'(r)=r=or=(1,1,2)

To see that, let r' be a prefix of r such that or’ = (1,1). Since r is the fixpoint of 7/, it

follows that r must be reachable from ' — \/OO in the sense that

(1,1,2) Cor'(r' ~ /7).

However, such a computation is not allowed by R,-). Thus, Rule 5 is too weak in
the sense that it does not allow us to remove all “solutions” for which there are no

corresponding functions in [wtd(7) (i:0)].
O

21

In Rule 5, the task of I is to characterize the elements of the Kleene-chains with their
corresponding least upper bounds. Since for any timed, pulse-driven, stream processing
function 7, it holds that

rj L Ti4+1 C T(S,T]‘ - \/00)7

if r is 7’s Kleene-chain with respect to the complete input s, we may strengthen Rule 5

as follows:
Rule 7 :
(Vi I[Z]AFo: R, [T] A cjra T o) = I[7,]
1]

€

INzC 2’ CoA Rs, = I[%)]
][gog] A RS2 [gog] = RS1
S1 {(t:0) ~> Sy (t,2:0)

¢ varies over chains, and [is a formula with the elements of ¢ and x as its only free
variables. Rule 7 solves the problem of Example 10, if we choose

rC1-29Vae{1}*

as the invariant /.

For any timed, pulse-driven, stream processing function 7, there is a function 7/ € wtd(7),
which is identical to 7 for complete inputs (and therefore has exactly the same fixpoints
as 7 for complete inputs), and whose Kleene-chain consists of only finite stream tuples
(each stream in each tuple is finite). For example, we may define 7/(:) as 7(¢)|#i41. Due
to this fact we may weaken the premises of Rule 7 even further:

Rule 8 :
(Vi 12] A € (D)™ A 3o Rs,[2] A ejor C o) = 1[5
1]

INze(D)Y"NeC o' CoA Rs, = I[%]
][gog] A RS2 [gog] = RS1
S1 {(t:0) ~> Sy (t,2:0)

It is here assumed that x has m elements. See Proposition 3 in the appendix for a
soundness proof. Rule 6 can be strengthened accordingly.

We can now state a completeness result similar to that for ti-specifications. For any
specification S (¢:0) and timed, pulse-driven, stream processing function 7 such that

[pwtd(t) (i,2:0)] C[S (2:0)], (%)

it follows by Rule 8 that

22

S (i:0) ~ pwtd(r) (1,2:0),

under the assumption that any valid formula of the base-logic (in which the premises are
formulated) can be proved, and that the base-logic allows wtd(7) (i:0) and the strongest
formula [, such that the three first premises of Rule 8 hold, to be syntactically expressed
(this corresponds to relative, semantic completeness with respect to a restricted set of
components). See Proposition 4 of the appendix for a proof.

The following conversion rule is also useful:

Rule 9 :
RS2 = Rsl
S1 {t:0) ~» Sy (i:0)

Due to this rule, ti-specifications and wtd-specifications can be used side by side in system
developments. Observe that the inverse of Rule 9, where a ti-specification is replaced by
a wtd-specification, is invalid. For example, as explained in the previous section, the
specification RFM of Example 4 becomes inconsistent when it is assigned the denotation
of a ti-specification. In fact, not even if S is deterministic, does it generally hold that

S (i:0) ~ S (i:0).
For example, it Rg = o, then the function 7, where

#i <10 = 7(i) = /FT, |
#i>10 = 1(i) =" ~i~

is an element of [S (7:0)], but not of [S (¢:0)]. The reason is that a wtd-specification
does not constrain the behavior for partial (finite at the semantic level) inputs. However,
the following rule is sound:

Rule 10 :

#i 7é o0 = R51

RS2 = Rsl

S1 (2:0) ~ Sy (i:0)

The first premise makes sure that 57 does not constrain the behavior for finite inputs.

Example 11 Alternating Bit Transmission:

As in Example 3 we specify an unreliable receiver UR and a corresponding sender SND
and show that they behave correctly when composed as in Figure 5. The communication
between the two components is based on alternating bit transmission. This means that
for each data element SND sends along z, a bit is sent along y. Clearly SND is required
to send the same data element accompanied by the very same bit until this data element
eventually is properly received by UR, in which case the actual bit is sent back along

23

x. The receiver UR looses input pairs (from z and y) in accordance with r. Thus the
messages ok and fail determine whether a data element is lost or not in the same way
as in Example 1. Properly received input pairs, whose bit component is equal to the
bit component of the last properly received input pair, are ignored in the sense that no
output is produced. The reason is of course that this pair has been sent by SND before
the acknowledgement bit for the earlier pair was received. All other properly received
input pairs are sent on along x (the bit) and s (the data element).

2 r
x z)
SND UR
SV

Figure 5: Alternating bit network.

The sender SND is formally specified by:
SND (it € D¥ 0 € M¥:z € DY,y € M¥) =

let
(z",y") = x(2,y)

#Fr < FH
=
Hy=H#HzNy' =x(y) Nz’ T A
(#r £ #i=> Hz=c0N#Z =F#Hax+1)A
(# = #1 = #2' = #h)

M denotes {0,1}. The antecedent states the environment assumption, namely that the
length of x is less than the length of ;. The first conjunct of the consequence requires y
and z to be of the same length; the second makes sure that two different consecutive data
elements sent along z are assigned different bits; the third requires that when repetitions
are ignored then the stream of data elements sent along z is a prefix of the stream of data
elements received on ¢; the fourth requires that if the length of x is not equal to the length
of 2, then the length of z is infinite and the number of data elements sent along z, when
repetitions are ignored, is equal to the length of = plus 1 — which basically means that
the same data element is sent infinitely many times if no acknowledgement is received
from the receiver; the fifth requires that if the length of z is equal to the length of ¢, then
the number of data elements sent along z, when repetitions are ignored, is equal to the

24

length of 2.
The behavior of UR is characterized by:

UR(ze DY, ye MY, re K¥:x € MY ,s € D¥) =

let
",y ") ={(d,m,ok)|d € D,m € M}(©)(z,y,r)

(s,2) = (2, y)

K denotes {ok,fail}. The streams of messages sent along x and s are required to be equal
to the streams of properly received input pairs when repetitions are ignored.

Given
RR (i € DY, r € K¥:s € D¥) = #ok(Or = 00 = s =1,
we want to prove
RR (i,7r:s) ~» SND (¢,2:2,y) @ UR (z,y,r:z,s). (%)
Let
L o < #i,
I = ghoc(z,y) < #,
then (x) follows by Rule 6 since it is straightforward to show that
safe(Az : [;) Vsafe(Az : Ay : I),
LTV LE Y,
I A\ Rsnp = 1,
Iy AN Ryr = 14,
Ii AN Rsnp A Iy AN Rur = Rs.
Observe that only SND characterizes a weakly time dependent component. UR can also
be stated as a ti-specification. In fact, after having shown that the network SND (i, x:
z,y) @ UR (z,y,r:a,s) behaves as desired, we may use Rule 9 to translate UR into

a ti-specification and thereafter complete the development of UR using the rules for ti-
specifications only.

a

25

5 Strongly Time Dependent Specifications

An std-specification of a component with n input channels and m output channels is
written in the form

S {i:0} = R,

where S is the specification’s name; ¢ and o are disjoint, repetition free lists of identifiers
representing n respectively m streams; R is a formula with the elements of : and o as
its only free variables. Yet another pair of brackets {} is employed to distinguish std-
specifications from ti- and wtd-specifications. The denotation of the specification S is
the set of all timed, pulse-driven, stream processing functions which fulfill R when only
complete (infinite) inputs are considered:

[S {izo} [= {r € (1) B (1<) Vi € (1) RZgly (D)

T

Observe that in this case the time signals are not abstracted away. Thus, time signals
may occur explicitly in R.

As for wtd-specifications, only the behavior for complete, infinite inputs is constrained.
Nevertheless, the expressiveness of an std-specification would not have been reduced if we
had used the following denotation:

[S {izo} [= {r € (T*)" B (1) Vi € (T°)": Rll}.

et
N

The reason is that in the case of std-specifications there is no time abstraction, which
means that, at the syntactic level, incomplete (finite) inputs can always be distinguished
from complete (infinite) inputs. However, from a practical point of view, it is not clear
that the latter denotation (1) offers any advantages. We therefore stick with the former
(1) although we also refer to (1) later on.

Example 12 Timer for Time-outs:

We specify a simple timer for time-outs. It has one input and one output channel. When-
ever it receives a set timer message set(n), where n is a natural number, and it is not reset
by a reset message rst, it responds by sending the timeout signal I' after n time-units. Set
timer messages received before the I' for the previous set timer message has been sent are
simply ignored.

Given K = {set(n)|n € Nt} U {rst,/} and M = {I',{/}, we may specify the timer as
follows:

26

TT {i € K¥:0€ M¥} =

dreN— K5 MY:0=+/&7(0)(1)
where Vn,m € N : V¢ € K*:
7(0)(e) = €N
)y &) =
if n =20 then /& 7(0)(2')
else if n =1 then I'& 7(0)(z')
else \/&7(n —1)(i") A
T(n)(rst&) = /& 7(0)(¢") A
T(n)(set(m) & ') = if n =0 then 7(m)(\/& ') else T7(n)(\/ & ')

The existentially quantified function 7, which for each natural number n returns a timed
stream processing function 7(n), characterizes the relation between the input- and the
output-stream. It has a “state parameter” n, that is either equal to 0, in which case the
timer is in its idle state, or > 1, in which case n represents the number of time-units the
next time-signal I' is to be delayed.

a

Any wtd-specification can also be expressed as an std-specification. Given the wtd-

specification
S (i:0) = R,

then
S {r:s} =R[, ¢

is an equivalent std-specification. In general, the same does not hold for ti-specifications.
The reason is the way ti-specifications constrain the behavior for partial input. Let 7
be a timed, pulse-driven, stream processing function, and assume that ¢ and o are two
complete (infinite), timed stream tuples such that

(1) = o. (%)

Unfortunately, for any finite prefix ¢/ C ¢, from (%) alone we can only deduce that
0lgirg1 C 7(¢'). Thus although we operate with timed stream tuples, the behavior for
finite inputs (partial inputs) is only partly fixed from the behavior for infinite inputs.
This can be avoided by strengthening the pulse-driveness constraint. However, this is
hardly any improvement from a pragmatic point of view — on the contrary, such addi-
tional constraints may in some cases lead to more complicated specifications.

