
Formal Design of a Modulo�N Counter

Max Fuchs

Institut f�ur Informatik

Technische Universit�at M�unchen

D������ M�unchen� Arcisstr� ��

e�mail	 fuchs
informatik�tu�muenchen�de

Abstract

We illustrate the use of functional system speci�cations and their re�nement

in the formal development of hardware systems by a small electronic device� an

asynchronous modulo N counter� The development includes modular speci�cation�

re�nement and veri�cation� We start with an intuitive abstract requirements spec�

i�cation and re�ne this into a non�trivial concrete bit�level implementation� The

re�nement steps comprise behavioral� structural and interface re�nement� The

emphasis of this study is laid on the modeling at di�erent levels of abstraction

and the veri�cation conditions obtained by the re�nement relations between this

versions�

� Introduction

The formal design of hardware systems is a subject of remarkable interest in the area of
computer science �MT���� The complexity of electronic systems in both area and func�
tionality requires modular speci�cation and re�nement techniques� Moreover an appro�
priate design method for hardware systems should o�er techniques for precise and clean
interface descriptions� A speci�cation method with these properties is Focus �BDD�����
It is based on a functional setting and modularity allows Focus to scale up quite well
with speci�cations of non�trivial complexity� For an overview of case�studies carried out
so far in Focus see �BFG��	��

To illustrate the use of Focus we choose a small
 but non�trivial example
 namely an
asynchronous modulo N counter� On many occasions in hardware systems counters
capable of counting from state � through state N� � and then cycle back to the state �
are needed� We refer to such counters as modulo N counters �NCI�

 EP���� There are
synchronous and asynchronous modulo N counters� The synchronous ones are controlled
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by a common clock signal and in general they are slower than the asynchronous versions�
This paper concentrates on the formal design of an asynchronous modulo N counter� In
a number of straightforward re�nement steps a non�trivial bit�level implementation is
re�ned from an intuitive abstract requirement speci�cation�

In the speci�cation method Focus a system is modeled by a network of functional com�
ponents working concurrently
 and communicating asynchronously via unbounded FIFO
channels �Kah�	
 Del��
 BDD����� A number of reasoning styles and techniques are sup�
ported� Focus provides mathematical formalisms which support the formulation of highly
abstract
 not necessarily executable speci�cations with a clear semantics� Moreover
 Fo�
cus o�ers powerful re�nement calculi which allow distributed systems to be developed in
the same style as the methods presented in �Jon���
 �Bac���
 �Mor��� allow for the de�
velopment of sequential programs� The re�nement steps comprise behavioral
 structural
and interface re�nement �Bro���� Focus is modular in the sense that design decisions
can be checked at the point where they are taken
 that component speci�cations can be
developed in isolation
 and that already completed developments can be reused in new
program developments�

This paper is organized as follows� In Section � we introduce the underlying formalism�
In Section � it is explained
 what we mean by speci�cation and re�nement� The formal
design of the modulo N counter is performed in Section 	� Here we start with an intuitive
abstract speci�cation and re�ne it into a non�trivial network of subcomponents at the
bit�level� Section 
 summarizes and draws some conclusion�

� Underlying Formalism

N denotes the set of natural numbers including � andB denotes the set of binary numbers
f�� �g� A stream is a �nite or in�nite sequence of actions� It models the history of a
communication channel
 i�e� it represents the sequence of actions sent along the channel�
Given a set of actions D
 D� denotes the set of all �nite streams generated from D� D�

denotes the set of all in�nite streams generated from D
 and D� denotes D� �D��

If d � D
 r� s � D� and j � N
 then�

� � denotes the empty stream�

� �r denotes the length of r
 i�e� � if r is in�nite
 and the number of actions in r

otherwise�

� ft�r denotes the �rst action of a stream r �unde�ned if r is empty��

� rt�r denotes the rest of stream r �r without the �rst action��

� d� s denotes the result of appending d to s�

�



� r� s denotes the concatenation of r and s
 i�e� r� s � is equal to r if r is in�nite

and is equal to s pre�xed with r otherwise�

� r v s denotes that r is a pre�x of s
 i�e� �p � D� � r� p � s�

� rj denotes a j�tuple of streams r only�

The stream operators de�ned above are overloaded to tuples of streams in a straight�
forward way� If d � D
 t is an n�tuple of actions
 r� s are n�tuples of streams and
j � f�� � � � � ng
 then �r denotes the length of the shortest stream in r� t� s denotes the
result of applying � pointwisely to the components of t and s� d�j s denotes the result
of appending d to the j�th stream in s only� r� s and r v s are generalized in the same
pointwise way�

A chain c is an in�nite sequence of stream tuples c�� c�� � � � such that for all j � N

cj v cj��� tc denotes c�s least upper bound� Since streams may be in�nite such least
upper bounds always exist�

A function f � �D��n � �D��m is called a �n�m��ary stream processing function i� it is
monotonic which means that

for stream tuples i and i� in �D��n � i v i� � f�i� v f�i���

and continuous which means that

for all chains c generated from �D��n � f�tc� � tff�cj�jj � Ng�

That a function is monotonic implies that if the input is increased then the output may
at most be increased� Thus what has already been output can never be removed later
on� Continuity
 on the other hand
 implies that the function�s behavior for in�nite inputs
is completely determined by its behavior for �nite inputs�

� Speci�cation� Re�nement and Networks

A speci�cation of an agent with input channels and output channels is written in the
form

spec S �� g � T� � T� � F�

S is the speci�cation�s name and g is a variable ranging over the domain of stream
processing functions characterized by T� � T� where T� and T� are domains of stream
tuples for input and output� and F is a formula with g as its only free variable� The vari�
able g characterizes the interface of the component we want to design� A speci�cation�s
denotation �� S �� is the set of all stream processing functions which satisfy F �
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A speci�cation S� re�nes another speci�cation S�
 if �� S� �� 	 �� S� ��
 i�e� if any stream
processing function which satis�es S� also satis�es S�� We choose here the most simple
and most basic logical notion of re�nement for speci�cations
 namely logical implication�
If F� and F� are the corresponding formulae to S� and S�
 respectively
 then S� re�nes
S� i� F� � F�� This re�nement concept is compositional and introduced in �Bro����

We distinguish between three di�erent styles of re�nement
 namely behavioral re�ne�
ment
 structural re�nement and interface re�nement� Behavioral re�nement allows to
add properties and consequently restrict the number of models� Structural re�nement
performs a splitting of a single speci�cation into a network of speci�cations� Interface
re�nement changes the number of input and output channels of a component as well as
the granularity of the actions coming along the channels � the latter is also called action
re�nement�

The de�nition of a network of speci�cations is the main structuring mechanism� A net�
work can either be de�ned by equational de�nitions or by special composition operators�
In this paper we choose equational de�nitions to describe networks of speci�cations� In
an equational de�nition a network is de�ned by a set of mutually recursive stream equa�
tions� The semantics is the least function that ful�lls the de�ning equations for all input
values �Ded���� To give an example
 the semantics of the network shown in Figure � is
given by the least function
 which ful�lls the following equation�

S��f� 
 S��f� 
 �i� r �x� y� o� s � f��i� x� � �o� y� 
 f��y� r� � �x� s�

Note that for di�erent functions f� and f�
 which ful�l S� and S�
 respectively
 a di�erent
�xpoint is calculated � this phenomena re�ects underspeci�cation�
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Figure �� Mutual feedback composition of two speci�cations�

� Design of a Modulo N counter

In this section we re�ne an abstract speci�cation of a modulo N counter into a non�trivial
bit�level implementation� Before going through the di�erent design steps in detail we

	



give an overview of the entire development process� As shown in Figure � we start with
a black box speci�cation MNC that characterizes the external behavior of the counter�
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� � �
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� � � � � �
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Behavioral Re�nement

Figure �� An overview about the design of a modulo N counter�






The input lines carry streams of bits and the output line carries natural numbers between
� and N � �� In the �rst design step ���
 a so called structural re�nement
 the black
box speci�cation is re�ned into a speci�cation of a controller COL and a counter CNT �
The controller is responsible for resetting the counter whenever the counter�s most recent
output was N�� and a new count signal is received� The counter itself increases or resets
the output value on demand� In the following we restrict ourself to the development of
the counter only� The second design step ���
 a so called interface re�nement
 replaces
each output line which carries natural numbers by an appropriate number of output
lines carrying bits� The necessary number of lines is of course a function of N� The third
design step ��� is a so called action re�nement� To allow hardware implementations
based on master�slave �ip�ops
 where only impulses and not signals �sequence of ��s�
are counted
 we have to re�ne the bits on the input lines in an adequate way� The
interesting action re�nement is the re�nement of a �
 which is represented by a � followed
by a � � consequently a sequence of ��s is replaced by a sequence of impulses� The fourth
design step �	� is a combination of a structural and a behavioral re�nement step� The
speci�cation of the counter achieved during the third design step is split into a network of
identical component speci�cations� Each speci�cation describes a bit�slice of the counter
and could be implemented by a master�slave �ip�op� Note that the development of
the modulo N counter would of course also include the corresponding re�nement steps
for the controller to ensure that both components
 the controller and the counter
 work
properly together�

��� Requirement Speci�cation
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Figure �� A modulo N counter�

We start with an abstract speci�cation of a modulo N counter� The modulo N counter
has two external input channels
 which corresponds to the count �i�� and to the clear �i��
input
 and one external output channel
 which carries natural numbers � f�� � � � �N��g

as indicated by Figure �� The counter counts from state � through state N�� and than
cycles back to state �� Regardless of the count input
 a � at the clear input resets the
counter to �� On the other hand a � at the count input increments the counter with
respect to modulo N� The formal speci�cation is given in Figure 	�

�



spec MNC �� f � B� �B� � N� �
�i�� i� � B

� � f�i�� i�� � g�i�� i�� ��
where �co� cl � B�� z � N �

g�co� ��cl� z� � ��g�rt�co� cl� ��
g���co� ��cl� z� � z�g�co� cl� z�
g���co� ��cl� z� � if z � N� �

then ��g�co� cl� ��
else z � ��g�co� cl� z � ��

Figure 	� Speci�cation of a modulo N counter�

The counter is speci�ed in terms of a function g which has an additional state parameter
to store the last output value� Whenever the signal received on the second input line

which corresponds to the clear input
 is a �
 a reset is performed and � is output� If a �
is received on both input lines the counter�s state does not change and it�s current state
value
 which represents the last output value
 is output� When a � is received on the �rst
input line
 which represents the count input
 and a � is received on the second there are
two cases to consider� If the counter�s state is equal to N� � the counter is reset and �
is output
 otherwise the state is incremented and the incremented state value is output�
Note that N is a constant which can be instantiated as needed�

��� First Structural Re�nement
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Figure 
� First structural re�nement of a modulo N counter�

The �rst re�nement step is a structural decomposition� As indicated in Figure 

 the
modulo N counter MNC is decomposed into two component speci�cations � a controller
COL and a counter CNT � The counter
 which is speci�ed in Figure �
 di�ers from the
modulo N counter in the sense that it does not reset itself whenever a count request
is received and the upper limit N � � has already been reached� This task has been

�



transferred to the controller
 which is informed about the counter�s current state via y�
The speci�cation of the latter is given in Figure ��

spec CNT �� f � B� �B� �N� �N� �
�x�� x� � B

� � f�x�� x�� � ���g�x�� x�� ���

where �co� cl � B�� z � N �
g�co� ��cl� z� � ��g�rt�co� cl� ��
g���co� ��cl� z� � z�g�co� cl� z�
g���co� ��cl� z� � z � ��g�co� cl� z � ��

Figure �� Speci�cation of the counter CNT �

Note that the expression g�x�� x�� ��� used in the speci�cation of CNT in Figure � rep�
resents the tuple �g�x�� x�� ��� g�x�� x�� ��� and that an initial value � is output on y via
the ���operator�

spec COL �� f � B� �B� �N� � B� �B� �
�i�� i� � B

�� y � N� �
f�i�� ��i�� y� � ��� ���f�rt�i�� i�� rt�y�
f���i�� ��i�� y� � ��� ���f�rt�i�� i�� rt�y�
f���i�� ��i�� y� � if ft�y � N� �

then ��� ���f�i�� i�� rt�y�
else ��� ���f�i�� i�� rt�y�

Figure �� Speci�cation of the controller COL�

The controller only resets the counter whenever there is an external reset signal or there
is a count signal and the current state of the counter is already N�� �seen via y��

The correctness of this decomposition
 i�e� that

�f�� f� �COL�f� 
 CNT�f� ��f � MNC�f 
 �i�� i�� x�� x�� y� o �
f��i�� i�� y� � �x�� x�� 
 f��x�� x�� � �y� o�� f�i�� i�� � o


follows by �xpoint induction and straightforward predicate calculus�

Note that the �xpoint concept re�ects the characteristics of feedback in communication
in an appropriate manner� If further output requires more input �via feedback� than
available this way no more output is generated� This is properly modeled by the as�
sumption that the �xpoint is the least one� The initial value � in the speci�cation of
CNT indicates
 that the counter�s internal state is � at the very beginning and allows
the calculation of an non�trivial �xpoint �
� ���

�



In the following we restrict ourself to the development of the counter CNT only� Note
that of course all interface re�nements of CNT 
 which would a�ect the controller�s
interface
 would also require re�nements of COL�

��� Interface Re�nement
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Figure �� Interface re�nement of the counter CNT �

The CNT component we have so far consists of two input channels of type B and two
output channels of type N� To go a step further towards hardware implementation

we replace the channels of type N by an adequate number of channels of type B� As
indicated by Figure �
 we conduct an interface re�nement in the sense that the interface of
the counter is re�ned modulo to representation speci�cations R and R�� More explicitly

each channel of type N is re�ned into �N channels of type B
 where �N is the bandwidth
required for a modulo N counter�

The auxiliary function ntb �nat�to�bin�

ntb ��N� B
�N

i � N� ntb�i� � b�

where i� i �
P�N
j�� bj � �

�j��� and bj represents the j�th bit of the binary word b
 yields
the binary representation of any natural number i less than N�

The new counter speci�cation CNT 
 given in Figure �
 is a straightforward adaptation
of CNT
 and the corresponding representation speci�cations are trivial� The latter are
given in Figure ���

�



spec CNT �� f � B� �B� � �B��
�N � �B��

�N �
�x�� x� � B

� � f�x�� x�� � ntb�����g�x�� x�� ���

where �co� cl � B�� z � N
g�co� ��cl� z� � ntb����g�rt�co� cl� ��
g���co� ��cl� z� � ntb�z��g�co� cl� z�
g���co� ��cl� z� � ntb�z � ���g�co� cl� z � ��

Figure �� Speci�cation of the counter CNT �

Note that the speci�cation CNT just di�ers from CNT in the sense that it simply
converts the output into a bit representation by applying the auxiliary function ntb� The
representation speci�cationR� also converts natural numbers coming along the input lines
into their corresponding bit representation and R simply speci�es the identity function�

spec R �� f � B� �B� � B� �B� �
�i�� i� � B

� � f�i�� i�� � �i�� i��

spec R� �� f �N� �N� � �B��
�N � �B��

�N �
�y� o � N� � f�y� o� � �ntb�ft�y�� ntb�ft�o���f�rt�y� rt�o�

Figure ��� Representation speci�cations R and R��

The correctness of this interface re�nement
 i�e� that

�g�� f� �R�g� 
 CNT�f� ��f� g � R��g 
 CNT�f 
 �i�� i� � f��g��i�� i��� � g�f�i�� i���


again follows by �xpoint induction and straightforward predicate calculus�

��� First Action Re�nement

So far CNT already counts on every single count message
 which is represented by a
single ���� We now re�ne the counter to only count on impulses� This is closer to a
hardware implementation based on master�slave �ip�ops� Each occurrence of a � and a
� in the input streams is represented by ��� and ���
 respectively� The new counter
speci�cation di�ers from the old one in the sense that it only assures to give the correct
count value for every second output�
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Figure ��� First action re�nement�

Given the two auxiliary functions

� �� B� � B�

����s� � ������s�
����s� � ������s�

� �� �B��
�N � �B��

�N

��a�b�c� � b���c��

we now conduct an action re�nement in accordance with Figure ��� Note that � does
exactly the expansion of the input data required� The function � allows us to take care

only of every second element in a stream � this property is needed to specify�CNT � The

speci�cation of�CNT is given in Figure ���

spec�CNT �� f � B� �B� � �B��
�N � �B��

�N �
�x�� x� � B

� � ��f�x�� x�� � ntb�������g�x�� x�� ���

where �co� cl � B�� z � N
g�co� ��cl� z� � ntb����g�rt�co� cl� ��
g���co� ��cl� z� � ntb�z��g�co� cl� z�
g���co� ��cl� z� � ntb�z � ���g�co� cl� z � ��

Figure ��� Speci�cation of the counter�CNT �

Note that in principle the speci�cation�CNT is de�ned for arbitrary input � however if
it receives input expanded by �
 it performs on every second output the same counting

��



CNT performs on non�expanded input� Taking only every second output value into con�
sideration is necessary for the correctness of the next structural re�nement step of section

