
The calculus of Spectrum
�

Franz Regensburger

July ��� ����

Abstract

In this paper I present the logical calculus for the speci�cation language Spectrum
�BFG���a� BFG���b�� It is a three�valued variant of the calculus for the logic LCF
�Pau�	�� Familiaritywith the technical report �GR�
� in which the semantics of Spectrum
is de�ned is assumed�

�This work is sponsored by the German Bundesministerium f�ur Forschung und Technik �BMFT� as part of
the compound project �KORSO �Korrekte Software��



Contents

� Introduction �

� Sequents �

� Inference Rules �

��� Propositional logic � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Embedding into Bool � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Quanti�ers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Equality � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Domain Theory � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Polymorphism � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

��� Axioms for the datatype Bool � � � � � � � � � � � � � � � � � � � � � � � � � � 	

��	 Tuples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Fixed point induction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Test for continuity � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Test for admissibility z � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Derived rules ��

� Conclusion ��

�



� Introduction

In this paper I present the logical calculus for the speci�cation language Spectrum �BFG���a

BFG���b�� The de�nition of the syntax and semantics of the core language of Spectrum
can be found in �GR���� Familiarity with this technical report is assumed since I will use the
notation introduced in this paper�

The paper is organized as follows� In section � sequents and their semantics are introduced�
In Section � the inference rules of the calculus are presented and in section � I will show some
selected derived rules� The paper is closed by some concluding remarks about the Spectrum
logic in section �� Although the calculus was formalized in the logical framework Isabelle
�Pau��a� and all derived rules have been derived in this framework I will not present the
Isabelle formalization in this paper�

� Sequents

In this section I introduce the notion of a sequent� Sequents are used to formalize the logical
calculus of Spectrum as a natural deduction system with explicit treatment of living hy�
potheses� This makes the formalization of side conditions for rules much easier and allows to
reason directly about the correctness of rules and of the overall calculus� This kind of formal�
ization is well known from other logical systems
 e�g� the HOL logic �GM���� The de�nition
of sequent is due to �GM��� but is adjusted to three�valued logic�

In order to simplify the following de�nitions I will make a slight change in terminology with
respect to the one introduced in �GR����

De�nition � well�formed terms� formulae

Fixing a signature � and a family of type variables X 
 a well�formed term of sort � is a
pre�term e
 such that there exists a sort derivation that ends with � �X e ��� � The set
T� of well�formed terms of sort � is thus de�ned as�

T� � fe j there exists � with � �X e ���g

Formulae are terms of sort Bool�

Form� TBool

The tuples �X ��� e� �� that are called well�formed terms in �GR��� are called terms in

context in this paper�

If the type of the term e is known
 there exists a unique minimal variable context � consisting
just of type assumptions for all the variables occuring free in e� This is due to the fact that
terms are almost fully typed� If the term e is not a variable then one even doesn�t need to
know the outermost type of e to construct the unique and minimal variable context �� This
means that for every formula p � Form
 where the type is known to be Bool
 there exists a
unique minimal context � such that �X ��� e�Bool� is a term in context and there is also a
unique normal sort derivation that ends with � �X e ��Bool�

�



De�nition � Sequents

Fixing a signature � and a family of type variables X 
 a sequent is a pair �H� p� where
H � Form is a �nite set of formulae and p � Form is a formula� The set H is called
the set of assumptions and p is called the conclusion of the sequent�� Instead of �H� p�
I will use the notation H I p for sequents and list notation h�� � � � � hn or H� h� instead
of fh�� � � � � hng or H � fh�g�

There is one additional property that must hold for a sequent h�� � � � � hn I p in order
to give it a semantics later on� We require�

h� � � � � � hn � p � Form

If the condition is ful�lled there is a unique and common type assumption for every
variable occuring free in the terms h�� � � � � hn and p� The use of the � connective here
is arbitrary� Its only purpose is to connect the hi and p to form a single term�

Usually the semantics of a sequent

h�� � � � � hn I p

is de�ned to be that of the formula

h� � � � � � hn � p

This means that a sequent is to be red as implication� Since Spectrum uses a three�valued
logic
 this de�nition needs to be changed� There are several opportunities to extend the
semantics of a sequent from the two�valued to the three�valued case� Olaf Owe gives a detailed
survey in �Owe��� about this topic� In his terminologies the set of assumptions H and the
conclusion p both have a strong interpretation in Spectrum� Therefore the semantics of a
sequent

h�� � � � � hn I p

is de�ned to be that of the formula

h� � ��h�� � � � � � hn � ��hn�� p

Owe would characterize the partial logic of Spectrum with SS in his tables� Using the
notation of �GR��� the semantics of a sequent is de�ned as follows�

�historically� a sequent �in German �Sequenz	 due to 
Gen��
� is a list and not a set� The use of lists is vital
for real sequent calculi like Gentzen	s LK� In this paper the assumptions are the set of living hypotheses in a
natural deduction calculus and therefore the order and multiplicity of formulae in the sequent is not interesting�
It is a terminological accident that the pair �H�p� is called a sequent but this terminology is used by several
authors 
Pau��� GM��
�

�



De�nition � Satisfaction for sequents

Given a signature �
 a family of type variables X and a ��Algebra A
 the sequent
h�� � � � � hn I p is called valid in A rsp� A satis�es h�� � � � � hn I p
�in symbols� A j� h�� � � � � hn I p� i��

�A j� �X ��� h� � ��h�� � � � � � hn � ��hn�� p�Bool�

where � is the unique variable context�

The de�nitions for a deductive system and for a formal proof with respect to a deductive
system are that of �GM��� and will not be repeated here�

� Inference Rules

The inference rules of the logical calculus of Spectrum are given in the style of �GM���� Using
this style the translation into the Isabelle system is straight forward� Any side conditions
restricting the applicability of a rule are given to the right of it� The names in square brackets
are the names of the rules in the Isabelle formalization�

For the notation of terms I do not use the rigid syntax of �GR��� but use a more sloppy
one with in�x notation� Also type information is suppressed whenever an order�sorted type
inference mechanism in the sense of �Nip��� could infer the missing types� Actually the
untyped terms presented below were also used in the Isabelle formalization where Isabelle�s
type inference machine computed the most general type information for the missing types�

��� Propositional logic

�hyp�
H I p

�
p � H

�weak�
H� I p

H� I p

�
H� � H�

The rules �hyp� and �weak� are covered by Isabelle�s meta�logic�

�exmid�
H I ��p�

H I p � �p

�conjI�
H� I p H� I q

H�� H� I p � q

�conjunct��
H I p � q

H I p

�



�conjunct��
H I p � q

H I q

�disjI��
H I p

H I p � q

�disjI��
H I q

H I p � q

�disjE�
H� I p � q H�� p I r H�� q I r

H�� H�� H� I r

�impI�
H� I ��p� H� I q

�H� �H�� n fpg I p � q

�mp�
H� I p� q H� I p

H�� H� I q

�not def�
� I �p � �p� false�

�FF E�
H I false

H I p

��� Embedding into Bool

�TT I�
H I p

H I p � true

�TT E�
H I p � true

H I p

�eq to imp�
H� I p � q H� I ��p�

H�� H� I �p� q� � �q � p�

�impl to eq�
H I �p � q� � �q � p�

H I p � q

��� Quanti�ers

�ALLbI�
H I p

H I �	x�p

�
provided x 
� FV �H�

�



�ALLbE�
H I �	x�p

H I p�t�x�

In the rule above p�t�x� denotes the substitution of the term t of appropriate type for the
variable x in formula p
 with suitable renaming of bound variables to prevent free variables
in t becoming bound after substitution�

�EXbI�
H I p�t�x�

H I �	x�p

�EXbE�
H� I �	x�p H� I p � q

H�� H� I q

�
provided x 
� �FV �H�� � FV �H�� � FV �q��

�DEF ALLb�
� I ���	x�p� � ���	x�p � true� � ��	x�p � false��

�DEF EXb�
� I ���	x�p� � ���	x�p � true� � ��	x�p � false��

�ALL def�
� I ��x�p� � ��	x���x�� p�

�EX def�
� I ��x�p� � ��	x���x� � p�

��� Equality

�beta red�
� I ��x�e�t � e�t�x�

�subst�
H� I t� � t� H� I p�t��x�

H�� H� I p�t��x�

In the rule above p�t��x� means that p is a formula in which the variable x eventually occurs
and that the term t� is substituted for every free occurrence of x with usual prevention of
variable capture�

��� Domain Theory

�re� less�
� I x v x

�eq def�
� I �x � y� � �x v y � y v x�

�



�trans less�
H� I x v y H� I y v z

H�� H� I x v z

�ext less�
H� I ��g� H� I �	x�f�x� v g�x�

H�� H� I f v g

�
x �� FV �f�� FV �g�

�mono less�
H� I f v g H� I x v y

H�� H� I f�x� v g�y�

�minimal�
� I 	 v x

�DEF app�
� I 	�x� � 	

�DEF def�
� I ��x� � ��x � 	�

��x eq�
� I f��x�f�� � �x�f�

�strong less�
� I ��x v y�

�strong eq�
� I ��x � y�

�strong DEF�
� I ����x��

�DEF LAM�
� I ���x�t�

��� Polymorphism

The following rule is already part of Isabelle�s meta�logic

�inst�
H I p

��H� I ��p�

�
where � is an order�sorted type substitution

��� Axioms for the datatype Bool

�DEF TT�
� I ��true�

�DEF FF�
� I ��false�

	



�DEF conj�
� I �� � �

�DEF disj�
� I �� � �

�DEF impl�
� I ��� �

�DEF not�
� I ����

�conj ax��
� I �x � y� � �y � x�

�conj ax��
� I �true � y� � y

�conj ax��
� I �false � y� � false

�conj ax��
� I �	 � 	� � 	

�disj ax��
� I �x � y� � �y � x�

�disj ax��
� I �true � y� � true

�disj ax��
� I �false � y� � y

�disj ax��
� I �	 � 	� � 	

�impl ax��
� I �true � y� � y

�impl ax��
� I �false � y� � true

�impl ax��
� I �	 � true� � true

�impl ax��
� I �	 � false� � 	

�impl ax��
� I �	 � 	� � 	

�



�Exh BOOL�
� I x � true � x � false � x � 	

�not FF less UU�
� I ��false v 	�

�not FF less TT�
� I ��false v true�

�not TT less UU�
� I ��true v 	�

�not TT less FF�
� I ��true v false�

��	 Tuples

The following rules are schemas that can be instantiated for every n � �� However
 in the
Isabelle formalization these rules are only partially implemented for � 
 n 
 ��

�beta redn�
� I ��hx�� � � � � xni�e�ht�� � � � � tni � e�t��x� � � � tn�xn�

The term e�t��x� � � � tn�xn� denotes simultaneous substitution of the terms ti for xi�

�DEF LAMn�
� I ���hx�� � � � � xni�t�

�Exh prodn�
� I �	z��	x� � � �xn�hx�� � � � � xni � z

��
 Fixed point induction

��x ind�
H� I �	x� ��p� H� I p�	�x� H� I �	x� p � p�f�x��x�

H�� H�� H� I p��x�f��x�

�
p z x

Note that due to the �rst premise induction is only allowed for formulae that are de�ned
everywhere� In the above rule p z x �pronounce �p double�dagger x�� means that the formula
p must be admissible in x� There are well known �su�cient� properties �Pau	�� to check the
admissibility of a formula p in a free variable x� However
 since in Spectrum the terms are
not necessarily continuous in all their free variables
 the test is a bit more complicated and
interconnected with a test for continuity�

�




����� Test for continuity

In �GR��� we presented a very tricky syntactical test
 the y�test �pronounce �dagger test��
to test the continuity of a term in a certain variable allowing this term to contain mapping
symbols and also quanti�ers in a restricted form� This test was needed to formulate a context
condition for the formation rules �abstr� and �patt�abstr� concerning ��abstraction in order to
guarantee the type�correctness of our formation calculus� The two rules of �GR��� are given
below�

�abstr�
�� x ��� �� e �� ��

� �� �x ����e �� �� � ��
fe y x

�patt�abstr�
�� x� ���� � � � � xn ��n �� e �� �

� �� �hx� ���� � � � � xn ��ni�e �� �� � � � �� �n � �

�
e y xi
� 
 i 
 n

However
 in practice it turned out that in order to preserve continuity
 the y�test had to
restrict the use of mapping symbols and quanti�ers in a way that they could only occure in
positions where they are of little use� Therefore we decided to be more restrictive again and
formulated a new context condition which is also implemented in the current analyser for the
Spectrum language� The new context condition cont�e� quali�es a term e to be continuous
in all its free variables if e does not contain any mapping symbols or quanti�ers�

e contains no mappings or quanti�ers

cont�e�

If e does not contain any mapping symbols or quanti�ers there must be a sort derivation for
e that uses only the formation rules �var�
 �const�
 ���inst�
 �weak�
 �tuple�
 �abstr�
 �patt�
abstr� and �appl��� It is well known
 e�g� �Sch	��
 that such a term e is continuous in all its
free variables� The new formation rules for abstraction are now�

�abstr�
�� x ��� �� e �� ��

� �� �x ����e �� �� � ��
fcont�e�

�patt�abstr�
�� x� ���� � � � � xn ��n �� e �� �

� �� �hx� ���� � � � � xn ��ni�e �� �� � � � �� �n � �
fcont�e�

����� Test for admissibility z

The property ezx is recursively de�ned on the structure of the well�formed term e� It�s reading
is �e double�dagger x� and means �e is admissible in x��

Axioms�

�znot free�
t z x

�
provided x �� FV �t�

�see 
GR��
 for details�

��



�z�	 v �
��	 v u� z x

Rules that need continuity�

�z v �
cont�t� cont�u�

t v u z x

�z� v �
cont�t�

��t v u� z x

�
provided x �� FV �u�

�zsubst�
cont�t� p z x

p�t�x� z x

�z� � 	�
cont�t�

��t � 	� z x

�z��
cont�t� cont�u�

t � u z x

Propagation of admissibility�

�z � �
p z x q z x

p � q z x

�z � �
p z x q z x

p � q z x

�z � �
�p z x q z x

p� q z x

�z�	�
p z x

�	y� p z x

In addition to these syntactical rules there are two more criteria for admissibility� They can
be expressed in our formalism in a somehow crude way by mixing the z�test and the logical
calculus�

The �rst one is about equivalent formulae and means that every formula that is equivalent
to an admissible formula is also admissible�

�zcong�
� I �	x� p � q p z x

q z x

��



The second is about �at types and means that every predicate over a �at type is admissible�

�z�at�
� I �	y �� ��	z �� � y v z � �y � 	� � �y � z�

p z x

�
provided x �� is in the
variable context of p

The above formalization of the logical calculus contains no big surprises� Most of it is similar
to the LCF logic� Only in some rules the di�erence between two�valued and three�valued
logic is apparent� Examples are �exmid�
 �impl�
 �TT I�
 �TT E�
 �eq to impl�
 �impl to eq�

�DEF ALLb�
 �DEF EXb�
 �ALL def�
 �EX def�
 �strong less�
 �strong eq�
 �strong DEF� and
��x ind� and some of the axioms for the datatype Bool� In the rules �ext less�
 �DEF LAM�
and �DEF LAMn� one can see that the space of continuous functions is lifted in Spectrum�

Theorem � Correctness of the calculus

If a sequent H I p over a given signature � and sort context X is derivable in the
calculus formulated above then the sequent is also valid in every ��algebra where validity
of sequents is de�ned according to de�nition ��

Proof� Along the structure of the derivation for the sequent and the fact that all infer�
ence rules preserve validity�

� Derived rules

In this section I will present some selected derived rules which all have been derived within
the Isabelle system� I will not show all of the derived rules since I derived more than �	

inference rules� However all the rules presented below are given in the order they were proved
to show their dependencies�

�re��
� I x � x

�sym�
H I x � y

H I y � x

�trans�
H� I x � y H� I y � z

H�� H� I x � z

�cong�
H� I s � t H� I x � y

H�� H� I s�x� � t�y�

�ext lemma��
H� I ��f� H� I ��g� H� I �	x�f�x� � g�x�

H�� H�� H� I f � g

�
x �� FV �f� � FV �g�

�notnotE�
H I ��p

H I p

��



�notnotI�
H I p

H I ��p

�total conj�
� I ��x�� ��y�� ��x � y�

�total disj�
� I ��x�� ��y�� ��x � y�

�total impl�
� I ��x�� ��y�� ��x� y�

�total not�
� I ��x�� ���x�

�icontr�
H� I p H� I �p

H�� H� I false

�defI�
H I p

H I ��p�

�BOOLE�
H�� x � 	 I r H�� x � true I r H�� x � false I r

H�� H�� H� I r

�total impl��
H� I ��p� H�� p I ��q�

H�� H� I ��p� q�

�DEF BOOLE�
H I ��t�

H I t � true � t � false

�UUE�
H I 	

H I p

�not UUE�
H I �	

H I p

�not DEF to eq�
H� I ���t�� H� I ���t��

H�� H� I t� � t�

�less UU impl eq UU�
H I x v 	

H I x � 	

�ccontr�
H� I ��p� H���p I false

H�� H� I p

��



�EXbE lemma��
H I �	x�p

H I �	x�p � true

�EXbE��
H� I �	x�p H�� p I q

H�� H� I q

�
provided x 
� �FV �H��� FV �H�� � FV �q��

�EXbE lemma��
H I �	x�p � true

H I �	x�p

�ALLbE lemma��
H I �	x�p

H I �	x�p � true

�ALLbE lemma��
H I �	x�p � true

H I �	x�p

�conjE�
H� I p � q H�� p� q I r

H�� H� I r

�contrapos�
� I �p� q� � ��q � �p�

�swap�
H� I ��p� H� I �q H�� p I q

H�� H�� H� I �p

�total ALLb lemma��
H I �	x���p�

H I ���	x�p�

�total EXb lemma��
H I �	x���p�

H I ���	x�p�

�not ALLb to EXb not�
� I ����	x�p�� � ��	x��p�

�not EXb to ALLb not�
� I ����	x�p�� � ��	x��p�

�DEF DEF impl q I�
H� ��x� I ��q�

H I ����x�� q�

�
provided x �� FV �H�

�ALLb cong�
H I �	x�p � q

H I ��	x�p� � ��	x�q�

��



�EXb cong�
H I �	x�p � q

H I ��	x�p� � ��	x�q�

�LAM cong lemma��
H I �	x�t� � t�

H I ��x�t�� � ��x�t��

The following rules were only proved for � 
 n 
 � in Isabelle�

�minimal prodn�
� I h	� � � � �	i v 	

�prodnE�
H� p � hx�� � � � � xni I r

H I r

�
provided x�� � � � � xn �� FV �H�� FV �r�

�invert prodn�
H I hx�� � � � � xni v hy�� � � � � yni

H I x� v y� � � � � � xn v yn

�inject prodn�
H I hx�� � � � � xni � hy�� � � � � yni

H I x� � y� � � � � � xn � yn

�de�ned tuplen�
H I ��x�� � � � � � ��xn�

H I ��hx�� � � � � xni�

�LAMn cong lemma��
H I �	x� � � �xn�t� � t�

H I ��hx�� � � � � xni�t�� � ��hx�� � � � � xni�t��

� Conclusion

In this conclusion I would like to make some remarks about the logic of Spectrum� In the
design of the language Spectrum �BFG���a
 BFG���b� we tried to merge the level of boolean
terms and that of formulae� This has the advantage that one needs only to introduce the
logical connectives once and can use them both for boolean terms and formulae� Furthermore
the speci�cations seem to have a nicer form and our feedback from writing speci�cations was
positive�

However
 the consequence of this identi�cation of terms and formulae was a three�valued
logic� Three�valued logics are frequently used in speci�cation languages� One example is the
logic LPF �Che	�� the usability of which is discussed in �CJ�
� and Olaf Owe gives a thorough
discussion of various three�valued logics in �Owe����

The three�valued logic of Spectrum that is presented in this paper was formalized in the
Isabelle system� We did some case studies with this formalization �Pus��� and therefore
gained some experience with this kind of three�valued logic� Also the derivation of more than
�	
 derived rules gave insight into the nature of Spectrum�s three�valued logic� As a �nal
judgment I would say that in principle it is possible to do proofs with this logic and especially
with its formalization in Isabelle� But I also would like to add some critical remarks�

��



�� Reasoning in three�valued logic seems to be quite arti�cial in some cases and there is
often a surprise when a theorem that holds in two�valued logic is not valid in the three�
valued case� Moreover
 I think that the de�nedness logic of LCF is messy enough at the
level of terms and it is not a pro�t that the reasoning about de�nedness is propagated
to the level of formulae�

�� The degree of automation is very low in the Isabelle formalization and therefore there
is not much fun in doing a bigger case study� The reason for this poor theorem proving
support are subgoals about the de�nedness of terms that frequently pop up during
proofs� Although we have implemented some �very primitive� tactics that automatically
prove the de�nedness of a term
 this did not improve the degree of automation very
much� It seems that the generic proof tools of Isabelle
 especially the classical prover
which we could not instantiate for Spectrum
 are better suited for two�valued logics�
I think that a satisfactory degree of automation can only be achieved in a theorem
proving environment that is tuned especially for three�valued logics�

As a consequence of these results I developed an enhanced variant of the Spectrum logic�
This logic is called HOLCF and is a higher�order version of LCF� It is based on Isabelle�s
formalization of HOL �Pau��b� and is therefore a two�valued logic again� Despite the three�
valued logic and the identi�cation of formulae and terms of the datatype Bool it incorporates
all the features of the Spectrum logic� Moreover
 since it allows full higher�order logic its
expressiveness is far beyond that of LCF or Spectrum� A thorough description of the logic
HOLCF is given in �Reg���� The Isabelle formalization of HOLCF is part of the Isabelle
distribution�

References

�BFG���a� Manfred Broy
 Christian Facchi
 Radu Grosu
 Rudi Hettler
 Heinrich Hussmann

Dieter Nazareth
 Franz Regensburger
 Oscar Slotosch
 and Ketil St�len� The
Requirement and Design Seci�cation Language SPECTRUM� An Informal In�
troduction� Version ��
� Part i� Technical Report TUM�I����
 Technische Uni�
versit�at M�unchen� Institut f�ur Informatik
 Fakult�at f�ur Informatik
 TUM
 	
��

M�unchen
 Germany
 May �����

�BFG���b� Manfred Broy
 Christian Facchi
 Radu Grosu
 Rudi Hettler
 Heinrich Hussmann

Dieter Nazareth
 Franz Regensburger
 Oscar Slotosch
 and Ketil St�len� The
Requirement and Design Seci�cation Language SPECTRUM� An Informal In�
troduction� Version ��
� Part ii� Technical Report TUM�I����
 Technische Uni�
versit�at M�unchen� Institut f�ur Informatik
 Fakult�at f�ur Informatik
 TUM
 	
��

M�unchen
 Germany
 May �����

�Che	�� J�H� Cheng� A Logic for Partial Functions� PhD thesis
 Departement of Computer
Science University of Manchester
 ��	�� Technical Report Series UMCS�	������

�CJ�
� J�H� Cheng and C�B� Jones� On the Usability of Logics which Handle Partial
Functions� Technical Report Series UMCS�������� Departement of Computer

Science University of Manchester
 ���
�

��



�Gen��� Gerhard Gentzen� Untersuchungen �uber das logische Schlie�en� Mathematische

Zeitschrift
 ���������

�
�����
 �����

�GM��� M�J�C� Gordon and T�F� Melham� Introduction to HOL� A Theorem Proving

Environment for Higher Order Logic� Cambridge University Press
 �����

�GR��� Radu Grosu and Franz Regensburger� The Logical Framework of spectrum�
Technical Report TUM�I��
�
 Institut f�ur Informatik
 Technische Universit�at
M�unchen
 �����

�Nip��� Tobias Nipkow� Order�Sorted Polymorphism in Isabelle� In G� Huet
 G� Plotkin

and C� Jones
 editors
 Proc� �nd Workshop on Logical Frameworks
 pages �
��
���
 �����

�Owe��� O� Owe� Partial Logics Reconsidered� A Conservative Approach� Research Report
���
 Departement of Informatics
 University of Oslo
 June �����

�Pau	�� L�C� Paulson� Logic and Computation� Interactive Proof with Cambridge LCF

volume � of Cambridge Tracts in Theoretical Computer Science� Cambridge Uni�
versity Press
 ��	��

�Pau��a� L�C� Paulson� The Isabelle Reference Manual� Technical Report �	�
 University
of Cambridge
 Computer Laboratory
 �����

�Pau��b� L�C� Paulson� Isabelle�s Object Logics� Technical Report �	�
 University of
Cambridge
 Computer Laboratory
 �����

�Pus��� Cornelia Pusch� Veri�kation einer Entwicklung von AVL�B�aumen in Isabelle�
Diplomarbeit
 Technische Universit�at M�unchen
 �����

�Reg��� Franz Regensburger� HOLCF� Eine konservative Erweiterung von HOL um LCF�
PhD thesis
 Technische Universit�at M�unchen
 �����

�Sch	�� D�A� Schmidt� Denotational Semantics� Allan and Bacon
 ��	��

�	