With respect to the alternative denotation (1), we have that

27

S (i:0) = R,
S (i:0) = R
are equivalent to

Sor:s}=R[, <],

Or 08

Sir:s}=#r=00= R[l °],

Or 08

respectively. An std-specification S {¢:0} is consistent iff
Ir e (I*)" = (T*)™ : Vi € (T™)" : Rs[2)-

Since the denotation of an std-specification is a set of timed, pulse-driven, stream pro-
cessing functions, @ and ~» can be defined in exactly the same way as above.

In the case of std-specifications, the rules are quite simple. The consequence-rule looks
as usual:

Rule 11 :
RS2 = Rsl
St {iio} ~ Sy {i:o}

One premise is sufficient also in the p-rule:

Rule 12 :
RS2 [gog] = RS1
St {i:0} ~ Sy {1,2:0}

Since there is no time abstraction, and since any 7 € [Sy (¢,2:0)] is pulse-driven, which
means that, for any infinite input stream s, the equation

T(s,r)=r (%)

has a unique, infinite solution r, an invariant is not needed. Thus there are no additional
fixpoints to be eliminated.

For any set o of timed, pulse-driven, stream processing functions of type (T%)* & (T%)™,
let

std(o) {i:0}

be an std-specification, whose input/output relation is characterized by the following
equivalence:

28

Ryaoy & A7 €0 7(i) = 0.
Then, for any std-specification S {i:0}, if

[std(o) {ire:0} 1C [5 {izo}]
it follows by Rule 12 that
S {izo} ~ pstd(o) {i,2:0}

under the assumptions that any valid formula of the base-logic (in which the premises
are formulated) can be proved, and that the base-logic allows R4, to be syntactically
expressed (this corresponds to relative, semantic completeness with respect to arbitrary
components).

The rule for the @-operator is formulated accordingly and satisfies a similar completeness
result:

Rule 13 :
Rsl /\RS2 :>RS
S{i,r:o,5} S {i,z:0,y} @5, {y,r:z,s}

Had we used the alternative semantics (1), rules with invariants would have been needed,
because the equation (*) may have more than one solution if s is finite. In fact, Rule 2
and 3, with {} substituted for (), would have allowed us to claim a completeness similar
to that for ti-specifications.

The following conversion rules are also useful:

Rule 14 :
1 # 00 = Rg, Rule 15 :
RS2 = RS1 [ir <O>s] RS2 [ir <O>s] = RS1

S1 (2:0) ~» Sy {r:s} St {r:s} ~ 5 (i:0)

Rule 16 : Rule 17 :
Rs, = Rs, [ir <O>s] Rs, [ir <O>s] = Rs,
S1 {t:0) ~» Sy {r:s} St {r:s}~ S (i:0)

6 Simple and General Specifications

Above we have advocated a relational approach for the specification of dataflow networks
— relational in the sense that the relation between the input and the output streams
has been specified. We have distinguished between ti-, wtd- and std-specifications. For

29

all three classes of specifications, we have formulated rules, which allow specifications
to be decomposed into networks of specifications. With respect to the rules for ti- and
std-specifications, we have been able to claim only rather restricted completeness results.
We now discuss this problem in more detail. As will be shown, the underlying cause is

the so-called Brock/Ackermann anomaly [BAS81].

Let K = {1,y/}. To investigate the issue, (inspired by [Bro92c]) we define three timed,
pulse-driven, stream processing functions

rw P g
T1, T2, T3 : WY — K<,
such that

m(in) = 1& g1(in),
where

(v &in) = & gy (in),
g(1&in) =1& /*",

Tzk(lin) = 1& ¢2(in),

(Vv &in) =/ & ga(in),
g2(1&n) = /& ha(in),
ha(v/ &in) = /& hy(in),
hy(1&in) = 1 & /*7,
Tgk(lin) =/ & gs(in),
gs(v/ &in) = /& gs(in),
gs(1&in) = 1&1 & /.

The three formulas Ryi(7,), Ryi(r,) and Ry(-,) characterize three different relations. It also

holds that
Riir) = Rii(ry) V Rii(ry)-

Thus any ti-specification with 75 and 73 in its denotation has also 7 in its denotation.
This is no problem as long as for any pair of ti-components C'; and (5, characterized by

[te(m1) (2:0)],
[te(r2) (2:0) JU ti(ms) (2:0)],

respectively, there is no observable behavior of C; that is not also an observable behavior
of C5. Unfortunately, since

30

T e[ti(n) (i:0) JAT(s) =35 = 0s = (1,1),
T €[ti(r) (i:0) JAT(s) =5 = 0s = (1),
T €[ti(rs) (i:0) JAT(s) =5 = 05 =,

this is not the case, because when we apply the p-operator to Cq, we get (1,1) as out-
put stream, and when we apply the p-operator to Cy, we either get (1) or € as output
stream. Consequently, there is no sound and compositional proof system with respect
to ti-specifications, which allow us to prove that pC5 cannot produce (1,1), because any
ti-specification fulfilled by C} is also fulfilled by (', and C; does not satisfy the property
we want to prove. This explains why in the case of ti-specifications we could not formulate
rules for the p- and ®-operators, which satisty the same “strong” completeness result as
the corresponding rules for std-specifications.

We will now prove that there is a similar problem in the case of wtd-specifications. First
observe that the formulas R, (7)), Ruwtd(r,) and Ry(-,) characterize three different rela-
tions. It also holds that

thd(ﬁ) = thd(ﬂ'g) vV thd(ﬂ'g)v

T e[wtd(m) (t:0) JAT(s) = s = 0s = (1,1),
T € [wtd(ry) (1:0) JAT(s) = s = os = (1),
T € [wtd(rs) (t:0) JAT(s) =s=>0s=c¢

Thus we are in exactly the same situation as for ti-specifications.

Because we consider timed, pulse-driven, stream processing functions only, and we are
only interested in the behavior for complete (infinite) inputs — which means that the
corresponding fixpoints are always infinite and unique — there is no Brock/Ackermann
anomaly in the case of std-specifications. This is also the reason why the rules for this class
of specifications satisfy a stronger completeness result. On the other hand, had we used
the alternative denotation (1), we would have run into trouble with the Brock/Ackermann
anomaly even in the case of std-specifications.

To get around the Brock/Ackermann anomaly, ti- and wtd-specifications are augmented
with so-called prophecies. More precisely, an additional parameter (actually a list) mod-
eling the nondeterministic choices taken inside a component is added. We use the same
tagging convention as before to distinguish ti- and wtd-specifications:

S (i
{

co:p) =R > P,
S (ico:p)=R > P

S is the specification’s name; ¢ and o are disjoint, repetition free lists of identifiers repre-
senting the input and the output streams; p is a list of identifiers representing prophecies;
R is a formula with the elements of i, 0 and p as its only free variables; P is a formula
with the elements of p as its only free variables. For each prophecy alternative p, R
characterizes the relation between the input- and the output-streams with respect to the
nondeterministic choice characterized by p. P is a so-called prophecy formula characteriz-
ing the set of possible prophecies. There is a close correspondence between what is called

31

a prophecy variable in [AL88], an oracle in [Kel78], and what we refer to as prophecies.

These two new formats will be referred to as general ti- and wtd-specifications, respec-
tively. In contrast, the formats used in the earlier sections are now called simple ti- and
wtd-specifications. A general specifications can be thought of as a set of simple specifica-
tions — one simple specification for each prophecy. Their denotations are characterized
as follows:

[S (i:0:p)] ¥ {7 € (1) B (1“)"|3p: P AVr e (T%)": R[, % nl}s

or o1(r)

[S (ir0:p) [{7 € (T%)" S (T*)"|3p: P AVr € (T%)" : R, %]}

or oT(r

General ti- and wtd-specifications are feasible iff

Ir e (T B (1) :3p: PAVYr€ (T RL, %00,

or o1(r)

Ir e (T¥)" B (T%)™ :3p: PAYr € (T®)": R}, o)
respectively. For any general specification 5, we use respectively Rs and Ps to characterize
its input /output relation and prophecy formula.

Using general specifications, the Brock/Ackermann anomaly is no longer a problem. For
example, for any ti-component €, let L be a set of labels such that there is a bijection b
from L to C, then

S (i:o:p)ERti(b(l)) >[lel

is a general ti-specification, whose denotation is equal to . Of course, we then assume
that our assertion language allows Ry to be syntactically expressed.

Again the definitions of @ and ~» carry over straightforwardly. The rules are also easy to
generalize. We give the general versions of Rule 5 and 6:

Rule 18 :

Ps, = safe(Ax : 1)

PS1 j][f]

Ps, NN Rg, :>][§]

PS1 /\][gog] /\RS2[900] = RS1

St {t:o:p) ~> Sy (t,x:0:p)

32

Rule 19 :

Ps = safe(Ax : 1) V safe(Ay :)

Ps = L[]V L[]

Ps N1 N Rs, = I

PsANI; N Rs, = 14

Ps/\]1/\Rsl /\]2/\R52 = Rg

S (i,r:0,8:p)~ 51 (t,x:0,y:p) @Sy (y,r:x,s:p)

In these rules the specifications are assumed to have identical prophecy formulas. The
invariants may now also refer to prophecies. The other rules for simple specifications can
be translated into rules for general specifications in a similar way.

We may also formulate rules which relate simple and general specifications.

Rule 21 :
Rule 20 : dp : Pg,
P52 A RS2 = Rsl P51 A RS2 = Rsl
S1 (1:0) ~> Sy (1:0:p) S1 (t:0:p) ~> Sy (i:0)

As discussed in [SDW93], [Bro92b] there are a number of specifications, which can be
expressed as simple specifications, but which perhaps become clearer when formulated
as general specifications. To show that, alternating bit transmission is investigated once
more.

Example 13 Alternating Bit Transmission, revisited:

We redo Example 11 under the new requirement that the lossiness of the unreliable
receiver UR is nondeterministic. As indicated in Figure 6, there is no input channel r,
which determines whether an input pair is properly received or not — this decision is now

taken inside UR.

SND UR

Figure 6: Alternating bit network.

The specification of SND remains as in Example 11. We give two specifications of UR.
The first one is a simple wtd-specification:

33

UR (ze DY ye M¥“:x € M¥,s € D¥) =

dp € K¢ : #ok(©Op = o0 A
let
(2, y',p") = {(d,m,ok)|d € D,m € M}(©(z,y,p)

(2,5) = (=,).

The relationship to the identically named specification in Example 11 is striking. The
existentially quantified p simulates the input channel r. This simple wtd-specification can
be transformed into a general wtd-specification as follows:

UR (ze DY ye MY:x e M, s € D¥:pe K¥) =

let
(2" y',p) = {(d,m,ok)|d € D,m € M}(©O(z,y,p)

(2,8) = oz, y)

Hok(©p = oo.

Thus the only difference is that the nondeterminism is characterized by a separate formula
— the prophecy formula. This supports an additional structuring of specifications, which
in many cases may lead to increased readability. Moreover, since the invariants in the rules
for general specifications may refer to prophecies, specifications written in this general
format may make it easier to construct proofs.

a

The rules for general ti- and wtd-specifications satisfy completeness results similar to
those for std-specifications — namely what is normally referred to a semantic, relative
completeness. These results follow easily from the restricted completeness results for
simple specifications. See completeness proof for general specifications given in [SDW93].

7 Conclusions

Relational specifications have proved to be well-suited for the description of sequential
programs. Prominent techniques like Hoare’s assertion method [Hoa69], Dijkstra’s wp-
calculus [Dij76], or Hehner’s predicative specifications [Heh84] are based on formulas
characterizing the relation between the input and the output states.

In the case of interactive systems, the relational approach has run into difficulties. As
demonstrated in [BA81], specifications where the relationship between the input and
the output streams are characterized by simple relations are not sufficiently expressive

34

to allow the behavior of a dataflow network to be deduced from the specifications of
its components in a compositional style. Simple relations are not sufficiently expressive
to represent the semantic information needed to determine the behavior of a component
with respect to a feedback operator. Technically speaking, with respect to feedback loops,
we define the behavior as the least fixpoints of the operationally feasible computations.
As shown above, for simple relations it is not possible to distinguish the least fixpoints
of the operationally feasible computations from other fixpoints. One way to deal with
this problem is to replace relations by sets of functions that are monotonic with respect
to the prefix ordering on streams. However, for certain components like fair merge a
straightforward specification leads to conflicts with the monotonicity constraint.

Our paper shows how one can get around these problems taking a more pragmatic point of
view. We have distinguished between three classes of specifications, namely ti-, wtd- and
std-specifications. The two first classes have been split into two subclasses, namely into
simple and general specifications. For each class of specifications a number of refinement
rules have been formulated and their completeness have been discussed.

Components that can be specified by wtd-specifications constitute an important sub-
class of dataflow components. Of course such components can easily be specified by
std-specifications. However, it seems more adequate to specify these components without
mentioning time explicitly. In some sense a wtd-specification can be said to be more
abstract than the corresponding std-specification.

Similarly, many components are time independent in the sense that they can be specified
by a ti-specification. In practice such components may just as well be specified by a
wtd-specification. However, as we have seen, the refinement rules for ti-specifications are
simpler than those for wtd-specifications, moreover it is easier to prove consistency since
it is enough to construct an ordinary (untimed) stream processing which satisfies the
specification. To prove consistency of a wtd-specification it is necessary to show that it
is satisfied by a timed, pulse-driven, stream processing function.

Finally, since many components can only be specified by an std-specification, we may
conclude that all three classes of specifications have their respective merits. Moreover,
as we have emphasized, since they are all assigned the same type of semantics, the dif-
ferent types of specifications may be exploited in the very same system development.
In fact, the ®-operator can be used to build networks consisting of both ti-, wtd- and
std-specifications. The rules, which allow one type of specification to be translated into
another type of specification, can be used for the development of such networks.

Our approach is related to Park’s proposals in [Par83]. In some sense he distinguishes
between the same three classes of specifications as we. Our approach differs from his
in the insistence upon time abstraction and also in the use of prophecies to handle the
Brock/Ackermann anomaly. Another difference is our refinement calculus.

The approach presented in this paper can easily be combined with a specification style
based on the assumption/commitment paradigm. The rules for assumption/commitment
specifications presented in [SDW93] are basically the rules for ti-specifications given above.
In fact, this paper shows how the refinement calculus and specification technique given in
[SDW93] can be generalized to deal with wtd- and std-specifications.

35

8 Acknowledgements

We would like to thank P. Collette, F. Dederichs, T. Gritzner and R. Weber who have
read earlier drafts of this report and provided valuable feedback. Helpful comments have

also been received from Q. J. Dahl and O. Owe.

References

[ALSS]

[BAS1]

[BDD*92]

[Bro89]

[Bro92a]

[Bro92b]

[Bro92c]

[Bro93|

Dij76]
[Heh84]
[Hoa69]

[Jon90]

[Kel78]

M. Abadi and L. Lamport. The existence of refinement mappings. Technical
Report 29, Digital, Palo Alto, 1988.

J. D. Brock and W. B. Ackermann. Scenarios: A model of non-determinate
computation. In J. Diaz and I. Ramos, editors, Proc. Formalization of Pro-
gramming Concepts, Lecture Notes in Computer Science 107, pages 252-259,
1981.

M. Broy, F. Dederichs, C. Dendorter, M. Fuchs, T. F. Gritzner, and R. Weber.
The design of distributed systems — an introduction to Focus. Technical

Report SFB 342/2/92 A, Technische Universitat Miinchen, 1992.

M. Broy. Towards a design methodology for distributed systems. In M. Broy,
editor, Proc. Constructive Methods in Computing Science, pages 311-364.
Springer, 1989.

M. Broy. Compositional refinement of interactive systems. Technical Re-

port 89, Digital, Palo Alto, 1992.

M. Broy. A functional rephrasing of the assumption/commitment specification
style. Manuscript, November 1992.

M. Broy. Functional specification of time sensitive communicating systems. In
M. Broy, editor, Proc. Programming and Mathematical Method, pages 325-367.
Springer, 1992.

M. Broy. (Inter-) Action refinement: The easy way. In M. Broy, editor, Proc.
Program Design Calculi, page 77 Springer, 1993.

E. W. Dijkstra. A Disipline of Programming. Prentice-Hall, 1976.
E. C. R. Hehner. The Logic of Programming. Prentice-Hall, 1984.

C. A. R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12:576-583, 1969.

C. B. Jones. Systematic Software Development Using VDM, Second Edition.
Prentice-Hall, 1990.

R. M. Keller. Denotational models for parallel programs with indeterminate
operators. In E. J. Neuhold, editor, Proc. Formal Description of Programming

Concepts, pages 337-366. North-Holland, 1978.

36

[Kle52] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.
[Mor90] C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[Par83] D. Park. The “fairness” problem and nondeterministic computing networks.
In J. W. de Bakker and J van Leeuwen, editors, Proc. jth Foundations of Com-
puter Science, Mathematical Centre Tracts 159, pages 133-161. Mathematisch
Centrum Amsterdam, 1983.

[SDW93] K. Stelen, F. Dederichs, and R. Weber. Assumption/commitment rules for
networks of asynchronously communicating agents. Technical Report SFB

342/2/93 A, Technische Universitat Miinchen, 1993.

A Proofs

Proposition 1 Given disjoint lists of variables v,0,r,s,x and y, and formulas Iy and I,
with respectively the elements of i,r,x and 1,r,y as free variables. If

adm(Ax : Iy) Vadm(Ay : Iy), (1)

LTV LY, (2)

LA Rs, = I, (3)

LA Rs, = I, (4)

]1/\351 /\]2/\1’%52 = Rg, (5)
then

S (i,r:0,8)~ 51 (t,2:0,y) @5 (y,r:x,s). (6)
Proof: Assume that 1 - 5 hold, and that

€[S (i 2:0,9)], (7)

7—26[[52 (y,T:J},S)]]. (8)
Given two timed stream tuples ' and ’, and assume that

(i, 2") = (o, y") Ay, r) = (2, 8) 9)
is a least fixpoint solution. Let

(4,r,0,y,2,8) et (o1, o1’ 00 oy’ oa!, 08'). (10)
The monotonicity of 71 and 7, implies that there are chains 6,7, & and § such that

6173}1 Cg €, 6)7 11

Since the least upper bound of the Kleene chain is equal to the least fixpoint solution

[Kleb2], 9, 11, 12, 13 and 14 imply
U(o,9,2,8) = (o, y,a',s").
Assume for an arbitrary 7 > 1

LE]

7, 10 and 13 imply
Rsl [1’ o Y]

oFy 00541 0Pj41

3, 16 and 17 imply
LY, .

<>1?J+1

Thus
Vi L[5, = L,

<>1?J+1

By a similar argument

\V/] .]Q[Zgj] =]1[90]

OLj+1

2,11, 12, 18 and 19 imply

Vit 3k k> ALE DAk k>5ALE).

U
1, 20 and the continuity of ¢ imply
L[Sus] V B3]
10, 15 and 21 imply
LV .
Without loss of generality, assume
1.
7,9 and 10 imply
Rs, .
3, 22 and 23 imply
1.
8,9 and 10 imply
Rs,.
5, 22, 23, 24 and 25 imply
Rs.

This proves 6.

end of proof

38

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Proposition 2 Given disjoint lists of variables v,0,r,s,x and y, and formulas Iy and I,
with respectively the elements of i,r,x and 1,r,y as free variables. If

safe(Az : I;) V safe(\y : [o), (27)

LTV LY, (28)

LA Rsl =]2, (29)

I; N Rs, = I, (30)

]1/\351 /\]2/\1’%52 = Rg, (31)
then

S {i,rio,8) ~ Sy ({,x:0,y) @Sy (y,r:a,s). (32)
Proof: Assume that 27 - 31 hold, and that

ni €[S (i 2:0,9)], (33)

e[S (y,rix,s)]. (34)
Given two timed, complete (infinite) stream tuples ¢ and ', and assume that

(i, 2") = (o y") Ay, r') = (2, 8. (35)
Let

(4,r,0,y,2,8) et (o1, o1’ 00 oy’ oa!, 08'). (36)
The monotonicity of 71 and 7, implies that there are chains 6,7, & and § such that

A o~y def

(017 yl) = (67 6)7 (37)

(‘%17 él) déf (67 6)7 (38)

(6j7 3)]) = Tl(ilv ijj—l) if J>1, (39)

(25, 35)] 72 (Yj-1,7") if j > 1. (40)

Since the least upper bound of the Kleene chain is equal to the least fixpoint solution

[Kleb2], 35, 37, 38, 39 and 40 imply
|—|(67 ?)7£7§) = (0/7 y’? xl? S/)' (41)
Let 0,7, & and 3 be infinite sequences of complete (infinite) stream tuples such that

42
43
44

(
(
(
(45

)
)
)
)

37, 38, 42 and 43 imply

(01,91, 21, 81) & (01,91, %1, 51). (46)

39

39, 40, 44, 45 and the monotonicity of 7 and 5 imply

(05,95, 24,8;) E (65,95, 25,5;) =

(0541, Ujats Tj153541) E (0541, i1, Tiga, Sjq1)-

46, 47 and induction on j imply
V5 (0585525, 85) E (04,8555 5;)-
Assume for an arbitrary 7 > 1

L.]

33, 36 and 44 imply
Rsl [1’ o Y]

oLy 00541 OUj41

29, 49 and 50 imply

L35,
Thus

Vi]l[g@] =]2[Zgj+1]-
By a similar argument

Vi blog] = L[S,)
28, 42, 43, 51 and 52 imply

Vi 3kt k>jiALE DA GE: k> 5 AL[E].

o,
Without loss of generality, assume
safe(Ax @ [h).
48, 53 and 54 imply
Vit(3k:k > AL[E))
54, 55 and the continuity of ¢ imply
L[Sus)
36, 41 and 56 imply
1.
33, 35 and 36 imply
Rs, .
29, 57 and 58 imply
1.
34, 35 and 36 imply
Rs,.
31, 57, 58, 59 and 60 imply
Rs.
This proves 32.

end of proof

40

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

Proposition 3 Given disjoint lists of variables 1,2 and o, and a formula I with the

elements of 1 and x as free variables. If
(V1] A e € (D7) AFo: Rs, [A i E o) = 11],
1],

€

INze (DY AxC 2’ oA Rs, = I[%],
][gog] A RS2 [gog] = RS17

then

St {t:0) ~> Sy (1,2:0).

Proof: Assume that 62-65 hold, and that
T €[5 (i,x:0)].

Given a timed, complete (infinite) stream tuple ¢ and assume that
T(i',0") = o.

Let
(1,0) = (oi',00").

The monotonicity of 7 implies there is a chain 6 such that

61:6,

6j :T(i/,éj_l) lfj > 1.

Since the least upper bound of the Kleene-chain is equal to the least fixpoint solution,

[Kleb2], 68, 70 and 71 imply
Llo=o.

Because of the observation made on Page 22, we may assume that
Vy:o0; € (D)™

63 and 70 imply
15,

Assume

1135,
75 implies
36, ~ tyerm)-

71 and the continuity of 7 imply
Oj41 E (10, ~ [VT]™).

41

(72)

(73)

(74)

(75)

77, the fact that 6 is a chain and the continuity of ¢ imply

00; £ 0041 T o7 (1,0, ~ [V7]"). (78)
67 implies

Bs,[C,~ by Srtins, ~ =) (79)
64, 73, 76, 78 and 79 imply

][£6]+1]‘ (80)

78, 79 and 80 imply
1[5,) A Fo: Rs,[55] A 0611 E o

06541

Thus

Vi[5,] = 155,] Aot Ry [55] A odja Eo. (81)
74, 81 and induction on j imply

Vi[5 A Fo: R, [g5] A 0041 E o (82)
62, 73, 82 and the continuity of ¢ imply

10 (33)
69, 72 and 83 imply

7). (34)
67, 68 and 69 imply

s, 5] (85)
65, 84 and 85 imply

Rs, . (86)

This proves 66.

end of proof

Assume the base-logic allows any (semantic) predicate we need to be expressed. Then the
following proposition holds.

Proposition 4 Given a wtd-specification S (i1:0) and a timed, pulse-driven, stream pro-
cessing function T such that

[wwtd(r) (i2:0) 1S (50}], (87
where 1, and o have respectively n, m and m elements. Then there is a formula I, with
the elements of © and x as its only free variables, such that
(Vi IE] A e € (D7)™ A Fo s Ruar)[e] A cjwa E o) = [,
1],
INz e (D))" ANaeCa' C oA Ry = 1[5],
I A Ruan 2] = Rs.

42

Proof: Let

def
I = x =k,

L 3 LAY e (D) " ATo:a' CaEon R[],
Lo = 3e: V) L) Ay € (D)™ AJo: Ruwn[Z] A ey CoAx = U,

1351 v,

Due to the expressiveness assumption made above, [is a formula in the base-logic.

It follows straightforwardly from the definition of I that 88-90 hold. It remains to prove
91. Given some ¢ and o such that

][gog] A thd(ﬂ[f]- (92)
It is enough to show that
Rs. (93)

We first prove the following lemma:

Lemma 1 There is a chain r such that:

Vy:r; e (D)™, (94)
r = €, (95)
Vj:do: thd(T)[fj] Ariy1 E o, (96)
Lr = o. (97)

If 1..[7] holds, then 94-97 follow trivially. If =1, [%], it is enough to prove by induction on
J, that for any o such that [;[?] there is a chain r such that 94-97 hold. The base-case
J = 1 follows trivially. Assume the lemma holds for j = k. We prove that it holds for
j = k+ 1. Given some x such that

Tiy1, (98)

98 and the definition of [;;1 imply there is an z’ such that

L[], (99)
e (D), (100)
Jo: Ryt [Z] A2’ CaCo. (101)

The induction hypothesis implies there is a chain r such that

Vyir; € (D)™, (102)
o= (103)
Vj:do: thd(T)[fj] Ariy1 E o, (104)
Ur = 2. (105)

100 and 105 imply there is an [such that

Vk:k>1=r, =2 (106)

43

Let v’ be the chain such that

] <Il= r; =r;,
= el
102, 107 and 108 imply

Vjre (D7),
103 and [> 1 imply

ri=e.
101, 104, 107 and 108 imply

Vi <l:do: thd(ﬂ[fg] A r;_l_l C o.
108 implies

Ur' = a.
It remains to prove

Vi>1:3o: Rw“(ﬂ[%] A r;_l_l C o.
Let

t> 1.

(107)
(108)

(109)

(110)

(111)

(112)

(113)

(114)

101 implies there are complete (infinite) timed stream tuples y and z such that

oy, z) = (i,xl),
x Cor(y,2).

108, 114 and 116 imply

rzlf-l—l C or(y,2).

(115)
(116)

(117)

109, 117 and the continuity of 7 imply there is a finite timed stream tuple 2’ such that

rzlf-l—l C or(y, 2).
101, 106, 107, 108, 114 and 118 imply
ofz' = (@ tr) ~ [VTI") =

119 and the monotonicity of 7 imply

rip Eor(y, 2~ (@' 1r) ~ [VT]™).

120 and 121 imply

Jo: thd(ﬂ[f;] A r;_l_l C o.

This proves 113. Thus 94-97 hold for y = k + 1.

(118)
(119)

(120)

(121)

(122)

This ends the proof of the lemma.

Let r be a chain such that 94-97 hold. Since each element of r is finite, 96 and the
continuity of 7 imply we may find a chain ¢ such that

Vit e (D), (123)
ut =4, (124)
Vj:do: thd(f)[ij fj] Ariy1 Co. (125)

Since 95 implies that the first element of r is €, and it obviously holds that
Jo: thd(ﬂ[i TN el o, (126)

€ €

we may assume that
tl =T =c. (127)

Let ¢ and r’ be strictly increasing chains of timed stream tuples such that

I t;|#t3 =15 A r;|#T; =1 N F = #r, (128)
Vit e (D) Arhe (DY), (129)
\V/] : O(t;ﬂa;) = (tjvrj)' (130)

These chains can easily be generated from r and ¢ by adding /’s. Note that 128 requires
all streams occurring in r; and t; to be of the same length.

97, 124 and 130 imply
o (', r") = (i,0). (131)

Let t” and r” be sequences (not necessarily chains) of finite timed stream tuples such that

Vjotl =t; Norl =r;, (132)
Vg #E > FU N Hr > Hr (133)
Vi Eor(th,ry). (134)

The existence of these sequences follows from 94, 123, 125, 129 and the continuity of 7.

87 and 131 imply that 93 follows if we can construct a function

e [wtd(t) (i,x:0)], (135)
such that

T'(ut, ur’) = Ur'. (136)

We construct 7/ in a step-wise fashion. First we define the behavior for any input (7, x)
such that

#Z':#J}/\Z'|#Z':Z'/\$|#w:$,

(i.e. which means that all the streams in ¢ and x are of the same length):

o CASE: (¢,2) = (U, ur').
Let
'(i,z) = x. (137)

45

o CASE: (v,x) C (U, ur).
Let
(i) =1, (138)
where j = max{k | (#},r,) C (¢,2)}.
o CASE: (v,2) IZ (U, ur)
Let
Plis) = oy~ (s Lo (2, ~ AT~
(r (£,) U~ (£ 28), 77~ (71 2)), (139)

where j = max{k | (#},r,) C (¢,2)}.

For any other input let
(i, 2) = 7|k, 2|k),

where k = min{#, #x}.

Since the different cases are disjoint it follows that 7/ is well-defined. That 7’ is monotonic
and continuous follow straightforwardly from the monotonicity and continuity of 7.

With respect to the two first cases in the definition of 7/ the pulse-drivenness property
follows trivially. With respect to the third case (139) it follows that 7’ is pulse-driven
since 7 is pulse-driven and 133, 139 imply

(i,) < (17~ (15 1), v ~ (L)),
(]~ (15 1), rf ~ (i te)) < ¢ (1,).

Then, finally, 135 follows from 92, 131, 137 and 139.

end of proof

46

