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Abstract

Higher-order constructs provide the necessary level of abstraction for concise and
natural formulations in many areas of computer science. We present constructive methods
for higher-order equational reasoning with applications ranging from theorem proving
to novel programming concepts. A major problem of higher-order programming is the
undecidability of higher-order unification. In the first part, we develop several classes
with decidable second-order unification. As the main result, we show that the unification
of a linear higher-order pattern s with an arbitrary second-order term that shares no
variables with s is decidable and finitely solvable. This is the unification needed for
second-order functional-logic programming.

The second main contribution is a framework for solving higher-order equational prob-
lems by narrowing. In the first-order case, narrowing is the underlying computation rule
for the integration of logic programming and functional programming. We argue that
there are some principal problems with lifting the standard notion of first-order nar-
rowing to the higher-order case. In contrast, the alternative approach, lazy narrowing,
solves goals in a top-down manner and can be adapted to the higher-order case. Sev-
eral refinements that utilize the deterministic evaluation of functional programs, such as
normalization, are developed for this approach. We further introduce a restricted class
of equational goals that suffices for programming applications. This class, called Simple
Systems, enjoys decidable unification in the second-order case, using the results of the
first part. It facilitates several other optimizations, e.g. recognizing solved system is sim-
ple. Integrating these refinements leads to a new narrowing strategy where intermediate
goals can safely be delayed and are only solved when needed.

This work forms a new basis for truly higher-order functional-logic programming
that is oriented more towards higher-order functional programs than to horn clauses as
in logic programming. We argue that many techniques of first-order (functional-)logic
programming can be modeled more directly in our higher-order functional approach.
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To Andrea

The Emperor counsels simplicity.
First principles.

Of each particular thing, ask:
What is it in itself,

in its own constitution?

What is its causal nature?

Dr. Hannibal Lecter, in The Silence of the Lambs,
Thomas Harris
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Chapter 1

Main Goals and Results

Higher-order constructs provide the necessary level of abstraction for concise and natu-
ral formulations in many areas of computer science. Examples are functional program-
ming [MTH90, HJW92, Pau91, Ste90] and specification [Bro88, Mol86], program trans-
formation and synthesis [HL78, Hag91b], machine learning [Har90, DW88], and theorem
proving systems, e.g. [AINP90, Pau94, CAB*86, DFH193]. The goal of this thesis is
to develop tractable refinements for higher-order equational reasoning that are suitable
for programming. The major application we aim for is declarative programming, in
particular the integration of logic and functional programming on a higher-order basis.
Figure 1.1 gives an overview of existing programming paradigms. Narrowing provides a
nice generalization of both logic and functional programming. This approach has been
examined extensively for the first-order case and has led to several implementations (for
a survey see [Han94b]).

Logic Programming Functional Programming

Narrowing

Higher-Order LP Higher-Order FP

oy e

Higher-Order Narrowing

Figure 1.1: Declarative Programming Paradigms

Whereas higher-order programming is standard in functional programming, logic pro-
gramming is in large parts still tied to the first-order world. Only a few languages, most
notably A-Prolog, are fully higher-order. The language A-Prolog pioneered in the use of
higher-order unification for logic programming and has shown its practical utility despite
its undecidability.

This gap has been recognized and many higher-order extensions of functional-logic
languages [BG86, CKW89, GMHGRA92, Loc93, She90] have been developed. To our

knowledge, however, all of these are limited to first-order unification and are not com-



plete in a higher-order sense. Several works [Smo86, Loc93, SJ92] on functional-logic
programming explicitly state that second-order unification cannot be used due to its un-
decidability. We prove this to be wrong for the context of functional-logic programming.

This work develops the foundations of truly higher-order functional-logic program-
ming. The main steps towards this goal are as follows:

e Decidable second-order unification problems that can be applied to functional-logic
programming.

o A framework for higher-order narrowing with first completeness results.

o Several refinements of narrowing, e.g. deterministic simplification, conditional nar-
rowing.

o A class of equational goals that suffices for higher-order functional-logic program-
ming and which enjoys several optimizations.

This work forms a new basis for truly higher-order functional-logic programming that is
more oriented towards higher-order functional programs than to first-order horn clauses.
This programming paradigm not only supports applicative higher-order programming,
but in addition new functional objects can be computed by unification with logic pro-
gramming techniques. Its practical use is shown by several examples. These include
high-level programming, automating mathematics, and program transformation. A sim-
ilar language is described nicely in [L1094] by many examples.

Compared to higher-order logic programming, where higher-order A-terms only serve
as data structures, our functional setting supports higher-order programming as in func-
tional languages directly. It furthermore enjoys two sources of optimizations:

o Left-linearity of rewrite rules can be exploited and for instance leads to decidable
unification in the second-order case and to a new strategy for needed narrowing,
where intermediate goals are only solved when needed.

o Convergent systems allow the restriction to normalized solutions, facilitating deter-
ministic operations.

More detailed overviews of the results can be found at the beginning of each chapter.
The structure of the work is as follows. The next chapter gives an informal outline of
this work. Chapter 3 presents simply typed A-calculus and other basic preliminaries.
An introduction to higher-order unification and term rewriting follows in Chapter 4.
Chapter 5 develops decidable classes of second-order unification. Higher-order narrowing
is the subject of Chapter 6 and can be read, with a few exceptions, independently of
Chapter 5. This is followed by examples for higher-order narrowing in Chapter 7 and
concluding remarks in Chapter 8.



Chapter 2

Introduction and Overview

In the following, we informally introduce the main topics and outline the main results
of this work. We proceed from first-order term rewriting and narrowing to higher-order
unification and higher-order narrowing.

2.1 Term Rewriting

Term rewriting is a model of computation. Rewriting is based on the idea of “replacing
equals by equals”. Following this idea, equations between terms are oriented into rewrite
rules. For instance, the equations 0 + 7 = 7 and X + suce(Y) = suce(X + V) form a
specification of the function +, assuming the term constructors 0 and suce. Let us orient
the equations into the following two rules

. 0+7 — Z
| X 4 suce(Y) — suce(X 4+ Y)

With orientation, we gain an operational model: reduction. We can reduce a term with
the rules of R, e.g.:

a+ suce(0+b) — a + suce(b) — suce(a + b)

where a and b are some constants. These two reduction steps reduce a + suce(0 +
b) to its normal form suce(a + b) wrt. R. Notice that this is an abstract model of
computation; it is not directly used as a programming language since reduction is in
general not deterministic. Programming languages usually restrict rewrite systems to be
confluent, which implies that normal forms are unique, e.g. succ(a 4+ b) above. Then it
suffices to perform only a particular reduction strategy.

Term rewriting as an abstract model is, for instance, useful for symbolic reasoning with
equations and for the analysis of programming languages. In particular, term rewriting
is an abstract model of first-order functional programming languages. Current languages
such as LISP variants [Ste90], Haskell [HIJW92] or SML [MTH90] are higher-order and
originate from the A-calculus. In such languages, reduction to normal form is called
evaluation.

The simplicity of the concept of term rewriting has attracted much research, con-
cerning properties of rewrite systems such as termination or confluence. For surveys we
refer to [DJ90, Klo92]. Apart from programming, well developed applications are theorem



proving, both automatic systems [Hsi85] and interactive systems [Gor88, Pau94], program

synthesis via completion [Bac91] and algebraic specifications [GTW89, EM85, FHI1].

2.2 Narrowing

Starting from an equational specification, it is often not only desirable to evaluate terms,
but also to solve equations. For instance, with the rules of R, a simple goal is to ask for
what values of X the equation

suce(X + a) :?R suce(a)

holds. Narrowing is a general mechanism for solving such goals in a systematic way. The
idea is to find values for X by unification. Whereas term rewriting searches for matches
of a rule, narrowing uses unification to find an instance of a term such that a rewrite step
applies.

For instance, unifying the left-hand side of the first rule of R, 0+ 7, with X 4 a yields
a solution by the substitution

§={X—0,7 a}
Then we have the narrowing step
suce(X + a) «»2+Z—>Z suce(a) (2.1)

The gist of narrowing is that it need not be applied to variable subterms. For narrowing
the restriction to R-normalized solutions, which map variables to terms in R-normal
form, implies that this is not needed.

Compared to paramodulation [RW69, Bra75], an early precursor for equational rea-
soning, narrowing [Sla74] assumes rewrite rules instead of undirected equations. Research
on first-order narrowing was initiated by the papers of Fay [Fay79] and Hullot [Hul80].
Hullot first showed correctness and completeness of narrowing, which reads roughly as:

Assume a rewrite system R, two terms s and ¢, and an R-normalized substi-
tution 0. If s —° t has solution 6, i.e. §s — F ¢, then there exists a sequence
of narrowing steps s ~» £ ¢’ such that o and ¢’ are more general than ¢ and ¢.

This result only deals with matching, but unification is easy to encode (see Section 6.1).
Hence narrowing serves as a complete method for unification modulo a theory given by a
convergent term rewriting system: as narrowing is complete wrt. normalized substitutions
and since for every substitution there exists an equivalent normalized one.

Narrowing forms the underlying computation rule for programming languages [Red85,
DOY0]. For instance, logic programming can be viewed as narrowing [BGMS88] and the
work on integrating logic and functional programming is usually based on narrowing.
Many of the early proposals for functional-logic programming can be found in [DL36].
When performing narrowing as a programming language, reduction is viewed as evalua-
tion.

As the search space of naive narrowing is very large, there exists an abundance
of refinements that remove redundant narrowing derivations (see [Han94b, MH94] for



overviews). For convergent systems, there is a strategy that is optimal in the sense that
no solution is computed twice [BKW93]. For a restricted class of term rewriting systems,
which suffices for simple programming languages, there exists a simple strategy [AEH94]
that computes reductions of minimal length.

Apart from the notion of narrowing explained above, there exists another notion
of narrowing, called lazy narrowing. To avoid confusion, we call the first notion plain
narrowing. Plain narrowing searches for an instance such that some subterm can be
rewritten. In contrast, lazy narrowing integrates the rules of unification into narrowing.
The idea is to simplify terms by unification until only rewrite steps at the outermost
position have to be considered in a “lazy” fashion.

For instance, to model the (plain) narrowing step in (2.1) by lazy narrowing, we start
with a goal

suce(X + a) N suce(a)

and look for a solution @ such that suce(6X + a) rewrites to suce(a). We first apply a
decomposition step on suce, yielding the subgoal

X—I—a—>?a

Then a lazy narrowing step applies at the function symbol + with the rule 0 + 7 — 7.
The unification of the subterms of the rewrite rule with the goal is delayed by posting
two new goals for the unification of X + a with 0 + 7:

X ='0,a="2,7="a

Lazy narrowing employs such steps only at the root position of a term. In general, the
newly added subgoals must again be solved modulo R. In this example, it suffices to take
the direct syntactic solution, i.e. {X — 0,7 — a}.

Most papers on narrowing and functional-logic languages employ variations of these
two notions of narrowing. Plain narrowing is mostly used for terminating rewrite systems
with equational semantics [Han91]. Alternatively, narrowing is also used with denota-
tional semantics [Red85], which are based on a strict equality: two terms are equal if
they evaluate to the same constructor or data term. For this semantics, there exist com-
pleteness results for narrowing with non-terminating rules, see for instance [MNRA92,

GMHGRA92).

2.2.1 Narrowing and Logic Programming

The relationship between logic programming [CM84, Llo87] and narrowing is well exam-
ined. Most approaches to functional-logic programming are based on narrowing and aim
at extending logic programming by functions [Han94b]. In such languages, narrowing re-
places resolution as the basic mechanism of inference. The idea is simple: view predicates
as functions and horn clauses as rules with conditions. That is, a clause

P = Q17Q27"'7Qn

is written equivalently as

P — true <= @y — true, () — true,..., Q), — true.



It has been shown that narrowing, with conditional or unconditional equations, can sim-
ulate logic programming and vice versa [BGMS88, Hul93]. There exist however more
advanced refinements for narrowing that utilize the determinism of functional programs
to a large extent. For instance, functional-logic programming with normalization has
shown to be more efficient than pure logic programming, see e.g. [CF91, Han92]. These
refinements use the deterministic evaluation possible for convergent rewrite rules or func-
tional programs.

In pure logic programming, functions are often encoded in predicates. The functional
version is often more concise, as functions can be nested in contrast to predicates. For
instance, consider the clause

fibp(s(s(X)), YZ):— fibp(s(X), Y), fibp(X, Z), plusp( Y, Z, YZ),
where the predicate plusp(Y, 7, YZ) holds if YZ =Y + Z. This becomes

Jib(s(s(X)) = fib(s(X)) + fib(X)

in functional-logic programming. Notice that logic programming needs additional local
variables.

2.3 Higher-Order Term Rewriting

Higher-order term rewriting is the natural extension of first-order rewriting to reasoning
with higher-order equations. Starting with the work of Klop [Klo80], there exist several
notions of higher-order term rewriting [Nip9la, Oos94, vR93]. This interest in higher-
order rewriting follows the progress in its applications, for instance functional languages
and theorem provers, where higher-order concepts are of growing interest. In this work,
we follow the approach in [Nip9la]: we consider A-terms in S-normal form and view the
reductions of A-calculus as implicit operations, e.g. (Az.f(2))a =3 f(a) by S-reduction.
Furthermore, we compute modulo a-conversion, i.e. renaming of bound variables. For
instance Ax.f(2) =, Ay.f(y).

For example, the expressiveness of higher-order term rewriting easily deals with scop-
ing, here pushing quantifiers inside:

Ve. PN Q(x) — PAVe.Q(x)

In this example the quantifier ¥ is a constant of type (term — bool) — bool, where
V(Az.P) is written as Va.P for brevity. Notice that the variable conventions of A-calculus
allow for a concise statement of the first rule: the variable P in Az.P A Q(x) represents
a term not containing the bound variable .

As another example for the utility of higher-order programming, consider symbolic
differentiation. The function diff (F, X), as defined below, computes the differential of a
function F' at a point X.

diff \y.F,X) — 0

diff Ay.y, X) — 1
diff Ay.sin(F(y)), X) — cos(F(X))* diff (Ay.F(y), X)



With these rules, we can for instance compute:

diff (Ay.si

cos(sin(X

sin(y)), X) —
« diff (Ay.sin(y), X) -
* cos(X) x diff A\y.y, X) —

* cos(X ) * 1

e N N

)
cos(sin(X)
)

cos(sin(X

In contrast, first-order term rewriting only permits a limited, first-order version of diff,
as e.g. in [Bac91, SS86]. For instance, the first rule cannot be expressed directly. Fur-
thermore, nested functions, e.g. diff (Ax.sin(F’'(x))), where F’ is a function, are hard to
describe in the first-order case [SS86]. In Section 7 we develop this example further.

Apart from such high-level computations, an important application of higher-order
rewriting is to model the basic mechanisms of current, higher-order functional program-
ming languages such as SML or Haskell.

In recent years many results for first-order term rewriting have been lifted to the
higher-order case. Among the results obtained for higher-order rewriting are a critical pair
lemma for higher-order term rewriting systems (HRS) [Nip91a], confluence of orthogonal

HRS [Nip93b, vR93, O0s94], and termination criteria [Pol94].

2.4 Higher-Order Unification

For the step from first-order to higher-order narrowing, we examine another important
ingredient: higher-order unification. Higher-order unification is a powerful method for
solving equations between higher-order A-terms modulo the conversions of A-calculus.
For instance, bound variables must be treated correctly: the unification problem

Ax.sin(F(z)) =’ Az.sin(cos(x))
has solution {F +— Ay.cos(y)}, whereas
Ao F =7 Az.sin(cos(x))

is unsolvable.

Higher-order unification is currently used in theorem provers like Isabelle [Pau90], TPS
[AINP90], Nuprl' [CAB*86] and for higher-order logic programming in A-Prolog [NMS83].
Other applications of higher-order unification include program synthesis [Hag91b] and
machine learning [Har90, DW88, Hag91a].

The first complete set of rules for higher-order unification was presented by Jensen
and Pietrzykowski [Pie73, JP76]. The undecidability of higher-order unification was first
shown by Huet [Hue73] and Lucchesi [Luc72]. It took several years until the undecid-
ability was shown for the second-order case by Goldfarb [Gol81]. Farmer [Far91] refined
this result by showing that only one symbol of arity two is needed and by giving a bound
on the number of variables needed to express an undecidable problem by second-order
unification.

Figure 2.1 presents an overview of known decidability results for higher-order unifica-
tion. The column labeled Monadic refers to the unification of terms with unary function

!Nuprl uses only second-order pattern matching.



Order Unification Problem

Unification ‘ Patterns ‘ Monadic ‘ Matching

1 decidable
undecidable decidable decidable
Goldfarb 81 : Farmer '88 Huet ’73
Farmer 91

3 undecidable undecidable decidable

Huet 73 : Narendran ’90 | GG. Dowek 92

Lucchesi 72

00 : decidable : ?

D. Miller 91

Figure 2.1: Decidability of Higher-Order Unification

symbols only. Monadic second-order unification is decidable [Far88]. This problem can
in fact be related to unification modulo associativity, which was shown to be decidable
by Makanin [Mak77]. Again, the third-order monadic case is undecidable [Nar89].

Huet [Hue75] already conjectured that higher-order matching, i.e. unification with
a term containing no free variables, is decidable, but the problem is still open. Some
progress has been made by Dowek [Dow92], who showed the decidability of third-order
matching. Furthermore, fourth-order matching is claimed to be decidable by Vincent
Padovani [Pad94]. Wolfram [Wol93] presented a terminating algorithm for higher-order
matching, but was not yet able to show its completeness.

Dale Miller, as indicated in the column labeled Patterns, discovered a class of A-
terms, called higher-order patterns, with decidable and even unitary unification, i.e. if
some unifier exists then there exists a most general unifier. A term is a higher-order
pattern if each free variable has distinct bound variables as arguments. Patterns behave
like first-order terms in many respects, e.g. unification is not only unitary but also of
linear complexity [Qia93].

Full higher-order unification is highly intractable: there do not exist maximally general
unifiers. In other words, there are infinite chains of unifiers, one more general than the
other. This is called nullary unification. As noted by Huet [Hue75], this was first observed
by Gould [Gou66]. The idea of pre-unification by Huet [Hue75] was a major step towards
practically usable systems: pre-unification delays a particular class of equations that is
known to be solvable and permits the enumeration of a complete set of unifiers without
any redundancy. This is important for any practical application. Pre-unification is still
infinitary, i.e. there may be an infinite set of unifiers for two terms.

2.4.1 Decidable Higher-Order Unification Problems

Since higher-order unification is undecidable in general, we are interested in classes where
higher-order unification is decidable. An overview of the results can be found in Fig-
ure 2.2. Notice that the results only hold for all conditions in the path to the node.
The main restriction we impose is linearity, i.e. we require that some variables may
not occur repeatedly. We show that the unification of a linear higher-order pattern s with
an arbitrary second-order term that shares no variables with s is decidable and finitary.
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In particular, we do not have to resort to pre-unification, as equations with variables as
outermost symbols on both sides (flex-flex pairs) can be finitely solved in this case. A
few extensions of this unification problem are still decidable; only one of them is included
in Figure 2.2. For instance, unifying two second-order terms, where one term is linear, is
undecidable if the terms contain bound variables but decidable if they do not.

The main application of this result is the unification of linear left-hand sides of rewrite
rules with second-order terms, as employed in higher-order narrowing. For instance, a
standard example for functional programs, the function

map(F, [X]Y]) = [F(X)[map(F, Y)]

has a linear left-hand side. Furthermore, it has the non-pattern F(X) on the right-hand
side. Hence rewriting with this rule may yield non-pattern terms. Thus higher-order
unification is needed for the unification with a left-hand side of a rewrite rule. So far, most
functional logic languages even with higher-order terms only use first-order unification,
e.g. [GMHGRA92, Loc93].

Furthermore, we present an extension of higher-order patterns with decidable unifi-
cation and another result that is tailored for the unification of induction schemes with
first-order terms. It is shown that the unification of restricted second-order terms with
first-order terms is decidable, where the restriction is such that typical inductions schemes
can be expressed. An example is the formula Va.P(z) = P(2+1) in the inductive axiom

P(0),Vz.P(z) = P(z + 1) F Va.P(x)

With these results only few classes remain where decidability of second-order unification
is unknown.

2.5 Narrowing: The Higher-Order Case

The second main contribution of this work is to lift several ideas of first-order narrowing
to the higher-order case. We introduce a first framework for higher-order narrowing
modulo an higher-order equational theory and give first completeness results.

In first-order narrowing, values for logic or free variables are computed via unification.
The variables range over objects of the domains of interest. In a higher-order setting,
unification can compute values even for functional objects. For instance, a solution for
the free variable F' in the goal

Ao diff (Ae.sin(F(x)),z) —" Ax.cos(x)

can be computed by narrowing. Examples from this and other areas can be found in
Section 7.

An overview of the different approaches to higher-order narrowing can be found in
Figure 2.3. For plain narrowing, which attempts to lift rewrite steps somewhere inside a
term, we show that there are some principal problems in the full higher-order case. In
contrast, lazy narrowing can be lifted to the higher-order case.

We develop several optimizations and refinement for lazy narrowing. Particularly
important is the restriction to R-normalized solutions in order to limit narrowing steps.
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This also permits deterministic simplification on goals. For instance, the above goal can
be simplified by rewriting to obtain the new goal

Ae.cos(F(x)) * diff Ae.F(z),2) —7 Ax.cos(x).

Another optimization is deterministic variable elimination, which may be incomplete in
the general case. Variable elimination for an equation X =’ ¢ simply means binding X
to the term ¢. In our case, we only consider directed goals, e.g.

X =" tand t =7 X,

where on the first goal variable elimination is safe and no other rules must be considered.

Another important source of optimization is using left-linear rewrite rules, i.e. where
free variables do not occur repeatedly on the left side of a rule. This is a common
restriction for programming applications, e.g. in functional(-logic) languages. We show
that in such a setting a particular class of goals, called Simple Systems, suffices and has
several nice properties. For instance, a variable cannot occur on both sides of a goal, e.g.
X —7 f(X) is impossible and thus the occurs check is immaterial. Furthermore, solved
forms are easy to detect. For instance, a Simple System of the form

tl —>? Xl,...,tn —>?Xn,

is guaranteed to have a solution. It follows from the invariant of Simple Systems that all
Xi,..., X, are distinct. Another important property is that unification of second-order
Simple Systems is decidable. Thus, as in the first-order case, divergence only results from
the main computation paradigm, narrowing.

Integrating Simple Systems with normalized solutions yields a strategy for variable
elimination: with normalized solutions, only one case is deterministic, but in Simple
Systems the remaining case is undesirable and such goals can safely be delayed. This
leads to a new strategy, called Needed Lazy Narrowing, which computes values only if
needed and also avoids copying. It thus resembles call-by-need or lazy evaluation with
sharing of identical subterms.

The chapter on narrowing concludes with an alternative approach to higher-order
narrowing in Section 6.9, which combines plain narrowing and lazy narrowing. The basic
idea is to put the truly higher-order terms into constraints where lazy narrowing is used
and work on the main goal similar to the first-order case.

2.6 Conditional Narrowing and Higher-Order Pro-
gramming

A promising application of higher-order narrowing is truly higher-order functional-logic
programming. Our approach to higher-order programming via narrowing is more ori-
ented towards functional languages than most other approaches to functional-logic lan-
guages. Recall that the core of modern functional languages such as SML [MTH90] and
Haskell [HJW92] can be seen as higher-order rewrite rules. Our contribution is to develop
a new basis for functional logic programming that works with higher-order conditional
equations. We consider normal conditional rules of the form

l—=r<l—r,.... [, — 1,



where [, — r, denote conditions for the application of the rule and 7, are ground terms in
R-normal form. Although some first-order approaches are less restrictive, we argue that
such extensions are not needed in a higher-order setting. Furthermore, this restriction
has a significant advantage: for proving conditions of rules, as well as for queries, we
consider oriented goals of the form s —° ¢ with solutions #s — ¢. Thus, this restriction
permits for a simpler operational model and is powertul enough for encoding functional
and logic programs: the core of modern functional languages can be seen as higher-order
(unconditional) rewrite rules. Furthermore encoding logic programs is possible, as shown
in Section 2.2.1, since the right-hand sides in the conditions is simply the constant true.

The restriction to ground right-hand sides is too strong for first-order functional-logic
languages, as variables on the right in conditions serve as local variables. Consider for
instance the function unzip, cutting a list of pairs into a pair of lists. In a functional
language unzip can be written as

unzip([pair(X, Y)|R]) — let pair(azs,ys) = unzip(R)
in pair([X|as], [ Y]ys])
unzip([]) —

where pair(a,b) denotes a pair. The let-construct for pairs, written in infix notation
as common in functional languages, can be defined by higher-order rewrite rules (see
Section 7.3). In first-order functional-logic programming this function may be written as

unzip([pair(X, Y)|R]) — pair([X|Xs],[Y|Ys]) < unzip(R) — pair(Xs, Ys)
unzip([]) =

The first of the above conditional rewrite rules has extra variables on the right, which
are used to model the let-construct.

Notice that we permit new variables in the left sides of the conditions, which are used
as “existential” variables, to be computed by unification as in logic programming. Con-
sider for instance the following example modeling family relations, where a new variable
7 1s used in the definition of grand_mother. For brevity, we write p for a rule p — true
or a goal p —7 true.

mother(jane, mary)
mother(susan, mary)
mother(mary, judy)
wife(john, jane)

grand_mother(X,Y) < mother(X,Z), mother(Z,Y)

In the higher-order case, the concept of family relations can be generalized, similar

to [L1094, Nad87]:

family_rel(wife)

family_rel(mother)

family_rel(comp( Ry, Ry)) < family_rel(Ry), family_rel( Ry)
comp(Ry, R2)(X,Y) < Ri(X,7Z),R:(Z,Y)

In the last rules, comp is intended to compose two relations. Thus a query

family_rel(R), R(jane, judy)



should be answered by R +— comp(mother, mother). Notice how partial application of
comp is used in third rule.

We argue that many programming concepts are not only simpler expressed by higher-
order functional programming, but also the technical treatment can be simpler. Handling
extra variables for narrowing is both difficult, error-prone and gave rise to many works, for
an overview see [MH94]. Furthermore, there are several works [BG89, .S93, ALS94b] on
confluence and termination of logic programs that correspond to such function constructs
(sometimes called well-moded programs). For the termination of logic programs, such
local variables are one of the main problems [SD94]. Also, functional programming
provides more directionality than logic programs, which is another major problem for
proving termination [SD94].



Chapter 3

Preliminaries

Basic definitions and results for higher-order equational reasoning are introduced in this
chapter. The first sections contain general background material on reductions and order-
ings, followed by a brief introduction to A-calculus. For a comprehensive treatment we

refer to [HS86, Bar84].

3.1 Abstract Reductions and Termination Orderings

An abstract reduction is a relation on some set A. The following properties of reductions
will be used mostly for term rewriting, which is a reduction on terms.

Definition 3.1.1 For some abstract reduction —, let —* denote its transitive closure,
5 its reflexive transitive closure, and «— its inverse. Furthermore, define «+— =
— U «—. We write —" for some reduction of length n, i.e. sy —" s, stands for a
sequence sy — §; — ... — S,.

A relation is an equivalence relation if it is reflexive, transitive and symmetric. A
partial ordering is a reflexive, transitive and anti-symmetric relation. A strict partial
ordering is a transitive and irreflexive relation.

A partial ordering < is a total ordering if ¢ < b or b < a holds for all @ and 6. A
partial or total ordering < is compatible with another partial ordering <" if <’ C <.

Definition 3.1.2 An abstract reduction is called terminating if no infinite reduction
exists. An element « is called in normal form if no reduction from «a exists.

B written as s| pt, if there exists

Two terms s and ¢ are joinable by a reduction —
u with s — % R w. A reduction is called locally confluent, if any two
reductions from a term ¢ are joinable, i.e. if t — u and ¢ — v then u]v. It is called

confluent, if — is locally confluent, i.e. if t = v and ¢t — v then uv.

uw and t —

Definition 3.1.3 The lexicographic combination of two reductions —; and —, on
sets A and B, written as R = (—1, —2) s, 18 a reduction on A x B, with (a,b) R (a’, )
if

e o — a or

15



e a=2a and b —4 b,
The important property of the lexicographic combination is the following:

Lemma 3.1.4 The lexicographic combination of terminating reductions is terminating.

The lexicographic combination of n abstract reductions R* =—,,,..., —1 is defined
recursively as R\, = (—1, R ) iex-

A multiset M over a set A is a mapping from A to {0,1,2,...}. A multiset M can
be viewed as a set where repeated elements are allowed, i.e. M maps an element a € A
to its number of occurrences. A multiset M is finite if M(2) > 0 holds only for finitely
many = € A.

Removing an element from a multiset reduces the number of occurrences by one, if it

occurs at all. Formally, removing an element a from a multiset M gives a new mapping

M' =M — a with M'(z) = M(x) if # # a and

, M(a)—1 it M(a
M'(a) = {o() ifMEa;z

Removing a multiset M from M’, written as M’ — M, is defined as the result of removing
each element of M from M’. Adding an element to a multiset, written as « + M, and
the union M U M’ of two multisets are defined correspondingly.