	�
� Here�CNT still counts on every � whereas on ��s the output is kept stable� In the

next structural re�nement step however
 we split up�CNT into a network of components

each working just on one bit�slice like in a master�slave �ip�op implementation� In this
network the counting takes only place on a � following immediately after a �
 which is in
fact counting based on impulses� Consequently on every second output value the more
abstract and the more concrete speci�cations correspond� On the other values however

there can be a mismatch
 which is handled by underspeci�cation via the ��operator in

the speci�cation of�CNT � every value is allowed for the not speci�ed output values�

Again the representation speci�cations are straightforward� They are given in Figure ���
R is responsible for the transformations of � and � into ��� and ���
 respectively� The
functions speci�ed by R� must have the property that �ltering out every second value in
the output streams returns the input streams�

spec R �� f � B� �B� � B� �B� �
�i�� i� � B

� � f�i�� i�� � ���i�� ��i��

spec R� �� f � �B��
�N � �B��

�N � �B��
�N � �B��

�N �

�t�� t� � �B��
�N � ��f�t�� t�� � �t�� t��

Figure ��� Representation speci�cations R and R��

The correctness is once more straightforward� It must be shown that

�g�� f� �R�g� 
�CNT�f� ��f� g � R��g 
 CNT�f 
 �i�� i� � ��f��g��i�� i��� � ��g�f�i�� i����

��� Second Structural Re�nement
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Figure �	� Second structural re�nement of the counter�
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The counter is now decomposed into �N identical components whose speci�cation is given
in Figure �
� The speci�cation describes a bit�slice of the counter which could be �nally
implemented by a master�slave �ip�op�

spec CTBIT �� f � B� �B� � B� �B� �B� �
�i�� i� � B� � f �i�� i�� � ������g�i�� i�� �� ���

where �co� cl � B�� z� o � B �
g�co� ��cl� z� o� � ��g�rt�co� cl� �� ��
g���co� ��cl� z� o� � o�g�co� cl� �� o�
g���co� ��cl� z� o� � if z � �

then �o�g�co� cl� ���o�
else o�g�co� cl� z� o�

Figure �
� Speci�cation of CTBIT �

The two state variables in function g represent the last read value at the count input �z�
and the last output value �o�
 respectively� Note that a � at the count input does not
change the current output value of CTBIT 
 but a � right after a � changes the output
and �nally increments the counter� To increment a bit slice means simply to invert the
previous output�

The correctness of this decomposition
 i�e� that

�g� f�� � � � � fn �  R�g 
 �
nV

j��
CTBIT�fj�� �f ��CNT �n��f 
 �i�� i�� c� d� o�� � � � � on �

g�i�� i�� � �c� d�� ����f��c� d� � �o��� 
 ��f��o�� d� � �o��� 
 � � � 
 ��fn�on��� d� � �on���
� ��f�c� d� � �o�� � � � � on���


can be shown by induction and straightforward predicate calculus where n is a short�
hand for �N� For the detailed proof we refer the reader to the Appendix� The re�nement
applied here also includes behavioral re�nement� It �xes the entire output values and

not only every second value as it is done in�CNT �

� Conclusion

A functional style for the formal development of an asynchronous modulo N counter
has been applied� Based on this case study it has been shown that the modular design
method Focus can be used to specify and stepwisely re�ne an intuitive abstract require�
ment speci�cation of a hardware component into a non�trivial bit�level implementation�
Because our method is modular and we conduct our reasoning at a very abstract level

��



we believe that our technique scales up quite well with speci�cations of a non�trivial
complexity�
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� Appendix

In this section the proof of the re�nement step applied in section 
�� is carried out in detail� Due to the

fact that the two output streams of�CNT and the three output streams of any CTBIT are identical
for each component� we simplify these components by taking just one output stream into consideration�
The corresponding proof obligation is as follows�

�g� f�� � � � � fn � �R�g � �
nV

j��

CTBIT�fj�� �f ��CNT �n��f � �i�� i�� c� d� o�� � � � � on �

g�i�� i�� � �c� d�� ����f��c� d� � o� � ��f��o�� d� � o� � � � �� ��fn�on��� d� � on�
� ��f�c� d� � �o�� � � � � on��

The proof is carried out by induction on n�

Base case� n � �

Must be shown that�

�g� f� � �R�g �CTBIT�f� � �f ��CNT ����f � �i�� i�� c� d �
g�i�� i�� � �c� d�� ��f��c� d� � ��f�c� d�

To show this we refer to the internal functions �f� and �f used to de�ne f� and f � The proof for the
initial values� which are only covered by f� and f � is trivial� The functions �f� and �f are based on states�
To relate the concrete states in �f� to the abstract state in �f we introduce a function

m � Bn �Bn �N���

where

�z� z � Bn � m�z� z� � btn�z����

We then get the following proof�obligation�

�g� f� � �R�g � CTBIT�f� � �f ��CNT ����f � �i�� i�� c� d� z �

g�i�� i�� � �c� d�� �� �f��c� d� �� z� � �� �f�c� d�m��� z��
�
�

The proof of �
� is by induction on the sum of the lengths of i� and i�� The base case �i� ��i� � �
follows trivially because of monotonicity� We assume that �
� holds for �i� � �i� � n� We want to
show that �
� holds for �i� ��i� � n� �� Assume

g�i�� i�� � �c� d��
�

There are �ve cases to consider�

Case �� �count�

ft�i� � � � ft�i� � ����

�
� and ��� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i�����

�
� and ��� imply�

�� �f��c� d� �� z� � �� �f������� �����g�rt�i�� rt�i��� �� z����

��� and the de�nition of �f� imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f��g�rt�i�� rt�i��� ���z����

�




��� and induction hypothesis imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f �g�rt�i�� rt�i���m����z���	�

�	� and the de�nition of � and �f� imply�

�� �f��c� d� �� z� � �z��� �f �g�rt�i�� rt�i���m����z������

���� and ��� imply�

�� �f��c� d� �� z� � ntb�m����z����� �f�g�rt�i�� rt�i���m����z������

���� and de�nition of �f imply�

�� �f��c� d� �� z� � �� �f����� ���� �� z���� �f�g�rt�i�� rt�i���m����z������

�
� and ���� imply�

�� �f��c� d� �� z� � �� �f�c� d�m��� z����
�

which ends the proof
�

Case 	� �no change�

ft�i� � � � ft�i� � ���
�

�
� and ��
� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i������

�
� and ���� imply�

�� �f��c� d� �� z� � �� �f������� �����g�rt�i�� rt�i��� �� z�����

����� the de�nition of �f� and the fact that g applied to an element yields ��� or ��� imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f��g�rt�i�� rt�i��� �� z�����

���� and induction hypothesis imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f �g�rt�i�� rt�i���m��� z������

���� and the de�nition of � and �f� imply�

�� �f��c� d� �� z� � z��� �f�g�rt�i�� rt�i���m��� z����	�

��	� and ��� imply�

�� �f��c� d� �� z� � ntb�m��� z����� �f�g�rt�i�� rt�i���m��� z������

���� and de�nition of �f imply�

�� �f��c� d� �� z� � �� �f����� ���� �� z���� �f�g�rt�i�� rt�i���m��� z������

�
� and ���� imply�

�� �f��c� d� �� z� � �� �f�c� d�m��� z������

which ends the proof
�

��



Case 
� �clear�

ft�i� ��	 �ft�i� � � �ft�i� � � is taken here 
 ft�i� � � is analagous���
�

�
� and ��
� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i����
�

�
� and ��
� imply�

�� �f��c� d� �� z� � �� �f������� �����g�rt�i�� rt�i��� �� z�����

���� and the de�nition of �f� imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f��g�rt�i�� rt�i��� �� ������

���� and induction hypothesis imply�

�� �f��c� d� �� z� � �� �f������ ���� �� z���� �f �g�rt�i�� rt�i���m��� �������

���� and the de�nition of � and �f� imply�

�� �f��c� d� �� z� � ���� �f�g�rt�i�� rt�i���m��� �������

���� and ��� imply�

�� �f��c� d� �� z� � ntb�m��� ������ �f�g�rt�i�� rt�i���m��� �����	�

��	� and de�nition of �f imply�

�� �f��c� d� �� z� � �� �f����� ���� �� z���� �f�g�rt�i�� rt�i���m��� ����
��

�
� and �
�� imply�

�� �f��c� d� �� z� � �� �f�c� d�m��� z���
��

which ends the proof
�

Case �� �still waiting for i��

ft�i� �	 �ft�i� ��	�
��

which is trivial because of monotonicity
�

Case �� �still waiting for i��

ft�i� ��	 �ft�i� �	�

�

which is trivial because of monotonicity
�

Induction hypothesis �Induction on n�

�g� f�� � � � � fn � �R�g � �
nV

j��

CTBIT�fj�� �f ��CNT �n��f � �i�� i�� c� d� o�� � � � � on �

g�i�� i�� � �c� d�� ����f��c� d� � o� � ��f��o�� d� � o� � � � �� ��fn�on��� d� � on�
� ��f�c� d� � �o�� � � � � on��

��



Inductive case �Induction on n�

Must be shown that�

�g� f�� � � � � fn�� � �R�g � �
n��V

j��

CTBIT�fj�� �f ��CNT �n� ���f � �i�� i�� c� d� o�� � � � � on�� �

g�i�� i�� � �c� d�� ����f��c� d� � o� � ��f��o�� d� � o� � � � �� ��fn���on� d� � on���
� ��f�c� d� � �o�� � � � � on����

To show this we refer to internal functions �f�� � � � �
�fn�� and

�f used to de�ne f�� � � � � fn�� and f � The
proof for the initial values� which are only covered by f�� � � � � fn�� and f � is trivial� The functions
�f�� � � � �

�fn�� and
�f are based on states� To relate the concrete states in �f�� � � � � �

�fn�� to the abstract

state in �f we again use the function declared in ��� and ���� Assume�

� � ��� � � � � ���

�

We then get the following proof�obligation�

�g� f�� � � � � fn�� � �R�g � �
n��V

j��

CTBIT�fj �

� �f ��CNT �n � ���f � �i�� i�� c� d� o�� � � � � on��� z�� � � � � zn�� �
g�i�� i�� � �c� d��

���� �f��c� d� �� z�� � o� � � � �� �� �fn���on� d� �� zn��� � on���

� �� �f�c� d�m��� �z�� � � � � zn����� � �o�� � � � � on����

�
��

To prove �
�� we �rst of all show that the lemma �
�� holds�

�g� fn��� �fn � �R�g �CTBIT�fn�� ��CNT �n�� �fn

� � �f ��CNT �n � ��� �f � �i�� i�� c� d� o�� � � � � on��� z�� � � � � zn�� �
g�i�� i�� � �c� d��

�� �f�c� d�m��� �z�� � � � � zn����� �

�� �fn�c� d�m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���on� d� �� zn���

�
��

The proof of �
�� is by induction on the sum of the lengths of i� and i�� The base case �i� ��i� � �
follows trivially because of monotonicity� We assume that �
�� holds for �i� � �i� � n� We want to
show that �
�� holds for �i� ��i� � n � �� Assume

g�i�� i�� � �c� d��
��

Z � �z�� � � � � zn����
��

There are six cases to consider�

Case �� �count but not transmitted beyond on� � Z must not be ��� � � � � �� zn���

ft�i� � � � ft�i� � ��
	�

�
�� and �
	� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i���
��

�
�� and �
�� imply�

�� �f�c� d�m��� Z�� � �� �f������ �����g�rt�i�� rt�i���m��� Z���
��

��



�
�� and de�nition of �f imply�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �f �g�rt�i�� rt�i���m��� ntb�btn�Z� � ����
�
��

We assume�

ntb�btn�Z� � �� � �y�� � � � � yn����

�

�

� and �
�� and Induction hypothesis imply�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �y�� � � � � yn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
�

�

�

� and de�nition of �f and of
L

imply�

�� �f �c� d�m��� Z�� � �y�� � � � � yn�
L
�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �y�� � � � � yn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
�
��

�
�� and de�nition of m and ntb imply�

�� �f �c� d�m��� Z�� � ntb�m���� � � � � ��� �y�� � � � � yn���
L

�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �y�� � � � � yn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
�
��

�
��� �
	� and de�nition of �fn imply�

�� �f �c� d�m��� Z�� � �� �fn����� ����m���� � � � � ��� �z�� � � � � zn��
L

�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �y�� � � � � yn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
�
��

�
��� �
�� and �
�� and the de�nition of
L

imply�

�� �f�c� d�m��� Z�� � �� �f�c� d�m��� Z���
��

which ends the proof
�

Case 	� �count but transmitted beyond on� � Z has to be ��� � � � � �� zn���

ft�i� � � � ft�i� � ��
	�

�
�� and �
	� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i������

�
�� and ���� imply�

�� �f�c� d�m��� Z�� � �� �f������ �����g�rt�i�� rt�i���m��� Z������

���� and de�nition of �f imply�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �f �g�rt�i�� rt�i���m��� ��� � � � � ���zn�����
����

Induction hypothesis implies�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� ���zn���
��
�

��



��
� and de�nition of �f and of
L

imply�

�� �f �c� d�m��� Z�� � ��� � � � � ��
L
��zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� ���zn���
��
�

��
� and de�nition of m and ntb imply�

�� �f �c� d�m��� Z�� � ntb�m���� � � � � ��� ��� � � � � ����
L
��zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� ���zn���
����

����� �
	� and de�nition of �fn imply�

�� �f �c� d�m��� Z�� � �� �fn����� ����m���� � � � � ��� ��� � � �� ���
L
��zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� ���zn���
����

����� ���� and �
�� and the de�nition of
L

imply�

�� �f�c� d�m��� Z�� � �� �f�c� d�m��� Z������

which ends the proof
�

Case 
� �no change�

ft�i� � � � ft�i� � �����

�
�� and ���� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i����	�

�
�� and ��	� imply�

�� �f�c� d�m��� Z�� � �� �f������ �����g�rt�i�� rt�i���m��� Z������

���� and de�nition of �f imply�

�� �f�c� d�m��� Z�� � �� �f����� ����m��� Z����� �f�g�rt�i�� rt�i���m��� Z������

Induction hypothesis implies�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
����

���� and de�nition of �f and of
L

imply�

�� �f �c� d�m��� Z�� � �z�� � � � � zn�
L
�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
��
�

��
� and de�nition of m and ntb imply�

�� �f �c� d�m��� Z�� � ntb�m���� � � � � ��� �z�� � � � � zn���
L
�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
��
�

��
�� ���� and de�nition of �fn imply�

�� �f �c� d�m��� Z�� � �� �fn����� ����m���� � � � � ��� �z�� � � � � zn���
L

�zn����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���g�rt�on� rt�i��� �� zn���
����

��



����� ��	� and �
�� and the de�nition of
L

imply�

�� �f�c� d�m��� Z�� � �� �f�c� d�m��� Z������

which ends the proof
�

Case �� �clear�

ft�i� ��	 �ft�i� � � �ft�i� � � is taken here 
 ft�i� � � is analagous�����

�
�� and ���� imply�

g�i�� i�� � ����� �����g�rt�i�� rt�i������

�
�� and ���� imply�

�� �f�c� d�m��� Z�� � �� �f������ �����g�rt�i�� rt�i���m��� Z����	�

��	� and de�nition of �f imply�

�� �f�c� d�m��� Z�� � �� �f����� ����m��� Z����� �f�g�rt�i�� rt�i���m��� �������

Induction hypothesis implies�

�� �f �c� d�m��� Z�� � �� �f����� ����m��� Z���

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� �� ��
����

���� and de�nition of �f and of
L

imply�

�� �f �c� d�m��� Z�� � ��� � � � � ��
L
����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� �� ��
����

���� and de�nition of m and ntb imply�

�� �f �c� d�m��� Z�� � ntb�m���� � � � � ��� ��� � � � � ����
L
����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� �� ��
��
�

��
�� ���� and de�nition of �fn imply�

�� �f �c� d�m��� Z�� � �� �fn����� ����m���� � � � � ��� �z�� � � � � zn���
L

����

�� �fn�g�rt�i�� rt�i���m���� � � � � ��� ��� � � �� ����
L

�� �fn���g�rt�on� rt�i��� �� ��
��
�

��
�� ���� and �
�� and the de�nition of
L

imply�

�� �f�c� d�m��� Z�� � �� �f�c� d�m��� Z������

which ends the proof
�

Case �� �still waiting for i��

ft�i� �	 �ft�i� ��	����

which is trivial because of monotonicity
�

Case 
� �still waiting for i��

ft�i� ��	 �ft�i� �	����

��



which is trivial because of monotonicity
�

Now we want to show �
�� based on the lemma �
��� We assume

g�i�� i�� � �c� d�����

�� �f��c� d� �� z�� � o� � � � �� �� �fn���on� d� �� zn��� � on����	�

Now we have to proof

�� �f�c� d�m��� Z�� � �o�� � � � � on�������

����� ��	� and ���� imply�

�� �f�c� d�m��� Z�� � ��� �f��c� d� �� z��� � � � � ��
�fn���on� d� �� zn��������

de�nition of
L

implies�

�� �f �c� d�m��� Z�� � ��� �f��c� d� �� z��� � � � � ��
�fn�on��� d� �� zn��

L

�� �fn���on� d� �� zn���
����

Induction Hypothesis implies�

�� �f �c� d�m��� Z�� � �� �fn�c� d�m���� � � � � ��� �z�� � � � � zn���
L

�� �fn���on� d� �� zn���
��
�

which holds because of �
��
�

��


