The calculus of SPECTRUM™

Franz Regensburger

July 29, 1994

Abstract

In this paper I present the logical calculus for the specification language SPECTRUM
[BFGT93a, BFGT93b]. Tt is a three-valued variant of the calculus for the logic LCF
[Pau87]. Familiarity with the technical report [GR94] in which the semantics of SPECTRUM
is defined is assumed.

*This work is sponsored by the German Bundesministerium fiir Forschung und Technik (BMFT) as part of
the compound project “KORSO -Korrekte Software”.

Contents

1 Introduction

2 Sequents

3 Inference Rules

3.1 Propositional logic
3.2 Embedding into Bool
3.3 Quantifiers
3.4 Equality
3.5 Domain Theory
3.6 Polymorphism

3.7 Axioms for the datatype Bool

3.8 Tuples
3.9 Fixed point induction
3.9.1 Test for continuity . .

3.9.2 Test for admissibility i

4 Derived rules

5 Conclusion

10
10
11
11

13

16

1 Introduction

In this paper I present the logical calculus for the specification language SPECTRUM [BFG193a,
BFG*93b]. The definition of the syntax and semantics of the core language of SPECTRUM
can be found in [GR94]. Familiarity with this technical report is assumed since I will use the
notation introduced in this paper.

The paper is organized as follows. In section 2 sequents and their semantics are introduced.
In Section 3 the inference rules of the calculus are presented and in section 4 I will show some
selected derived rules. The paper is closed by some concluding remarks about the SPECTRUM
logic in section 5. Although the calculus was formalized in the logical framework Isabelle
[Pau93a] and all derived rules have been derived in this framework I will not present the
Isabelle formalization in this paper.

2 Sequents

In this section I introduce the notion of a sequent. Sequents are used to formalize the logical
calculus of SPECTRUM as a natural deduction system with explicit treatment of living hy-
potheses. This makes the formalization of side conditions for rules much easier and allows to
reason directly about the correctness of rules and of the overall calculus. This kind of formal-
ization is well known from other logical systems, e.g. the HOL logic [GM93]. The definition
of sequent is due to [GM93] but is adjusted to three-valued logic.

In order to simplify the following definitions I will make a slight change in terminology with
respect to the one introduced in [GR94].

Definition 1 well-formed terms, formulae

Fixing a signature ¥ and a family of type variables X', a well-formed term of sort 7 is a
pre-term e, such that there exists a sort derivation that ends with I' > e::7. The set
T. of well-formed terms of sort 7 is thus defined as:

T, ={e| there exists I' with I' >y e::7}
Formulae are terms of sort Bool:
Form = TBool

The tuples (X, 1',e,7) that are called well-formed terms in [GR94] are called terms in
context in this paper.

If the type of the term e is known, there exists a unique minimal variable context I' consisting
just of type assumptions for all the variables occuring free in e. This is due to the fact that
terms are almost fully typed. If the term e is not a variable then one even doesn’t need to
know the outermost type of e to construct the unique and minimal variable context I'. This
means that for every formula p € Form, where the type is known to be Bool, there exists a
unique minimal context I' such that (X', I',e,Bool) is a term in context and there is also a
unique normal sort derivation that ends with I' > e::Bool.

3

Definition 2 Sequents

Fixing a signature ¥ and a family of type variables X', a sequent is a pair (H,p) where
H C Form is a finite set of formulae and p € Form is a formula. The set H is called
the set of assumptions and p is called the conclusion of the sequent!. Instead of (H,p)
I will use the notation H » p for sequents and list notation hy,...,h, or H,h; instead

of {hy,...,h,} or HU{h}.

There is one additional property that must hold for a sequent hq,...,h, » p in order
to give it a semantics later on. We require:

hiN ... ANh, A p € Form

If the condition is fulfilled there is a unique and common type assumption for every
variable occuring free in the terms hy, ..., h, and p. The use of the A connective here
is arbitrary. Its only purpose is to connect the h; and p to form a single term.

Usually the semantics of a sequent
hi,o...,h, »p

is defined to be that of the formula
hiAN .. ANhy=p

This means that a sequent is to be red as implication. Since SPECTRUM uses a three-valued
logic, this definition needs to be changed. There are several opportunities to extend the
semantics of a sequent from the two-valued to the three-valued case. Olaf Owe gives a detailed
survey in [Owe91] about this topic. In his terminologies the set of assumptions H and the
conclusion p both have a strong interpretation in SPECTRUM. Therefore the semantics of a
sequent

h17 . '7hn > p
is defined to be that of the formula
ha N6(hy) A oo Ahy ANO(hy) = p

Owe would characterize the partial logic of SPECTRUM with 55 in his tables. Using the
notation of [GR94] the semantics of a sequent is defined as follows:

historically, a sequent (in German ‘Sequenz’ due to [Gen35]) is a list and not a set. The use of lists is vital
for real sequent calculi like Gentzen’s LK. In this paper the assumptions are the set of living hypotheses in a
natural deduction calculus and therefore the order and multiplicity of formulae in the sequent is not interesting.
It is a terminological accident that the pair (H,p) is called a sequent but this terminology is used by several
authors [Pau87, GM93].

Definition 3 Satisfaction for sequents

Given a signature 3, a family of type variables X and a Y-Algebra A, the sequent
hi,....h, » pis called valid in A rsp. A satisfies hy,...,h, B p
(in symbols: A |= hy, ..., h, » p)iff:

(AE (X, T h Aé(hi) A ... A by, Ab(hy) = p,Bool)

where I' is the unique variable context.

The definitions for a deductive system and for a formal proof with respect to a deductive
system are that of [GM93] and will not be repeated here.

3 Inference Rules

The inference rules of the logical calculus of SPECTRUM are given in the style of [GM93]. Using
this style the translation into the Isabelle system is straight forward. Any side conditions
restricting the applicability of a rule are given to the right of it. The names in square brackets
are the names of the rules in the Isabelle formalization.

For the notation of terms I do not use the rigid syntax of [GR94] but use a more sloppy
one with infix notation. Also type information is suppressed whenever an order-sorted type
inference mechanism in the sense of [Nip91] could infer the missing types. Actually the
untyped terms presented below were also used in the Isabelle formalization where Isabelle’s
type inference machine computed the most general type information for the missing types.

3.1 Propositional logic

h H
[hyp] }{»p{pe
H
[weak] Hl :i{fﬁ c H,
2

The rules [hyp] and [weak] are covered by Isabelle’s meta-logic.

Hw»é
[exmid])
Hw»pV-p
[COnd] Hl > p H2 > q
Hi,Hy» pAg
n A
[conjunctl] Zrpig
Hy»p

3.2

3.3

. Hy»phq
2] ——

[conjunct2] T

H

[disjI1] _Hrp
Hw»pVy

H

[disjI2] _Hdraq
Hy»pVy

Hiw»pVg Hyypwr Hzqwr

[disjI]
Hl,Hz,Hg »r

Hyw6(p) Hyw g
(HyUH)\{pt»p=q

[impl]

Hi»p=q Hy»p

[mp]

H17H2>q
t_def
[not-def] 0 » —p = (p=false)
H » false
FFE] ———
[) Hw»p

Embedding into Bool

H
71 — 2P
H » p=true
H =t
[TT_E] H » p=true
Hy»p
feq_to_imp] Hiw»p=q H,»ép)
i Hi,Hs» (p=q) A (q=p)
H A
(impl_to_eq] > (p=4q)A(g=p)
Hy»p=yq
Quantifiers
H
ALLb] — 2P

provided z & FV(H
H» VJ‘w.p{ # ()

H» VJ‘w.p
ALLbE] ————=
ALLE] i)

In the rule above p[t/z] denotes the substitution of the term ¢ of appropriate type for the
variable z in formula p, with suitable renaming of bound variables to prevent free variables
in ¢ becoming bound after substitution.

H» plt/x]
EXbl] —————
[] H» EIJ-x.p

How3tep H,ep=g ,
[EXDbE] T {prowded x ¢ (FV(H)UFV(H,)UFV(q))
DEF_ALLb
| | 0 » 6(vLta.p) = (Via.p =true) v (I1a.p = false))
DEF_EXb
| : 0» 6(3tzp) = ((FLa.p = true) v (VLa.p = false))
[ALL_def] .
0w (Va.p) = (V=2.6(z) = p)

[EX _def]

0» (3e.p) = (3La.6(z) A p)

3.4 Equality

[beta_red]

0w (Az.e)t =eft/z]

H1>t1:t2 Hz}p[t1/$]
Hy, Hyw plts/2]

[subst]

In the rule above p[t; /2] means that p is a formula in which the variable z eventually occurs
and that the term ¢, is substituted for every free occurrence of # with usual prevention of
variable capture.

3.5 Domain Theory

[refl less]

[eq_def]

HyxCy Hy»yLCz
Hi,HopzC 2

[trans_less]

Hyw6(g) Hyw Ve f(z)Cgla)
H17H2 > f E g

[ext_less] { & FV(f)U FV(g)

H» fCg H,»axCy
Hy, Hy» f(z) Eg(y)

[mono_less]

[mlnlmal] m

[DEF-app] Dp L(z)=1

[DEF _def]

Ow é(x)=—(z=1)

eed] G o) = Fox 1)

[strong_less] m

[Strong_eq] m

[strong DEF] 7> 00602))

[DEFLAM] 0w 6(Ax.t)

3.6 Polymorphism

The following rule is already part of Isabelle’s meta-logic

Hy»p

sty w o)

{Where o is an order-sorted type substitution

3.7 Axioms for the datatype Bool

[DEF-TT] 0 » 6(true)

[DEFIT] 0 » é(false)

[DEF conj] TS

[DEF _disj] TXEB]

[DEF impl] TS

[DEF not]

0» (5(—|)

[conj_ax1] 0> (e Ay =y o)

conj_ax?2
[con]](Z)b(true/\y):y

j_ax3
[conj-ax3] 0 » (false A y) = false

[conj_ax4] I (LAlj=1

[disj_ax1]

Ow»(zVy =(yVa)

disj_ax?2
[disj-ax2] 0 » (true V y) = true

[disj-ax3]

0w (false vy)=y

[disj_ax4]

O (LVL1)=1

impl_ax1
[an ax] ®>(true:>y):y

impl_ax2
[impl-ax2] 0 » (false = y) = true

impl_ax3
[impl-ax3] 0 » (L = true) = true

impl_ax4
[impl-axd] Ow» (L =false)= L

[impl_ax5] > (1o 1) =1

[Exh BOOL]

Dwax=truevVae="falseve=_1

[not_F'F less_UU]

0 » —(false C L)

t_FF less_TT
[no ess-TT] 0 » —(false C true)

t_TT less_
[no ess_UU] 0> (true C 1)

[not_TT less_FF]

(0 » —(true C false)

3.8 Tuples

The following rules are schemas that can be instantiated for every n > 2. However, in the
Isabelle formalization these rules are only partially implemented for 2 < n < 5.

[beta-red,] 0» (/\<$17 RN $n>.€)<t1, .. .,tn> =elty/zy.. .1, 7]

The term e[t;/z; ...1,/x,] denotes simultaneous substitution of the terms t; for z;.

[DEF LAM,,] 0> 81, an)d)

[Exh_prod,]

g vitz3la, .. T Ty, T = 2

3.9 Fixed point induction

(find] Hyow via d(p) Haw plL/a) H?,»va.p;»p[f(x)/x]{pm

Hy, Hy, Hs w plfix(f)/]

Note that due to the first premise induction is only allowed for formulae that are defined
everywhere. In the above rule p i z (pronounce ‘p double-dagger 2’) means that the formula
p must be admissible in #. There are well known (sufficient) properties [Pau87] to check the
admissibility of a formula p in a free variable x. However, since in SPECTRUM the terms are
not necessarily continuous in all their free variables, the test is a bit more complicated and
interconnected with a test for continuity.

10

3.9.1 Test for continuity

In [GR94] we presented a very tricky syntactical test, the j-test (pronounce ‘dagger test’)
to test the continuity of a term in a certain variable allowing this term to contain mapping
symbols and also quantifiers in a restricted form. This test was needed to formulate a context
condition for the formation rules (abstr) and (patt-abstr) concerning A-abstraction in order to
guarantee the type-correctness of our formation calculus. The two rules of [GR94] are given
below:

Faz:m>yenn

abstr et
()F D>y Az:Ty.€ ::7'1—>7'2{ f
x>y et €T a;
att-abstr ’ TRt R X :
(p)FI>X My, oo @piTp)e T XX, —7 | 1<i<n

However, in practice it turned out that in order to preserve continuity, the j-test had to
restrict the use of mapping symbols and quantifiers in a way that they could only occure in
positions where they are of little use. Therefore we decided to be more restrictive again and
formulated a new context condition which is also implemented in the current analyser for the
SPECTRUM language. The new context condition cont(e) qualifies a term e to be continuous
in all its free variables if e does not contain any mapping symbols or quantifiers.

e contains no mappings or quantifiers

cont(e)

If e does not contain any mapping symbols or quantifiers there must be a sort derivation for
e that uses only the formation rules (var), (const), (Il-inst), (weak), (tuple), (abstr), (patt-
abstr) and (appl)?. It is well known, e.g. [Sch86], that such a term e is continuous in all its
free variables. The new formation rules for abstraction are now:

Faz:m>yenn

(abstr)

t
>y Aziment — 7 {cont(e)

Foayim, oozt Dy et

(patt-abstr)

{cont(e)

Py Moy, 2piTp)e iy X oo X T, = T

3.9.2 Test for admissibility i

The property eiz is recursively defined on the structure of the well-formed term e. It’s reading
is ‘e double-dagger 2’ and means ‘e is admissible in z’.

Axioms:

(Inot_free) ;

{provided x ¢ FV(t)

Tx

Zsee [GRY4] for details.

11

T A A S —
(+ _)ﬁ(J_Eu)i$

Rules that need continuity:

cont(?) cont(u)
tCuix

(1)

cont(t)

m{ provided T §é FV(U)
- = +

cont(t) cont(u)
t=uilzx

(=)

Propagation of admissibility:

(iA)piw qia
pAhqiux

+ +
Ipat L
pvagia

piz qiuw
+:> Lt v v
4=) p=qix

+
()
V-y.pix

In addition to these syntactical rules there are two more criteria for admissibility. They can
be expressed in our formalism in a somehow crude way by mixing the i-test and the logical
calculus.

The first one is about equivalent formulae and means that every formula that is equivalent

to an admissible formula is also admissible:

@bVLx.p:q pia

+
q:

(fcong)

12

The second is about flat types and means that every predicate over a flat type is admissible:

({flat)

owvlyirvtziryCz=> (y=L)V(y==2)]| provided z:7 is in the
pla variable context of p

The above formalization of the logical calculus contains no big surprises. Most of it is similar
to the LCF logic. Only in some rules the difference between two-valued and three-valued
logic is apparent. Examples are [exmid], [impl], [TT1], [TT_E], [eq_todmpl], [impl_to_eq],
[DEF_ALLD], [DEF_EXDb], [ALL_def], [EX_def], [strongless], [strong_eq], [strong DEF] and
[fix_.ind] and some of the axioms for the datatype Bool. In the rules [ext less], [DEF_LAM]
and [DEF_LAM,] one can see that the space of continuous functions is lifted in SPECTRUM.

Theorem 1 Correctness of the calculus

If a sequent H » p over a given signature ¥ and sort context A" is derivable in the
calculus formulated above then the sequent is also valid in every Y-algebra where validity
of sequents is defined according to definition 3.

Proof: Along the structure of the derivation for the sequent and the fact that all infer-
ence rules preserve validity.

4 Derived rules

In this section I will present some selected derived rules which all have been derived within
the Isabelle system. I will not show all of the derived rules since I derived more than 180
inference rules. However all the rules presented below are given in the order they were proved
to show their dependencies.

[refl]

O»z=z
ym] T2 LY
>y==x
[trans] mLirae=y Hyry==
H17H2>$:Z
cong] T2 8=t Hap o=y
con
& Hy, 0w s(z) =t(y)
How6(f) Howélg) Hyw Ve f(z)=g(z)
ext_lemmal v d FV(AUFV
[] H17H27H3>f:g ¢ (f) (!])
H>—|—|p
tnotEl| ———
[notnotE] T

13

Hw»p

tnotl] ——
[notnotl] Hy» ——p

[total_conj] T 6(z)= 6(y) = 8(z A y)

[total disj] Op o(z) = 6(y) = 6(z V y)

[total impl] Iwo(z)= 6(y) = 6(z = y)

[total not]

Dw» o(x)= 6(-a)

H1>p H2>_'p

licontr] Hy, H, » false

[defI] %

BooLy) At =Lwr H?{iz’r;{z:i Hs,x = false » 7
[totalimpl2] " > ‘5;?) » fj(z];z; >q<;<q>

[DEF-BOOLE] Hy»t :Htr:eé\(/tzf = false

[UUE] II{{ :;

[not_UUE] HH>>_|J'

Hy» —8(11) Hy » —6(12)
H17H2 >t =12

[not_DEF _to_eq]

Hy» T L
less_ UU_impl_eq_UU] —————
[GSS Ampl_eq] H»x:J_
Hyw» é6(p) Hy,—pw» false
H17H2>p

[ccontr]

14

H» EIJ‘x.p

[EXbE_lemma2]
H» EIJ-x.p = true

Hyow3tap H
(ExbE2] — x;{’ R ;’p > q{ provided @ & (FV (H,)U FV (H,) U FV(q))
1y 442
Hw 3lep=t
[EXbE_lemma3] > oTep = true
H» EIJ-x.p
HwVta.
[ALLbE lemmal] >V
H» VJ‘x.p = true
HyvVlep=t
[ALLbE lemma?2)] > V.p = true

H» VJ‘x.p

Hi»pANqg Hypgwr
H17H2>7‘

[conjE]

[contrapos] TS T

H,» 6(p) Haw g Hi,pwyg
H17H27H3 > -p

[swap]

L
[total ALLb_lemmab] Ay v=edp)
Hw 6(vLa.p)
How vLa.6(p)

[total EXblemmah] — X =
Hw 6(31Lz.p)

[not_ALLb_to_EXb_not]

0» (=(VLep)) = (3tz.-p)

t_EXb_to_ALLb_not
O s v ey

H,6(z)» 6(q)
Hw» é§(6(z)=q)

[DEF DEF _impl_q1] { provided o ¢ FV(H)

H >VJ‘x.p: q

[ALLb_cong]
Hw (Vep) = (vleg)

15

H >VJ‘x.p: q

[EXb_cong] Hw (3tep) = (3Leg)

Hevietl =12

LAM _cong_lemmal
[LAM-cong lemmal] 52—

The following rules were only proved for 2 < n <5 in Isabelle.

[minimal_prod,,] Ow (L,...,L)C L

Hp={xy,...;¢,)»r

d, 12
[pron] H’T

{provided Ti,..,2, ¢ FV(H)U FV(r)

H><$17"'7$n>g<y17"'7yn>
Hy i Ty A ... ANz, Cy,

invert_prod,,
P

Hw (21, 520) = (Y155 Yn)
Hyaoi=y A ... Az, =1,

inject_prod,,
J P

Hw» 6(z) V... Vé(a,)
H» 6(<177n>)

[defined _tuple,,]

Hw Ve . o, =1t2
Hwy (Mag,..,z0)81) = (Mag, ... 2,).02)

[LAM,, cong_lemmal]

5 Conclusion

In this conclusion I would like to make some remarks about the logic of SPECTRUM. In the
design of the language SPECTRUM [BFG193a, BEFGT93b] we tried to merge the level of boolean
terms and that of formulae. This has the advantage that one needs only to introduce the
logical connectives once and can use them both for boolean terms and formulae. Furthermore
the specifications seem to have a nicer form and our feedback from writing specifications was
positive.

However, the consequence of this identification of terms and formulae was a three-valued
logic. Three-valued logics are frequently used in specification languages. One example is the
logic LPF [Che86] the usability of which is discussed in [CJ90] and Olaf Owe gives a thorough
discussion of various three-valued logics in [Owe91].

The three-valued logic of SPECTRUM that is presented in this paper was formalized in the
Isabelle system. We did some case studies with this formalization [Pus94] and therefore
gained some experience with this kind of three-valued logic. Also the derivation of more than
180 derived rules gave insight into the nature of SPECTRUM’s three-valued logic. As a final
judgment I would say that in principle it is possible to do proofs with this logic and especially
with its formalization in Isabelle. But I also would like to add some critical remarks:

16

1. Reasoning in three-valued logic seems to be quite artificial in some cases and there is
often a surprise when a theorem that holds in two-valued logic is not valid in the three-
valued case. Moreover, | think that the definedness logic of LCF is messy enough at the
level of terms and it is not a profit that the reasoning about definedness is propagated
to the level of formulae.

2. The degree of automation is very low in the Isabelle formalization and therefore there
is not much fun in doing a bigger case study. The reason for this poor theorem proving
support are subgoals about the definedness of terms that frequently pop up during
proofs. Although we have implemented some (very primitive) tactics that automatically
prove the definedness of a term, this did not improve the degree of automation very
much. It seems that the generic proof tools of Isabelle, especially the classical prover
which we could not instantiate for SPECTRUM, are better suited for two-valued logics.
I think that a satisfactory degree of automation can only be achieved in a theorem
proving environment that is tuned especially for three-valued logics.

As a consequence of these results I developed an enhanced variant of the SPECTRUM logic.
This logic is called HOLCF and is a higher-order version of LCF. It is based on Isabelle’s
formalization of HOL [Pau93b] and is therefore a two-valued logic again. Despite the three-
valued logic and the identification of formulae and terms of the datatype Bool it incorporates
all the features of the SPECTRUM logic. Moreover, since it allows full higher-order logic its
expressiveness is far beyond that of LCF or SPECTRUM. A thorough description of the logic
HOLCF is given in [Reg94]. The Isabelle formalization of HOLCF is part of the Isabelle
distribution.

References

[BFGT93a] Manfred Broy, Christian Facchi, Radu Grosu, Rudi Hettler, Heinrich Hussmann,
Dieter Nazareth, Franz Regensburger, Oscar Slotosch, and Ketil Stglen. The
Requirement and Design Secification Language SPECTRUM. An Informal In-
troduction. Version 1.0. Part i. Technical Report TUM-19311, Technische Uni-
versitit Miinchen. Institut fiir Informatik, Fakultit fir Informatik, TUM, 80290
Miinchen, Germany, May 1993.

[BFGT93b] Manfred Broy, Christian Facchi, Radu Grosu, Rudi Hettler, Heinrich Hussmann,
Dieter Nazareth, Franz Regensburger, Oscar Slotosch, and Ketil Stglen. The
Requirement and Design Secification Language SPECTRUM. An Informal In-
troduction. Version 1.0. Part ii. Technical Report TUM-19312, Technische Uni-
versitit Miinchen. Institut fiir Informatik, Fakultit fir Informatik, TUM, 80290
Miinchen, Germany, May 1993.

[Che&6] J.H. Cheng. A Logic for Partial Functions. PhD thesis, Departement of Computer
Science University of Manchester, 1986. Technical Report Series UMCS-86-7-1.

[CJ90] J.H. Cheng and C.B. Jones. On the Usability of Logics which Handle Partial
Functions. Technical Report Series UMCS-90-3-1, Departement of Computer
Science University of Manchester, 1990.

17

[Gen35]

[GMO3]

[GRY4]

[Nip91]

[Owe91]

[Pau87]

[Pau93a)

[Pau93b]

[Pus94]

[Reg94]

[Sch&6]

Gerhard Gentzen. Untersuchungen iiber das logische Schlieflen. Mathematische
Zeitschrift, 39:176-210,405-431, 1935.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

Radu Grosu and Franz Regensburger. The Logical Framework of SPECTRUM.
Technical Report TUM-19402, Institut fiir Informatik, Technische Universitat
Miinchen, 1994.

Tobias Nipkow. Order-Sorted Polymorphism in Isabelle. In G. Huet, G. Plotkin,
and C. Jones, editors, Proc. 2nd Workshop on Logical Frameworks, pages 307—
321, 1991.

0. Owe. Partial Logics Reconsidered: A Conservative Approach. Research Report
155, Departement of Informatics, University of Oslo, June 1991.

L.C. Paulson. Logic and Computation, Interactive Proof with Cambridge LCF,
volume 2 of Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1987.

L.C. Paulson. The Isabelle Reference Manual. Technical Report 283, University
of Cambridge, Computer Laboratory, 1993.

L.C. Paulson. Isabelle’s Object Logics. Technical Report 286, University of
Cambridge, Computer Laboratory, 1993.

Cornelia Pusch. Verifikation einer Entwicklung von AVL-Baumen in Isabelle.
Diplomarbeit, Technische Universitat Miinchen, 1994.

Franz Regensburger. HOLCF: Fine konservative Erweiterung von HOL um LCF.
PhD thesis, Technische Universitat Miinchen, 1994.

D.A. Schmidt. Denotational Semantics. Allan and Bacon, 1986.

18