An important method for termination proofs is to extend an ordering < on a set A to
multisets of A. A multiset N is smaller than M, written as N <, M, if it can be
obtained by removing one element from M plus adding finitely many smaller elements.
Formally we have:

0
0

N < pui M & E|$€A.M—$:NUN/,

where N’ is a finite multiset with n < 2, Vn € N'.
The following result allows to extend termination orderings to multisets:

Theorem 3.1.5 ([DM79]) The multiset extension of a terminating ordering is termi-
nating.

Besides (multi-)sets, we often used lists, which are denoted by square brackets, i.e.
appending a list R to an element ¢ is written as [¢|R]. The application of a function f to

a list, written as f[¢,], is defined as [f(%,)]-

3.2 Higher-Order Types and Terms

This section introduces our term language: simply typed A-terms. The set of types 7
for the simply typed A-terms is generated by a set 7y of base types (e.g. int, bool)
and the function type constructor —. Notice that — is right associative, i.e.
a— f—=5=a—(f— 7). Weassume a set of variables V,, and a set of constants
C. for all types 7 € T, where V., N V., = C; N C = {}. The set of all variables is
V= U,er V>, which is disjoint from the set of all constants, ¢ = U,cr C;.  The
following naming conventions are used in the sequel:

o ['G H,P,X,Y free variables,



e a,b,c,f,g (function) constants,
e z,y,z bound variables,
e «, 3,7 type variables.

Further, we often use s and t for terms and u, v, w for constants or bound variables. The
following grammar defines the syntax for untyped A-terms

t = F | x| c]| Xt | (4 t),

where (# ;) denotes the application of two terms. The term Az.t denotes an abstrac-
tion over r and thus creates a new functional object. An occurrence of a variable x
in a term ¢ is bound, if it occurs below a binder for x, i.e. the occurrence of z is in a
subterm Az.t’. Otherwise it is free. Free and bound variables of a term ¢ will be denoted
as FY(t) and BY(t), respectively.

Notice that there can be many such binders, e.g. Az.Az.z, but only the innermost one
is associated with #. To avoid such cases, we will adopt assumptions (see below) on the
naming of bound variables for simplicity.

A list of syntactic objects sy,...,s, where n > 0 is abbreviated by 5,. We will
use n-fold abstraction and application, written as AZ,.s = Axy...Ax,.s and a(35,) =
((+--(a s1)--+) sn), respectively. For instance

A f(Gn) = Ay oo A (- (f s1) -+ ) Sn)

A type judgment stating that ¢ is of type 7 is written as ¢ : 7. The following inference
rules inductively define the set of simply typed A-terms.

r € V. ce .
TiT c:T

s:T—7 t:T x:T s:7
(st):7 (Az.s):7 — 7'

The order of a type p = a1 — ... > «, — 3, [ € Ty is defined as

1 ifn=0,1eo=0€T,
Ord(p) = <1+ k otherwise, where
k = max(Ord(ay),. .., Ord(a,))

We say a symbol is of order n if it has a type of order n. A term of order n is restricted
to

e function constants of order < n 4+ 1 and
e variables of order < n.

For instance, if a term F(7,) is second-order, then all subterms ¢; must be of base type.
We say a term t is weakly second-order if it is second-order, but with the exception
that bound variables of arbitrary type may occur as arguments to free variables. For
instance, F'(Az.2(z), a) is weakly second-order, but not second-order.

Let {# — y}t denote the result of replacing every free occurrence of « in ¢ by y. The
conversions in A-calculus are defined as:



e a-conversion: Ax.t =, Ay.({z — y}t)
e [-conversion: (Ax.s)t =5 {z > t}s
e 7-conversion: if @ ¢ FV(t), then Ae.(t z) >, ¢

The first of the above, a-conversion, serves for renaming bound variables. [-conversion
replaces the formal parameter of a function Az.s by the argument ¢{. A f-redex is a
term of the form (Az.s)t where F-reduction applies, and similarly for the other reduc-
tions. For ¢ € {a, 3,7} we write s — t, called ¢-reduction, if ¢ is obtained from s by
¢-conversion on some subterm of s. Let — 4, be defined as —3 U —,,, and similarly for
other combinations. The reflexive, symmetric and transitive closure of some ®-reduction
induces an equivalence relation on terms, written as s =¢ ¢, where ® C {a, 3,n}. Appli-
cation of the conversion rules in the other direction is called expansion. Reduction in
the simply typed A-calculus is confluent and terminating w.r.t. S-reduction (and w.r.t.
n-reduction), see e.g. [Bar84].

The -normal form (n-normal form) of a term ¢ is denoted by |, (¢],). Let ¢ be
in g-normal form. Then ¢ is of the form A7, .v(%,), where v is called the head of ¢, and
written as Head(t). The n-expanded form of a term ¢ = A7,.v(%,,) is defined by

tT, = Mgk v(un T Tag1 Ty oo Tagr 1))

where t : T, — 7 and @41, .., Togr & FV(Uy). We call tl5T, the long Bn-normal
form of a term ¢, also written as tlg A term ¢ is in long #n-normal form if ¢t = tlg It
is well known [HS86] that s =4, t iff s]7 =, 1]}

The size [t| of a term ¢ in long fn-normal form is defined as the number of symbols
occurring in ¢, not counting binders Az:

Aet] = 1],
st = [s[+1]t],
|v] =1, veVucl

A variable is isolated if it occurs only once (in a term or in a system of equations). A
term is linear if no free variable occurs repeatedly. A term ATg.v(1,) is called flexible
if v is a free variable and rigid otherwise.

Assumptions. We will in general assume that terms are in long fSn-normal form.
For brevity, we write variables in n-normal form, e.g. X instead of A7,. X (7). We assume
that the transformation into long #n-normal form is an implicit operation.

We work in the following completely modulo a-conversion, that is a-equivalent terms
are identified. A representation for A-terms that achieves this on a syntactical basis
is possible with de Bruijn indices [dB72]: bound variables are represented as natural
numbers, indicating the corresponding binder. The main result is that two a-equivalent
terms have the same de Bruijn representation.

We follow the variable convention that free and bound variables are kept disjoint
(see also [Bar84]). We cannot enforce this convention completely. For instance, in the
congruence rule used in Section 4.3.1, s = t = Az.s = Az.t, x occurs both free and
bound. More seriously, this distinction permits so-called loose bound variables, i.e.
“bound” variables without a binder. Such variables are typically created when a subterm
of a term is considered or manipulated. For instance, f(z) is a subterm of Ax.g(f(z))
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with a loose bound variable. In such cases, these variables can be viewed as bound
variables where the binder is (implicit) in the context. In general, loose bound variables
may create inconsistencies. Although sometimes convenient, we will avoid loose bound
variables whenever possible.

For simplicity, we assume that bound variables with different binders have different
names. As a consequence of our conventions, it suffices to write s = ¢ instead of s =, 5, ¢,
as we assume long f#n-normal form and work modulo a-conversion. These conventions
for instance permit the following definition.

We say a bound variable y in a term AT,.t in long Sn-normal form is outside bound
if y = x; for some i. The set of all outside bound variables of a term A7,.t is written as

OBY(Az,.t) = BY(\z,.t) N {7, }.

3.3 Positions in A\-Terms

We describe positions in A-terms by sequences over natural numbers, as we have adopted
n-ary application. Such a sequence describes the path to a subterm of a term. Positions
in A-terms are often written as sequences over 1 and 2. It is easy to translate one
representation into the other, as in the following example for the term Axy, 2. F (a, b) in
Figures 3.1 and 3.2. Notice that our representation of terms as trees is a generalization
of usual first-order terms and positions.

Let ¢ denote the empty sequence, let i.p denote the sequence p appended to an
element ¢, and let p + p’ concatenate two sequences. A sequence p is a prefix of p’, if
d¢.p + g = p’, and similarly p is a postfix if 4¢.¢ + p = p’.

Definition 3.3.1 The subterm of s at position p, written as s , is defined as

os|E:5

o v(ﬂ)b.p = ti|p ifi<m
. )\ﬂ.ﬂl.p = ()\xz,...,xm.tﬂp

e undefined otherwise



The following notion of subterm extends the definition of subterms to account for a
binding environment. A term s = AT,.5 is a subterm modulo binders of ¢ = AT, .1,
written as s <, £, if s is a (true) subterm of %,.

A term ¢ with the subterm at position p replaced by s is written as #[s],. Two
positions p and ¢ are independent if none is a prefix of the other. For a term s of the
form Az.v(%,), the position of v is called the root position. A (sub-)term ¢|, is called
ground if no free variables of ¢ occur in t,.

If p is a position in s then let BY(s, p) be the set of all A-abstracted variables on the
path to p in s. Such a path is called rigid if it contains no free variables.

3.4 Substitutions

Substitutions are finite mappings from variables to terms, denoted by {X, — ¢,}, and
extend homomorphically from variables to terms. In general, substitutions map only the
free variables of a term. If s = 0¢ for some substitution @, then s is called an instance
of t.

Define Dom(0) = {X | 0X # X}, Im(0) = Uxepom(s) 0X and Rng(0) = FV(Im(0)).
The free variables of a substitution 0 are defined as FV(0) = Dom(0) U Rng(0).
For a list of syntactical objects C, we write fV(?n) instead of FV(C)U ... UFV(C,).
Two substitutions are equal on a set of variables W, written as § =y ¢, if 6X = 0'X
for all X € W. The restriction of a substitution to a set of variables W is defined
by 8lwX = 60X if X € W and 0|wX = X otherwise. The composition 66 of two

substitutions is defined as (60)(s) = 6(0(s)).

Definition 3.4.1 A substitution € is more general than 6’ over a set of variables W,
written as 0/ <w 0, if ' =y o0 for some substitution o.

For brevity, we will often leave the set of variables W implicit and write 8’ < 0 or § = 6.
A substitution 6§ is idempotent iff § = #0. We will in general assume that substitutions
are idempotent. This is justified by the following two basic lemmata [SG89].

Lemma 3.4.2 A substitution 0 is idempotent if Rng(8) U Dom(0) = {}.

In the higher-order order-case, this condition for idempotence is only sufficient but not
necessary, as noted in [SG89].

Lemma 3.4.3 For any substitution § and set of variables W with Dom(0) C W, there
exists an idempotent substitution 0 such that Dom(0) = Dom(0'), ¢ < 6 and § <w 0'.

As we syntactically distinguish between bound and free variables, we can speak of
well-formed substitutions: a substitution is well-formed, if it does not contain loose
bound variables, i.e. bound variables without binder. With a few exceptions, we will
in general assume well-formed substitutions. Thus, for instance, 8 7.t = 7.0t by
convention.

Properties of terms extend to substitutions in the component-wise way, i.e. to the
terms in the image. For instance, a substitution # is ground (in long #n-normal form) if
all terms in the image of § are ground (in long #n-normal form).



3.5 Unification and Unification Theory

Unification of two terms s and ¢ aims at finding a substitution § such that s = 8¢, where
0 is called a unifier of s and . Unification problems are written as s =’ ¢. There exist
several surveys on the subject [BS94, JK91].

An equational theory is an equivalence relation on terms that is stable under sub-
stitutions, 1.e. s =g t implies §s =p 0t for any substitution §.  Usually, equational
theories are generated by a set of equations, as discussed for the higher-order case in Sec-
tion 4.3.1. The conversions of A-calculus, i.e. the afn-rules, are equations with meta-level
conditions. These can be considered immaterial when working modulo a-conversion.

A substitution 7 is more general than o, modulo E over a set of variables W,
written as o <g w 7, if d6.0 =g w O07. Accordingly, 0 =g w 7 if 0 X =g 7X for all
X € W. For simplicity, we often leave the parameter W implicit.

Unification modulo an equational theory =g, or E-unification, aims at finding a
substitution with #s =5 8¢. Then 8 is called an F-unifier of s and . As there can be
many solutions to a unification problem s =7 ¢, it is desirable to find minimal sets of
solutions, as defined next:

Definition 3.5.1 A set of substitutions S is a minimal, complete set of unifiers
(MCSU) of a unification problem s =" ¢ for some equational theory E, iff

o Bach element of § is an E-unifier of s =" ¢.
o For every F-unifier of s =" ¢ there exists a more general E-unifier in S.

o The elements of S are incomparable.

It can be shown that such a set of incomparable common instances is uniquely defined
except for variants of its elements [FH86]. There exist several classes of unification
problems, depending on the existence of a MCSU. An F-unification problem is called

unitary if a MCSU is either empty or a singleton,
finitary if a finite MCSU exists,

infinitary if a possibly infinite MCSU exists,
nullary if no MCSU may exist.

This classification extends to an equational theory F, if for all F-unification problems
the property (e.g. unitary) holds.

Another distinction of unification problems is sometimes considered in the first-order
case [BS94]: are only constant symbols of a fixed signature allowed in the terms to be
unified or arbitrary constants? In the first-order case, the above classification may depend
on this distinction. This distinction is immaterial in a higher-order context, as we must

deal with local “constants”. i.e. bound variables.

Y



3.6 Higher-Order Patterns

The following subclass of A-terms was introduced originally by Dale Miller [Mil91a] and
is often called higher-order patterns in the literature.

Definition 3.6.1 A simply typed A-term s in F-normal form is a relaxed higher-order
pattern, if all free variables in s only have bound variables as arguments, i.e. if X(7,)
is a subterm of s, then all ¢;|, are bound variables.

Examples of relaxed higher-order patterns are Az, y.F(z,2,y) and Az.f(G(Az.2(2))),
where the latter is at least third-order. Non-patterns are Az, y.F(a,y), Ae.G(H(2)).

In most of the existing literature [Mil91b, Nip9lal], patterns are required to have
distinct bound variables as arguments to a free variable. This restriction is necessary for
unitary unification, but for some of the results on decidability of higher-order unification
in Chapter 5 this is not relevant.

Definition 3.6.2 A (higher-order) pattern is a relaxed pattern where the arguments
to free variables are distinct bound variables.

For instance, Az, y.F(x,z,y) is not a higher-order pattern, but Az, y.G (2, Az.y(z)) is.
Unification of patterns is decidable and a most general unifier exists if they are unifi-
able [Mil91a, Nip9la], as shown in Section 4.2. Furthermore, a most general unifier can
be computed in linear time [Qia93]. This shows that unification with patterns behaves
similar to the first-order case.

Several important properties of patterns with respect to term rewriting are examined
later and are based on the important fact that F-reduction on patterns only renames
bound variables. For this reason [F-reduction on patterns is also called Fg-reduction

in [Mil91a].



Chapter 4

Higher-Order Equational Reasoning

This chapter introduces higher-order unification and term rewriting. It assumes some
knowledge of first-order unification. Section 4.1 reviews a set of transformation rules
for full higher-order (pre-)unification. This is followed by an important special case,
higher-order patterns, where unification proceeds almost as in the first-order case.

4.1 Higher-Order Unification by Transformations

We present in the following a version of the transformation system PT for higher-order
unification of Snyder and Gallier [SG89]. More precisely, we adapt the primed transfor-
mations for pre-unification of Section 5 in [SG89].

Consider solving an equation A%;.F(%,) = A%Z;.v(#,) where v is not a free variable.
Such equations are called flex-rigid. Clearly, for any solution § to F' the term 6F(%,)
must have (after S-reduction) the symbol v as its head. There are two possibilities:

e In the first case, v already occurs in (the solution to) some ¢;. For instance, consider
the equation F'(a) =" a, where {F + Az.z} is a solution based on a projection.
In general, a projection binding for F' is of the from {F +— A7, .z;(...)}. As some
argument, here a, is carried to the head of the term, such a binding is called
projection. This name was introduced in [JP76].

e The second case is that the head of the solution to F' is just the desired symbol .
For instance, in the last example, an alternative solution is {F' — Az.a}. This is
called imitation. Notice that imitation is not possible if v is a bound variable.

To solve a flex-rigid pair, the strategy is to guess an appropriate imitation or projection
binding only for one rigid symbol, here a, and thus approximate the solution to F.
Unification proceeds by iterating this process which focuses only on the outermost symbol.
Roughly speaking, the rest of the solution for F' is left open by introducing new variables,
as shown formally in the next definition of these bindings.

Definition 4.1.1 Assume an equation A\7;.F(%,) =" Az;.v(t), where all terms are in
long fGn-normal form. An imitation binding for F' is of the form

F o X7, f(Hu (7))
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Deletion
{t="13us = S

Decomposition

Dzpov(t,) =" Azt US = { Azt =" A7t/ U S
Elimination

{(F="t}uS = 0S5 if F ¢ FV(t) and
where 0 = {F' — t}
Imitation

D@ F(E) =" Az f(T)Yu s =0 {7 H,(01,) =7 \5.0t,} UOS
where 0 = {I' — \7,.f(H, (7))}

is an appropriate imitation binding

Projection

DT F(L) =" Mmo(t) U S =0 Dz06(H;(1,)) =8 Az.o(01,)} U 6S
where § = {I' — A7,.2;(H;(Z,))},

is an appropriate projection binding

Figure 4.1: System PT for Higher-Order Unification

where H, are new variables of appropriate type. A projection binding for ' is of the
form

F = 27,2 H,(7,))
where [, are new variables with f, : 7, and z; : 7, — 7. A partial binding is an

imitation or a projection binding.

Notice that in the above definition, the bindings are not written in long #n-normal form.
The long #n-normal form of an imitation or projection binding can be written as

F = A7, 007, Hy) (T, 7,)).

A full exhibition of the the types involved can be found in [SG&9].

The transformation rules PT for higher-order unification in Figure 4.1 consist of the
basic rules for unification, such as Deletion, Elimination and Decomposition plus the two
rules explained above: Imitation and Projection. The rules work on sets of pairs of terms
to be unified, written as {u =" v,...}. We abbreviate a sequence of transformations

§ 1) Sn— Sn
Go=pr Gi =P ... =pp G =9 G,

by = %5, where § = &, ...6;.



Notice that the rules in Figure 4.1 only perform so-called pre-unification. Pre-
unification differs from unification by the handling of so-called flex-flex pairs. These
are equations of the form A\zp.P(...) =" A\ P'(...). Huet [Hue76] showed that such
pairs of order three may not have a MCSU: there may exist an infinite chain of unifiers,
one more general than the other, without any most general one. The important idea to
remedy this situation is that flex-flex pairs are guaranteed to have at least one unifier,
e.g. {P — A\T,,.a, P' — AT,.a}. The idea of pre-unification is to handle flex-flex pairs as
constraints and not to attempt to solve them explicitly.

A substitution 0 is a pre-unifier of s and ¢ if the equation s =" ¢ can be simplified
by Deletion, Decomposition and Elimination to a set of Flex-Flex pairs. In other words,
0s =" Ot only differ at subterms that have variable heads. The notions of MCSU and
unification classes in Section 3.5 extend straightforwardly to pre-unification.

In this work, we will often use the restriction to second-order terms. The only place
where the restriction to second-order terms simplifies the system is the last rule, projec-
tion, where z; must be of base type. Hence the binding to F' in this case is of the simpler
form F' = A7,.x;, which will be important for our results. As we will often encounter this
case, we give an explicit simplified rule:

Second-Order Projection

D3 F(E) =" Azo(t)u S =0 Dot =" Mzp.o(0t )} uos
where § = {F — \7,.2;}

The following soundness lemma is easy to show:

Theorem 4.1.2 System PT is a sound transformation system for higher-order pre-
unification.

When applying the rules of system PT to a set of equations, there are two sources of
non-determinism:

1. Which rule to apply

2. to which equation.

It was shown in the early work by Huet [Hue76] that completeness does not depend
on how the equations are selected. This is implicit in the proof in [SG89], and is also
explained at the end of this section. Furthermore, the only branching occurs when both
Imitation and Projection apply to some equation. In other words, application of the first
three rules is deterministic [SG89].

Another optimization is stripping off a binder Az if  does not occur. For instance,
assume the equation Az, y.P(z) =’ Az, y.f(a), for which the Elimination rule does not
apply. Yet clearly, the binder Ay is superfluous here and can be removed. Then the
elimination rule applies directly.

Example 4.1.3 Consider the unification problem at the root of the search tree in Figure
4.2, which is obtained by the transformations PT in Figure 4.1. Notice that in this
example all projection bindings are of the form Az.z. The failure cases are caused by
a clash of distinct symbols and are abbreviated. The partial bindings of the successtul
path yield the only solution {F +— Az.g(z, ), Gy — G, Gy — G}.
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The following general result on higher-order unification will be important for results in
the further sections and can e.g. be found in [Sny91].

Lemma 4.1.4 [f0 is a mazimally general pre-unifier of s = t, then Dom(0) C FV(s, t).

It should be mentioned that the Elimination rule is not needed for completeness: any
equation of the form P = A%;.t where Elimination applies can be solved by repeated
imitation and projection, until only flex-flex pairs remain. The only difference is that
more Flex-Flex pairs may remain, as the Elimination rule also applies to such pairs. We
sometimes use the restriction that Elimination is not applied to Flex-Flex pairs, which is
sufficient for decidability results. The same is done in the algorithm presented by Snyder
et al. [SG89].

This leads to another interesting observation: in contrast to Elimination, Imitation
and Projection only compute substitutions that map terms to higher-order patterns.
Composing pattern substitutions again yields pattern substitutions.

Fact 4.1.5 For higher-order pre-unification it is sufficient to consider pattern substitu-
tions.

Intuitively, this can be explained as for pre-unification terms only have to agree at non-
variable positions.

Completeness of Higher-Order Unification

We sketch in the following the completeness result for PT along the lines of [SG89],
where the full treatment can be found. We say that a substitution 6 approximates a
substitution # for a variable F' if there exists a substitution 6" with

e Dom(0') =Dom(0) — {F} U Rng(d)
e OF =0'6F
o 0 =w 0 where W =Dom(8) — {F}.

The following results are adapted from [SG89]. The next lemma shows that partial
bindings approximate solutions.

Lemma 4.1.6 For any flex-rigid equation \%;.F(T,) =" A\Zp.v(t])) with solution O there
exists a partial binding 6 for F' such that 6 approximates 0.

Theorem 4.1.7 (Completeness of PT) If s = t has solution 0, i.e. 0s = 0t, then
{s ="t} =% I such that § is more general than 0 and F is a set of flex-flex goals.

Proof The proof proceeds by induction on the following lexicographic termination or-
dering on (F,,0), where for F, is a system of equations with solution 6.

o A: compare the multiset of sizes of the bindings in 4, if equal

e B: compare the multiset of sizes of the equations F,,.



Notice that a transformation not only changes G, but also the associated solution has
to be updated. That is, in case of a binding F' — ¢, the variable F' is removed from 8,
and, if it is a partial binding, solutions for the new variables in ¢ are added.

It £ is in solved form, nothing remains to show. Otherwise, select some non flex-flex
equation from F,. It is trivial to see that at least one transformation must apply. For
each case we show that the ordering is reduced and that the solution is approximated. If
the equation is a trivial pair s =" s, ordering B is reduced. In case of the Decomposition
rule B is reduced.

When eliminating an equation F' =7 ¢, the binding {F + ¢t} clearly approximates ¢
as OF = 0t. Since the new solution contains fewer bindings, A is reduced.

For the Imitation and Projection rule consider an equation Az;.F'(%,) =" ¢. In this
case, Lemma 4.1.6 shows that there exists a partial binding é that approximates 6 with
0’ i.e. 0 = 6'6. Furthermore, all new bindings in §’ for the new variables in 6 F' are smaller
than the binding for F' in 8, thus reducing A. O

It is easy to see from the recursive structure of the last proof that the completeness does
not depend on the selection of goals. Each subgoal is solvable independently, or it is a
flex-flex equation. In contrast to the first-order case, the selection is more limited, as
flex-flex goals are delayed. Notice that flex-flex goals can become non flex-flex pairs by
instantiation.

4.2 Unification of Higher-Order Patterns

Unification of higher-order patterns is a special case of higher-order unification that pro-
ceeds similar to first-order unification. The main advantage is that most general unifiers
exist for patterns. Compared to higher-order unification, there is no choice between Pro-
jection and Imitation. Only the flex-flex cases are more involved than the first-order case.
Using efficient data structures, Qian [Qia93] showed that a linear-time implementation
of pattern unification is possible.

The following set of rules for unification of higher-order patterns is slightly adapted
from [Nip93a]. The exposition there includes a rule that strips off binders, i.e.

Aes = dat =s="1

This assumes that bound variables are distinguished syntactically and is in fact closer
to an implementation, as working with full binders is rather tedious. Notice that the -
extended form is often not practical, in particular for variables, free or bound, of higher
type. Then n-expansion has to be performed during unification.

The transformations in Figure 4.3 work on lists, as the order of application is im-
portant for termination [Nip93a]. The problem is that the algorithm introduces new
variables on the way and repeating this eagerly may lead to non-termination. For in-
stance, consider {¢(X) = VY,V =" X} =pp {c(X) =" ¢(V1),e(Yy) =7 X}. Here the
occurs check applies only after a decomposition and an elimination whereas repeated
imitation diverges.

A different method for solving equations of the form AF;.P(7,) =" t is presented in a
more general context in Section 5.1. This method does not introduce temporary variables
and is in fact closer to an implementation (e.g. [Nip93a]).



Deletion

t="t]|S] = S

Decomposition

Mzpf(L) =" Az f(1) | S] = [Aap.t, =7 Azt | S]
Elimination

[F="t|S5] =% 0S if F ¢ FV(t)and
where 0 = {F' — t}
Imitation/Projection

Moo F(7n) =F Azeo(iy,) | 8] =0 (Ao () =" A0, | 05]
where § = {I' — Ay,.v(H,,(V.))},
v is a constant or v € {7, }, and

F ¢ FY(Azo(tl))

Flex-Flex Same

£op F () =" Az F(yl) | S] =% 0S5 where § = {F — A\7,.F'(%,)}

and {7} = {yi | vi = v/}
Flex-Flex Diff

AT F (7)) =" A7 F'(y) | S] =% 0S8  where o
0= {F s N (), v N H ()
and {7} = {7} N {y5.}

Figure 4.3: System PU for Pattern Unification

The algorithm coincides with standard first-order unification algorithms, e.g. [JK91],
for first-order terms. Notice that in the Flex-Flex rules any permutation of the bound
variables Z, is sufficient for computing a most general unifier.

Theorem 4.2.1 ([Mil91a, Nip93a]) Systemm PU computes a most general unifier for
two higher-order patterns if a unifier exists.

Although this algorithm introduces new variables, in contrast to its first-order companion,
it has the following important property:

Lemma 4.2.2 [f 0 is a most general unifier of two pattern s and t, then |FV(0s)| <
|FV(s, ).

Proof by induction on the length of PU reductions. O

This lemma and the following property give some insight on the variables introduced by
PU and will be important for some termination proofs in Chapter 5.



A substitution  is size increasing, if | X (7,)| < |0X (¥,)| for a pattern X (7,) in long
pBn-normal form. In the first-order case, a most general unifier is either empty or decreases
the number of variables. For pattern unification, we also have the Flex-Flex Same case
with substitutions of the form {H — AZ,.H'(¥)}, where {7, } C {7, }. Notice that such
substitutions do not increase the size. In Section 5.1 we will show the following result,
which is difficult to obtain with the rules of System PU: if # is a most general unifier of
two patterns s and ¢, then either |[FV(0s)| < |FV(s,t)|, or 0 is not size-increasing.

Patterns have other important properties. A A-term can be flattened to a pattern
plus constraints as follows. For instance,

Aab(Ay.f(H (y, Gla))), G(X))

can be flattened to
Axh(Ay.f(Xi(z,y)), X2)

with constraints

Xy =z, y. H(y, G(a)), Xo = G(X).

Formally, flattening a term ¢ at position p yields {[X(7)], A X = A7,.¢t|, with 7, =
BY(t,p) for some new variable X of appropriate type. Intuitively, the pattern part
represents the rigid part of a term.

Proposition 4.2.3 Assume p and g can be flattened to patterns p' and ¢’ with the con-
straints C'. If p’ and ¢' do not unify then p and g do not unify either.

4.3 Higher-Order Term Rewriting

We will in general follow the notation of first-order term rewriting, see e.g. [DJ90]. Our
definitions for higher-order rewrite systems in this section are inspired from [MN94]. We
will often, but not in general require that the left-hand side is a higher-order pattern, as
done in [Nip9la, Nip93b]. An important restriction is to use rules of base type only, as
it simplifies the definition of the rewrite relation: it is close to the first-order case. For
alternatives see [Pol94, Wol93] and for an overview we refer to [O0s94].

Definition 4.3.1 A rewrite rule is a pair [ — r such that [ is not n-equivalent to a free
variable, [ and r are long n-normal forms of the same base type, and FV(I) D FV(r).
A General Higher-Order Rewrite System (GHRS) is a set of rewrite rules.

Definition 4.3.2 Assuming a rule (I — r) € R and a position p in a term s in long
fn-normal form, a rewrite step from s to ¢ is defined as

S —

;}Tt & sl =00 A t=sl0r],

[—7r

0d and for a

We often omit some of the parameters [ — r, p and o of a rewrite step —
rewrite step with some rule from a GHRS R we write s — ¥ ¢.

Recall that we work with terms in long Sn-normal form only, and consider this nor-
malization as implicit, e.g. [0 = l@lg. Notice that the subterm 5|p may contain free
variables which used to be bound in s. For instance (Az.f(g(z)))],; = ¢(¢). The follow-

ing definition will be used to get a formal handle on these variables.



Definition 4.3.3 An 7;-lifter of a term ¢ away from W is a substitution o = {F —
(pF)(T) | FF € FVY(t)} where p is a renaming such that Dom(p) = FV(t), Rng(p)N W =

{Yand pF:my — - > —=71ifay:m, ..., o7 and F o7

For example, { G +— G’(2)} is an z-lifter of g((G) away from any set of variables W not
containing G’. For simplicity, we often assume that W contains all variables used so far
and leave W implicit. A term ¢ is T;-lifted if an T;-lifter has been applied to t. Similarly,
a rewrite rule [ — r is Fg-lifted, if [ and r are Tj-lifted.

Now we can give an alternative definition for rewriting (see also [Fel92]). We have
s — " tif ATp.s|, = T.0l and t = s[0r],, where {Zr} = BV (s, p) and [ — r is T-lifted
away from V D FV(s).

For instance, consider the rewrite step Ax.f(x) —%(YY._);}Q(Y) Azx.g(x). With the latter
notion of rewriting, we first apply the lifter 0 = {Y — Y'(2)} to f(Y) — g(Y). Then
Ax.f(x) =0 e.f(Y'(2)) with § = {Y' +— Az.z}. For rewriting, lifting seems unnecessary,
since only matching [ with 5|p is performed. However for narrowing, as developed later,
unification is needed instead of matching and hence lifting is essential.

In contrast to the first-order notion of term rewriting, — is not stable under substi-
tution: reducibility of s does not imply reducibility of #s. Its transitive reflexive closure
is however stable:

Lemma 4.3.4 Assume an GHRS R. If s == t, then 05 —F 0t.

The proof of this seemingly simple lemma is rather involved and can be found in [MN94];
a similar result is shown in [LS93] for conditional rules.

A GHRS where all rules have patterns on the left-hand side is called HRS. This
corresponds to the original definition in [Nip9la]. We call a rule [ — r pattern rule,
if both [ and r are patterns. Furthermore, an HRS with pattern rules only is called a
pattern HRS. A rule [ — r is left-linear, if [ is linear. An HRS is called left-linear, if
it consists of left-linear rules.

For programming languages, the set of constants is often divided into constructors
and defined symbols. A symbol [ is called a defined symbol, if a rule f(...) — ¢ exists.
It is assumed that constructors are injective, i.e. ¢(¥) = ¢(¥') iff T = ¥, and that different
constructors build different terms, i.e. ¢(Z) # ¢/(#') if ¢ # ¢/. Constructor symbols are
denoted by ¢ and d. A term is a constructor term if no defined symbols occur.

We often identify an HRS R with its associated rewrite relation. For instance, we say
an HRS R is terminating, if —% is terminating. A term is in R-normal form if no
rule from R applies and a substitution # is R-normalized if X is in R-normal form for
all X € Dom(). For a term ¢t we denote the R-normal form by ¢|, if uniquely defined,
and similarly for substitutions.

;_”’ t is innermost wrt. some GHRS R, if s is not R-reducible

at a position below p. A sequence of reductions s — # ¢ is innermost, if each step in the
sequence is innermost. An outermost rewrite step is defined correspondingly as a step
where no rewrite step applies above. In programming applications, innermost reduction

A rewrite step s —

corresponds to eager evaluation and outermost to lazy evaluation. By abuse of notation,
we write s —>i;”° t for a rewrite step that occurs below the root position of s.

Since f-reduction on patterns only renames bound variables, we obtain the following
result on reducibility of substitutions. It generalizes the first-order case and is crucial for

narrowing, as developed in Chapter 6.



Fact 4.3.5 Assume an HRS R and a substitution 0. Then 0F(%,) is R-reducible, iff 0F
is R-reducible.

This result will be often used for higher-order patterns, where free variables occur only
in the form as in the result above.

4.3.1 Equational Logic

A rewrite system R induces an equivalence on terms. This equational theory =p is
defined by the inference rules in Figure 4.4. It is shown in [Wol93] that the equivalence
relation =p coincides with model theoretic semantics for higher-order equational logic.

Rule [l—-reR
Z =R T
Reflexivity
t=pt
S t s=nl
ymmetry —

e S =R t t =R U
Transitivity S=p @
Abstraction _s=rl

Az.s =p A\z.t
! !
. . S =R S t =R t
Application

”p (s ) =x (s 1)
s =ap~4 1
Conversion Z e
S =R t

Figure 4.4: Equational Theory of an GHRS R

Notice that in the higher-order case the application rule implies the usual congruence

rule of the form
th=pt, .. .  to=pgt

ft) =r (1))

Also, in the higher-order case, the standard substitution rule

S:Rt
Os =R ot

can be inferred from the above by repeated abstractions and applications. For instance,
assume 0 = {z — u}, then

S:Rt

Az.s =p A\z.t U —p U

(Ae.s)u =p (Az.t)u




For higher-order equational theories, the following equivalence of the equational theory
and term rewriting has first been shown for HRS in [Nip9la] and has been extended to
GHRS in [MN94].

Theorem 4.3.6 For any GHRS R the following are equivalent:
s=ptlt & SIZ Sp tlg

The proof in [Wol93], which gives a similar result without restrictions on the left-hand
sides only holds for terms in -normal form, as observed by Nipkow [MN94]. A similar
result for conditional equations can be found in [L.S93].

4.3.2 Confluence

Some of the important confluence criteria for first-order rewriting (see e.g. [Klo92,
Hue80]) have been lifted to the higher-order case. As in the first-order case, most con-
fluence criteria are based on an analysis of overlaps:

A rule [ — r of some HRS overlaps with a pattern ¢, if ¢ —>;_”°
substitution § at a non-variable position p in ¢t. Since [ and t are patterns, we assume
that 0 is the most general unifier of ¢| and [ (modulo lifting). Two rules ly — 7y and

s for some

Ly — r have an overlap, if ; — r; overlaps with [y or vice versa.

An HRS is called orthogonal, if it is left-linear and there are no overlaps. For
orthogonal HRS, confluence is shown in [MN94, Nip93b]. For an overview with results in
a general setting see [00s94] (also in [OR94]). Orthogonal HRS cover an important class
of rewrite rules: (higher-order) functional programs are left-linear and either allow no
overlaps, or only weak overlaps [00s94], for which confluence holds as shown in [O0s94].

If there exist overlaps, they give rise to so-called critical pairs. A pair (u, v) is called
a critical pair of ly — rg and [; — ry if the rules overlap at position p with substitution
f and 61, —>§§_Wj u and v = 0r;, where i € {0,1} and j =1 — 4.

The well-known (first-order) critical pair lemma [KB70] has been lifted to HRS:

Theorem 4.3.7 ([MN94, Nip91a]) An HRS R is locally confluent if all eritical pairs
(u,v) are joinable, i.e. ulpv.

This yields the important result that confluence of terminating HRS is decidable, as local
confluence implies confluence for terminating HRS.

For first-order rewriting, there is a difference between confluence and ground conflu-
ence [Hol89]. An HRS is ground confluent if it is confluent on ground terms of a fixed
signature. For higher-order term rewriting ground confluence and confluence coincide,
as ground terms may contain local “constants” in the form of bound variables. Then,
as in the first-order case without the restriction to a certain signature (see [H5189] for a
detailed discussion), both are equivalent.

4.3.3 Termination

Termination of rewriting is undecidable, but there exist many results for terminating
classes of rewrite systems or semi-decision procedures (see e.g. [DJ90]). An ordering < is
called a termination ordering of some HRS R if —® C > and < terminates. Usually,
to show termination for an HRS R = [, — r,, one has to find an ordering < with [, > r,



that extends to —%. For the first-order case, there exist large classes of orderings that
are known to extend to —*.

In the higher-order case, such orderings are more difficult, as > must be preserved
by higher-order substitutions. The approach in [Pol94] is based on strictly monotonic
interpretations of terms in monotonic domains. That is, (higher-order) symbols are in-
terpreted by monotonic functions. An example can be found in Section 7.1. It is shown
that an HRS terminates if the interpretation of the right hand-side is smaller than the
left-hand side for each rule.

A different approach that extends lexicographic orderings on first-order terms [DJ90]
to higher-order terms is shown in [LS93, ALS94a].

A confluent and terminating HRS R is called convergent. It follows from Theo-
rem 4.3.6 for convergent R that s =g ¢ can be decided by comparing s|p and t]p. For
a terminating GHRS R, we define —%, as

—>ib - —>R U >0 -
For the first-order case, termination of this reduction was shown in [JK86]. The proof
in the latter can be generalized to the higher-order case as follows. We first need the

following trivial lemmata.

Lemma 4.3.8 If s —f t for « GHRS R and s is a subterm of s, i.e. 5’|p = s, then

s' — T S,

Lemma 4.3.9 Assume an GHRS R. If

R
s>t t—"u

then there exists t' >, t such that
s — Tt >

Theorem 4.3.10 The reduction —E£, = —% U >, is terminating for a GHRS R if
— P s terminating.

R

&y reductions. If the reduc-

Proof by contradiction. Assume an infinite sequence of —
tion does not contain some >,,;-step or only >,,;-steps, we clearly have a contradiction.
Otherwise, assume the first >,,;-step occurs after a sequence of n —%-steps. Then
by Lemma 4.3.9, we can construct a sequence of length n 4+ 1. Repeating this yields a

contradiction. O



Chapter 5

Decidability of Higher-Order
Unification

In many works concerning higher-order unification [Wol93, BS94, Nad87, Pau94], it is
observed that non-termination of higher-order (pre-)unification occurs very rarely in prac-
tice. As the known decidability results (see Section 2.4) do not cover many practical cases,
we examine decidability of higher-order unification more closely, mostly considering the
second-order case. For an overview, we refer again to Figure 2.2.

We show in Section 5.2.1 that unification of a linear higher-order pattern with an
arbitrary second-order term is decidable and finitary, if the two terms share no variables.
In particular, we do not have to resort to pre-unification, as equations with variables
as outermost symbols on both sides (flex-flex) pairs can be finitely solved in this case.
Further extensions are discussed in Section 5.2.2. For instance, unifying two second-order
terms, where one term is linear, is shown to be undecidable if the terms contain bound
variables and decidable otherwise.

Then we develop an extension of higher-order patterns with decidable unification in
Section 5.3, where second-order linear variables are permitted. The case with repeated
variables is discussed in Section 5.3.2. The main result here is that unification of “induc-
tion schemes”, e.g. Ya.P(2) = P(x + 1), with first-order terms is decidable.

5.1 Elimination Problems

In this section we consider a particular class of unification problems, called elimination

problems, of the form
M. P(T0) =" ATt

where P ¢ FV(t). In the first-order case such equations are trivially solvable, here
such an equation may not have a solution due to bound variables. For instance, the
unification problem Az, y.P(z) =" Az, y.f(y) has no solution. Among the applications of
elimination problems are certain flex-flex pairs. This will allow later to use unification
instead of pre-unification in some cases.

We call this class elimination problems, as they generalize first-order elimination.
Secondly, the strategy to solve such goals is to eliminate the bound variables {7, } — {7}
in t by appropriate substitutions. For instance, the equation

Az, y.P(z) =" Az, y.f(z, X(y))
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has the most general solution {X +— Az. X', P — Az, y.f(2, X')}. This example actually
falls into the class of patterns and is thus solvable by System PU. The main difference is
that System PU introduces many temporary variables for partial bindings for P. Intu-
itively, all we need for solving \@,.P(¥,) =’ A\T,.t, where ¢ is a pattern, is the following:

o Let W=7} — {7}
o If some z € W occurs on a rigid path in ¢ then fail, otherwise,

e for each occurrence of free a variable X(Zz;) in ¢, bind X to Az, . X'({Z.} N W),
where X' is a new variable of appropriate type.

Hereby the last expression assumes an arbitrary conversion of the set of arguments to X’
to a list. The reason why we explain this special case into such detail is that this strategy
is actually used in implementations of PU, see e.g. [Nip93a].

In addition, this strategy shows that for solving elimination problems, no “real” new
variables have to be introduced, only the variables in ¢ are mapped to new variables with
fewer arguments. As in addition P is bound to some term, the total number of variables
decreases, which will be important for some results in Section 5.3.

The main focus of this section is on elimination problems where ¢ is an arbitrary
second-order term. For this case, there can be many different solutions to an elimination
problem, as the next example shows:

Example 5.1.1 Consider the pair
e,y F(z) =" de,y F'(F"(x), F"(y)).

There are two ways to eliminate y on the rhs, i.e. 6 = {F' — Az, %».F/(z)} and
Oy = {F'"" +— Az . F]'}, where F| and F|" are new variables.

We first need some notation to formalize these ideas. For a variable F' of type @, — ag
we define the i-th parameter eliminating substitution 75 ; as

i ={F = AT, P (2, o w1, Ty, )

where F' is a new variable of appropriate type.

The transformation rules =g in Figure 5.1 transform triples of the form (6,1, W),
where 6 is the computed substitution, [ is the list of remaining terms, and W is the set
of bound variables to be eliminated. We say system EL succeeds if it reduces a triple to
(0,[], W). For the flex-flex pair in Example 5.1.1 system EL works as follows, starting
with the triple

({3 P,y F/(F (), 7 (y)] {y})-

Then EL can either eliminate the second argument of F’ or it can proceed until the triple
({}, Mz, y.F"(y)],{y}) is reached and then eliminate y. In these two cases, EL. succeeds
with §; and 6;, respectively, as in Example 5.1.1. All other cases fail.

Observe that system EL is not optimal, as it can produce the same solution twice. For
instance, consider the pair A\z.F" =" A\z.F'(F'(z)). There are two different transformation
sequences that yield the unifier { F' — As.F" ...}. More precisely, this happens only if a
bound variable occurs below nested occurrences of a variable at subtrees with the same
index.

We first show the correctness of EL.



Eliminate

(0, Az P(L)IR], W) =pr (7p b, mp [ A P(E,)| R], W)
if 32 € W N BY(ATL.L)

Proceed

(0, [\Trv(8)|R), W) =g (0, Nar-ta|R], W)

unless v is a bound variable in W

Figure 5.1: System EL for Eliminating Bound Variables

Lemma 5.1.2 (Correctness of EL) Let \z;.P(%,) =" A%t be a pair where P does
not occur in t. Assume further W = {%} — {¥m}. If {}.[t], W) =g (0[], W) then
OU{P — 0Tt} is a unifier of \T5. P(Ym) =" \Tp.1.

Proof We show that { P — 0A7,,.t} is a well-formed substitution, i.e. all bound variables
in 0t are locally bound or are in 7,,. As any successful sequence of EL reductions must
traverse the whole term AT;.t to succeed, only bound variables in {7,,} can remain; oc-
currences of {7y} — {7, } are either eliminated by some substitution 7p ; in rule Eliminate,

or the algorithm fails as the rule Proceed does not permit these bound variables.
O

The next lemma states that if § eliminates all occurrences of variables in W from {,,
then there is a sequence of EL reductions that approximates 6.

Lemma 5.1.3 If 7[t,] = [f,], BY(0t,) N W =0, 0 = 67 for some substitution &, and
t, are weakly second-order terms, then there exist a reduction (7,[t,), W) =g (0',], W)
and a substitution &' such that 6 = §'0'.

Proof by induction on the sum of the sizes of the terms in [{,]. Clearly, each =g,
reduction reduces this sum. The base case, where n = 0, is trivial. We show that for
each such problem some EL step applies and that the induction hypothesis can be applied.
Depending on the form of # and the conditions of the rules of EL, we apply different
rules. Assume t is of the form A\7;. P(%,,) and 0P = \7,,.t. By our variable conventions,
we can assume that WNBV(0P) = 0. As 7. P(%,,) is a weakly second-order term, some
bound variable from W appears in 0A%;. P(W,,) if and only if it appears in some AT . u;
where y; € BY(AYn.t) = BV(0P): if some w; is a bound variable, then only renaming
takes place, otherwise, u;, must be first-order and hence y, must occur at a leaf in ¢.
Then let
i = Min{j | 3z € BY(0A7;.v;) N W .

The above set describes the indices of bound variables that may not occur in 8P = \v,,.¢
by assumption on 0, e.g. y; ¢ BV (Ay,.t). If the above set is empty and no j exists, we
apply the second rule and can then safely apply the induction hypothesis.

In case the minimum ¢ exists, we have BY(0A7;.u;) N W C BY(AZ.u;) N W. Hence
the Eliminate rule applies with 7p; = {P — A&, . Po(a1, ..., &i—1, Zig1, .., &) }. Then we
can apply the induction hypothesis to (7p;7,7p;[t.], W): define ¢’ such that &’ X = 6X



it X # P and 6Py = A,y Yic1s Yit1s- -+, Ym-t. Notice that ¢ is well-formed, as
yi ¢ BY(AYn.t). Clearly, the premises for the induction hypothesis are fulfilled, as
0 = 0'tp;7 follows from 7P = P. Then the induction hypothesis assures that both EL
succeeds with a substitution 6’ and that a substitution ¢” exists such that 6 = §"6".
The remaining cases of t; are trivial as the Proceed rule does not compute substitu-
tions. O

Now we can show that EL captures all unifiers. We use EL to solve elimination problems
of the form AF;.P(¥,) =’ t, where t is not p-equivalent to a free variable. In the latter
case the solution considered in the next lemma introduces more new variables than the

trivial solution ¢ — A% P(¥n).

Lemma 5.1.4 (Completeness of EL) Assume 0 is a unifier of a pair of the form
T P(Tr) =" ATp.t, where \Tp.t is not n-equivalent to a free variable and \¥;. P (%)
is a pattern. Assume further \T;.t is weakly second-order and does not contain P. Let
W = {7t} — {yn}. Then there exist a substitution 0" = ¢ U {P — 0'\y,.t} and a
reduction ({},[\zx.t], W) =51 (0[], W) such that 0" is more general than 0.

Proof It is clear that any unifier must eliminate all bound variables from W on the
right-hand side. Then the proof follows easily from Lemma 5.1.3. O

It can be shown that EL computes at most a quadratic number of different substitutions.
Let n be the number of occurrences of variables to be eliminated and let m be the
maximal number of nested free variables. Then there can be at most m distinct ways to
eliminate some particular variable. As m and n are both linear in the size, the maximal
number of solutions, i.e. mn, is quadratic.

Observe that EL is not complete for the third-order case. Here, it a free variable has
two arguments, one can be a function. If in some solution this function is applied to the
other argument, then this function could eliminate, in the above sense, the other argu-
ment. For instance, consider the third-order pair Az, y.F(z) = Az, y. F'(A2.F"(2), y).
Here EL would not uncover the solution

{F'— Xy, 2. Fy(y(2)), F" — Az.a, F ' — Ay, 2. Fy(a)}.

With System EL we can show the following result on pattern unification much easier
than with System PU, as EL introduces fewer variables.

Lemma 5.1.5 Assume 0 is a most general unifier of two patterns s and t, then either
|FV(0s)| < |FV(s,t)|, or 0 is not size-increasing.

Proof Assume a reduction [s =7 t] =%, &,. If no Elimination, Imitation or Projection
is applied, then the substitution is not size increasing; this is trivial for Deletion and
Decomposition and simple for the Flex-Flex rules. Otherwise, we apply System PU, but
use EL instead for all equations of the form A\z,.F(%,,) =’ A%,.t. For this case, we show
that a solution to such an equation reduces the number of variables. It is evident that the
number of free variables remains unchanged under the parameter eliminating substitution
6 computed by EL. As F is bound to some term A%, .0t¢, the number of variables reduces.

O



5.1.1 Repeated Bound Variables

In the last section, we did not allow repeated bound variables on the left-hand side. In
the next lemma we extend this result to relaxed patterns, which causes some technical
overhead. Repeated variables may cause an additional number of distinct unifiers in
each case, as there can be different permutations if a repeated variable occurs in the
common instance. Consider for example the pair Az.F(z,z) =" Az.c(z). There are the
two solutions {F — Ay, z.¢(y)} and {F — Ay, z.¢(2)}.

As evident from this example, there can be an exponential number of incomparable
unifiers in the general case. Consider for instance Az.F(z,z) =" Az.v, where z occurs in
v exactly n times. Then there are 2" different solutions. Although this may seem very
impractical, we conjecture that large numbers of unifiers are rare.

In the following result we do not formalize these possible permutations explicitly. For
simplicity, we only specify the properties of the correct permutations. As the number of
permutations is clearly finite, this is sufficient, but does not yield an effective algorithm
for computing these.

Lemma 5.1.6 A unification problem \z;.P(y,) =" t where \z;.P(%,,) is a relazed pat-
tern and t is weakly second-order and does not contain P, s finitely solvable.

Proof Consider a pair A%;.P(%,) =" A\%;.t and assume some bound variables occur
several times in P(7,,). Assume EL succeeds with (0,[],{% — 7m}). Let p(i,j) be the
position of the j-th occurrence of z; in #t. For this solution of EL, all solutions for P are
of the form {P — AZ,.t'}, where Head('|,;;)) = % and y; = x; for all positions p(i, ;)
of some #; in 8t and Head(t'|,) = Head(0t],) otherwise. Here the last equations allow
for many permutations, as some 2; may occur repeatedly in 7. All these permutations
are clearly independent from the remaining parts of the computed unifier, as P does not

occur elsewhere, and can easily be computed. a

It would be interesting to develop deterministic and efficient implementations of EL
that compute the set of all unifiers. For instance, if a variable from W occurs on a path
where no free variable occurs, then this branch can safely fail. Furthermore, an effective
version should also detect when it produces the same solution twice.

5.2 Unification of a Second-Order with a Linear Term

As second-order unification is undecidable, we are interested in identifying decidable
subclasses. The restriction discussed here is that one term of the unification problem is
linear, i.e. has no repeated variables. We present in the following several results on the
decidability of such unification problems, which range from finitary unification over fini-
tary pre-unification to pure decidability. A major application of the results is narrowing
with left-linear rules, as discussed in Section 6.7. In Section 6.7.1 we will extend the
results in this section to sets of equational goals.

5.2.1 Unifying Linear Patterns with Second-Order Terms

In this section we show that unification of second-order A-terms with linear patterns is
decidable and finitary. Let us first use system PT to solve the pre-unification problem.



We use in the following weakly second-order terms, since this is needed in the next
Chapter.!

Lemma 5.2.1 System PT terminates for a unification problem with two variable-disjoint
terms s =t if s is a linear pattern and t is weakly second-order. Furthermore, PT
terminates with a set of flex-flex pairs of the form A\ P(7;) = A7 P'(w;) where all y;
are bound variables and P is isolated.

Proof We show that system PT terminates for this unification problem. We start with
the goal s =" t and apply the transformations modulo commutativity of = in Figure 4.1.
By this we achieve that after any sequence of transformations, all free variables on the
left-hand sides (lhs) are isolated in the system of equations, as all newly introduced
variables on the lhs are linear also. The latter can easily be seen by examining the cases
for Imitation and Projection, the other rules are trivial. Another important invariant is
that the left-hand sides remain patterns, which is easy to verify.

Since the first three transformations preserve the set of solutions, as shown in [SG89],
we assume that Decomposition is applied after applying Projection to a lhs. We do not
apply Elimination to flex-flex pairs, which could increase the size of some rhs if a bound
variable occurs repeatedly on the lhs, e.g. Az.c(z,z) =" G.

We use the following lexicographic termination ordering on the multiset of equations:

A: Compare the number of constant symbols on all lhs’s, if equal

B: compare the number of occurrences of bound variables on all lhs’s that are not below
a free variable, if equal

C: compare the multiset of the sizes of the right-hand sides (rhs).

Now we show that the transformations reduce the above ordering:
Deletion trivial
Decomposition A or B is reduced.

Elimination Although this transformation eliminates one equation, it is not trivial that
it also reduces the above ordering. Consider the possible equations Elimination is
applied to:

o =" \i;.l: as the free variable F is isolated, A and B remain constant and

C is reduced.

e \7.a(...) =" F': the elimination of an equation with a constant a reduces

A.
e \7.z;(...) =" F: here B is reduced (and possibly A).

Imitation We have two cases:

!This extends the earlier results in [Pre94a].



¢ \7. F(y,) =" A7;.f(%,): the imitation binding for F is of the form F
AT, f(Hy(T,)). Now, we replace the above equation by a set of equations of
the form 7. H;(7,) =’ A\%.t;, where i = 1,...,m. Notice that the number
of constants on the lhs (A) does not increase, as all y,, are bound variables.
Also, B remains unchanged. As F'is isolated and hence does not occur on any
right-hand side, C decreases.

¢ \7.f(%,) =" \7;.F(W,): we obtain an imitation binding as above. Then the
number of constant symbols on the lhs’s decreases, since F' may not occur on

the lhs’s.
Projection We again have two cases:

¢ \T . F(7,) =" A\#r.y:(1,): as 7, are bound variables, this rule applies only if the
head of the rhs is a bound variable as well, say y;. Then the case is similar to
the Imitation case above, as after Projection, the Decomposition rule applies.

¢ \7.v(T,) =" AT F(T,): as we have weakly second-order variables on the rhs,
we again have two cases. If v is a bound variable, Decomposition applies after
Projection and we proceed as in the Imitation case. In the remaining cases,
projection bindings are of the form F' +— AZ,,.x;, where #; is first-order. Hence
the lhs’s (i.e. A and B) are unchanged, whereas C decreases, as we assume
terms in long f#n-normal form.

a

So far, we have shown that pre-unification is decidable. To solve the remaining flex-flex
pairs, notice that all of these are elimination problems of the form

2T P(Tn) =" A7 Pl(wy),
where P is isolated and {¥,,} are bound variables.

Theorem 5.2.2 Assume t is a weakly second-order A\-term and s is a linear pattern such
that s shares no variables with t. Then the unification problem s =* t is decidable and
finitary.

Proof From Lemma 5.2.1 we know that PT terminates with a set of flex-flex pairs,
where the lhs is a pattern. Then by Lemma 5.1.6 we can use EL to compute a complete
and finite set of unifiers for some flex-flex pair, as EL terminates and is finitely branching.
This unifier is applied to the remaining equations. Repeat this for all flex-flex pairs. This
procedure terminates and works correctly as all lhs’s are patterns and only have isolated
variables. Notice that a flex-flex pair remains flex-flex when applying a unifier computed

by EL. O

We have shown in Section 5.1 that EL. may compute an exponential number of so-
lutions when repeated variables are permitted. Clearly, the most concise representation
of all unifiers is still a flex-flex pair. Which representation is best clearly depends on
the application. For instance, flex-flex pairs may not be satisfactory for programming
languages where explicit solutions are desired. For automated theorem proving, flex-flex
pairs are a more compact representation and may reduce the search space.



It should also be noted that the unification problem in Lemma 5.2.1 allows for some
nice optimizations for implementors. For instance, no occurs check is needed: the proof
of Lemma 5.2.1 uses the invariant that all variables on the left-hand sides are isolated.
Hence no variable can occur on a left-hand side and at the same time on some right-hand
side.

5.2.2 Extensions

In the following sections, we will examine extensions of the above decidability result.
First, notice that the linearity restriction is essential; otherwise full second-order uni-
fication can easily be embedded. But even with one linear term, this embedding still
works:

Example 5.2.3 Consider the unification problem

e B (f(z, G)) =" Ae.g(f(z,h), flz, 1)),

where #; and {; are arbitrary second-order terms. By applying the transformations PT
it is easy to see (compare to Example 4.1.3) that in all solutions of the above problem
F— Az.g(z,2) and t; =" t, must be solved, which is clearly undecidable.

Notice that this example requires a function symbol of arity two whereas second-order
unification with monadic function symbols is decidable.

Motivated by this example, we consider the following two extensions. First, we assume
that arguments of free variables are second-order ground terms. Secondly, we consider
the case where an argument of a free variable contains no bound variables. These two
cases can be combined in a straightforward way, as shown towards the end of this section.
Thus arguments of free variables may either be ground second-order terms or terms with

no bound variables. The generalization where only one term is linear follows easily from
Example 5.2.3:

Corollary 5.2.4 [t is undecidable to determine if two second-order terms unify, even if
one is linear.

Pre-unification of two linear second-order terms without bound variables is however de-
cidable and finitary, as shown by Dowek [Dow93]. This result is generalized in Section 5.3
to higher-order patterns with linear second-order variables.

Ground Second-Order Arguments to Free Variables

We now loosen the restriction that one term must be a linear pattern. As long as all
arguments of free variables are either bound variables or ground second-order terms, we
can still solve the pre-unification problem. In particular, for the second-order case, this
can be rephrased as disallowing nested free variables. However, we only solve the pre-
unification problem, as the resulting flex-flex pairs are more intricate than in the last
section.

Similar to the above, we present a termination ordering for a particular strategy of
the PT transformations. We will see that in essence only one new case results from
these ground second-order terms. This case can be handled separately by second-order



matching, which is decidable and finitary. (It is also an instance of Theorem 5.2.2.) That
is, whenever such a matching problem occurs, this is solved immediately (considering all
its solutions). Hence we first need a lemma about matching.

Lemma 5.2.5 Solving a second-order matching problem with system PT yields only so-
lutions that are ground substitutions.

Proof by induction on the length of the transformation sequence. The base case, length
zero, 1s trivial. The induction step has the following cases:

Deletion,Decomposition trivial

Elimination Consider the equation to which Elimination is applied:
\opt =" F

The claim is trivial as A7j.t is ground.

Imitation
\r.a(t,) =" A7 F (0,

The imitation binding for F' is of the form F' +— Ay, .a(H,(7). Now, we replace
the above equation by a set of equations of the form

AT =" AT Ho ()

Clearly, for any matcher 6, H;, € Dom(#), and by induction hypothesis 0H; is
ground. Hence in the solution to A\z.a(%,) = \z;.F(%,), I is mapped to a ground
term.

Projection As we have second-order variables, we only have projection bindings of the
form F +— A7y, .y;, which are trivially ground.

a

This result does not hold for the higher-order case, as noted by Dowek [Dow93]: e.g.
{F + Mz.2(Y)} is a solution to F(\z.a) =" a, but no complete set of ground matchers
exists. Now we can show the desired theorem:

Theorem 5.2.6 Assume s,t are A-terms such that t is second-order, s is linear and s
shares no variables with t. Furthermore, all arquments of free variables in s are either

o bound variables of arbitrary type or

o second-order ground terms of base type.

Then the pre-unification problem s ="t is decidable and finitary.

Proof We give a termination ordering for system PT with the same additional assump-
tions as in the proof of Lemma 5.2.1. In addition, we consider solving a second-order
matching problem an atomic operation, with possibly many solutions. In particular, after
a projection on a lhs, this step eliminates one equation and applies a (ground) substitu-
tion to the rhs. It is easy to see that the two premises, only isolated variables and no
nested free variables on the lhs’s, are invariant under the transformations.

We use the following (lexicographic) termination ordering on the multiset of equations:



A: Compare the number of occurrences of constant symbols and of bound variables that
are not below a free variable on a lhs, if equal

B: compare the number of free variables in all rhs’s, if equal
C: compare the multiset of the sizes of the rhs’s.
Now we show that the transformations reduce the above ordering:

Deletion trivial
Decomposition A is reduced.

Elimination Although one equation is eliminated, it is not trivial that it also reduces
the above ordering. Consider the equations this rule is applied to:

o =" \i;.l: as the free variable F is isolated, A and B remain constant and

C is reduced.

e \7;.v(...) =" F: the elimination of an equation with a constant or bound
variable v reduces A, as F' does not occur on any rhs.

Imitation We have two cases, where «a is a constant:

¢ \7.F(u,) =" A%;.a(f,): the imitation binding for F is of the form F
AUm-a(H,(Tm)). Now we replace the above equation by a set of equations of
the form 7. H; () =’ AT;.1;. Notice that the number of constants and bound
variables not below a free variable on the lhs’s (A) does not increase. As F
is an isolated variable and does not occur on any right-hand side, B remains

unchanged and C decreases.

e \7;.a(t,) =" \7;.F(u,): we obtain an imitation binding as above, and the
number of constant symbols on the lhs’s (i.e. A) decreases, since F' may not
occur on the lhs.

Projection We again have two cases:

¢ \7.F(%,) =" Mzr.v(u;): since F is an isolated variable, we obtain a single
matching problem \z;.t; =" Azp.v(u;) or, if the i-th argument is a bound
variable, the proof works as the case above (similar to the proof of Theorem
5.2.2). In the former case, any solution to this is a ground substitution by
Lemma 5.2.5. Hence either B is reduced or, if the substitution is empty, B
remains unchanged and C decreases.

¢ \7;.v(1,) =" A7 F(%u,,): as we have second-order variables on the rhs, we only
have projection bindings of the form F +— A7,.y;. Then the lhs’s (i.e. A) are
unchanged and both B and C decrease.

a

It might seem tempting to apply the same technique to arguments that are third-order
ground terms, as third-order matching is known to be decidable. However, there can
be an infinite number of matchers and without a concise representation for these the
extension of the above method seems difficult.



No Bound Variables in an Argument of a Free Variable

We show that the remaining case, where an argument of a free variable contains no
(outside-)bound variables, can be reduced to a simpler case. This method checks unifia-
bility, but does not give a complete set of unifiers.

Theorem 5.2.7 Assumes =" u[H(t,...,t;,...,t,)], and t are variable disjoint A-terms
such that s is linear. Assume further OBY (A t) =0, where ym = BV(S p). Then the
unification problem s ="t has a solution, iff \zo.u[H (t, o] =" Axo.t, where x
does not occur elsewhere, is solvable.

Proof Consider the unification problem
wlH(ty, ..ty )], = 1

where H occurs only once in u[H (t1,...,1,...)], and #; does not contain bound variables.
Assume {Xi,..., X, } = FV(t). Let a solution to this problem be of the form {H —
AT, o} U{X, — u,}US. As H does not occur elsewhere, we can construct a substitution
0 ={H — X7, {x; — t!}to} U S, where t! = {X, — u, }{;, which is a solution to

)\$0.U[H(t1, sy 20y - - )]p :? )\$0t

Notice that 8 is well-formed, as A¥,,.t; does not contain (outside) bound variables. The
other direction is simple, since x; does not occur elsewhere, i.e. not in an instance of
)\$0.t. O

Notice that the above procedure only helps deciding unification problems but does not
imply that pre-unification or even unification is finitary.

Putting It All Together

Now we can combine the previous results. Recall that the remaining case is undecidable
in general.

Theorem 5.2.8 Assume s,t are A-terms such that t is second-order, s is linear and s
shares no variables with t. Furthermore, if s|, = F(%,), then all T, are either

o bound variables of arbitrary type or
o second-order ground terms of base type or

o second-order terms of base type without bound variables form BV (s, p).

Then the unification problem s ="t is decidable.

Proof First apply Theorem 5.2.7 to the unification problem until s has no nested free
variables. This argument can be applied repeatedly, as the lhs is linear and hence the
substitutions of multiple applications do not overlap. Then Theorem 5.2.6 can be applied
to decide this problem. a

A special case often considered (e.g. [Gol81]) is terms with second-order variables, but
no bound variables. Then we get the following stronger result as an instance of Theo-

rem H.2.8:

Proposition 5.2.9 Assume s,t are second-order A-terms such that s is linear and shares
no variables with t. Furthermore, s contains no bound variables. Then the unification
problem s =" t is decidable.



5.3 Relaxing the Linearity Restrictions

In this section we discuss unification problems with shared and repeated variables which
were disallowed in the last section. The first result is an extension of higher-order pat-
terns. The only known extension of higher-order patterns with unitary unification is due
to Dale Miller [Mil91a]. Miller permits arguments to free variables that are patterns, but
must have a bound variable as the outermost symbol. For instance, Az, y.P(z, y(f(x))) is
permitted. The decidability result in the next section below allows second-order variables
with patterns as arguments, as long as these variables occur only once.

The results in Section 5.3.2 show that unitary unification is easily lost when going
beyond higher-order patterns. A further class with decidable unification is considered
that does not subsume higher-order patterns but is interesting for some applications. For
instance, unification of first-order terms with a term Va.P(z) = P(x + 1) is shown to be

decidable.

5.3.1 Extending Patterns by Linear Second-Order Terms

We consider in the following an extension of higher-order patterns where subterms of the
form X(,) are permitted for some patterns ¢, as long as X is second-order and does not
occur elsewhere. This generalizes a result by Dowek [Dow93] which covers second-order
terms with linear second-order variables, but without bound variables. Hence it does not
subsume higher-order patterns.

We first need the following notation. A linear second-order system of equations
is of the form

AT Xy (Lo, ) =7 ATg -1y,

where all X, are distinct and do not occur elsewhere and furthermore all A\7;.£, and
ATy.t, are higher-order patterns. By abuse of notation, we write ,_, avoiding nested
bars.

For the next result recall from Section 4.1 that the elimination rule in System PT is
not needed for completeness.

Theorem 5.3.1 Unification of linear second-order systems is decidable.

Proof We show that System PT for higher-order pre-unification terminates for linear
second-order systems if the elimination rule is not used. We use the following lexico-
graphic termination ordering for a system S = {A7;. X, (4,,,) =7 ¢, }:

A: |FV(L,) U FY(ATg .4y, )|
B: the multiset of sizes of ¢,

Let us show that the transformations of PT reduce this ordering. After a projection on
the left (it may not occur on the right), an equation between two patterns is created.
We consider solving this as an atomic operation (possibly reducing A). We maintain the
invariant that the system remains a linear second-order system, which is easy to show.
Hence we only have to consider the imitation and projection cases:

Imitation: in this case, the number of isolated variables on the left increases, but A
remains constant and B is reduced after decomposition.



Projection reduces one equation to an equation between two patterns. Applying a
solution of this equation (if it exists) to the remaining goals yields two cases as in
Lemma 5.1.5: either A is reduced, or, if A remains the same, the substitution must
not increase the size and thus B is reduced as one equation is removed.

a

Now we can show the desired result, where we represent the non-pattern terms in the
unification problem by a substitution. This in fact yields a more general result, as the
permitted non-pattern subterms may occur repeatedly. For instance, f(X (a), X(a)) =" p
falls into this class, but f(X(a), X(b)) =" p does not, where p is a pattern.

Theorem 5.3.2 Assume a substitution § = {X, — 7. X/(1,,)}, where 1, are pat-
terns, and two patterns s and t. If all X! are distinct, second-order and further do not
occur elsewhere, then the unification problem 0s =" 0t, is decidable.

Proof It is sufficient to solve the pattern unification problem s =" ¢ first, yielding a
pattern substitution ¢ in a successful case. Then

AT X! (61,,,) =" AT .0 X,
is a second-order linear system and is decidable by Theorem 5.3.1. O

A typical application of Theorem 5.3.2 are contexts, which are often used to describe
positions in terms. These are sometimes viewed as “terms with holes” and these holes are
written as boxes. For instance, f(O, a) and C'(O) can be viewed as contexts. It is clearly
much more precise to express contexts by second-order terms. In particular, if a term
has several different “holes”. For instance, we would write AD.f(0, a) and AD.C(O)
instead of the above and would let #-reduction perform the substitution for concrete
values for “holes”. Thus contexts can be modeled by linear second-order variables. With
the above result, we have a method to determine if a first-order term ¢ unifies with a
(linear) context filled with some term. For instance, in order to find overlaps of two rules
I — r;, i =0,11in an abstract fashion, the equations (AO.C(D))l; =" L,_;, i = 0,1
are to be solved. Notice that the last unification problems permit trivial solutions, e.g.
{C + [;_1}, which are not of interest here.

As another example, we can model term rewriting with contexts. Assume a rule
[ — r. Checking if s is reducible by this rule is done by matching (AD.C(O))! with s.
Similarly, for narrowing, as we see in the next chapter, unification of (AD.C(0))l with s
is needed.

5.3.2 Repeated Second-Order Variables

We show in this section another decidability result for second-order unification that is
tailored for a particular application. As we aim at relaxing the linearity conditions
in results of the last section, we need several technical restrictions. Notice that this
extension easily leads to infinitary unification problems. For instance, if ground terms
are permitted as arguments to free variables, the following example shows that there exist
infinitely many unifiers: the problem



has the solutions {F +— Az.f"(a)}, n > 0 where f°(X) = X and f"T1(X) = f(/"(X)).

Apart from the above example, equations of the form F(¢) =" #/, where I’ occurs in
t', are unsolvable in most cases. We conjecture that the solvable cases are based on some
symmetries. For instance, consider the equation

F(f(a,a)) =" f(F(a), F(a)).

The solutions are of the form

{F = Xea} {F = Xe.f(e, o)}, {F — Ae.f(f(x,2),f(z,2))},...

We conjecture that all solutions to equations F(¢) =7 s with F' € FV(s) are of such a
form and can possibly be described by finite automata or grammars [Tho90].

Some interesting examples fall into this class. Consider unification with a typical
induction scheme:

P(0),Vz.P(z) = P(z + 1) F Va.P(x)

Typically in such formulas, some arguments to free variables are not bound variables, but
ground (constructor) terms, here P(z + 1). Recall that the quantifier ¥ can be viewed as
a second-order constant and that Va.P(x) is nicer syntax for V(Az.P(x)).

Unification of a term with a repeated free variable with some higher-order pattern
permits infinitely many solutions: consider for instance

Vo.f(P(z)) = P(f(z)) =" Vy.X(y) — X(y)

which is similar to the above unification problem F(f(a)) =" f(F(a)).

The main result of this section is that unification of such terms with (quasi) first-order
terms is decidable. A term A7;.t is quasi first-order if ¢ is first-order. For instance,
Aa.F(x), f(Ax.x) are not quasi first-order, but Az.f(x, P) is quasi first-order.? A simple
property of quasi first-order terms we will use is the following: if ¢ is quasi first-order, p
is a pattern, and fp = t then 6 is quasi first-order on FV(p).

A pattern with ground arguments is a pattern with the exception that arguments
to free variables are ground terms which contain at least one outside bound variable but

no local binders. An example is Ax.P(z + 1,2), but Az.P(f(Ay.y)) is not.

Lemma 5.3.3 Assume A\T;.t is a quasi first-order term, A\7;.P(1,) is a second-order
pattern with ground arguments. Then the unification problem \z;.P(1,) =" \;.t is
decidable and, furthermore, if 0 is a maximally general solution then OP is quasi first-
order.

Proof Decidability follows from Theorem 5.3.1 as A%;. P(%,) =" AFj.t is a linear system
and P ¢ FV(A7.t) since t is first-order. We apply Imitation and Projection of System
PT, except on elimination problems. This terminates by Theorem 5.3.1 for second-order
linear systems. In case of a Projection, a matching problem of the form A\Z.t; = AT/,
where ¢ is quasi first-order, is created. This only has quasi first-order solutions, since {;
has no local binders.

Imitation may create elimination problems of the form Az;. P/(7,) =" Az;. X, which can
be solved by System EL. This yields the solution { P’ +— A7;. X}, as all #, contain bound

2This is more restrictive than the definition of quasi-first-order in [LS93, ALS94a].



variables. As P’ cannot occur elsewhere in a linear system, the remaining unification
problems do not change and the system remains linear. Thus decidability of the original
unification follows and maximally general unifiers do exist. Furthermore, any solution
for some X on the right is quasi first-order. Hence for any solution § computed, A7t .0t is
quasi first-order. This entails that P must be quasi first-order as well, as 0 P(%,) = 0t:
if AT;.0P is not quasi first-order, then A7;.0P(1,) cannot be quasi first-order, as all 7,
are ground and of base type. a

Lemma 5.3.4 Assume A\Tj,.p is a higher-order pattern where no abstractions occur in p,
and \Tj.t is a quasi first-order term. Then maximally general solutions of the unification
problem A\Tp.p =" ATt are quasi first-order.
Proof We first construct a solution # to the problem AZ;.p =’ AZ;.t. Then we show
that 6 cannot map some free variable in A%j.t to a term containing bound variables.

We apply the rules of system PU except on elimination problems. Since p has no
locally bound variables and ¢ is quasi first-order, we can assure the invariant that there
are no bound variables except 7. Elimination problems are either of the form A%;.4 =°
A7 X or of the form A\zp. P(%,,) =" A% .12, and are solved by System EL. If an elimination
problem is of the first form, it is clear that any solution for X must be first-order, as all
bound variables in #; must be eliminated and since there are no locally bound variables on
some lhs. For the second form of elimination problems, if solvable, the obvious solution
P — \7,,.1; is quasi first-order. Thus any solution # computed is quasi first-order.

This entails that OXT,.p = 0AT;.t is quasi first-order and hence # must be quasi
first-order for the free variables in p as well. a

Now we are ready for the main result of this section.

Theorem 5.3.5 Assume A7;.p is a higher-order pattern where no abstractions occur in
p, AT P(,,, ) are second-order patterns with ground arguments, AT P, (Y,,) are patterns,
and AT;.t is quasi first-order. Then the unification problem

)\ﬁ-p :? )\ﬁ.t7 )\ﬁ,P(m) :? )\ﬁ.Pn(y—no)

where P ¢ FY(ATg.p, \Tx.t) is decidable.

Proof The structure of the proof is as follows. We solve the equation A\7p.p =" A\T.t

as in Theorem 5.3.4, yielding a quasi first-order substitution #. Then we show that the

remaining equations can be solved under this substitution. Wlog. we assume P ¢ FV(6).
After solving AT.p =7 AT;.t, there remain the following cases for the equations

AT P(l,,,) =7 A7p.0P,(Y,,) (5.1)
e All equations in (5.1) are flex-flex and thus have a solution. Otherwise

e some P; € Dom(0). We solve the i-th equation A7 P(%,) = \7;.0P;(7;,) as in
Lemma 5.3.3, as A%.0P;(7;,) is quasi first-order. This yields a quasi first-order
substitution ¢ for P. Applying this to the remaining equations yields a set of
equations with higher-order patterns only. Thus solving the remaining goals is

decidable.



The last result applies directly to first-order theorem proving with additional induction
schemes written as second-order formulas. For instance, consider a data structure for
binary trees with the destructors left_tree, right _tree. Then a premise of an induction
scheme for binary trees may read as

Va.P(left tree(x)) A P(right tree(z)) = P(x)

Encoding a unification problem of a term V.t with the above scheme into in the form
required for the last result yields:

Va.Pi(z) A Py(a) = Ps(x) =7 Va.l
Va.P(left _tree(z)) =" Va.Py(z)
Va.P(right tree(z)) =" Va.Py(z)
Va.P(z) =" Va.Py(x)

Although we have found another decidable class of unification problems, the result also
shows that it is increasingly complicated to describe these classes.

5.4 Applications and Open Problems

As mentioned in the introduction, higher-order unification is currently used in several
theorem provers, programming languages, and logical frameworks. With the above results
we can now develop simplified and somewhat restricted versions of the above applications
that enjoy decidable unification. It should be mentioned that several systems such as Elf
[Pfe91] and Isabelle® have already resorted to higher-order patterns, where unification
behaves much like the first-order case.

The main restriction we use to achieve decidability is linearity. There is an interesting
variety of applications where linearity is a common and sometimes also useful restriction.
The main application and also the original motivation for this work is higher-order nar-
rowing, which will be developed in the next chapter.

Recall for instance the rule

map(F, cons(X, Y)) — cons(F(X), map(F,Y))

which has a linear pattern as the left-hand side. Interestingly, when coding functions such
as map into predicates, as for instance done in higher-order logic programming [NM88],
the head of the literal, e.g.

mapp(F, cons(X,Y), cons(F(X), L)) :— mapp(F, Y, L),

is not linear. However, when this rule is used only on goals of the form mapp(t,t', 7),
where 7 is a fresh variable,* then the unification problem is decidable as it is equivalent
to a unification with a linear term. Thus our results also explain to some extent why
unification in higher-order logic programming rarely diverges.

Another application area is type inference, which is mostly based on unification,
whereby decidable static type inference for programming languages is desired. In many

3Isabelle still uses full higher-order pre-unification, if the terms are not patterns.
4Such variables are also called “output-variables” in [Red86].



advanced type systems such as Girard’s system F' [GLT89] variables may range over
functions from types to types, i.e. second-order type variables. In particular, Pfenning
[Pfe88] relates type inference in the n-th-order polymorphic A-calculus with n-th-order
unification. As another example, for SML [MTH90] some restrictions avoid second-order
unification problems in the module system. Thus progress in higher-order unification may
help finding classes where type inference is decidable. However, non-unitary unification
often means no principal (i.e. most general) type.
Other applications are described in the following.

Theorem Proving

Higher-order theorem provers often work with some form of a sequent calculus, where
most rules have linear premises and conclusions e.g.

'-A I'tB
'AAB

Furthermore, non-linear unification problems occur mostly with rewriting, e.g. with rules
such as P A P — P. For rewriting, however, only matching is required.

Another interesting result for theorem proving was discussed in Section 5.3: unifica-
tion of first-order terms with induction schemes of the form Ve.P(z) = P(x + 1).

Associative Unification

Unification modulo the law of associativity was an open problem for a long time, until
Makanin [Mak77] showed its decidability.

It is known that associative unification can be embedded into higher-order unification,
see e.g. [Pau94]. With Theorem 5.2.6, we can show the decidability of a class of problems
that extends associative matching (which is rather trivial). The idea for the encoding is
that function application is associative, for instance

Az (Ay.f(g(y)h(y) = Az.f(g(h(x))).

Thus associative lists are coded by functions, e.g. the list [a, d] is coded by the term
Ax.cons(a, cons(b, x)). It may seem that this representation for lists is clumsy, but it has
the advantage that appending a list to another can be done by a single g-reduction. This
representation has been discussed in [Hug86] and corresponds to the idea of difference
lists in logic programming, as discussed in Section 7.3.

For instance, the matching problem

Ao . F(G(cons(e,x))) =" Ax.cons(a, cons(b, cons(c, x)))

has the three solutions

{F — Ay.y, G — Ay.cons(a, cons(b,y))},
{F + Ay.cons(a,y), G — Ay.cons(b,y)},
{F + Ay.cons(a, cons(b,y)), G — Ay.y}.

As the left-hand side of the last matching problem is a second-order term, we can use
Theorem 5.2.6 to decide associative unification problems where one side only has linear
variables with ground arguments, e.g. the problem

e . F(G(cons(c,z))) =" Ax.cons(Y, X(z))



is decidable. In this example, Az.F(G(cons(e,x))) represents all lists ending in ¢ and
Ax.cons(Y, X (x)) stands for a non-empty list.

5.4.1 Open Problems

We briefly mention some open problems for future examination. Is the unification of a
pattern with a linear second-order term decidable? This might be equivalent to unification
of two linear second-order terms. Another question is whether second-order flex-flex pairs
can be solved finitely. This may be possible by extending EL. The counterexample in
[Hue76] only gives a third-order pair with nullary unification.

The above unification problems are at least NP-hard, as they subsume second-order
matching, which is NP-complete [Bax76]. Are they also NP-complete?

Is there any way to extend the results to the third-order case? Not an obvious
one, since this would subsume third-order matching which may have infinitely many
incomparable solutions. Another question is whether the particular strategy in Theorem
5.2.6 1s really necessary for termination.

An interesting idea would be to combine the nice properties of higher-order patterns
with the above decidability results. Assume we want to unify an arbitrary pattern with a
second-order term. Then there are two overlapping decidable subclasses of this problem,
i.e. pattern unification and Theorem 5.2.8. Apart from selecting the appropriate algo-
rithm depending on the occasion, there is a more interesting way. The main problem for
combining these is the linearity restriction in the above results. The idea is to linearize
one of the terms to be unified. More precisely, if we unify an arbitrary pattern p with a
second-order term ¢, we can first make p linear and add some equality constraints. Then
we solve the unification problem and apply the solutions to the equality constraints.

For instance, if p = A\y.f(X(y), X), we replace the unification problem p =" ¢ by

Ay S(X(y), V) ="1,X =" .

Now if the first problem is solvable by # and if ¢ is a pattern as well, the resulting problem
X =’ 0Y is a pattern unification problem. With this construction, we can integrate
both results. In fact, we can even decide further problems, although it seems difficult to
describe this class. For instance, the unification problem

A.g(f(z, Gh), f(z, Gh)) =" Aa. F(f(z, @),

is similar to Example 4.1.3 but does not fall into any decidable class. We transform this
into

Ae.g(f(x, Gy), [z, Gy)) =" Aa. F(f(z, G)), Gy =" Ga.

Solving first the linear version is equivalent to Example 4.1.3 and yields the solution
{F — Xv.g(z,2), Gy — G, Gy — G}. Tt remains to solve the trivial equation G =" G.
Interestingly, repeating this linearization procedure may yield an algorithm for general
second-order unification.



Chapter 6

Higher-Order Narrowing

This chapter discusses several approaches for solving higher-order equations by narrowing.
Inspired by the different notions of first-order narrowing, we develop a framework for
higher-order narrowing. For an overview, we refer again to Figure 2.3. The results in
Section 5.2 on the decidability of unification of two second-order A-terms, where one term
is linear, are one of the main motivations for this work: the unification problem needed
for second-order narrowing is decidable if the left-hand sides of the rewrite rules are linear
higher-order patterns.

The structure of this chapter is as follows. We first discuss some general aspects of
narrowing in Section 6.1. The first approach we consider is the general notion of (plain)
narrowing, for which many refinements exist, e.g. basic narrowing [Hul80]. The idea of
this approach is to find an instance of a term such that a rewrite step somewhere in
the term becomes possible. For this, Section 6.2 presents an abstract view of higher-
order narrowing, where a problem with locally bound variables in the solutions becomes
apparent. We show in Section 6.3 that the first-order notion of plain narrowing can
be lifted to higher-order patterns and argue that it is problematic when going beyond
higher-order patterns. In the general approach in Section 6.2 most real problems are
hidden in the unification. We discuss some of these in Section 6.4.

As the approach to lift plain narrowing is not satisfactory, we consider an alternative
approach to first-order narrowing in the higher-order setting: lazy narrowing. The idea
here is to integrate narrowing into unification and to permit only narrowing at root
positions. This is discussed in Section 6.5, where we show that many of the problems
encountered in the first approach can be avoided.

The restriction to normalized substitutions is standard for first-order plain narrowing.
For lazy narrowing we consider both normalized and reducible solutions. As in the
first-order case, normalized solutions usually require a terminating HRS, but allow to
restrict the most unconstrained case of narrowing: narrowing at variable positions. This
refinement is examined in Section 6.6.1. Following this line, including normalization into
narrowing, as shown in Section 6.6.4, is desirable, as normalization is a deterministic
operation. The restriction allows for a further optimization: deterministic eager variable
elimination, as examined in Section 6.6.2. In general, it is an open question if eager
variable elimination is a complete strategy. In our setting, we can differentiate two cases
of variable elimination, where elimination is deterministic in one case.

Equational programming is a special case of general equation solving, e.g. the restric-
tion to left-linear rules is common. We show that for this class of problems a certain
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class of equational goals suffices. These are called Simple Systems (Section 6.7.1) and
enjoy several nice properties. For instance, with the results on second-order unification
of Section 5.2.1, we show that the syntactic solvability of second-order Simple Systems
remains decidable, as it is in the first-order case. Furthermore, solved forms are much
easier to detect than in the general case.

Combining the results for normalized substitutions with the properties of Simple
Systems in Section 6.6.2 leads to an effective narrowing strategy, Needed Lazy Narrowing.
The basis for this strategy is a classification of the variables occurring in Simple Systems
in Section 6.7.2. This allows to recognize and to delay intermediate goals, which are only
solved when needed.

As some of these refinements for lazy narrowing build upon others, we show these
dependencies in Figure 6.1. Notice that all refinements can be combined in a straightfor-
ward way.

Conditional rules are a common extension of term rewriting, useful in many ap-
plications. We consider the general case of arbitrary conditions for lazy narrowing in
Section 6.8. In Section 6.8.2 we argue that a restricted class of rules where no extra
variables are allowed on the right sides of conditions, called normal conditional rules,
are sufficiently expressive for higher-order functional-logic programming. We show that
the refinements developed for unconditional lazy narrowing can be extended to normal
conditional narrowing.

Another approach of higher-order narrowing is discussed in the last section of this
chapter. The main problems of plain narrowing in the higher-order case come from
the fact that narrowing at variable positions is needed. Section 6.9 shows that we can
factor out this complicated case by flattening the terms to patterns plus adding some
constraints. Then narrowing on the pattern part proceeds almost as in the first-order
case and it remains to solve the constraints, which can be done by lazy narrowing. In that
way we have a modular structure, and higher-order lazy narrowing is used only where
needed.

6.1 Scope and Completeness of Narrowing

In the following, we explain the assumptions of this approach to narrowing and discuss
their implications.

In our approach, we only show completeness of narrowing wrt. solutions, sometimes
only normalized substitutions. That is, for a goal s —7 ¢, we consider solutions # with
0s — t. We view this as the most general and basic concept of narrowing, as most of
the common notions of completeness are easy to derive. For instance, for a convergent
HRS R, this yields a complete algorithm for matching modulo the equational theory
of R (for unification see below). In convergent theories, for any solution there exists
an equivalent normalized one, thus our results suffice for complete R-unification or R-
matching. For some results we explicitly require a convergent HRS and also give results
tailored towards convergent HRS.

An alternative notion of completeness has been developed for programming language
applications. Taking denotational semantics as the basis, two terms are equal, roughly
speaking, if they can be evaluated to the same constructor term. This is called strict or
continuous equality. For this notion of completeness wrt. denotational semantics [Red85],
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it suffices to consider only constructor based solutions, which are clearly normalized. This
approach has led to implementations of functional-logic programming, e.g. [MNRA92].
It has also been extended to non-confluent HRS, which are used for non-deterministic
programming, as developed in [Huf393].

Strict equality permits non-terminating rewrite rules, which has been claimed as an
advantage of this approach. In contrast, we argue in Section 7.3.1 that non-terminating
rules, as used in lazy functional languages, are not needed in logic programming.

Strict equality can be encoded with left-linear rules in our setting. We simply define
a function s_equal that forces the evaluation to a constructor term. For instance, for
natural numbers the rules

s_equal(s(X),s(Y)) — s_equal(X,Y)
s_equal(0,0) —  true

suffice, assuming the constructors s and 0. This encoding works in a straightforward
manner for first-order data types. It is however unclear how to extend strict equality to
the higher-order case.

For the higher-order case, an alternative approach for non-convergent HRS is to embed
the calculi we develop into higher-order logic programming [Nad87], for with model-
theoretic semantics exist [Wol94].

In the first-order case, our notion of plain narrowing (with some additional control
strategy) is also called lazy narrowing (see e.g. [Han94a, LLFRA93]).  Furthermore,
lazy narrowing as defined here is called lazy unification in the first-order case [Han94c,
MRM89]. Our naming conventions are based on some earlier works [Sny90, Ho188, Hol89)].

6.1.1 Oriented Goals

We consider in this work only oriented (or directed) goals s —” ¢ with solutions 6 such
that s —— {. Systems of such goals are used directly for lazy narrowing. For plain
narrowing, it suffices to consider narrowing derivations starting from one term, here s.

In other works, solutions with reduction in both directions, i.e. #s|0t, are considered.
Directed goals simplify the technical treatment in many respects and are essential for
some refinements. For instance, we show in Section 6.7.1 that strong invariants for sets
of directed goals are possible for functional-logic programming and permit deterministic
variable elimination. Directed goals are also more appropriate for programming language
applications, as they are operationally more perspicuous. The expressiveness lost by this
assumption can easily be recovered by the following technique: add an equality predicate
= and the rule X = X — true to a rewrite system R. Then the R-unification problem
of two terms s and ¢ can be stated as s = t —" true and solved by narrowing. This
yields a semi-decision procedure for unification modulo a convergent R, as narrowing is
complete wrt. normalized substitutions. It is important to observe that this added rule
X = X — true does not destroy convergence. Notice that this rule is not left-linear, which
is essential for some refinements regarding programming. In essence, this shows that for
left-linear rules, there is a difference between matching and unification. For instance,
there are cases where matching is decidable but unification is not [DMS92, Pre94c].



6.2 A General Notion of Higher-Order Narrowing

The idea of first-order plain narrowing is, roughly speaking, to find an instance of a term
such that some subterm can be rewritten. Repeating this yields a complete method for
matching modulo a theory given by a convergent rewrite system R.

Since A-calculus can express a notion of subterm, we can model narrowing in a very
abstract way. Already in this very general setting we will identify a problem with locally
bound variables in solutions. To handle bound variables correctly within A-calculus, it
will be necessary to guess these variables beforehand, which is clearly unsatisfactory.

We simulate a context where reduction takes place by an appropriate higher-order
variable C i.e. instead of s —'=" ¢ we can write s = 0C(l) — 0C(r) = t for
an appropriate substitution #. For instance, to rewrite ¢(f(X)) with f(X) — ¢(X),
it suffices to take €' +— Az.c(x). This yields the following generalization of first-order
narrowing, where most of the real problems are hidden in the unification.

Definition 6.2.1 A A-term s narrows to { with a rule [ — » and with a substitution
0, written as s ~»5=" ¢, if

e 7 is a 7i-lifter of [,
e 0 is a unifier of s =" C(A;.71), where (' is a new variable of appropriate type, and
o 1 =0C(\y.7r).

A few comments are in order:

o The 7i-lifter employed is completely arbitrary, any & > 0 is possible. This causes
infinite branching.

e Even for restricted left-hand sides the relation may not be decidable.

e The equation s =" ((l) may be a flex-flex pair; such pairs are usually not solved,
as only higher-order pre-unification is used in applications. Furthermore, for such
equations, minimal complete set of unifiers may not exist.

o Instead of explicitly replacing a subterm at position p, we use -reduction for this
purpose. It is possible to make the subterm explicit where the replacement takes
place, but this considerably complicates the completeness proof.

e Note that [ may occur repeatedly or not at all in §C(1), i.e. s = 8t is possible.

Lemma 6.2.2 (One Step Lifting) Let R be a GHRS and let | — r € R. Suppose we
have two terms s and t with 8s = t for a substitution 0 and a set of variables V' such
that FV(s)UDom(0) C V. Ift —>;_”° t', then there exvist a term s’ and substitutions 6
and o such that

[—r _1
L S/\/}CT S}

o 65’ =1,

® 50':1/ (9,



o FV(s')UDom(6) TV —Dom(c)U Rng(c).

Proof Assume , = BY(t,p) and ¢ —>i;;7° t', where | — r € R is a gi-lifted rule, away
from V. Let &' = 0 U {C + Aa.t[z(7)],} U7. Then ¢ is a unifier of s =7 C(Ay;.0). Let
o be a more general unifier o such that ¢’ =y 6o for some ¢. Assume wlog. Dom(8) C
FV(os). As & =y 0, we have § =y do. Then, by definition, s ~!=" s’ and §s' = ¢/
follows from

§s' = 60 C(Ayg.1) = 8"C(Ay.r) = t[(Ay.8'r)Wi], = 1.
Using FV(r) C FY(l) we obtain
FY(s') = FV(ecC(Agr.1)) S FV(c C(AG.l)) = FV(os) C V — Dom(o) U Rng(c).

Hence we have

FV(s"YUDom(6) C V —Dom(c) U Rng(c)
as Dom(6) C FV(os). O

With Lemma 6.2.2, completeness of narrowing can be shown easily, as for instance in the
next section. Notice that the above proof uses some unifier that is more general than
the substitutions of the reduction considered, although it would be sufficient to use the
solution # as the unifier of s =7 C(Ay;.7l). It would be desirable to use a maximally
general unifier instead, but these may not exist for higher-order unification.

For the proof of the above lemma it is important that the rewrite rule [ — r has
been lifted over the right number of bound variables. Let us see by an example that the
number of variables over which a rule has to be lifted cannot be determined beforehand.
The problem occurs when a solution f for a variable X contains a local Ay and a rewrite
step in a subterm below where y occurs has to be lifted. When narrowing the replaced
subterm is made explicit in o C(l) — o C(r), but y is not visible yet. With the lifting
of [ — r it is possible to rename bound variables in r later. A somewhat similar problem
with higher-order matching was reported in [Pau86] and [PESS].

Example 6.2.3 Assume R = {h(P,a) — ¢g(P,a)} and consider the matching problem
H(a) —" u(M\y.g(y,a)) with the solution {H +— Az.u(Ay.h(y,z))}. When narrowing
without lifting, we obtain H(a) ~% H"(g(P’, a)), which matches u(Ay.g(y, a)), but does
not subsume the above solution, as g(P’, a) cannot be instantiated to g(y, a).

The solution is obtained here by lifting the rule over one parameter. First, the solution
to the unification problem H(a) =" C(\y.h(P(y), a)), which is needed for the narrowing
step, is

{H — Xz.H'(Ay.h(P(y),z)), C— Ae.H' (Ay.z(y))}.

Then we have H(a) ~® H'(Ay.g(P(y), a)) and the matching problem can be solved with
the substitution {H' — Az.u(z), P — Az.z}. In the general case, the solution to H may
contain an arbitrary number of locally bound variables, such as y here, but the need to
lift over these variables is not visible when looking at H(a). To obtain completeness for
this definition of narrowing, we thus have to guess locally bound variables, at least in our
framework.

Alternatively, it would be possible to ignore the binding rules of A-calculus while
computing a solution and then to check if no bound variable is captured once a solution
is found. This has the disadvantage that failures are detected very late. Thus this
approach seems unsatisfactory, both from a practical and from a logical point of view.



The above notion of narrowing is not of great computational interest. For instance,
there is little hope to find cases where even the application of narrowing is decidable.
We show in the following section that the first-order notion of narrowing can be lifted to
higher-order patterns. Then we discuss the problems of extending this approach to the
higher-order case.

6.3 Narrowing on Patterns with Pattern Rules

In this section we show that the first-order notion of (plain) narrowing can be adapted
to a restricted set of A-terms, higher-order patterns. Then, as in the first-order case,
narrowing at variable positions implies that the used substitution is reducible, thus this
step is redundant.

Assumption. We assume in this section that all terms, including the rewrite rules,
are patterns.

Although pattern rules are not sufficient for expressing higher-order functional pro-
grams (see e.g. Section 8.1), there are examples from other areas, where bound variables
are involved. For instance, scoping rules for quantifiers (as in [Nip9la]), e.g.

PAYz.Q=Ve.(PAQ),

can be expressed by patterns.

Definition 6.3.1 A pattern narrowing step from a pattern s to ¢ with a pattern rule
[ — r at a non-variable position ¢ with substitution # is defined as s ~» lq_é,”’ t, where
p ?

e 7 is a Ti-lifter of [, where 7 = BY(s, q) and
e 0 is a most general unifier of )\%.s|q and Ag;.7l, and

o 1 =0(s[rr],).

This notion of narrowing coincides with the standard definition of first-order narrowing
on first-order terms. Here, in contrast to the notion of narrowing in Section 6.2, we only
have to lift the rule [ — r into the context at position ¢. The problem in Section 6.2
with locally bound variables occurs only when narrowing at variable positions, which is
not needed here. When working with first-order equations, as done by Qian [Qia94] and
by Snyder [Sny90], this lifting is not strictly needed, as the bound variables in 5|q can be
treated as new constants and/or ignored. This enables Qian to lift completeness of first-
order narrowing strategies to patterns for first-order equations. We conjecture that most
first-order narrowing strategies can also be lifted to our setting, yet not as in [Qia94].
For a sequence
R R

R
SOY&l 81’\/}92 ’\P;}en Sy

we write sy «*»5” Sp, where 8 = 6, ...0;. We first lift one rewrite step in a solution to one
P

narrowing step. The lemma and its proof resemble closely their first-order counterparts,
as e.g. in [MH94]. This result has been developed independently by the author in [Pre94b]
and in [ALS94a, LS93] for conditional rules (see Section 8.1 for more details).



Lemma 6.3.2 (One Step Lifting) Let R be a pattern HRS and let | — r € R. Sup-
pose we have two patterns s and t with t = s for an R-normalized substitution 0, and
a set of variables V such that FV(s) U Dom(0) C V. If t —=" t', then there exist a
term s’ and substitutions 6,0 such that

[—r 1
.S,\p;}g S
o bs' =1
® 50':1/(9

o 6 is R-normalized
o FV(s')UDom(6) TV —Dom(c)U Rng(o)

Proof Assume s —>;7_;T t" and I' — 1’ is a rule lifted over 7 from [ — r away from
V. As [ is of base type, 0s| cannot be an abstraction. We have (fs)| = ¢l’. Since 0 is
R-normalized, p is a non-variable position in s and 0s| = 0(s|,).

Let o be a most general unifier of )\%.s|p and A7;.l" such that there exists 6 with
b0 =y 0. Assume that ¢ is minimal, i.e. Dom(6) C V — Dom (o) U Rng(o) holds. Since
o is a pattern substitution, 6 is R-normalized, as 8 is.

[—7r

U7p

Then, by definition, s ~» s' = os[r'],. To see that this step lifts the rewrite step
»

on s, it remains to show
§s' = bos[r'], = 0(s[r'],) =t

The second equation follows from éo =y 0. Then from FV(r) € FVY(I) and from
FV(os|,) € FV(al)

FY(s"y CFV(os,or) C FV(os,0l) C FV(os) C V —Dom(c) U Rnyg(c)

follows. Hence we have FV(s') U Dom(6) C V — Dom(o) U Rng(c) as 6 is minimal,
which concludes the proof. a

The following lemma holds for patterns as for first-order terms [MH94].

Lemma 6.3.3 Let 0,0,0" be pattern substitutions and V., V' be sets of variables such
that (V' — Dom(o))URng(o) C V. If0 =y 0’ then o =y §'o.

Completeness of narrowing follows as in the first-order case:

Theorem 6.3.4 (Completeness of Pattern Narrowing) Let R be a pattern HRS.
Suppose we have terms s and t = s for a substitution 6 and a set of variables V such
that FV(s)UDom(0) C V. Ift =2 ' then there exist a term s’ and substitutions §, o
such that

%
OS’\»RS/
a
P
e bs' =1t



o FV(s')UDom(6) TV —Dom(c)U Rng(o)

Proof by induction on the length of the reduction from ¢ to t’. Assume ¢ —>lw_”° 4. By
Lemma 6.3.2 there exist a term s; and substitutions 67, oq such that

° S,\/}l—w S/
p 7t

o 615’ =1
o S100 =y 0

o & is R-normalized

o FV(s')UDom(8) C V — Dom(or) U Rng(o)

Let Vi = V —Dom(oy) URng(oyr). Then the induction hypothesis yields

o 85l =1t
o 603 =v, &

o & is R-normalized

o FV(s')UDom(8) C Vi — Dom(o3) U Rng(c)

Let 0 = o30y. Then 60 =y 0 follows as 6oy =y, 61 and do201 =y 610y yields doy00 = d0
with Lemma 6.3.3 and hence do = 6. O

6.4 Narrowing Beyond Patterns

We discuss in the following the problems when extending the first-order notion of plain
narrowing for patterns to full A-terms, both in the rules as in the goals. For this purpose,
we use in this section the relation ~» in a more informal way to exemplify the problems
involved. In Example 6.2.3 we have identified a problem with locally bound variables.
This and several other problems stem from the fact that narrowing at variable positions is
required, since the rewrite step we lift might have been at a redex created by [3-reduction.
We discuss this with the following example.

Example 6.4.1 Assuming the rewrite system

Ry = {/(J(X)) = g(X)},

narrowing at a variable position is required to find the solution {H +— Az.f(2)} to the

problem \z.H(f(z)) —" Az.g(z):

Ao H (f(2)) ~ 5y, gy Ar-9(2)



Now the problem is how to define narrowing at variable positions. For instance, consider
the solution § = {H — Aa.h(f(z),2)} to the equational problem

Ao H(f(2)) =" da.h(g(), f(2)),

wrt. the Rg-reduction

A h(f(f(2)). f(x)) —" Ax.h(g(x), f(x)).

The naive approach, to instantiate H as little as possible, as in

Ae H(f(z)) MR]}L/\x.H’(f(x)) A ' (g(x)),

fails. The problem is that the subterm f(z) is duplicated by # and the reduction does
not occur inside f(x). An idea is to create a “local context” at this variable. Hence, we
instantiate H first with {H — Xe.H"(H'(x),2)}. Then, after f-reduction, the subterm
H'(f(2)) can be unified by {H' +— Az.f(z)} with the left-hand side f(f(z)) and can be

rewritten. Thus we have

A H(f(x)) MRI;L/\x.H’(f(x),x) Av,y. H'(g(x), )

and the solution, here {H' — Az, y.h(x, y)}, is then obtained by unification.

Intuitively, we approximate the desired solution #H in the first argument of H”. A
further problem occurs when narrowing on an argument of a free variable. For instance,
assume the narrowing step

H(f(X)) ~30 s yy H(g(Y):

Then some solution to H may copy the argument of H, thus this narrowing step cor-
responds to several rewrite steps. As a consequence, the solution {X — f(Y), H —
Ax.h(z,x)} with the reduction

H(f(F(Y))) =" hg(Y). F(F(Y))

to the above matching problem will not be found with the narrowing step above. The
redex is copied in the solution, but for narrowing, only one copy is visible.

Due to all these problems, we do not develop the notion of plain narrowing further
and instead focus on the alternative, lazy narrowing, in the next section. In addition,
we develop another approach that extends pattern narrowing by additional higher-order
constraints in Section 6.9.

6.5 Lazy Narrowing

A more goal-directed method to solve equational problems in a top-down manner is lazy
narrowing. The main idea is to integrate narrowing into unification. That is, when
R-matching s with ¢, we start with a goal s —’ ¢ that may be simplified to smaller
goals. Then narrowing steps are performed at the root only, where the unification of the
left-hand side of the rule with s again has to be done modulo R.



For instance, to solve a goal h(t,t;) —" v(X, Y), we either simplify the goal to the
goals t; —7 X and t; =7 Y if b = v, or apply a narrowing step at the root in a lazy
fashion. That is, assuming a rule h(a, Z) — ¢(b), we transform the above goal to

{th =" a,t, =" Z,g(b) =" o(X, Y)}.

In contrast to plain narrowing, not the first rewrite step in a solution 0h(t,t;) —°
fv(X,Y) is modeled, but the first outermost one. Assume this is the rewrite step to #’
in

Oh(ty, ty) — Oh(a, Z) —77 1 =5 0t

Now the purpose of the goals t, —7 a,t, — Z is easy to see: the rewrite steps in
Oh(t,ts) — Oh(a, 7) are modeled by these two goals.

In the last example, 7 does not occur on the right-hand side of the rule h(a, 7) —
g(b). Speaking in programming terminology, it is not necessary to “evaluate” the term t,
here to Z. This corresponds to lazy evaluation, as ¢, can be reducible. The reason for this
is that lazy narrowing, in its simple form, is also complete for reducible solutions, which
makes it possible to model lazy evaluation. Notice that the solution for the intermediate
variable Z may not be normalized. In our context, so-called infinite data-structures in
lazy languages correspond to reducible terms whose normalization diverges. In contrast,
the theory of plain narrowing often considers normalized substitutions with innermost
reductions, which corresponds to eager evaluation in a programming language.

It should be noted that the notion of laziness in Lazy Narrowing not only serves for
lazy evaluation as in lazy or non-strict languages, but also to lazy instantiation of free
variables. Intuitively, this means that instantiations are only performed when needed.
This distinction will become clear later, e.g. in Section 7.3.

Let s <» ¢ stand for one of s —7 # and ¢ —7 5. For a sequence =% .. =% of LN
steps, we write =7, where § =0, ...0,.

The full set of rules for lazy higher-order narrowing, called System LN, is shown in
Figure 6.2. System LN essentially consists of the rules for higher-order unification [SG89]
plus the Lazy Narrowing rule. Observe that the first five rules in Figure 6.2 apply
symmetrically as well, in contrast to the narrowing rule.

The subscripts (d) and d on goals only serve for a particular optimization and are
not needed for soundness or completeness. The idea is to use marked goals s — t.
These are created only in the Lazy Narrowing rule, in order to avoid repeated application
of Lazy Narrowing on these goals. The remaining rules work on both marked goals and

unmarked goals, indicated by —>Zd). For both < and _>Zd) the rules are intended to

preserve the orientation for & and marking for —>Zd). Only the Decomposition rule and

the Imitation rule, which includes decomposition, transform marked goals to unmarked
goals. In other words, on marked goals Lazy Narrowing may only be applied after some
decomposition took place.

For instance, reconsider from Example 6.4.1 the Ryo-matching problem

A H(f(x)) =" Ae.h(g(z), f(2)),

where LN yields

{Aa ([ (2)) = Arg(o), Ae Hy(f () =" Axf(2)}



by the imitation {H — Ay.h(Hi(y), Ha(y))}. Then the second goal can be solved by
Projection, and the first by Lazy Narrowing to

{Ae i (f(2)) =4 Ao f(F(X(2))), Aa.g(X () =" Az.g(x)}.

Notice that the first goal is marked, thus Lazy Narrowing does not re-apply. This is
an important restriction, since otherwise infinite reductions occur, as in this case, very
often. The two goals can be solved by several higher-order unification steps, which yield
the solution

{Hy — dy.f(y), X — dz.x}.

Deletion
{t—>zd) t}US = S

Decomposition

7. f(5) —>Zd) M f(U2)US = gt =T Az iU S
Elimination

(F AT us =9 08 if F ¢ FY(\.t) and
where § = {F' — \7p.t}

Imitation

DL F(T) oo NS ()Y US =0 (N, (08,) & Xap.ot, ) U 0S
where 0 = {I' — \7,.f(H, (7))}

and H,, are new variables

Projection

(T F (1) < Xao(@)YUS =" 06(H (1)) <@ ATe.o(00,)} U 6s
where 0 = {F' — \T,.2;(H;(%))},

t; : 7, — 79 and H; are new variables

Lazy Narrowing

DTs =" AT tusS = {A3rs =5 Az L ATr = Azt u s
where [ — r is an 7;-lifted rule

Figure 6.2: System LN for Lazy Narrowing

At first glance, the Lazy Narrowing rule of System LN looks rather simple. The
hidden restrictions by the marking of goals can be made more explicit by splitting Lazy



Lazy Narrowing with Decomposition

DT f(t) =" Az tbu S = {7nt, =" Azl U {75 =7 Aztju s
where f(E) — 7 is an Z;-lifted rule

Lazy Narrowing at Variable

Dz H(t,) =" A t}u S = Dz H(t) =5 b U {3 r =" Azt U S

where [ — 7 is an 7;-lifted rule

Figure 6.3: The Two Cases of the Lazy Narrowing Rule of System LN

Narrowing into two rules, depending on the head of the left-hand side. This is shown in
Figure 6.3. The first rule is easily inferred from LN as in this case the Lazy Narrowing rule
yields a marked goal A\z;.f(...) —5 Az;.f(...), where only decomposition applies. Observe
that the two rules do not permit narrowing steps on goals of the form Az .z (. . .) —" AT L.
As the two rules are more intuitive and clearly equivalent to the Lazy Narrowing rule of
System LN, we often use the two rules above instead whenever convenient.

The completeness proof of system LN is built upon the completeness proot of higher-
order unification in a modular way: the termination ordering is a lexicographic extension
of the one in Theorem 4.1.7.

Theorem 6.5.1 (Completeness of LN) If s —' t has solution 0, i.c. 05 — % 0t for
some GHRS R, then {s =" t} =%y F such that § is more general modulo the newly
added variables than 0 and F is a set of flex-flex goals.

Proof The proof proceeds by induction on the following lexicographic termination or-
dering on (G, 80), where for G, = s, —>Zd) t, 1s a system of goals with solution 8. i.e.

fs, — 0t,. Notice that a transformation not only changes G, but also the associated
solution has to be updated as in Theorem 4.1.7. The ordering assumes an arbitrary, but

fixed reduction 0s, — 0t,,.

o A: compare the multiset of sizes of the number of R-reductions in each goal §G;, if
equal

e B: compare the multiset of sizes of the bindings in 8. if equal

o C: compare the multiset of sizes of the goals G.,.

We maintain the following invariant for marked goals: if s —7 ¢, then Head(s) =
Head(0t) is not a free variable and furthermore, no rewrite step at root position occurs
in s — ¥ §t. Then the Lazy Narrowing rule does not need to be applied to marked goals
as shown below. Notice that Decomposition and Imitation on marked goals decompose
the outermost symbol and yield unmarked goals. Thus these rules preserve the invariant.

First consider the case that all goals are flex-flex pairs. Then the goals are considered
solved. If not, we show that for any non flex-flex goal some rule applies that reduces the
ordering.



Select some non flex-flex goal s —>Zd) t from G,. In the base case for criteria A, that

is #s = 0t, some higher-order unification rule applies, as in Theorem 4.1.7. It is clear
that this does not increase A and also approximates 4.

Otherwise, there must be a rewrite step in s — ¢. In the first case, assume there
is no rewrite step at the root position in #s — @¢. Hence all terms in this sequence
have the same root symbol. Then one of the unification rules must apply, similar to the
last case.

Now assume there are rewrite steps in s — 0t at root position. Then we consider
the first of these, which we assume to be s —— A\Tj.s; —>£_”° AT;. 4. Hence s; — ¢
must be an instance of [ — r, and there exists 6 such that 6!/ — ér = sy — #;. Assume
[ is of the form f(7,,). Lazy Narrowing yields the new goals s —} 7.l and Azp.r —° .
We can extend € for the newly added variables: define 8 = 6 U 6. This is well defined,
as we assume that [ — r is renamed by an appropriate lifter. Thus ¢’ is a solution of
s —5 Azg.l and Azg.r —7 ¢, that coincides with § on FV(s,t). The two new goals have
solutions with a smaller number of steps, thus reducing the termination ordering. Since
we consider the first rewrite step a root position, the new marked goal s —% 7./ fulfills
the invariant, as Head(0s) = Head(0l) and no rewrite step can occur at root position. O

Compared to the approach in Section 6.2, many problems are now taken care of by
higher-order unification. For instance, locally bound variables in a solution are com-
puted in an outside-in manner before the inner Lazy Narrowing step needs to lift over
these. Furthermore, flex-flex pairs can express a possibly infinite number of solutions.
This is already very useful for higher-order unification, but even more for higher-order
equational unification. It must however be noted that the Imitation and Projection rules
copy subterms several times, which implicitly solves many of the problem encountered in
Section 6.4.

With plain narrowing, narrowing at variable positions is needed. The corresponding
goals in lazy narrowing can often be delayed as flex-flex pairs. For instance, consider
the goal Az.c(F(f(2))) =" Az.c(G(z)) wrt. Ry, where lazy narrowing stops after one
decomposition step, whereas plain narrowing may blindly narrow at F(...).

As discussed for System PT in Section 4.1, there are two sources of non-determinism
for such systems of transformations: which rules to apply and how to select the equa-
tions. As in Theorem 4.1.7, completeness does not depend on the goal selection, as each
subgoal is independently solvable. Compared to pure higher-order unification, there is an
important difference as the Elimination and Decomposition rules are not deterministic
any more.

It is interesting to compare LN with recent work on first-order lazy unification in
[Han94c]. Restricting our system to the first-order case almost yields Hanus’s system
(with the difference that we consider oriented goals). For instance, the transformations
in [Han94c] yield so-called quasi-solved systems, which correspond to systems of (first-
order) flex-flex pairs. Notice that the Imitation rule coincides for the first-order case with
“partial instantiations” in [Han94c| and with the “root imitation” rule in [Sny91].

6.5.1 Narrowing Rules for Constructors

In practice, GHRS often have a number of symbols, called constructors, that only serve
as data structures. For constructor symbols, we can extract a few simple rules for Lazy



Narrowing. Their main advantage is that their application is deterministic. The rules in
Figure 6.4 cover the cases where the root symbol of the left side of a goal is a constructor.
Notice that the rules, except for the first, are only possible with oriented goals, where

Deterministic Constructor Decomposition

(\Trce(ly) —=(y ATc(B)FUS = {Azpt, =7 Az} U S
if ¢ is a constructor symbol

Deterministic Constructor Imitation

(NTLe(T) 1 N @YU S = (N =7 e ()} U 08
where § = {I' — A\7,.f(H,.(Tx))}

and H, are new variables

Constructor Clash

{AT.e(t,) _>Zd) Ao(t)U S = fail
if ¢ # v, where ¢ is a constructor symbol
and v is not a free variable

Figure 6.4: Deterministic Constructor Rules

evaluation proceeds only from left to right. The correctness of the rules in Figure 6.4
follows immediately from the definition of a constructor: if A7;.c(07,) — t, then ¢ will
have the constructor ¢ as the root symbol.

6.5.2 The Second-Order Case

We examine in this section how the lazy narrowing rules can be refined in the second-
order case. The goal is to show that for this case the Lazy Narrowing at Variable rule can
be handled more directly by two new rules. The aim is operationally more perspicuous
transformation rules. Furthermore, second-order terms suffice in most applications.

For the second-order case, we can refine the Lazy Narrowing rule into three separate
rules, as shown in Figure 6.5. The rule Lazy Narrowing at Variable corresponds to two
new rules. One of these includes Imitation, the other Projection. For instance, consider
the goal

G(1) -1
modulo the rule f(1) — 1. Then the new rule Lazy Narrowing with Imitation directly
simplifies this to

1-71,1-"1.

The aim of such specialized, but still complete rules is to avoid divergence and to detect
failures early.

Definition 6.5.2 System SLN for second-order lazy narrowing consists of the rules in
Figure 6.5 plus the rules of second-order unification.



As in Section 6.5 with System LN, we use marked goals to avoid Lazy Narrowing
rules before Decomposition has been applied. Notice that only the last rule introduces
marked goals.

Lazy Narrowing with Decomposition

D@ f(6) =" Az tbu S = {(A\7r.t, = AT L, \Tp.r =" Azt U S
where f(E) — ris an 7z-lifted rule

SO-Lazy Narrowing with Imitation

Da@ H(T) =" Amtyu S =% D73 H,(0t,) =7 A\Tp.ln, A\Tp.r — " AT.0t} U0S
where f(E) — 71 is an 7;-lifted rule and

0 ={H — 2z, f(H (7))}
SO-Lazy Narrowing with Projection

Dz H(t) =" Mgt} U S =7 a0t =5 Nap., \zpr —7 Nzp.0t} U oS
where [ — r is an 7;-lifted rule and

Figure 6.5: Second-Order Lazy Narrowing Rules for System SLN

Completeness of the above rules is easy to see; we only show the differences to the
proof of Theorem 6.5.1. Assume a derivation s —— # ¢,

The case we have to consider is when some reduction takes place at the head of some
term in this sequence. Then we lift the first of these reductions, which must be of the
form

0s = \7r.f(5,) — B Az f(s)) —B dm.o'r =P o1,

for some rule f(1,) — r. The only cases that are different from the completeness proof
on LN are the last two rules, i.e. if s is of the form A7 . H(%,). As Head(6s) = f, it must
either be an imitation binding, as covered by the narrowing rule with imitation, where
the consequent decomposition is already performed. Otherwise, the narrowing rule with
projection applies as in the original Lazy Narrowing rule.

6.6 Lazy Narrowing with Normalized Substitutions

We examine in this section refinements for lazy narrowing that restrict the solutions con-
sidered to normalized substitutions. As in the first-order case, this yields many important
optimizations. For convergent HRS R this is not a restriction, as for any substitution
there is an equivalent R-normalized one.

Some of the optimizations generalize well-known ideas of the first-order case, e.g.
normalization in Section 6.6.4. The results on eager variable elimination in Section 6.6.2
are however new and hold only as we work with directed goals.



6.6.1 Restricting Lazy Narrowing at Variable Positions

We show in this section that narrowing at variables X (%) is not needed for R-normalized
substitutions with some HRS R. For patterns reducibility of a term 6 X (7,) implies that
f is not R-normalized by Theorem 4.3.5, hence violating the assumption. We conjecture
that in practice, as in higher-order logic programming [MP92a], most terms are patterns
and hence narrowing at variables is not needed very often.

This results generalizes the first-order case, as for first-order terms narrowing at vari-
able position is not needed. This is the main idea of narrowing with R-normalized
solutions. It is an important optimization, as narrowing at variable positions is highly
unrestricted and thus may create large search spaces.

For this result the restriction to an HRS with pattern left-hand sides and innermost
reductions is necessary. For any solution there exists an innermost reduction, if R is
convergent.

Definition 6.6.1 System LINN is defined as a restriction of system LN where Lazy
Narrowing at Variable is not applied to goals of the form \z,. X () —" .

Completeness follows as for Theorem 6.5.1:

Theorem 6.6.2 If s —' t has solution 0, 0s —— * 0t is an innermost reduction, and 0
is R-normalized for some HRS R, then {s —" t} =4 F such that § is more general,
modulo the newly added variables, than 0 and F is a set of flex-flex goals.

Proof The proof proceeds as in Theorem 6.5.1; in addition we have to show the invariant
that the solutions for all (new) variables are normalized substitutions.

Assume a goal with normalized solution 6. In case of a Projection or Imitation,
the partial binding computed maps a variable X to a higher-order pattern of the form

AT, 0(Hy (7). The new solution constructed (as in the proof of Theorem 4.1.7) maps
the newly introduced variables H,, (%) to subterms of X, which are in R-normal form.
Hence all H,, must be in R-normal form. For the Elimination rule, no new variables are
introduced, thus the solution remains R-normalized.

The critical case is when new variables are introduced in the narrowing rule. The
narrowing rule is not used if there are rewrite steps in s —— 0t at root position. We
consider the first of these, which we assume to be s —— 7.5 —>£_”° AT 1. Hence
sy — t; must be an instance of [ — r, say with substitution ¢, i.e. 6] = s;. As [l is a
pattern, all terms in Zm(é) are subterms of s (modulo renaming, see Theorem 4.3.5).
As the above reduction is innermost, all true subterms of s, must be in E-normal form
(note that s; is not a variable). Hence 6 must be R-normalized as well. Since we assume
that { — r is renamed with new variables, §/ = § U 6 is well defined. Then after applying
the Lazy Narrowing rule, 6" is a solution of the resulting goal system and is furthermore
R-normalized.

Finally, with the invariant that 6’ is R-normalized, it is clear from the completeness
proof of LN that LNN is complete as there can be no rewrite step in the solution # of a
goal \7,. X (¥,,) —" t as X is in R-normal form. O

A few comments are in order:

o A simple consequence of the last result is that System LNN is complete for matching
modulo convergent HRS. Unification can be encoded as shown in Section 6.1.1.



o Observe that the restriction to HRS in the last result is essential. If the left-hand
sides are non-patterns, then solutions to new variables may be reducible in case of
a lazy narrowing step. Assume for instance a is reducible for some GHRS. If an
instance 0f(G(Az.a)) of a left-hand side f(G/(Ax.a)) is R-normalized, then 6 need

not be R-normalized: consider e.g. § — Az.z(a).

e This result implies the following optimization: if a goal A%, .X(7,) —’ t is un-
solvable by pure unification, then we can immediately fail this search path. Since
this is an elimination problem as considered in Section 5.1, this is decidable in the
second-order case.

The results in this section imply that Lazy Narrowing is not applied to goals of the form
AT, X (F,) —" t and their descendants, since such goals are transformed only to goals of
this form. A special case of such goals is considered in the next section.

6.6.2 Deterministic Eager Variable Elimination

Eager variable elimination is a particular strategy of general F-unification systems. The
idea is to apply the Elimination rule as a deterministic operation whenever possible. That
is, when elimination applies to a goal, all other rule applications are not considered.

It is an open problem of general (first-order) F-unification strategies if eager vari-
able elimination is still complete [Sny91]. Interestingly, in [Han94c] the elimination is
purposely avoided in a programming language context as it may copy terms whose eval-
uation can be expensive.

In our case, with oriented goals, we obtain more precise results by differentiating
the orientation of the goal to be eliminated. As we consider oriented equations, we can
distinguish two cases of variable elimination. In one case elimination is deterministic,
i.e. no other rules have to be considered. In other words, eager variable elimination is
complete in this case.

Theorem 6.6.3 System LNN with eager variable elimination on goals X —* t with
X ¢ FY(t) is complete for convergent HRS R

Proof We show that the elimination of X reduces the termination ordering in the proof
of Theorem 6.5.1: as # is R-normalized, there can be no rewrite step in #X —* #t. Thus
0X = 0t follows. Hence for all other goals s —7 s/, s —7 0s’ remains unchanged for
an elimination step at X —’ ¢t. Binding X to t reduces measure B since the number of
bindings decreases. O

In the general case, variable elimination may copy reducible terms with the result that
the reductions have to be performed several times. Notice that this case of variable
elimination does not affect the reductions in the solution considered, as only terms in
normal form are copied: 8¢ must be in normal form.

There are a few important cases when elimination on goals of the form ¢ —7 X is
deterministic:

Theorem 6.6.4 System LNN with eager variable elimination on goals t —* X, where t
is either

o ground and in R-normal form or



e a pattern without defined symbols.

is complete for convergent HRS R

Proof In both cases it is clear that 8¢ is in R-normal form for an R-normalized solution
0. Then elimination of X reduces the termination ordering in the proof of Theorem 6.5.1
as in Theorem 6.6.3. O

As LNN is complete for normalized solutions, the last result yields a refinement for System
LNN. Notice that this refinement only holds with directed goals. In an undirected setting,
reductions in both directions are possible. For instance, with the HRS f(X) — a the
equation P = f(P) can be solved with {P — a}.

6.6.3 Avoiding Reducible Substitutions by Constraints

Although system LNN restricts narrowing at variable positions, system LNN can still
compute reducible substitutions. For instance, assume the rule f(a) — b and the goal
H(a) —" b. Then Narrowing at Variable followed by one imitation step with {H
Ax.f(Hy(x))} creates the two goals

Hi(a) =" a,b—"b.

Performing Imitation on the first goal with {H; — Az.a} yields the solution {H
Ax.f(a)}, which is clearly not normalized.

We can restrict the search for normalized substitutions further by adding constraints
as shown in Figure 6.6. The idea of these constraints is to detect reducible substitutions.
In the following, we show the restrictions needed for adding such constraints in a safe
way.

In the Narrowing at Variable rule, we can avoid a trivial solution {H +— A%,.l} to
the goal A\z,.H(,) —" AT,.l, which leads to a reducible solution. Observe that in the
first-order case this trivial solution is always possible, unlike in the higher-order case.

Similarly, we can add a constraint in the Imitation rule, if some variable X is partially
instantiated by a term f(X,). Then for all computed substitutions # the term 0f(X,)
must not be reducible. We denote these constraints by Irr(%,), with the intended meaning
that ¢, are not R-reducible.

The important invariant to preserve is that the terms in the constraints are patterns.
In essence, the constraints only hold approximations for some variable of the solution to
be computed. If the terms are non-patterns, reducibility of a term ¢ in a constraint [rr(t)
does not imply that the solution considered, i.e. 8¢, is reducible. For patterns, however,
Lemma 4.3.5 shows that 8¢ is reducible, if ¢ is.

Definition 6.6.5 We define System LNC by replacing the appropriate rules of System
LN with the rules in Figure 6.6.

Recall that the Elimination rule is not necessary for completeness of both PT and LN.
Thus it is possible to restrict the Elimination rule to patterns in LNC without losing
completeness. System LNC can be viewed as a refinement of System LNN with some
additional constraints. If some constraint is added, it is clear that the term must not be R-
reducible. Furthermore, with the restriction of the elimination rule to patterns it follows,



Elimination

(FS1Us = {Imr(0F)}U0S
if F'¢ FY(t)and t is a pattern
where 0 = {F' — t}

Imitation with Constraints

(\TF(T) & X f(T) U S =0 (N, (01,) < \T.0t;,) }U
{Irr(0F)} UOS
where 0 = {F' — \z,.f(H,. (%))}

and H,, are new variables
Lazy Narrowing with Constraints
Dzp.s =" ATt} U S = {Daps =3 Az U {zp.r —7 Azt U

{Irr(FV()}US

where [ — r is an 7;-lifted rule

Constraint-Failure

{Irr(t,)} US = fail if some {; is R-reducible

Figure 6.6: System LNC for Lazy Narrowing with Constraints




as for Theorem 4.1.5, that all computed substitutions are patterns. Thus completeness
of LNC for normalized solutions follows easily. We will see later that this restriction for
the Elimination rule is fulfilled for a special strategy we examine in Section 6.7.2.

It may seem that checking the reducibility constraints is costly, but with normalized
substitutions many redundant narrowing attempts can be avoided early. This has been
shown in the context of LSE narrowing [BKW93], where also many reducibility conditions
have to be checked.

Notice that System LNC may introduce redundant constraints that lead to redundant
checks, e.g. if Irr(t) is added and ¢ is a subterm of an existing constraint. All in all, the
idea of this section is to show when it is possible to add irreducibility constraints. In
applications it may be interesting to add constraints only selectively, as reducibility checks
can be costly.

6.6.4 Lazy Narrowing with Simplification

Simplification by normalization of goals is one of the earliest [Fay79] and one of the
most important optimizations. Its motivation is to prefer deterministic reduction over
search within narrowing. Notice that normalization coincides with deterministic evalua-
tion in functional languages. For first-order systems, functional-logic programming with
normalization has shown to be a more efficient control regime than pure logic program-
ming [Fri8h, Han92].

The main problem of normalization is that completeness of narrowing may be lost.
For first-order (plain) narrowing, there exist several works dealing with completeness of
normalization in combination with other strategies (for an overview see [Han94b]). Recall
from Section 6.5.1 that deterministic operations are possible as soon as the left-hand side
of a goal has been simplified to a term with a constructor at its root. For instance, with
the rule f(1) — 1, we can simplify a goal f(1) =" g(Y) by

{f(1) =7 g(Y),...} =A{1 =7 g(Y),...}

and deterministically detect a failure.

In the following, we show completeness of simplification for lazy narrowing under some
restrictions on the HRS employed. The result is similar to the corresponding result for the
first-order case [Han94c]. The technical treatment here is more involved in many respects
due to the higher-order case. Using oriented goals, however, simplifies the completeness
proof.

For oriented goals, normalization is only complete for goals s —’ ¢, where ¢ is in
R-normal form for a solution §. For instance, it suffices if ¢ is a ground term in R-normal
form. This is in general no restriction as discussed in Section 6.1.1 and corresponds to
the intuitive understanding of directed goals.

Definition 6.6.6 A simplification step on a goal s —7 ¢ is a rewrite step on s, written
as {s ="t} =yv {s’ =" t} if s —T s'. Normalizing Lazy Narrowing (NLN), is
defined as the rules of LN plus arbitrary simplification on goals.

Observe that simplification is not desirable and hence not permitted at marked goals.
Furthermore, simplifying the right-hand sides is not desirable. It may produce solutions



repeatedly. For the Constructor Clash rule (see Section 6.5.1) a constructor at the left
suffices; normalizing the right-hand side may even evade this search space pruning.

We first need an auxiliary construct for the termination ordering in the completeness
result. The decomposition function D on goals is defined as

D(s—>?t) — 51
DOTLf(5) =5 AT f (1)) = ATr.s, — ATg.t,,

and 1s undefined otherwise. The function D extends component-wise to sets of goals.
The idea of D is to view marked goals as goals with delayed decomposition. Thus D
maps goals to their intended interpretation.

Theorem 6.6.7 (Completeness of NLN) Assume a confluent HRS R that terminates
with order <®. If s =7 t has solution 0, i.e. s —— T 0t where 0t and 0 are R-normalized,
then {s =" t} =4,x I such that § is more general modulo the newly added variables
than 6 and F is a set of flex-flex goals.

Proof Let <® = < U <,,;. Assume G, = s, _>Zd) t, is a system of goals with solution

sub
0,ie. 0s, —E0t, Let s —'t = D(G,). The proof proceeds by induction on the
following lexicographic termination order on (G, 0):

o A: <B, extended to the multiset of {fs’ },
e B: multiset of sizes of the bindings in 8,

o (: multiset of sizes of the goals 0G,,

e D: <® extended to the multiset of {5,}.

By Theorem 4.3.10, item A is terminating. For the proof we need the invariant that all #/
are R-normalized terms. As in Theorem 6.5.1, the following invariant holds for marked
goals: if s —5 ¢, then Head(0s) = Head(0t) is not a free variable and furthermore, no
rewrite step at root position occurs in s — % 0¢.

In the following we show that normalization reduces this ordering and, furthermore,
that for a non flex-flex goal some rule applies that reduces the ordering. In addition, we
show in each of these cases that the above invariants are preserved. First, we select some
non flex-flex goal s —" ¢ from (. If none exists, the case is trivial.

We first consider the case where a simplification step is applied to an unmarked goal,
i.e. s =7 tis transformed to s’ — t. We obtain #s — s’ from Lemma 4.3.4. As 0t is in
R-normal form, confluence of R yields s — s’ — 0t. Thus 0 is a solution of s’ — t.
For termination, we have two cases:

o If s = 0s’', measures A through C remain unchanged, whereas D decreases.
o If 05 £ 0s’ measure A decreases.

Clearly, the invariants are preserved.

If no simplification is applied, we distinguish two cases: if #s = 08¢, then we proceed
as in pure unification. Similar to Theorem 4.1.7, one of the rules of higher-order unifi-
cation applies. In case of the Deletion rule, measure A decreases. For Decomposition on
marked goals, A and B remain unchanged, whereas C' decreases. On unmarked goals,



Decomposition reduces A. Imitation on marked goals does not change A, but reduces B;
on unmarked goals, it reduces A. Projection only decreases B.

As in Theorem 6.6.2, normalization of the associated solution is preserved. Further-
more, the terms 8¢/ do not change under Decomposition and Imitation on marked goals.
On unmarked goals, Decomposition and Imitation yield new right-hand sides. These are
subterms of #¢ and are thus R-normalized.

In the remaining case, there must be a rewrite step in #s —— 0t. In the first case,
assume there is no rewrite step at the root position in s — 6t. Hence all terms in this
sequence have the same root symbol. Then, similar to the last case, one of the unification
rules must apply.

Now consider the case with rewrite steps in s —— 6t at root position. Clearly,
s —7 ¢ cannot be marked. Assume the first of these to be s —— ATg.s; — =" .11,
with the rule [ — r. Notice that s; — #; must be an instance of [ — r. Then we apply
Lazy Narrowing, yielding the subgoals:

s — 5 ATEL AT — T t

As there exists ¢ such that s; = ¢/ and ¢; = ér, we can extend f to the newly added
variables: define #/ = 0US§. Let s, —' [, = D(0's =5 A\g.0'1). Clearly, s; <%, 0's holds,

and 0" \zp.r <2, 0's follows from 6's = 0')\yi.r. Thus ¢ is a solution of s,, —° [, and
Mgr.r —7 t, that coincides with § on FV((G,). It remains to show that #’ is in R-normal
form. Similar to Theorem 6.6.2, we assume that the reduction is innermost and thus 61,

are in R-normal form. As [ is a pattern, this yields that 6" is R-normalized. O

The termination ordering in this proof is rather complex. For instance, the last item in
the ordering is needed in the following example: assume a goal Az.c(F(z,t)) =7 Az.c(x)
with solution § = {F +— Az, y.z}. Here, normalization of ¢ does not change the term
OAx.c(F(x,t)) and thus does not contribute to the solution.

It should be mentioned that the results for deterministic eager variable elimination in
Section 6.6.2 can easily be extended to this slightly different completeness proof: measure
A is reduced as one goal is removed and the remaining fs, do not change.

6.7 Lazy Narrowing for Left-Linear HRS

This section examines refinements possible for left-linear rewrite rules. This is an impor-
tant class of rewrite rules, as left-linearity is common in functional(-logic) programming
languages. The main contribution is a restricted class of goals that suffices for lazy nar-
rowing with left-linear HRS. This class facilitates several optimizations not possible for

general HRS.

6.7.1 An Invariant for Goal Systems: Simple Systems

In this section we introduce a particular class of goal systems, Simple Systems, with
several interesting properties. For instance, the occurs check is not needed and it is easy
to check if the system is solved. We show that this class is closed under the rules of LN
for left-linear R. Furthermore, in the second-order case, the syntactic solvability (wrt.
the conversions of A-calculus) is decidable for systems of this class.



The invariant of Simple Systems allows for further optimizations, e.g. a closer analysis
of the variables involved and eager variable elimination (Section 6.7.2).

The properties are not specific to the higher-order case and apply to fist-order systems
as well. This holds particularly for results on solvability checks in the next section, which
can be expensive in an actual implementation.

To introduce Simple Systems, we first define an ordering on goals:

Definition 6.7.1 We write s =7 s’ < t =" ¢/, if FV(s') N FV(t) # {}.

This ordering links goals by the variables occurring: e.g. t —" f(X) < X =" s. If
G; < Gj we say there is a connection between these two goals. If two goals have no
connection, then they are called parallel.

The following properties are essential for Simple Systems.

Definition 6.7.2 A system of goals G, = s, — t, is called cycle free if the transitive
closure of < is a strict partial ordering on (7, and right isolated if every variable occurs
at most once on the right-hand sides of G,.

Now we are ready to define Simple Systems:
Definition 6.7.3 A system of goals G, = s, —' ¢, is a Simple System, if
e all right-hand sides 7, are patterns,

o (7, is cycle free, and

o (i, is right isolated.

For instance, to solve a matching problem s —’ ¢ we may wlog. assume that ¢ is ground,
thus the system is simple.

No corresponding refinement for the first-order case is known to our knowledge. For
first-order lazy narrowing in [DMS92]' right isolation is used. But the invariant there
is not completely formalized and serves only a very special purpose. Simple Systems
generalize this informal invariant in [DMS92] in several respects. Another fragment of
Simple Systems, i.e. the ordering on goals, is used in [CF91] to locate simplification steps
after instantiation of variables.

The following properties of variables in Simple Systems follow easily from the defini-
tion:

Lemma 6.7.4 Assume a Simple System G, and a goal G; = (s —" t). Then
e FV(s)NFV(t)={}.
o If X € FV(s) and G; is minimal wrt. <%, then X occurs on no right-hand side.

o If X € FV(t) and G; is mazimal wrt. <F, then X occurs nowhere else.

Solving a single goal [ —" r of a Simple System by pure unification is decidable in the
second-order case by Theorem 5.2.1, since r is a linear pattern and [ and r share no
variables. We extend this to goal systems in Section 6.7.1. Notice that in a Simple
System, no occurs check is needed, e.g. P —’ ¢(P) cannot occur. This extends to the
full system of goals since no cycles are allowed. For instance, a “hidden” occurs check,

as in {P =7 ¢(Q), Q —" P}, is impossible.

Tn the proof of Theorem 2.1, the case with left-linear rules.



Simple Systems and Lazy Narrowing

The next theorem shows that Simple Systems are closed under the rules of LN for a left-
linear HRS. For the Decomposition rule and the two narrowing rules, the proof follows
easily from the form of the goals in Simple Systems and from the restriction on the rules.
The imitation and projection bindings introduce new variables, but do not create cycles.
The Elimination rule requires a case distinction. For instance, when eliminating a goal
of the form ¢t —* P, the variable P does not occur in any other goal on the right-hand
side. Notice that the restriction to patterns on the right-hand side fits nicely with the
results in Section 6.5.1: if the left side of a goal has a constructor outside, a deterministic
operation applies.

The restriction to left-linear rules is rather standard in functional-logic programming.
Similarly, the core of common functional languages such as SML or Haskell consists of left-
linear rewrite rules. With directed goals, left-linearity draws a line between matching, as
done here, and unification: for equational unification, a non-linear rule X = X — true
must be added. For programming applications full unification is usually not needed.
Furthermore, we will see that left-linear rules permit several optimizations.

Theorem 6.7.5 Assume a left-linear HRS R. If G, is a Simple System, then applying
LN with R preserves this property.

Proof We have the following cases if a goal G is transformed:
o Deletion: trivial.

e Decomposition: assume a goal G; = f(%,) —' f(#) is decomposed to G/ =
t, —'t!. Then there can be no connection between some goals in (. Each of
these new goals has at most the connections of (v; and no others. Hence the system
remains simple.

e Elimination: we have two cases, depending on the form of G;:

— Assume (; = X —7 ¢ and let {X/} = FV(t). There can be at most one
goal (G; with X on the right-hand side. When substituting X in G;, only new
connections to G; are created that are already in <*. Substituting ¢ for X on
some left-hand side does not introduce new connections as the variables X/
may not occur on the right-hand side of some other goal. As t is a pattern
the right sides remain patterns and thus the system remains simple.

— If G; =t =" X, then X may occur only on the left-hand side of some goals.
Assume some G; = C'(X) — u with (; < G;. We show that no new
connections are added. For all Gy with G}, < 0G;, where § = {X — t}, we
have G, <t G; < G; as X may not occur in Gy on the right. Hence <
remains unchanged, as this argument holds for all such goals Gj.

e Imitation: an imitation binding of the form {X — A7.f( X, (7))} clearly does not
change the < -ordering and furthermore the right-hand sides remain linear patterns.
The remainder of this case follows as in the Decomposition case.

e Projection: as in the Imitation case, with the only difference that Projection may
eliminate variables, thus removing connections.



o Lazy Narrowing: for replacing a goal G; = s —° t by the goals s —% A\z;.[ and
ATp.r —' t we assume that the variables in AZ;.l are new. Thus the right-hand
sides remain patterns with right isolated variables. Then G; < s —" Ag.l, iff
G; < G; and symmetrically for AZ;.r —° ¢. Thus no new connections are added
and the system is simple.

a

For an implementation it is desirable that the goals are kept in an order compatible
with <. Assume in an implementation goals are kept in a list L which is in an order
compatible with some ordering <. A transformation 7" on L preserves the ordering
<, if applying T yields a list in an order compatible to <. The following property is easy
to see:

Theorem 6.7.6 System LN applied to a list of goals preserves the <-ordering for left-
linear HRS.

Proof by an analysis similar to the last proof. a

Solving Simple Systems

In the following, we show that solving second-order Simple Systems by unification is
decidable. Furthermore, a particular solved form, which is equivalent to dag-solved form,
is easy to detect in Simple Systems.

The following result implies that divergence in Simple Systems only stems from the
lazy narrowing rules, as in the first-order case. This is important for practical applica-
tions. For instance, it is possible to determine if a Simple System has a syntactic solution
before attempting a narrowing step.

For the next result we have to consider weakly second-order terms for the following
reason: if a goal contains a second-order bound variable, lifting may yield a weakly
second-order term.

Theorem 6.7.7 Solving a weakly second-order Simple System G, by unification is de-
cidable and yields only a finite number of solutions.

Proof We iteratively solve maximal (wrt. <*) goals with LN. That is, if s —7 ¢ is
a maximal goal, then ¢ is a linear pattern and the free variables in ¢ may not occur
elsewhere. Then solving this goal with PT (LN without the narrowing rules) terminates
by Theorem 5.2.1 with a set of flex-flex pairs, all of which are of the form

Mo H (1) =7 AT G(T7),

where (& does not occur elsewhere. Such pairs can be finitely solved by Theorem 5.2.2.
It remains to be seen that this solution preserves the property that the remaining system
is simple: all solutions for I/ € FV(Az;.H({,)) are of the form {F — A7 . F'(Z})}, where
{7z} C {7} and F’ is a new variable of appropriate type. Hence, when applying this
solution to the remaining equations, the system remains simple, as ' does not occur
elsewhere. O

Simple Systems have the advantage that it is easy to see if a system is in solved form, as
we show next. In practice this means that checking whether the system is solved is less
expensive. Furthermore, the occurs check is unnecessary as already pointed out.



Definition 6.7.8 A Simple System S is simplified if
S - {Xl <1> tl,...,Xn ; tn}
and all X, are distinct.

Theorem 6.7.9 Simplified systems are solvable.
Proof by induction on the number of goals. The base case is trivial. For the induction

step, assume a maximal goal from a simplified system G, say G, = X, & ot,. Let

0 ={X — t,}. We show that §G,_; is simplified. There are two cases when applying
the Elimination rule to G, depending on the form of G,.

o If G, =t, =" X, then 0G’_, = G’ _, as X is isolated and does not occur in G’ _,.

e In the other case, assume G, = X, —7 t,. Then G’ _| = X,,_4 & 0t,_1 as all X,
are distinct. Thus the system 6G7 _; is simplified.

Notice that the Elimination rule applies as X, ¢ FV(t,). O

A simple corollary is the following.
Corollary 6.7.10 A Simple System of the form {t, —" X, } is solvable.

It is interesting to compare simplified systems to another well-known solved form: dag-
solved form. This form is often used in the first-order case [JK91], but applies to our
case as well.

Definition 6.7.11 A system of equations X, =7 ¢, is in dag-solved form if for all
i <j, X; 7£ X]‘ and X; Qé FV(t])

A system of equations in dag-solved form can be described as

X1 :? Cl(XQ,...,Xn)

X, =" G,

where all X, are distinct and FV(C,) N {X,} = {}.

Although simplified systems look very much like systems in dag-solved form, the < -
ordering does not correspond to the ordering needed for dag-solved form. Let us show
this by an example: the simplified system

< X = [(2)

L S S Sl

is equivalent to the system (with un-oriented equations)
H=' g(Xv Y)v Y :?f(X)vX :?f(Z)

This is the only ordering of the above goals to yield a system in dag-solved form. For
this reason the following proof is tricky.



Theorem 6.7.12 A system is simplified if and only if it is in dag-solved form (modulo
orientation).

Proof Clearly, orienting a system X, =7 ¢, in dag-solved form to ¢, —7 X, yields a
simplified system.

The other direction follows by induction on the number of goals. The base case is
trivial. For the induction step, assume a maximal goal from a simplified system G, say
G, = X, & t,. Then by induction hypothesis G,_; can be reordered (and reoriented)
to dag-solved form, yielding G!_, = X/_; ="t/ _;. Then we again have two cases when

applying Elimination to ¢, depending of the form of G,,.

o If G, =t, =" X, then X, does not occur in G’_, as in Theorem 6.7.9. Thus
X, ="t,,G"_, is in dag-solved form.

e In the other case, G, = X, =" t,. Then G'_,, X, =’ ¢, is in dag-solved form, as
all variables in FV(t,) are isolated and cannot occur in G _;.

6.7.2 A Strategy for Needed Narrowing

In this section we develop a new narrowing strategy for Simple Systems, assuming R-
normalized solutions, which we call needed lazy narrowing. In essence, we show that
certain goals can safely be delayed, which means that computations are only performed
when needed.

For this purpose, we first classify the variables occurring in Simple Systems in the
next section. Then we show in Section 6.6.2 that the results on eager variable elimination
from Section 6.6.2 can be extended in case of Simple Systems. This will reveal that in
Simple Systems, one case of variable elimination is not desirable, the other deterministic
and always possible.

Variables of Interest

In the following, we classify variables in Simple Systems into variables of interest and
intermediate variables. We consider initial goals of the form s —’ ¢, and assume that
only the values for the free variables in s are of interest, neither the variables in ¢ nor
intermediate variables computed by LN. For instance, assume the rule f(a, X) — ¢(b, X)
and the goal f(Y,a) —" g(b, a), which is transformed to

Y =" a,a =" X,9(b,X) =" g(b,a)

by Lazy Narrowing. Clearly, only the value of Y is of interest for solving the initial goal,
but not the value of X.

This view is sufficient for solving matching problems, where the right side is ground.
A simple example is encoding logic programs with predicates and to start with queries of
the form p(...) =" true. Alternatively, one may consider goals with free variables in the
right-hand side that are considered as place holders for some value to be computed. For
instance, if a function evaluates to pairs, we may only be interested in one component.
Thus, for instance, the oriented query s —7 pair(0, X) may suffice.



The main result in this section is that Simple Systems allow us to identify variables of
interest very easily. Furthermore, we will see how this distinction nicely integrates with
our approach to eager variable elimination.

The interesting invariant we will show is that variables of interest only occur on the
left, but never on the right-hand side of a goal. We first need to define the notion of
variables of interest. Consider an execution of LN. We start with a goal s —" ¢ where
initially the variables of interest are in s. This has to be updated for each LN step. If
X is a variable of interest, and an LN step computes 6, then the free variables in 6 X are
new variables of interest. With this idea in mind we define the following:

Definition 6.7.13 Assume a sequence of transformations {s —" ¢t} =4 {s, =" £,}. A
variable X is called a variable of interest if X € FV(és) and intermediate otherwise.

Now we can show the following result:

Theorem 6.7.14 Assume a left-linear HRS R, a Simple System G, = {s, —" t,} and a
set of variables V with VNFV(E,) = {}. If G, =5y {s/, =7t }, then (V —Im(8))U
Rng(8)) N FV(L,) = {}.
Proof For all rules of LN, except the Elimination rule, the claim is trivial. For the
Elimination, consider first a goal of the form + —" X. In this case X ¢ V and X may
not occur on any other right-hand side. Hence variables from V' in ¢ are only copied to
some other left-hand side.

After the elimination of a goal X —’ t with X € V. the right isolated free variables
in ¢ are in Rng(§), but do not occur in FY(t!). It X ¢ V, nothing remains to show as
Fv)ynv={} 0

Then the desired result follows easily:

Corollary 6.7.15 (Variables of Interest) Assume a left-linear HRS R and assume
solving a Simple System s —7 t with system LN. Then variables of interest only occur on
the left, but never on the right-hand side of a goal.

Notice that variables from the right may be shifted by the Elimination rule to some
left-hand side.

The Two Cases of Variable Elimination

As we consider oriented equations, we can distinguish two cases of variable elimination
and we will handle variable elimination appropriately in each case. In the first case,

X =7t

the variable X can be a variable of interest. Thus the elimination of X is desirable
for computational reasons and is deterministic for normalized solutions, as shown in
Section 6.6.2. Notice that elimination is always possible on such goals in Simple Systems,
as X ¢ FV(t). In the context of Simple Systems we can refine the result for eager
variable elimination in Section 6.6.2 by an additional failure case. Assume a goal X —7 ¢
of a Simple System with an R-normalized solution §. We have two cases:

e If t is in R-normal form, then elimination is deterministic by Theorem 6.6.3.



o If ¢ is R-reducible, then the goal is unsolvable. As ¢ is a pattern and the solu-
tion for X, i.e. #X, is R-normalized, #X = 6t must hold. This is impossible, as
Theorem 4.3.5 entails that 8¢ is reducible.

This observation shows the intuitive reason why Elimination is deterministic: in this case
Elimination does not copy terms to be evaluated, ¢ must be in normal form. In the other
case of variable elimination, i.e.

t—=" X,

elimination may not be deterministic and is not desirable, as we argue below.

Needed Lazy Narrowing

The results on intermediate variables and eager variable elimination in mind, we develop
a new narrowing strategy. The idea is to delay goals of the form ¢ —" X. This simple
strategy has some interesting properties, which we will examine in the following.

We first view this idea in the context of a programming language. Let us for instance
model the evaluation (or normalization) f(#, &2)|p = t by Lazy Narrowing, assuming the

rule f(X,Y) — g(X, X):
{f(t, t2) —’ ty=v {t -’ Xt —’ Y, g(X,X) — t}

Now with the optimizations considered so far, variable elimination and normalization, we
can model the following evaluation strategies.

Eager evaluation is obtained by performing normalization on the goals #; and t,, fol-
lowed by eager variable elimination on t|p —° X and #,]p —° Y. The disadvan-
tage is that eager evaluation may perform unnecessary evaluation steps.

Lazy evaluation is obtained by immediate eager variable elimination on ¢, —* X and
on t, —° Y. It has the disadvantage that terms are copied, e.g. #; here as X occurs
twice in g(X, X'). Thus expensive evaluation may have to be done repeatedly.

Needed (lazy) evaluation is an evaluation strategy that can be obtained by delaying
the goals t{ —° X and t, —" Y, thus avoiding copying. Then #; and ¢, are only
evaluated when X or Y are needed for further computation.

Needed lazy evaluation models equationally lazy evaluation with sharing copies of iden-
tical subterms [BvEGT87], i.e. the delayed equations may be viewed as shared subterms.
It should be noted that the strategy may not be optimal as defined in [HL91], neither
concerning the number of R-reductions nor S-reductions. The notion of need considered
here is similar to the notion of call-by-need in [WadT71].

Let us now come back from evaluation to the context of narrowing. Consider for
instance the Lazy Narrowing step with the above rule

{f(ti, ) = gla, 2)} =pv {t =" X o =7 YV, g(X, X) =7 g(a, 7))}

In contrast to evaluation as in functional languages, solving the goals t; —7 X, #, =" Y
may have many solutions. Whereas in functional languages, eager evaluation can be more
efficient, this is unclear for solving equations or functional-logic programming. Thus we
propose the following approach:



Definition 6.7.16 Needed Lazy Narrowing is defined as Lazy Narrowing where goals
of the form ¢t —" X are delayed, if no deterministic operation, i.e. Constructor Imitation
(Section 6.5.1) or Elimination (Theorem 6.6.4), applies.

For instance, in the above example, decomposition on g(X, X) —7 g(a,7) yields the
goals X —7 a, X —" Z. Then deterministic elimination on X —7 a instantiates X, thus
the goal ¢, —7 @ has to be solved, i.e. a valued for #, is needed. In contrast, t, —* Y is
delayed.

This new notion of narrowing for Simple Systems and left-linear HRS is supported by
the following arguments: Needed Lazy Narrowing

is complete, or safe, in the sense that when only goals of the form ¢, —7 X, remain,
they are solvable by Theorem 6.7.10. Since the strategy is to delay such goals, this
result is essential.

delays intermediate variables only. As shown in the last section, we can identify the
variables to be delayed: a variable X in a goal t+ —° X cannot be a variable of
interest.

avoids copying, as shown above, variable elimination on intermediate variables possibly
copies unevaluated terms and duplicates work. Thus intermediate goals of the form
t =" X are only considered if X is instantiated, i.e. if a value is needed.

Sharing, as modeled equationally in the Needed Lazy Narrowing strategy, is often consid-
ered on an implementational level. In contrast, we have a more abstract view of sharing,
which may lead to the same implementation: since each variable occurs only once on the
right, it is sensible to view the delayed goals as a context of delayed terms. In an imple-
mentation, an intermediate variable can be associated with a pointer to the corresponding
delayed goal. If the variable occurs repeatedly, this corresponds to sharing.

The notion of safe delaying stated above can be illustrated by an example. In practice,
not only completeness but also (early) detection of failure is important. For instance,
assume two goals

a—"X,b—-"X,

where @ and b are in normal form. Then with delaying both goals, the apparent un-
solvability will never be detected. This will not occur with the above strategy in Simple
Systems, as these are right isolated. Hence a variable X in a delayed goal ¢t —* X may
occur on some left-hand side, but not on two right sides.

Next we examine a problem that occurs in the higher-order case when Needed Lazy
Narrowing is employed. Two kinds of equations are delayed:

o (A) flex-flex goals of the form \zp. X (%,) —" A7 Y (¥m)

e (B) goals of the form ¢t —* X

A system of such goals can be unsolvable in general. Consider for instance
M. Y(z) =7 AP,
\e.f(z) =7 Y

which is unsolvable. Thus the delayed goals have to be solved by narrowing. We conjec-
ture that such cases are rare. Furthermore, in many cases such goals are solvable:



Proposition 6.7.17 Assume a second-order Simple System consisting of a set of flex-
flex goals G, and a set of goals t, —* X,. Such a system is solvable if the following
condition holds for all i and j: t; —* X; < G; implies that X; is first-order.

Proof The strategy of the proof is to eliminate goals from ¢, —* X, until only flex-flex
goals remain. We show that each such Elimination transforms the goals into another set
of goals of the above form. It clearly terminates, as the number of goals reduces.

For an elimination of ¢; —7 X, the variable X; cannot occur on some other right-hand
side. We consider two cases. If there is no G; with ¢ =7 X, < G, then X; does not
occur in some flex-flex goal and thus G, does not change.

Otherwise, if

i =" X; < Gy = 2w X(7) = A Y (7)),

then there are again two cases: if X; # X, then () remains flex-flex, and the case
is trivial. In the remaining case, we have X; = X and n = 0 as X and ¢; are first-
order by assumption. Binding X to t; yields A\75.t; — AT Y(Zn). As t is first-order,
Theorem 5.1.4 for System EL applies, yielding the solution { Y +— Az, .t}. For simplicity,
we only apply § = {Y — AZ,. Y’} for a new variable Y’, which yields an equation where
Elimination applies. Thus 6G; is not flex-flex, but of the form of the ¢, —* X, goals.
Furthermore, the other flex-flex goals remain flex-flex when applying . As this holds for
all G;, we obtain a smaller set of goals where the induction hypothesis applies. a

6.8 Lazy Narrowing with Conditional Equations

Adding conditions to equations is very common for rewrite systems. Although, at least
in the first-order case, this may not increase the expressive power [BT87], conditions are
often convenient. For instance, consider the rules

fib(X) — fib(X = 1)+ fib(X —2) =X >1
fib(X) — 1 =X<1

In the following section, we develop a general notion of conditional narrowing with un-
restricted conditions. Much research has been dedicated to narrowing with conditional
equations. This has led to an abundance of different classes of conditional term rewrite
systems and many different results. There exist various restrictions on the variables oc-
curring in the conditions, for instance in [MH94] a hierarchy of four classes of conditional
rules can be found. Combining these with the known strategies for (plain) narrowing led
to an abundance of results in the first-order case, see for instance [MH94].

One of the problems with conditional rewriting is that termination of the associated
rewrite relation does not imply the termination of conditional rewriting: rewriting the
conditions proceeds recursively and may diverge without any actual reduction performed
on the main goal. Thus most termination criteria for first-order conditional term rewrit-
ing need additional restrictions that assure that the reductions in the conditions are
decreasing some termination ordering. For termination criteria that include conditional
higher-order rewrite systems see for instance [LLS93]. Another problem, addressed below,
is that solving the conditions may require reducible substitutions, which renders many
first-order strategies with plain narrowing incomplete.

We will discuss in Section 6.8.2 that in our functional approach many of these problems
can be avoided due to the higher-order setting.



6.8.1 Unrestricted Conditional Equations

In the following we introduce an unrestricted notion of conditional rules. For instance,
the conditions may have variables not occurring in the rule itself. These are called extra
variables. We will see in Section 7.4 that conditions with extra variables are useful for
some examples.

Definition 6.8.1 A higher-order conditional rule is of the form | — r < [, — r,,
where [ is a higher-order pattern of base type and not n-equivalent to a free variable. A

conditional HRS is a set of such rules and is abbreviated by CHRS.

In the literature, there exist different notions of conditional rewriting. They differ in the
way the equations are to be solved. Either requiring [, — r,, which is called normal
equality [DO90] or [, | r,, called join equality. In the latter the logical equality induced
by R is considered. The former is more tailored for programming languages, where
evaluation is of interest, and usually the right-hand sides of the conditions are assumed
to be ground R-normal forms, which we consider in the following section.

Definition 6.8.2 Assuming a rule (I — r < [, — r,) € R and a position p in a term s
in long #n-normal form, a conditional rewrite step from s to ¢ is defined recursively
as

l—>7°<:ln—>7°nt P ;—ért A an * Rgrn

—
3 p.0

Lifting rewrite rules over a set of variables extends to conditional rules by applying the
lifter as well to the conditions.

Lazy Narrowing with Conditions

ATr.s = AT U S = {A\Trs =5 AT, ATl =7 A3g.r!,
d n n
A\Tp.r — ATty U S
where [ - r = 1! — 1/

is an 7-lifted rule

Figure 6.7: System CLN for Conditional Lazy Narrowing

Definition 6.8.3 We define Conditional Lazy Narrowing (CLN) as the unification
rules of system LN plus the Lazy Narrowing with Conditions rule in Figure 6.7.

Define the length of a conditional reduction as

l—r<l,—ry,

len(s; —, sg — 5,) =1+ len(s; —— 5,) + Xz, alen(cli — ar;)

if n>1and len(s;) =0if n = 1.

This notion of the length of a reduction reflects the problem with termination of con-
ditional rewriting, since the rewrite steps for the conditions are included. As mentioned
above, a conditional rewrite relation may itself terminate, but there may be reductions
with infinite length.



Theorem 6.8.4 (Completeness of CLN) Assume a CHRS R. If s —" t has solution
0,i.e 0s —=F0t then {s ="t} =%,y F such that § is more general modulo the newly
added variables than 0 and F is a set of flex-flex goals.

Proof We only add a few changes and generalizations to the proof of System LN. We
assume the setup and invariants of Theorem 6.5.1.

We use induction on the following termination ordering for a system of goals G, =
s, — t, with solution 8.

o A: The sum of the lengths of the conditional R-reductions in all goals 0G,.

e B: Multiset of the sizes of the bindings in 6.

o C: Multiset of the sizes of the goals (.

Only the lazy narrowing step differs from System LN: consider the first rewrite step at
root position, which is assumed to be s —— A\T.s; —>£_”°<:lé_”°é AT;. 4. Hence 51 — 4

must be an instance of [ — r < I! — 1/ such that the conditions are solvable. Therefore,
there exists a substitution 6 with 6/ = s and ér = #; such that 6!/ — 61/. Let m be
the number of (conditional) reductions in 6I/ — ér!. Thus the size of this conditional
rewrite step is m+1. Hence applying Lazy Narrowing with Constraints reduces A, as one
conditional reduction of size m + 1 is replaced by new goals with conditional reductions
of a total size m. As in Theorem 6.5.1, § U ¢ is a solution to the newly added goals. O

It may seem tempting to examine conditional narrowing with normalized substitutions
as in Section 6.6.1, but it is difficult to show that the solutions for the extra variables
in the conditions are normalized. In the first-order case, this is a known problem as
mentioned in the beginning of this section (see for instance [Han94b]). We therefore
discuss conditional narrowing for a restricted class of rules in the following section, where
the optimizations for unconditional rules of Section 6.5 can be adapted.

6.8.2 Normal Conditional Rules

In this section, we discuss narrowing for a restricted class of conditional rewrite rules,
which we argue to be sufficient for programming purposes. We examine how these restric-
tions can be utilized for the optimizations developed for unconditional lazy narrowing.
The restrictions will allow to use Simple Systems with conditional rules. Our restrictions
and invariants are stronger than the ones currently used in some first-order functional-
logic languages. This is possible as some operational constructs, which we disallow, are
often simpler expressed directly in a higher-order framework (see also Section 2.6).

Definition 6.8.5 A normal conditional HRS (NCHRS) R is a set of conditional
rewrite rules of the form [ — r < [, — r,, where [ — r is a rewrite rule and 7, are
ground R-normal forms.

Note that there is no difference between normal equality and joinability in our case as
the right-hand sides of the rules are in ground R-normal form. Thus oriented goals suffice
for proving the conditions as 61, > ROr, is equivalent with 01, —F r,.

The definition of NCHRS may seem too restrictive, as no variables are allowed in
the right sides of the conditions. As already discussed in Section 2.6, this is not needed



for higher-order programming languages. We permit extra variables on the left sides of
conditions, as these are needed to embed logic programs (for an example see Section 2.6).
Extra variables on the right are often used to model local variables, which can be done
here by “where” or “let” constructs of functional programming languages. These can
easily be described by higher-order rules, such as

let X in T'— T(X).
For instance, when writing a quick-sort program, the main rule will be of the form
¢5(O0<,S) — merge(qs(O<, 51), ¢s(O<, S2)) <= split(O<, S) — (51, 52),

where the S; represent lists and (51, .52) is a pair of lists. This is already not a first-order
rule, as the ordering used for sorting is given as a parameter, here written as O<. In our
framework, we can write this as in a functional language:

¢5(0<,S) — let pair(si,s;) = split(O<,S)
in Asy, so.merge(qs(O<, s1), ¢s(O<, 52)

assuming a let rule for pairs, as shown in Section 7.3.

We believe that g-reduction is more appropriate than the instantiation of extra vari-
ables in the conditions. For instance, with depth-first search, as e.g. in Prolog, instanti-
ations are recorded for possible backtracking. In contrast, f-reduction is a deterministic
operation.

First we show that Simple Systems are invariant under the rules of CLN for a left-

linear NCHRS R.

Theorem 6.8.6 Assume a left-linear NCHRS R. If GG is a Simple System then applying
CLN with R preserves this property.

Proof Building upon Theorem 6.7.5, we only consider the case of Conditional Lazy
Narrowing. In this case, the right-hand sides of the conditions are ground terms and the
new variables in the left sides of the conditions occur only on the left. Thus the system
remains simple. a

Similarly we get the following result as in Section 6.7.1:

Theorem 6.8.7 System CLN with a left-linear NCHRS applied to goals in a list pre-
serves the <-ordering.

Normalized Solutions and Variable Elimination

As we disallow variables on the right in conditions, it is easy to extend the results for
narrowing with normalized solutions in Section 6.6.1 to normal conditional rules. For
extra variables in the conditions it is often necessary to consider reducible solutions,
making this important optimization impossible. In the following, we adapt the results of
Sections 6.6.1 through 6.7 to conditional narrowing.

Definition 6.8.8 System CLNN is defined as the restriction of System CLN where
Conditional Lazy Narrowing is not applied to goals of the form A7, X (7,,) —" ¢.



Theorem 6.8.9 Assume a convergent NCHRS R. If s —° t has solution 0, i.e. s —F
0t, and 0 is R-normalized, then {s —" t} =%, vy F such that § is more general modulo
the newly added variables than 0 and F is a set of flex-flex goals.

Proof Asin Theorem 6.6.2, we have to show the invariant that (intermediate) solutions
are R-normalized. The problem here are new variables in the conditions of the rewrite
rules. Thus, we first construct a new reduction s — # ¢, which differs only in the
rewrite proofs of the conditions.

In a conditional rewrite step in §s —— ¥ 0t it is possible that the substitution is not
R-normalized for some new variables in the reduction in a condition. Consider e.g. 5 ——

l—=r&<l,—ry

s1 —g sy with 61, — r,. As in Theorem 6.6.2, we can assume that 5|7V(1) is

R-normalized since the reduction is innermost. Let V' = FV(I,)—FV(I). As 6|y may not

[—r<l,—ry,

be R-normalized, we construct a new and equivalent reduction s; —; sy, where

8" = 6| p. Furthermore, we can assume that the reduction §'l, — 7, is innermost since
R is confluent and all 7, are in ground R-normal form. This can be repeated recursively
for all conditional reductions in #s —— f 9¢.

The remainder of the proof proceeds as in Theorem 6.8.4. In addition, B-normalization
of the intermediate solutions is shown as in Theorem 6.6.2. This assumes the newly con-
structed reduction for the Conditional Narrowing Rule. O

As no variables in the right-hand sides of the conditions are allowed, it is easy to see that
the results for variables of interest, variable elimination of Section 6.7.2, and narrowing
strategies of Section 6.7.2 hold in this context. Only simplification is more involved, as
shown next.

Normalization for Normal Conditional Narrowing

We show how the results for lazy narrowing with simplification in Section 6.6.4 can
be adapted to normal conditional narrowing. The basis for this is the restriction to
normalized solutions, as elaborated above.

A termination ordering <% is a decreasing termination ordering for an NCHRS
R, if 0! <% 01 for any 0 and for all [; € {I,} and | - r = I, — 1, € R.

Decreasing termination orders as defined here originate from the (first-order) defi-
nition in [DOS88] and imply termination of conditional rewriting (similar to [DOS88]).
This is easy to show since for any rewrite step, the left-hand sides of the conditions are
smaller in the ordering. Thus it suffices to consider a multiset of reductions. Then a
conditional rewrite step performs one reduction and adds only smaller elements, i.e. the
conditions, to the multiset.

Definition 6.8.10 System NCLN is defined as System CLNN plus arbitrary simplifi-
cation steps.

Theorem 6.8.11 Assume a confluent NCHRS R with a decreasing termination ordering
<R If s =7t has solution 0, i.e. 0s =% 0t where 0t is in R-normal form, then
{s ="t} =4 n F such that § is more general modulo the newly added variables than

0 and F s a set of flex-flex goals.

Proof To adapt the completeness result for NLN in Theorem 6.6.7, it suffices to consider
a Conditional Lazy Narrowing step, all other cases are as in Theorem 6.6.7. Let G, =



Sn _>Zd) t, be a system of goals with solution #. Consider

{G_Z} = {)\ﬁ.s —7 )\ﬁ.t} = CLN
{GTY = {Amr.s =5 Nap AT l, — Nap.ry, \op.r —7 ATt}

Let s/, =7t/ = D(6G!)). In this case, there are only two differences to the completeness

result for NLN in Theorem 6.6.7:

o TFirst, it is to assure that all ¢/ are R-normalized terms. This holds for the newly

added conditions A7g.l, —” AT;.r,, as A7;.T, are ground terms in R-normal form.

e The above Narrowing step reduces measure A of Theorem 6.6.7, as 0, <% 0s.

a

Notice that there is a good reason for not simplifying the right-hand side of goals in
Simple Systems. Rewriting with rules where free variables occur repeatedly on the right
can destroy an invariant of Simple Systems: right isolation. For simplification on the left,
in contrast, it is trivial that the invariant is preserved.

6.9 Narrowing on Patterns with Constraints

We have seen in Section 6.2 that the well-developed first-order notion of plain narrowing
is problematic when going beyond higher-order patterns. Although lazy narrowing solves
most of these problems, it would be nice to integrate some of the ideas of the former
approach.

An approach that allows to use plain narrowing in the higher-order case is presented
in this section. The idea is to factor out the complicated case, narrowing at variable
positions, into constraints and work with the simpler pattern part as shown in Section 6.3.
The idea is similar to [Pfe91], where non-pattern unification problems are delayed in a
higher-order logic programming language. In contrast to the latter, we also have to solve
the constraints modulo R.

The rules NC in Figure 6.8 work on a pair (¢, ('), where ¢ is a goal, in which non-
pattern subterms can be shifted to the goals €' with rule Flatten. These can be solved
with lazy narrowing as in NC or any comparable method. Then on ¢, narrowing at or
below variable positions is not needed. The assumption is that in many applications,
most (sub-)terms are patterns, such that the pattern part performs the large part of the
computation.

For instance, to solve a goal f(F(f(a))) —" g(a) wrt. Ry as in Example 6.4.1, we
flatten the left-hand side to (f(F') —* g(a),{F(f(a)) = F'}). Then the flattened term
can be handled with first-order techniques, possibly yielding {F’ +— f(a)}. Solving the
remaining constraint F'(f(a)) —° f(a) is simple, and it may not even be desirable to
compute all its solutions.

The rule Pattern Narrow applies only at subterms that have been flattened to patterns.
Hence the unification needed in rule Narrow is pattern unification. The main advantage
of this version of narrowing is that we achieve a system, where we can work similar to
the first-order case on the pattern part.



Solve
(t="¢,C) =0 (1 =>"0,00)i0t =1

Flatten

(t—="¢,0) = (X' @), ="t {\&m.X(T) =" X'}u0)
if p is a rigid path in ¢ such that ¢|, = X(%,)
is not a pattern, where T = BV(t, p)

Pattern Narrow

(t="t,C) =" (s="¢,00)if pis a rigid path in ¢,
t|, is a pattern, and

R
tvpﬁ s

Constraint Solving

(t="¢,0) =0 (0t ="00,00 i C =4y ¢

Figure 6.8: System NC for Narrowing with Constraints

To prove completeness we first need a more technical lemma. The problem is that
the two methods integrated here are based on very different proof strategies. The next
lemma shows more precisely which rewrite steps are handled by lazy narrowing in the
constraints and which are modeled directly. When working with NC we will call the goal

tin a tuple (¢, C') the pattern part, although it may not be a pattern goal.

Lemma 6.9.1 Assume a convergent HRS R, two terms s and t where t is a ground R-
normal form, an R-normalized substitution 8, and a set of constraints G, = {u, —" u’}

such that

o s 1Tt

o Ou, —F Ou!,
Then (s =" t,{G,}) =40 (s =" t,{ G }) such that there exists 0' with
o 0s' =1,
o 0 =ry 00,
o 0s Ry

o &' is R-normalized and

o ' is a solution of G’ .



R on s, which is terminating. We maintain the last four

* . . . .
5 ¢ is an innermost reduction with some

Proof by induction on —
claims as invariants. Assume s —>;_”° 4
appropriately lifted rule [ — r € R. We have the following two cases depending on p.
Since 6 is normalized, p cannot occur below a pattern subterm X (7,) in s.

If p is not a position on a rigid path in s, the reduction is modeled in the constraints:
let ¢ be a minimal prefix of p such that s|, is of the form X(%,). Let Ty = BV(t, ¢). Since ¢
is R-normalized, A\7;. X ({,) cannot be a pattern. Apply flatten to obtain a new constraint
Go = A7 X (1,) =" \7;. X'(7,) for a new variable X'. Let further s’ = s[X'(%,)]¢q and

0"=0U{X"— A7.(0s] )|z} As R is convergent, we obtain ¢'s’ " t via an innermost

reduction. Since s — % ¢'s’, the induction hypothesis applies with (s’, GoU G, ) and ¢'.
In case p is on a rigid path in s, we apply Flatten at all (maximal) non-pattern
subterms s, of 5|p. This yields s’ and some new constraints G—;n =t, —' X,, and a new
associated solution #;. As described in the last case, to obtain #;, # has to be extended at
each Flattening step. Since the reduction is innermost, all #s,, are in R-normal form and
hence the new solutions added for X, are R-normalized. Thus we have 0s|, =015,
Then the rule Pattern Narrow applies and the proof proceeds similar to Theorem 6.3.2:
as 51|p is a pattern and (9151|p is an instance of [, there exists a most general unifier ¢ of

51|p and [ and there exits ¢ such that #; = #’6. Then the Pattern Narrow step yields

(s" =7 t,{6G" ,6G,}), where s' = §s1[r],. It follows as in Theorem 6.3.2 that ¢’ is R-
normalized. Clearly, §' is a solution for all constraints 6 G/ ,§G,. As s —— % 0,5 — &
0's’, it remains to apply the induction hypothesis with 0’ and (s’ = ¢, {0G’ |6 G, }).

a

Now the completeness of NC follows easily. We only have to lift rewrite steps that occur
in the primary goal, the others are handled by lazy narrowing in the constraints.

Theorem 6.9.2 (Completeness of NC) Assume a convergent HRS R. If s —" t has
the solution 0s — B t where 0 is R-normalized and t is a ground R-normal form, then
(s =7 t,{}) =% (t =" t,C) such that §s =t and § is more general modulo the newly
added variables than 6 and the goals in C are flex-flex.

Proof First, apply Lemma 6.9.1 to (s —7 ¢,{}), yielding a pair (s’ =" ¢,{G,}) that
is solvable by some substitution 6 with § < #’. Thus the Solve rule applies with some
substitution § < @'. Tt remains to solve the constraints {§G,}) by System LN. O

R

. . . . . . . b
It is interesting to examine how rewrite steps in a solution s —¥ s; — # ¢ are modeled

in the pattern part in above completeness result. There are two possibilities for a rewrite

R

step s —" 51 at a position p:

o If there exists a prefix ¢ of p such that 5|q is a non-pattern term, then this non-
pattern subterm is flattened into the constraints and replaced by a new variable,
say X. The solution associated to this (intermediate) variable X is the R-normal
form of 5|q, thus the flattening step shifts the normalization of a full subterm into
the constraints.

o Otherwise, the subterm is flattened to a pattern. Then a single narrowing step is
lifted and this step takes place at the same position and with the same rule as the
narrowing step. As in the first-order case, we have a one-to-one correspondence of
the rewrite step in fs and the narrowing step in s.



With the last observation in mind, we conjecture that narrowing strategies for first-order
rewrite systems can be lifted to the pattern part in a modular way. There are two
reasons for this. First, most first-order strategies only lift particular derivations, e.g.
innermost reductions (basic narrowing [Hul80]) or leftmost innermost reductions (LSE
narrowing [BKW93]). A reduction is leftmost, if for each step no rewrite step at a position
left to it applies. Secondly, for leftmost innermost solutions s —— f ¢, it seems that the
above completeness result can be extended to show that the reductions in the pattern
part form a leftmost innermost subsequence of the s — f ¢ reduction.



Chapter 7

Applications of Higher-Order
Narrowing

This section presents examples for higher-order rewriting and narrowing. As most of
these applications are oriented towards programming, left-linear rewrite rules and thus
Simple Systems suffice. Only the examples on program transformation in Section 7.2 and
type inference in Section 7.4 go beyond programming and more expressiveness is needed.
For other examples on the utility of higher-order constructs, we refer to [Nad87, PM90]
for natural language parsing, [Nip91la] for formalizing logics and A-calculi, and for Process

Algebras to [Pol94].

7.1 Symbolic Computation: Differentiation

In this section we present an example for modeling symbolic differentiation. Symbolic
differentiation is a standard example in many text books on Prolog [SS86]. In contrast to
first-order programming, we can easily formalize the chain rule for differentiating nested
functions, e.g. Az.sin(cos(x)). This requires a notion of bound variables and is hence
excluded in the first-order versions.

The naive approach to specify differentiation with an equation diff (Ax.F') = Az.0 fails,
as the equation is not of base type. With rules of higher type, our notion of rewriting
does not capture the corresponding equational theory [Nip9la]. The idea is to define a
function diff such that diff (Az.v, X') computes the value of the differential of Az.v at
X. When abstracting over this X, we can express the differential of a function again as
a function. Although the former version seems slightly more elegant, it would require a
more complex notion of rewriting, not to mention narrowing.

Figure 7.1 shows the rules of R; for symbolic differentiation with left-linear, second-
order equations of base type. Observe that we do not formalize the chain rule explicitly,
as this would require nested free variables. Our goal is to have patterns as left-hand
sides, i.e. the left-hand side of the chain rule would be of the form Az.diff (F(G(2))).
Notice that the right-hand sides of the rules of R; in Figure 7.1 are non-patterns, hence
rewriting a pattern term may yield a non-pattern.

We first show termination of the rules by the method developed in [Pol94]. As
in [Pol94], we use natural numbers with the usual ordering as the domain for the in-
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diff Ay.F, X) — 0
diff (Ay.y, X) — 1
diff (Ay.sin(F(y)), X)  — cos(F'(X)) * diff (Ay.F(y), X)
diff (Ay.cos(F(y)), X)  — —Lxsin(F(X))* diff (Ay.F(y), X)
diff Ay.F(y) + G(y), X) — diff Ay.F(y), X) + diff (A\y.G(y), X)
diff Ay F(y) = G(y), X)  — diff (\y.F(y), X) * G(X)+
diff (Ay.G(y), X) = I'(X)
diff (Ay.In(F(y)), X) = diff (Ay.F(y), X)/F(X)
X * 1 — X
1 *x X — X
X *x 0 — 0
0 *x X — 0
0 + X —~ X
X + 0 — X
0 / X — 0

Figure 7.1: Rules R; for Symbolic Differentiation

terpretation. Then the following interpretations!' are strictly monotonic on the positive
natural numbers:

[Gif] = Ao (f(e)f X +1
PI=[] = 1
[« =1+] = Av,yz+y+4
[sin] = [cos] = Az.x +4
[/l = Av,yr+y
[ln] = Az.x+1
-] = Az.x
Notice that the symbols, e.g. +, on the left refer to the defined symbols of R;, whereas
the identical ones on the right denote the usual operations on numbers.
Next we show that R, is confluent via critical pair analysis. It is easy to see that

the first rule overlaps with all remaining rules for diff and the remaining rules only have
trivial critical pairs. All of these are joinable; consider for instance

0 — diff (A\a.F + G, X) —s diff \e.F) = G + diff(\e.G) + F =5 0

Thus Ry is a convergent, left-linear HRS and we can apply Simple Systems with normal-
ization. As an example, we attempt to solve the query

Ao diff Ay.In(F(y)), x) —" Az.cos(z)/sin(z).
The solution {F +— Az.sin(x)} can be found with the pattern narrowing sequence
Ae. diff (Ay.In(F(y)),z)
Av.diff (Ay.F(y),x)/F(x)

Ax.cos(F'(x)) = diff (Ay. F'(y),x)/sin(F'(x))
Ax.cos(x)/sin(x).

i*il

!Developed jointly with Jaco van de Pol.



as all term occurring are patterns.
Lazy narrowing provides a more goal directed search in this example, as unification
can be used earlier for simplification:

) =
Dz diff \y.F(y),z)/F(z) =" Az.cos(z)/sin(z)} =
Dz diff M\y.F(y),z) =" Az.cos(z),
Az F(z) =7 Az.sin(z)}

Now the solution is obtained by first solving the second goal by deterministic variable
elimination and then by simplifying the first goal.

Although this example only uses higher-order pattern, it is easy to imagine non-
pattern goals, e.g. diff (A\y.sin(F(cos(y))), X) —" cos(X)/sin(X). When solving such a
goal with system NC, we first flatten the pair

(diff (Ay.In(F(cos(y))), X) =7 cos(X)/sin(X),{})

to
(diff Ny In(F'(y))), X) =" cos(X)/sin(X), {Ay.F(cos(y)) =" Ay.I"(y)}).

Then a simple strategy is to perform narrowing on the pattern term and after each step
check if the constraints are solvable. Only if they are not solvable, lazy narrowing should
be applied.

7.2 Program Transformation

The utility of higher-order unification for program transtformations has been shown nicely
by Huet and Lang [HL78] and has been developed further in [PE88, HM88|. This example
for unfold/fold program transformation is taken from [FH88]. We assume the following
standard rules for lists

map(F, [X|R])
foldl(G,[X|R))

—  [F(X)|[map(F, R)]
—  G(X, foldl(G,R))
Now assume writing a function ¢g(F, L) by

g, L) —  foldl(Ax,y.plus(x,y), map(F, L))

that first maps F' onto a list and then adds the elements via the function plus. This
simple implementation for ¢ is inefficient, since the list must be traversed twice. The
goal is now to find an equivalent function definition that is more efficient. We can specify
this with higher-order terms in a syntactic fashion by one simple equation:

Mow Lg(fs[=|l]) = A2, LB(f (), 9(f, 1))

The variable B represents the body of the function to be computed and the first argument
of B allows to use f(z) in the body. The scheme on the right only allows recursing on [
for g¢.



To solve this equation, we add a rule X = X — frue as described in Section 6.1.1,
and then apply narrowing, which yields the solution 8 = {B + Afr, rec.plus(fr, rec)}
where

g(f s [=|l]) = 0B(f(x), g(f, 1)) = plus(f(z), g(f,1)).

This shows the more efficient definition of ¢g. In this example, simplification can reduce
the search space for narrowing drastically: it suffices to simplify the goal to

M a, Lplus(f (), foldl(plus, map(f,1))) = Af, @, L.B(f(z), foldl(plus, map(f , 1)),

where narrowing with the newly added rule X = X — true yields the two goals

M., Lplus(f (2), foldl(plus, map(f . 1)) =" Af.a,LX(f,2,1),
Mo LB(f (x). Joldl(plus, map(f, 1)) —* M.z, LX(f,z.1).

These can be solved by pure higher-order unification. It should be noted that our notion
of oriented goals requires an additional rule for equality. A clever implementation will
hide such details from the user.

7.3 Higher-Order Functional-Logic Programming

Our approach to functional-logic programming is oriented towards functional languages.
This is in contrast to most first-order approaches that often aim at extending Prolog
by functions. Our goal is to extend a functional core language by logical variables as
in Prolog. The core of functional languages such as SML [MTH90] or Haskell [HJW92]
essentially is higher-order term rewriting, no matter if the language employs lazy or eager
evaluation. Relational programming as in logic programming can be embedded as shown
in Section 2.6.

We show by several examples that left-linear, normal conditional HRS suffice for
programming and allow computing in Simple Systems. As we do not allow extra variables
on the right-hand side of the conditions, local variables as in functional programming are
created via let-constructs, as for instance shown in Section 2.6. For example, we show
how the let-construct for pairs from Section 2.6 can be formulated by higher-order rewrite
rules. This common notation for let can be defined by

let pair(zs,ys) = X in Fas,ys) =" let X in Axs,ys.F (s, ys)
Notice that in the tuned notation on the left, pair(zs, ys) serves as a binder for zs and
ys. The higher-order rewrite rule for this construct is

let pair(Xs, Ys) in Axs, ys. F(xs, ys) — F(Xs, Ys).

The idea behind this modeling is that in let ¢ in Awxs, ys.t’, the term ¢ is evaluated to a
pair of the form pair(Y, 7) and then the rewrite rule applies.

Several of the following examples assume an equality predicate = on natural numbers.
There are two ways to formalize such a predicate: either simply by a rule X = X — true,
which goes beyond Simple Systems, or by encoding strict equality on numbers, as shown
in Section 6.1.1. For instance, the rules

s(X)=s(Y) - X=Y

0=0 — true



suffice for the constructors s and 0 for natural numbers.

As we will see, strict equality suffices for most applications. The disadvantage of strict
equality is that for instance Ax.x = x is not provable. It is however possible to add a
rule X = X — true for simplification only, as suggested in [Han94c].

Recall that we sometimes write p for a rule p — true or a goal p —" true. Further-
more, we use in the examples some common abbreviations, e.g. 1 = s(0) etc.

7.3.1 “Infinite” (Data-)Structures and Eager Evaluation

Infinite data structures are one of the nice features of lazy functional programming,

e.g. [Tur86, HJW92]. For this reason, some functional-logic languages, e.g. [MNRA92],

support non-terminating rules. We show in the following that such infinite structures can

be modeled within functional-logic programming while retaining eager evaluation.
Consider the example of an infinite list of ones, defined by:

ones — [1]ones]

This rule, together with lazy evaluation, can be used with rules such as:

first([X|R]
rest([ X |R]
sum_n(0, L

sum_n(s(n), [X|R]

X
R

I

)
)
)
) X + sum_n(n, R)

A

Lazy evaluation yields for instance
sum_n(4, ones) — 4

This model of lazy computation has the disadvantage that non-terminating rules, here
ones — [1|ones], have to be used carefully to avoid divergence.

We can model such infinite structures with terminating rules in our setting. We simple
reverse the rule generating infinite objects:

ones([1|R]) — [l|ones(R)]

The technique for working with this definition is to imagine, given an object of appropriate
size, how to compute the solution. Thus, terminating rules suffice and eager reduction is
possible.

Using the above definition, we can state the query

2

sum_n(4, ones(Y)) — 4,
which has the desired solution
{Y —[1,1,1,1|Y"],...}.

Thus the term ones(Y') represents an “infinite” list.
Lazy Needed Narrowing is particularly useful in this example, as it solves goals only
when needed. In the above example, intermediate goals of the form ones(Y) — X are



simply delayed. Only if X is instantiated, the goal is simplified and possibly delayed
again.

The above example only models functional programming, which aims at evaluating
expressions to unique values. Compared to functional programming, this approach also
models search as in logic programming. For instance, lists where each element is a one
or a two are easy to model. This is not possible with the first functional approach, as it
would require non-confluent rules.

A simple example for this scheme is computing ancestors:

father(mary) —  john
mother(john) —  amy
father(john) —  art
prim_rel(father)

prim_rel(mother)

anchestor_rel( R) < prim_rel(R)

anchestor_rel(comp( Ry, Ry)) — anchestor_rel( Rz)
< prim_rel(Ry)
comp( Ry, Rz)(X) —  Ry(Ri(X))

The function comp composes two functions. It is equally possible to write the rule for
anchestor_rel as anchestor_rel(Ry(R1)) — ..., which has the disadvantage of not being
a pattern. With these rules, the query

anchestor_rel(R), R(mary) —" amy

has the solution
{R — comp(father, mother)}.

This technique for modeling infinite functional structures will reappear in some of the
following examples.

7.3.2 Functional Difference Lists

Difference lists are a standard technique [SS86] for implementing lists in logic program-
ming such that appending two lists can be done in linear time. A difference list is a pair,
where the first element is the actual list of interest and the second element is the tail
of the first list, typically a free variable. For instance, to represent the list [a, b, ¢] as a
difference list, we use the pair ([a, b, ¢ | R], R) for some variable R.

Concatenating two difference lists is done in functional-logic programming by the
function

append((X, Y),(Y,R)) = (X, R)

and in plain logic programming by the corresponding predicate. A principal problem
with this representation is that a concrete variable is used to represent the end of the list.
Thus when copying a difference list, a “predicate” is needed to introduce a new variable
at the end of the copied list, as e.g. shown in [Red94]. The drawback is that this takes
linear time.



The functional equivalent is to abstract over this variable representing the rest of
the list. Thus we use functions from lists to lists as “functional difference lists”, i.e.
Ax.fa,b, c| z] instead of [a, b, ¢ | X]. This idea was introduced by Hughes [Hug86] and
compared to the logic approach by Burton [Bur89] and Reddy [Red94]. We believe that
this representation is much clearer than using free variables, which must be “new” for
each copy. For instance, appending two functions is straightforward by f-reduction:

append1 (L, R) = Ax.L(R(x))

A nice result on this approach in higher-order logic programming was shown in [BR91]:
a naive reverse function on lists can be linear.

To formulate these ideas in our framework with rules of base type, we model a func-
tional list as flist(Az.[X|R(2)]) with an additional constructor flist. Then the higher-

order rewrite rule for append reads as

append _f (flist(L), flist(R)) — flist(Az.L(R(x)))

7.3.3 A Simple Encryption Problem

This example deals with a simple method for authorization. Assume the following method
for the authorization of a client and some server. Both parties share an encryption
function f. To authorize, a client sends some name a and its encryption f(a) to the
server. This value f(a) can be viewed as a “password”.

For several authorization steps, the channel between the client and the server trans-
mits a list of names and a list of the corresponding passwords. Since the channel is
unsafe, the client and the server use the following method to change the password of a
name after each use. For simplicity, we assume names are natural numbers. If the client
uses the name n and its password f(n), both parties compute a new encryption function
f/from f by: f'(n) = f(n+1)and f/(n+1) = f(n). That is, two passwords are swapped.

In the following program, the function encode(F,[X | Rest]) computes a list of pass-
words from a list of names of the communications on the channel. It maps the encryption
function F' to the first element of a stream, and updates the encryption function for the
rest of the list.

comp(F,G)(X) — G(F(X))
swap(X, Y, 7) — if Z =X then Y else if Z =Y then X else Z

encode(F,[X | Rest])
encode(F,[])

[]F(X) | encode(comp(swap(X, X + 1), F), Rest)]

if true then X else Y — X
if false then X else Y — Y

—
—

—

For instance, if the initial encoding is the identity function, we obtain:
encode(Az.z,[1,2,2]) =[1,1,3]

Now we consider the following situation. Some spy on the channel does not know the
initial encryption function, but the method for the update. Now if the spy observes some



communication, his goal is to infer passwords. For instance, assume the spy observes the
names [1,2,2] and the corresponding passwords [a, a, b]. Then if 3 is sent as the fourth
name, we can compute the fourth password with the goal

A .encode(f,[1,2,2,3]) =7 MF(f)

with solution
0 ={F — A.[f(1),f(1),[(3),/3)]}.

Clearly f(1) = a and f(3) = b and the spy can infer the fourth password.
The encryption in this example is rather simple. It is clearly possible to model more
complicated authorization strategies with this approach.

7.3.4 Eight-Queens Generalized

In the following example we model techniques of object-oriented programming by higher-
order functions. As this is done in a functional-logic setting, this is a sketch for integrating
object-oriented programming and logic programming.

For modeling functional object-oriented programming (see e.g. [Red88, Wan87]), ob-
jects are represented by records, which we adopt here in a very simple fashion. In a more
advanced representation, as pursued in [Gro94], an object is a function that essentially
consists of a case-statement dispatching the incoming messages.

In a functional setting of object-oriented programming, objects have no internal,
mutable state. Furthermore, we do not address other important issues of object-oriented
programming, such as inheritance.

We extend the classical eight-queens problem in the following, straightforward way:
not only queens but arbitrary (chess) pieces are considered. We view chess pieces as
objects consisting of a position and a function that determines if the piece attacks an-
other position. These represent the “instance variables” and the “methods” of an object,
to speak in object-oriented terminology. For a “message call” we simply select the ap-
propriate function from the object and apply it. Alternative versions that are closer to
object-oriented programming would require a more tuned syntax, which we avoid for
simplicity.

Positions on a chess board are represented as pairs, e.g. pair(4,5) represents column
4, row 5. We assume a function next to compute the next position on the chess board
and an extended let-construct. Furthermore, a general “attacking function” for each kind
of piece is assumed to take two positions and determines if the piece placed on the first
position attacks the second.

Pieces are created by the constructor piece, i.e. 0o = piece(F, Pos), where Pos is a
position and F' is a function, such that F(posl) determines if the piece attacks some
position posl. We assume the following destructors: get_pos, returning the position, and
get _attack _fun which returns the attacking function of a piece. For instance, get_pos(o) =
Pos.

The main function in the program in Figure 7.2 is position(Lf, Lp, Pos), taking a list
of attacking functions Lf for pieces to be placed, a list Lp of already placed pieces and
a position Pos. The list Lf characterizes the pieces to be placed, as shown below. The
function no_attacksL(F, Lo), determines if the piece F' attacks some piece in the list Lo.
Notice that partial application serves in the expression piece(F'(Npos), Npos) to turn a



get_pos(piece(F, Pos)) —  Pos

get_attack _fun(piece(F, Pos)) — F

no_attacksl(O,]]) —  tlrue

no_attacksL(O,[O1|R]) — if (get_attack_fun(F))(get_pos(O1)) then

false else no_attacksl(O, R)

position([], L, pair(X, Y)) — L
position([F'|R], L, Pos) —  let Npos = next(Pos)
Nobj = piece(F(Pos), Pos)
in if no_attacksL(Nobj, L) then
position( R, [Nobj|L], Npos)
else position([F|R], L, Npos)

Figure 7.2: Rules for the Eight-Queens Problem

general attacking function into the attack function for a new piece with fixed position.

In order to apply the above rules, we write for instance the functions queen_attacks
and knight_attacks as below. Both functions take two positions and check the appropriate
attacking.

queen_attacks(pair(X, Y), pair(Sz,Sy)) — X =SeVY =SyV
X~ Sl = 1Y - 8

knight _attacks(pair(X, Y), pair(Sz, Sy)) — (| X = Sz|=1A|Y =Sy|=2)V
(| X =Sz| =2A Y = Sy|=1)

In order to position one knight and two queens on some board, the query
position([queen _attacks, queen_attacks, knight _attacks], [], pair(1,1))

suffices, assuming that pair(1,1) is the initial position.

Furthermore, the power of higher-order unification permits other queries: given a set
of positions on the chess board, which pieces can be placed on these positions such that
they do not attack each other.

The general idea of this example is that higher-order functions are used to repre-
sent “heterogeneous” information, e.g. arbitrary chess pieces. For the pure eight queens
problem, it is easy to devise special data-structures (e.g. [Bra90]), in contrast to our gen-
eralized version. Furthermore, the object-oriented version is also easier to extend, e.g. by
other (chess) pieces.

7.4 Higher-Order Abstract Syntax: Type Inference

In this section, we consider the problem of polymorphic type reconstruction as it occurs in
functional languages, see for instance [CDDK86, NP99]. For simplicity, we only consider
the core constructs of such a language, i.e. typed A-calculus. The syntax of the language
includes atoms const(x), application app(t,t’), and abstraction abs(Ax.t).



The set of polymorphic types is generated by some base types, type variables, and
the function type constructor —>, written in infix notation as ¢ —> 7. We chose the
symbol —> instead of the common —, in order to avoid confusion with term rewriting.
For instance, a term suce(5), where suce is a function on integers, is represented as

app(const(suce), const(5)).

As usual for type inference systems, we store the type of atoms in a context £. For
instance, compared to the typing rules of simply typed A-calculus in Section 3.2, the
judgment z : 7 in the rule /

T:T  8:T

(Az.t): (r —> 7)

is represented in a context.

In violation of our conventions, we write free variables over types by Greek letters
o and 7 as usual for type inference systems. The standard rules for type inference can
easily be expressed as conditional equations:

update(E, T, X, Y) — if Y =X then T else E(Y)

type_of (E, const(X — F(X)
type_of (B, app(T, 1)) — type(7)
< type_of (K, T) — type(c —> 1),
type-of (E, T") — type(o)
type_of (E, abs(Ax.T(x))) — type(c —> 1)
< dv.type_of (update(E, type(c), v), T(const(v))
— Av.type(T)

The function update(FE, T, X) creates a new context where X has the type T. Notice
that the last two rules have the extra free variables o and 7 that do not occur on the
left-hand side.

In the last rule for typing an abstraction, typically for higher-order abstract syntax, a
local constant v serves to explore the type of Ax.T'(2). The local binder for v corresponds
to a V-quantifier, i.e. a goal Av.t —7 Av.s is equivalent to Vv.s —7 t.

For example, a term f(Az.plus(z, y)), where f and y are polymorphic atoms, is rep-
resented as

t = app(const(f), abs(Ax.app(app(const(plus), x), const(y)))).

Type inference for ¢ is done by the following query

type_of (E, 1) —* type(B),

where E(f) = a —> a, F(y) = ~, and E(plus) = int —> int —> int. This goal has the
solution
{B— int —> inl,a — int —> int, vy +— int,...}.

In the above rules, the extra variables are purposely introduced to compute “local”
types. For instance, the variable o in the abstraction rule only serves for computing the
type of the subterm T'. Thus rewriting requires computing solutions to for these variables
in the conditions. This can be done by narrowing.



Furthermore, this example requires full unification, although it is not immediate: in
the conditions of the third rule, the variable o occurs on both right-hand sides. Simple
systems cannot express this problem, as they do not need full unification (e.g. no occurs
check). Hence this example requires the general completeness result in Section 6.8. Thus
if a term has a type, then Conditional Lazy Narrowing will compute it.

Unfortunately, current methods for proving convergence (see Section 4.3) do not suffice
for this example. Confluence is a delicate matter if extra variables exist in the conditions.
Confluence in this example would entail a desirable property of type inference: unique,
most general types exist in this case.

It is interesting to compare this formulation with the similar specification in A-
Prolog [PE88, MP92b]. In A-Prolog, a predicate type_rel replaces type_of and defines
defines a relation between a term and a type. Thus it is not possible to speak directly
about most general types.



Chapter 8

Concluding Remarks

This work was led by the idea that higher-order equations can be used in practical
systems for equational reasoning and functional-logic programming. Towards this goal
we first examined decidable classes of higher-order unification. We have shown that for
many practical purposes, higher-order unification is not only a powerful tool, but also
terminates for several classes of terms. The main restriction needed is linearity, which is
common for programming. It also explains to some degree that higher-order unification
in logic programming [NM88] and higher-order theorem proving [Pau94, AINP90] rarely
diverges.

Secondly, we have developed a first framework for solving higher-order equations by
narrowing. We have seen that some approaches such as plain narrowing are not suitable
for the higher-order case. For lazy narrowing, in contrast, we were able to develop
many important refinements, such as normalization and eager variable elimination for
normalized solutions. Of similar practical importance are the extensions to conditional
equations.

The work on left-linear rewrite systems for programming applications led to Simple
Systems, which is an important class of goals for equational programming. This class en-
joys many useful properties, for instance solved forms are easy to detect. Furthermore, in
the second-order case, unification remains decidable for Simple Systems. Simple Systems
are a large class of goals where the occurs check is not needed. Interestingly, in most
implementations of Prolog, the occurs check is missing for computational reasons. This
suggests to define languages where the occurs check is redundant. More importantly, it
indicates that the problems solvable with Prolog implementations correspond to such a
class of problems. The main result for Simple Systems is the strategy of Needed Lazy
Narrowing, where intermediate goals can be identified and can safely be delayed, which
leads to a needed computation strategy.

Altogether, we believe that the results for normalized solutions and Simple Systems
are a major step towards high-level programming languages, where efficiency and a simple
operational model are significant. This leads to a novel approach to functional-logic
programming that is oriented towards higher-order functional languages. Whereas most
other approaches aim at extending logic programming by functions, the main idea here
is to extend a higher-order functional language by logic or free variables as in Prolog.
This approach facilitates several operational optimizations that are not possible in other
approaches oriented towards extending logic programming.

Another observation is that oriented goals turned out to be a particularly useful
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restriction on equational goals. Oriented goals do not limit the expressiveness, i.e. full
unification can be encoded, and simplify the technical treatment. Furthermore, we have
seen that for left-linear HRS, there is a difference between matching, as performed by
oriented goals, and full unification. In the former, Simple Systems suffice for narrowing
and the decidability of second-order unification is maintained.

This work also contributes to equational reasoning in higher-order theorem provers.
For this, we have provided complete calculi for higher-order narrowing for unrestricted
equations. Although for most of the optimizations we considered, some restrictions were
needed, they apply to general theorem proving as well. As another application, Section 5
can be the basis for further investigation into the decidability of second-order R-matching
problems. For instance, Curien [Cur93] presents first results on second-order F-matching
for first-order F.

8.1 Related Work

Recently, there have been several works on higher-order narrowing, but none covering
the full higher-order case. Qian [Qia94] lifted the completeness of first-order narrowing
strategies to higher-order patterns for first-order rules. Higher-order patterns are an
important subclass of A-terms, which include bound variables, but behave almost as
first-order terms in most respects. However, patterns are often too restrictive, as obvious
from the examples in Sections 2.5 and 7 (see also [Pre94b, MP92a]). In particular, they
do not suffice for modeling higher-order functional programs. Examples are the function
map in Section 2.4.1 and the definition of the let-construct by a higher-order rewrite rule

let X in T'— T(X)

where the right-hand side is no pattern. Thus rewriting or narrowing with this rule
may introduce non-pattern terms. For a discussion on this issue in a logic-programming
context see [MP93].

The approach to higher-order narrowing in [LS93, ALS94a] aims at narrowing with
higher-order functional programs and does not limit rules to higher-order patterns. Rules
with pattern left-hand sides are used for narrowing on quasi-first-order terms. (These
are slightly more general than quasi first-order terms defined here.) This guarantees
that the resulting term is still quasi-first-order. Although this seems to be an interesting
compromise, it has strong restrictions: higher-order variables in the left-hand sides of
rules may occur only directly below the outermost symbol. For instance, the function
map(F, cons(X,Y)) = ..., fulfills this requirement only if X and Y are first-order.
Roughly speaking, when narrowing with such a rule, narrowing and rewriting coincide
for these higher-order variables as they occur only at depth one on the left-hand side.!

Higher-order logic programming [NM88] has two major extensions of first-order logic
programming: first, higher-order terms are used and, secondly, hereditary Harrop formu-
las, which generalize horn clauses. The latter, roughly speaking, allow for “local” rules
in the contexts. In contrast to the first, this nice extension cannot be modeled directly
by (conditional) narrowing.

!This result is a bit more subtle, since the rewrite rules are lifted for narrowing. Lifting turns a
first-order term into a higher-order term. This problem is however not addressed in [L.S93, ALS94a].



Compared to higher-order logic programming, the functional approach with Sim-
ple Systems lies between A-Prolog [NM88], where full higher-order terms are used, and
Elf [Pfe91],% where non-patterns are just delayed as constraints. The main advantage of
this functional approach is that a decidable class of second-order unification instead of
pattern unification can be used. The problem is that higher-order patterns cover large
classes of terms occurring in practice, but are not sufficient in general. Thus strategies
have been developed in [MP93] to handle such cases effectively.

Another difference to (higher-order) logic programming is that predicates and terms
are not separated. Higher-order A-terms are used for data structures and do not per-
mit higher-order programming as in functional languages. For instance, the function
map in Section 2.4.1 cannot be written directly by higher-order logic programming. Na-
dathur [Nad87] reports similar problems with variables over predicates for modeling map
in higher-order logic programming. In this respect, our approach is more general and
allows for an arbitrary integration of data and functions. Notice that in most Prolog
implementations a quasi second-order predicate “apply” exists, that applies a variable
function symbol to some arguments. Use of this built-in predicate obviously destroys
completeness in the usual sense.

The many higher-order extensions of functional-logic and logic languages [BG86,
CKW89, GMHGRA92, Loc93, She90] are, to our knowledge, limited to first-order unifi-
cation and are not complete in a higher-order sense. For instance, the work in [Loc93]
uses higher-order variables, but only (first-order) narrowing on first-order terms plus
fB-reduction as the operational model. Since higher-order rules such as map are used,
higher-order terms can be created which cannot be handled by this approach. The work
in [GMHGRA92] on SFL, an extension of the language BABEL [MNRA92], similarly
permits higher-order variables. Completeness of narrowing with first-order unification is
claimed w.r.t. particular denotational and operational semantics for partial objects.

8.2 Open Problems and Further Work

Simple Systems can also be employed to improve existing first-order languages. For this
purpose, it is desirable to extend Simple System to conditional narrowing with extra vari-
ables on the right side of the conditions. This is easily possible with linearity restrictions
on the right sides of the conditions. For a conditional rule

l—=r<l, —r,

it is required that

X="00L =T,

is a Simple System for some new variable X. This holds if no variable occurs more than
once in r,..., 1, and [ (and in addition all r, are patterns). This is not overly strict, as
exemplified in Section 2.6, since variables on the right side of conditions are usually used
for local variables.

Developing efficient implementations for higher-order programming is another essen-
tial step. Projects in this direction are an abstract machine for higher-order logic pro-
gramming [NJW93] and a compiler for higher-order logic programming [BR92].

2Tt should be noted that EIf has a much more expressive type system.



More expressive type systems, such as polymorphism and type classes in current
functional languages [NP99], have not been considered here. An extension to polymor-
phism faces the problem that higher-order unification with polymorphism is infinitely
branching [Nip91b]. In practice, such cases are rare as experience with the Isabelle sys-
tem [Pau94] shows.

An interesting application is to model calculi for distributed systems, e.g. the =-
calculus [MPW92a, MPW92b], by higher-order rewriting, thus obtaining an executable
version. The major obstacle for this approach is that most of the rules in this calculus
apply modulo associativity (A) and commutativity (C). Rewriting modulo AC has been
extensively studied in the first-order case, for the higher-order case there exist first results

on AC-unification [QW94, MW94].
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