Formal Design of a Modulo-N Counter

Max Fuchs
Institut fur Informatik
Technische Universitat Munchen

D-80290 Miinchen, Arcisstr. 21

e-mail: fuchs@informatik.tu-muenchen.de

Abstract

We illustrate the use of functional system specifications and their refinement
in the formal development of hardware systems by a small electronic device, an
asynchronous modulo N counter. The development includes modular specification,
refinement and verification. We start with an intuitive abstract requirements spec-
ification and refine this into a non-trivial concrete bit-level implementation. The
refinement steps comprise behavioral, structural and interface refinement. The
emphasis of this study is laid on the modeling at different levels of abstraction
and the verification conditions obtained by the refinement relations between this
versions.

1 Introduction

The formal design of hardware systems is a subject of remarkable interest in the area of
computer science [MT90]. The complexity of electronic systems in both area and func-
tionality requires modular specification and refinement techniques. Moreover an appro-
priate design method for hardware systems should offer techniques for precise and clean
interface descriptions. A specification method with these properties is Focus [BDD192].
It is based on a functional setting and modularity allows Focus to scale up quite well
with specifications of non-trivial complexity. For an overview of case-studies carried out

so far in Focus see [BFG194].

To illustrate the use of Focus we choose a small, but non-trivial example, namely an
asynchronous modulo N counter. On many occasions in hardware systems counters
capable of counting from state 0 through state N — 1 and then cycle back to the state 0
are needed. We refer to such counters as modulo N counters [NCI75, EP92]. There are
synchronous and asynchronous modulo N counters. The synchronous ones are controlled

by a common clock signal and in general they are slower than the asynchronous versions.
This paper concentrates on the formal design of an asynchronous modulo N counter. In
a number of straightforward refinement steps a non-trivial bit-level implementation is
refined from an intuitive abstract requirement specification.

In the specification method Focus a system is modeled by a network of functional com-
ponents working concurrently, and communicating asynchronously via unbounded FIFO
channels [Kah74, Del87, BDD192]. A number of reasoning styles and techniques are sup-
ported. Focus provides mathematical formalisms which support the formulation of highly
abstract, not necessarily executable specifications with a clear semantics. Moreover, Fo-
cus offers powerful refinement calculi which allow distributed systems to be developed in
the same style as the methods presented in [Jon90], [Bac88], [Mor90] allow for the de-
velopment of sequential programs. The refinement steps comprise behavioral, structural
and interface refinement [Bro92]. Focus is modular in the sense that design decisions
can be checked at the point where they are taken, that component specifications can be
developed in isolation, and that already completed developments can be reused in new
program developments.

This paper is organized as follows. In Section 2 we introduce the underlying formalism.
In Section 3 it is explained, what we mean by specification and refinement. The formal
design of the modulo N counter is performed in Section 4. Here we start with an intuitive
abstract specification and refine it into a non-trivial network of subcomponents at the
bit-level. Section 5 summarizes and draws some conclusion.

2 Underlying Formalism

N denotes the set of natural numbersincluding 0 and B denotes the set of binary numbers
{0,1}. A stream is a finite or infinite sequence of actions. It models the history of a
communication channel, i.e. it represents the sequence of actions sent along the channel.
Given a set of actions D, D* denotes the set of all finite streams generated from D; D>
denotes the set of all infinite streams generated from D, and D* denotes D* U D*>.

Itde D,r,s € D¥ and j € N, then:
e ¢ denotes the empty stream;

o #r denotes the length of r, i.e. oo if r is infinite, and the number of actions in r
otherwise;

ft.r denotes the first action of a stream r (undefined if r is empty);
e rt.r denotes the rest of stream r (r without the first action);

e d& s denotes the result of appending d to s;

e r~ s denotes the concatenation of r and s, i.e. r ~ s ; is equal to r if r is infinite,
and is equal to s prefixed with r otherwise;

o r L s denotes that r is a prefix of s, 1.e. dp€ D¥ :r~p =s;
e 77 denotes a j-tuple of streams r only.

The stream operators defined above are overloaded to tuples of streams in a straight-
forward way. If d € D, t is an n-tuple of actions, r,s are n-tuples of streams and
J €{1l,...,n}, then #r denotes the length of the shortest stream in r; ¢ & s denotes the
result of applying & pointwisely to the components of ¢ and s; d &; s denotes the result
of appending d to the j’th stream in s only; r ~s and r C s are generalized in the same
pointwise way.

A chain ¢ is an infinite sequence of stream tuples cq,cq,... such that for all j € N,
¢; C ¢j1. Uce denotes ¢’s least upper bound. Since streams may be infinite such least
upper bounds always exist.

A function f € (D¥)" — (D¥)™ is called a (n, m)-ary stream processing function iff it is
monotonic which means that

for stream tuples ¢ and ¢ in (D*)" : ¢ C ' = f(i) C f(¢'),
and continuous which means that

for all chains ¢ generated from (D“)" : f(Ue) = U{f(¢;)|j € N}.

That a function is monotonic implies that if the input is increased then the output may
at most be increased. Thus what has already been output can never be removed later
on. Continuity, on the other hand, implies that the function’s behavior for infinite inputs
is completely determined by its behavior for finite inputs.

3 Specification, Refinement and Networks

A specification of an agent with input channels and output channels is written in the
form

spec Sig: Ty — 1T, = F.

S is the specification’s name and ¢ is a variable ranging over the domain of stream
processing functions characterized by 177 — T, where T} and T are domains of stream
tuples for input and output; and F'is a formula with ¢ as its only free variable. The vari-
able g characterizes the interface of the component we want to design. A specification’s
denotation [S] is the set of all stream processing functions which satisfy F.

A specification Sy refines another specification Sy, if [Sz | € [Sy], i.e. if any stream
processing function which satisfies S5 also satisfies S;. We choose here the most simple
and most basic logical notion of refinement for specifications, namely logical implication.
It Iy and F, are the corresponding formulae to 57 and 59, respectively, then 57 refines
Sy iff Fy = F,. This refinement concept is compositional and introduced in [Bro92].

We distinguish between three different styles of refinement, namely behavioral refine-
ment, structural refinement and interface refinement. Behavioral refinement allows to
add properties and consequently restrict the number of models. Structural refinement
performs a splitting of a single specification into a network of specifications. Interface
refinement changes the number of input and output channels of a component as well as
the granularity of the actions coming along the channels — the latter is also called action
refinement.

The definition of a network of specifications is the main structuring mechanism. A net-
work can either be defined by equational definitions or by special composition operators.
In this paper we choose equational definitions to describe networks of specifications. In
an equational definition a network is defined by a set of mutually recursive stream equa-
tions. The semantics is the least function that fulfills the defining equations for all input
values [Ded92]. To give an example, the semantics of the network shown in Figure 1 is
given by the least function, which fulfills the following equation:

S1-fi N Sa.fo AV r Ja,y, 0080 fi(e,2) = (0,y) A f2(y,r) = (2, 8)

Note that for different functions f; and f;, which fulfil S7 and S5, respectively, a different
fixpoint is calculated — this phenomena reflects underspecification.

4 r
e
s Sl
o S

Figure 1: Mutual feedback composition of two specifications.

4 Design of a Modulo N counter

In this section we refine an abstract specification of a modulo N counter into a non-trivial
bit-level implementation. Before going through the different design steps in detail we

4

give an overview of the entire development process. As shown in Figure 2 we start with
a black box specification M N(C' that characterizes the external behavior of the counter.

/B

MNC

(1) Structural Refinement

(2) Interface Refinement

3 (3) Action Refinement

\8 (4) Structural and
Behavioral Refinement

—1 CTBIT CTBIT = " —= CTBIT =~

Vo Vo Vo

Figure 2: An overview about the design of a modulo N counter.

The input lines carry streams of bits and the output line carries natural numbers between
0 and N — 1. In the first design step (1), a so called structural refinement, the black
box specification is refined into a specification of a controller COL and a counter C' NT.
The controller is responsible for resetting the counter whenever the counter’s most recent
output was N—1 and a new count signal is received. The counter itself increases or resets
the output value on demand. In the following we restrict ourself to the development of
the counter only. The second design step (2), a so called interface refinement, replaces
each output line which carries natural numbers by an appropriate number of output
lines carrying bits. The necessary number of lines is of course a function of N. The third
design step (3) is a so called action refinement. To allow hardware implementations
based on master/slave flipflops, where only impulses and not signals (sequence of 1’s)
are counted, we have to refine the bits on the input lines in an adequate way. The
interesting action refinement is the refinement of a 1, which is represented by a 1 followed
by a 0 — consequently a sequence of 1’s is replaced by a sequence of impulses. The fourth
design step (4) is a combination of a structural and a behavioral refinement step. The
specification of the counter achieved during the third design step is split into a network of
identical component specifications. Each specification describes a bit-slice of the counter
and could be implemented by a master/slave flipflop. Note that the development of
the modulo N counter would of course also include the corresponding refinement steps
for the controller to ensure that both components, the controller and the counter, work
properly together.

4.1 Requirement Specification

o

Figure 3: A modulo N counter.

We start with an abstract specification of a modulo N counter. The modulo N counter
has two external input channels, which corresponds to the count (¢1) and to the clear (5)
input, and one external output channel, which carries natural numbers € {0,... N—1},
as indicated by Figure 3. The counter counts from state 0 through state N—1 and than
cycles back to state 0. Regardless of the count input, a 1 at the clear input resets the
counter to 0. On the other hand a 1 at the count input increments the counter with
respect to modulo N. The formal specification is given in Figure 4.

spec MNC :: f: B*Y xB¥Y — N¥ =
Vir, i3 € BY 1 f(i1,12) = g(11,12,0)
where Vco,cl € B¥, 2z € N :
g(co, 1&el, z) = 0&g(rt.co, cl,0)
g(0&co,0&¢l, z) = z&g(co, cl, =)
g(1&co,0&cl,z) = if z=N—1
then 0&¢(co, cl,0)
else z + 1&g(co, el z 4+ 1)

Figure 4: Specification of a modulo N counter.

The counter is specified in terms of a function ¢ which has an additional state parameter
to store the last output value. Whenever the signal received on the second input line,
which corresponds to the clear input, is a 1, a reset is performed and 0 is output. If a 0
is received on both input lines the counter’s state does not change and it’s current state
value, which represents the last output value, is output. When a 1 is received on the first
input line, which represents the count input, and a 0 is received on the second there are
two cases to consider. If the counter’s state is equal to N — 1 the counter is reset and 0
is output, otherwise the state is incremented and the incremented state value is output.
Note that N is a constant which can be instantiated as needed.

4.2 First Structural Refinement

1 liz Y 1 T2
COL CNT

Figure 5: First structural refinement of a modulo N counter.

The first refinement step is a structural decomposition. As indicated in Figure 5, the
modulo N counter M NC is decomposed into two component specifications — a controller
COL and a counter C NT. The counter, which is specified in Figure 6, differs from the
modulo N counter in the sense that it does not reset itself whenever a count request
is received and the upper limit N — 1 has already been reached. This task has been

transferred to the controller, which is informed about the counter’s current state via y.
The specification of the latter is given in Figure 7.

spec CNT :: f : B x B¥ — NY x N¥ =
Vo, xy € BY 1 f(21,22) = 0&19(xy, 22, 0)?
where Vco,cl € B¥;z € N :
g(co, 1&el, z) = 0&g(rt.co, cl,0)
g(0&co,0&¢l, z) = z&g(co, cl, =)
g(1&co,0&¢l, z) = z 4+ 1&g(co,el, z + 1)

Figure 6: Specification of the counter CNT'.

Note that the expression g(zy,x2,0)* used in the specification of C NT' in Figure 6 rep-
resents the tuple (g(x1,x2,0),¢(x1,24,0)) and that an initial value 0 is output on y via
the &q-operator.

spec COL:: f: B xBY xN* — B x B* =
Vii,ip € BY;y € N¥:
Flir, 1&i2,y) = (0, V)& f(rt.iq, 19, rt.y)
F(0&iy1,0&i2,y) = (0,0)& f(rt.iq1, 19, rt.y)
F(1&iy,0&iz,y) = if ftly=N—1
then (0, 1)& f(21, 22, 7t.y)
else (1,0)& f(i1, 12, 7t.y)

Figure 7: Specification of the controller COL.

The controller only resets the counter whenever there is an external reset signal or there
is a count signal and the current state of the counter is already N—1 (seen via y).

The correctness of this decomposition, i.e. that

Vi, :COL.f{ N\CNT.fo =3f: MNC.f AViy, 1,21, 22,Y,0:
filtn, to,y) = (x1,22) A oy, 22) = (y,0) = f(i1,12) = o,

follows by fixpoint induction and straightforward predicate calculus.

Note that the fixpoint concept reflects the characteristics of feedback in communication
in an appropriate manner. If further output requires more input (via feedback) than
available this way no more output is generated. This is properly modeled by the as-
sumption that the fixpoint is the least one. The initial value 0 in the specification of
C'NT indicates, that the counter’s internal state is 0 at the very beginning and allows
the calculation of an non-trivial fixpoint (# e).

In the following we restrict ourself to the development of the counter C'NT' only. Note
that of course all interface refinements of C'NT', which would affect the controller’s
interface, would also require refinements of C'OL.

4.3 Interface Refinement

CNT

Figure 8: Interface refinement of the counter C NT'.

The CNT component we have so far consists of two input channels of type B and two
output channels of type N. To go a step further towards hardware implementation,
we replace the channels of type N by an adequate number of channels of type B. As
indicated by Figure 8, we conduct an interface refinement in the sense that the interface of
the counter is refined modulo to representation specifications R and R’. More explicitly,
each channel of type N is refined into N channels of type B, where N is the bandwidth
required for a modulo N counter.

The auxiliary function ntb (nat-to-bin)

ntb::N—>BN

i < N = ntb(z) =b,

where iff ¢ = Z]Nﬂ b; 20~ and b; represents the j’th bit of the binary word b, yields
the binary representation of any natural number ¢ less than N.

The new counter specification C' NT', given in Figure 9, is a straightforward adaptation
of CNT, and the corresponding representation specifications are trivial. The latter are
given in Figure 10.

spec CNT :: f: BY x BY — (B*)N x (B¥)N =
Vo, xy € BY 1 f(ag,23) = ntb(0)&1g(x1, 22,0)?
where Vco,cl € B¥; 2 € N
g(co, 1&el, z) = ntb(0)&g(rt.co, cl,0)
g(0&co,0&¢l, z) = ntb(z)&g(co, cl, z)
g(1&co,0&¢l, z) = ntb(z + 1)&g(co,cl, z 4+ 1)

Figure 9: Specification of the counter C NT.

Note that the specification CNT just differs from C'NT' in the sense that it simply
converts the output into a bit representation by applying the auxiliary function ntb. The
representation specification R also converts natural numbers coming along the input lines
into their corresponding bit representation and R simply specifies the identity function.

spec R:: f: B xBY - BY x B¥ =
Viy, iy € BY : f(i1,42) = (41, 02)

spec R :: f:INY x N¥ — (B‘*’)N X (B‘*’)N =
Yy,0 € N¥: f(y,0) = (ntb(ft.y),ntb(ft.0)& f(rt.y,rt.0)

Figure 10: Representation specifications R and R'.

The correctness of this interface refinement, i.e. that
\V/gl, fl :R.gl A CNTfl :>E|f,g : R/g A CNTf A \V/il, iz . fl(gl(ila 12)) = g(f(ll, iz)),

again follows by fixpoint induction and straightforward predicate calculus.

4.4 First Action Refinement

So far CNT already counts on every single count message, which is represented by a
single “1”7. We now refine the counter to only count on impulses. This is closer to a
hardware implementation based on master/slave flipflops. Each occurrence of a 0 and a
1 in the input streams is represented by 0&0 and 1&0, respectively. The new counter
specification differs from the old one in the sense that it only assures to give the correct
count value for every second output.

10

=l
B

CNT

Figure 11: First action refinement.

Given the two auxiliary functions

6::BY — B”

6(0&s) = 0&0&6(s)
6(1&s) = 1&0&6(s)

o (B‘*’)N — (B‘”)N

o(a&b&c) = b&ko(c),

we now conduct an action refinement in accordance with Figure 11. Note that 6 does
exactly the expansion of the input data required. The function o allows us to take care
only of every second element in a stream — this property is needed to specify CNT. The
specification of CNT is given in Figure 12.

spec CNT = f:B* xBY - (B*)N x (BN =
Vo, xy € BY : o.f (2, 29) = nth(0)&10.9(x1, 22,0)?
where Vco,cl € B¥; 2 € N
g(co, 1&el, z) = ntb(0)&g(rt.co, cl,0)
g(0&co,0&¢l, z) = ntb(z)&g(co, cl, z)
g(1&co,0&¢l, z) = ntb(z + 1)&g(co,cl, z 4+ 1)

Figure 12: Specification of the counter CNT.

Note that in principle the specification CNT is defined for arbitrary input — however if
it receives input expanded by ¢, it performs on every second output the same counting

11

C NT performs on non-expanded input. Taking only every second output value into con-
sideration is necessary for the correctness of the next structural refinement step of section
4.5. Here CNT still counts on every 1 whereas on 0’s the output is kept stable. In the
next structural refinement step however, we split up CNT into a network of components,
each working just on one bit-slice like in a master/slave flipflop implementation. In this
network the counting takes only place on a 0 following immediately after a 1, which is in
fact counting based on impulses. Consequently on every second output value the more
abstract and the more concrete specifications correspond. On the other values however,
there can be a mismatch, which is handled by underspecification via the o-operator in

the specification of CNT - every value is allowed for the not specified output values.

Again the representation specifications are straightforward. They are given in Figure 13.
R is responsible for the transformations of 1 and 0 into 1&0 and 0&0, respectively. The
functions specified by B’ must have the property that filtering out every second value in
the output streams returns the input streams.

spec R:: f:BY x BY - BY x B =
\V/il,iz € Bv: f(il,iz) == (5@1,5@2)

spec R :: f: (B‘*’)N~ < (BN = (BY)N x (B¥)N =
Vi, ty € (BN o f(ty, t2) = (1, 12)

Figure 13: Representation specifications R and R'.

The correctness is once more straightforward. It must be shown that

\V/gl,fl :F.gl A C/]V\Tfl :>E|f,g . Fg A CNTf A \V/il,iz . U.fl(gl(il,iz)) = O'g(f(ll,lz))

4.5 Second Structural Refinement

tw—= OTBIT CTBIT CTBIT ——=
\Lyl L01 l?h l02 lyn LOn

Figure 14: Second structural refinement of the counter.

12

The counter is now decomposed into N identical components whose specification is given
in Figure 15. The specification describes a bit-slice of the counter which could be finally
implemented by a master/slave flipflop.

spec CTBIT :: { : B xBY — B* x B* x BY =
Vir ia € BY ¢ [(i1, is) = 0&,0&1(iy, iz, 0,0)?
where Vco,cl € B¥;z,0 € B :
g(co,1&el, z,0) = 0&g(rt.co, cl,0,0)
g(1&co,0&¢l, z,0) = 0&yg(co,cl, 1,0)
g(0&co,0&¢l, z,0) = if z=1
then —o&g(co,cl, 0, -0)
else o&g(co,cl, z, 0)

Figure 15: Specification of CTBIT.

The two state variables in function ¢ represent the last read value at the count input (z)
and the last output value (o), respectively. Note that a 1 at the count input does not
change the current output value of CT' BIT, but a 0 right after a 1 changes the output
and finally increments the counter. To increment a bit slice means simply to invert the
previous output.

The correctness of this decomposition, i.e. that
Vg, fraeeos fo :Rg NN CTBIT.f;) = 3f : ONT(n).f A Vir,ig,c,d,or, ..., 00 -
7=1

g(i1,%2) = (¢,d) = ((0.fi(e,d) = (01)° AN o.fao1,d) = (02)° A ... Ao fru(on-1,d) = (0n)?)
= o.f(c,d) = (01,...,0,)%),

can be shown by induction and straightforward predicate calculus where n is a short-
hand for N. For the detailed proof we refer the reader to the Appendix. The refinement
applied here also includes behavioral refinement. It fixes the entire output values and

not only every second value as it is done in CNT.

5 Conclusion

A functional style for the formal development of an asynchronous modulo N counter
has been applied. Based on this case study it has been shown that the modular design
method Focus can be used to specify and stepwisely refine an intuitive abstract require-
ment specification of a hardware component into a non-trivial bit-level implementation.
Because our method is modular and we conduct our reasoning at a very abstract level

13

we believe that our technique scales up quite well with specifications of a non-trivial

complexity.

6 Acknowledgments

I would like to thank Ketil Stelen for fruitful discussions and valuable comments which led
to many improvements. [would like to thank also Manfred Broy for a careful reading of a
previous version. Financial support has been received from the Sonderforschungsbereich
342 “Werkzeuge und Methoden fir die Nutzung paralleler Rechnerarchitekturen”.

References

[Bac88]

[BDD*92]

[BFG194]

[Bro92]
[Ded92]
[Del87]

[EP92]

[Fuc95)
[Jon90]
[Kah74]
[Mor90]

[MT90]

[NCI75]

R. J. R. Back. A calculus of refinments for program derivations. Acta Informatica, 25:593—
624, 1988.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber. The Design
of Distributed Systems — An Introduction to Focus. SFB-Bericht 342/2/92 A, Technische
Universitat Minchen, January 1992.

M. Broy, M. Fuchs, T. F. Gritzner, B. Schatz, K. Spies, and K. Stglen. Summary of case
studies in Focus - a design method for distributed systems. Technical Report SFB 342/13/94
A, Technische Universitat Munchen, 1994.

M. Broy. Compositional Refinement of Interactive Systems. Technical Report 89, Digital
Systems Research Center, Palo Alto, California 94301, July 1992.

F. Dederichs. Transformation verteilter Systeme: Von applikativen zu prozeduralen Darstel-
lungen. SFB-Bericht 342/17/92 A, Technische Universitat Miinchen, August 1992. Dok-
torarbeit.

C. Delgado Kloos. Semantics of Digital Circuits. Springer, 1987. LNCS 285.

C. Ebergen and M. G. Peeters. Modulo-N Counters: Design and Analysis of Delay-Insensitive
Circuits. In J. Staunstrup and R. Sharp, editors, Second Workshop on Designing Correct
Cicuits, January 1992.

M. Fuchs. Formal Design of a Modulo-N Counter. SFB-Bericht 342/06/95 A, Technische
Universitat Minchen, April 1995.

C. B. Jones. Systematic Software Development Using VDM, Second Edition. Prentice-Hall,
1990.

G. Kahn. The semantics of a simple language for parallel programming. In Proc. Information
Processing 74, pages 471-475. North-Holland, 1974.

C. Morgan. Programmang from Specifications. Prentice-Hall, 1990.

K. McEvoy and J. Tucker. Theoretical Foundations of Hardware Design. In K. McEvoy and
J. Tucker, editors, Theoretical Foundations of VLSI Design, volume 10 of Cambridge Tracts
i Theoretical Computer Science, chapter 1, pages 1 — 62. Cambridge University Press, 1990.

H. Nagle, B. Carroll, and J. Irwin. An Introduction to Computer Logic. Prentice-Hall, 1975.

14

7 Appendix

In this section the proof of the reﬁnenﬁlistep applied in section 4.5 is carried out in detail. Due to the
fact that the two output streams of C'NT" and the three output streams of any C'T'BIT are identical
for each component, we simplify these components by taking just one output stream into consideration.
The corresponding proof obligation is as follows:

Vg, f1,..., fn: Rg/\(/\ CTBITf])ij CNT()f/\Vil,iz,C,d,Ol,...,On

g(i1,i2) = (e, d) = ((Ufl(c d)=o1 No.folor,d) =0s A... Ao fa(on_1,d) = 0p)
= 0.f(c,d) = (01,...,04))

The proof is carried out by induction on n:
Base case: n =1
Must be shown that:

Vg, fi :Rg ACTBIT.fy = 3f : ONT(1).f AViy,is,c,d
g(i1,12) = (¢, d) = o.fi(e,d) = o.f(e,d)

To show this we refer to the internal functions JE1 and f used to define f; and f. The proof for the
initial values, which are only covered by f1 and f, is trivial. The functions f, and f are based on states.
To relate the concrete states in f; to the abstract state in f we introduce a function

(1), meB"xB" =N

where

(2) Vz,zeB":m(z,7) = btn(z)

We then get the following proof-obligation:

(3 Vofi:RgACTBITf = 3f: CNT(L).f AViy, iz e,d,z:
g(i1,i2) = (¢,d) = 0.f1(¢,d,0,%) = 0.f(c,d, m(0, %))

The proof of (3) is by induction on the sum of the lengths of ¢; and é;. The base case #i; + #i2 = 0
follows trivially because of monotonicity. We assume that (3) holds for #i; + #i2 = n. We want to
show that (3) holds for #i; + #i2 = n+ 1. Assume

(4) (i, i2) = (¢, d)

There are five cases to consider:
Case 1: “count”

5) ftii=1Aftiz =0

4) and (5) imply:

6 g(i1,12) = (1&0, 0&0)~g(rt.i1, 7t.is)
and (6) imply:

7 c. fl(c d,0,Z) = o. fl((l&O 0&0)—~g(rt.i1,rt.i2),0,%)
7) and the definition of f1 imply:

Ufl(c d,0,z) = Ufl(l&O 0&0,0,%)~0. fl((rt.iy,rt.d2),0,-%)

(
(
(
(4
(
(
(8

)
)
)
)
)
)

15

(8) and induction hypothesis imply:
9) o.fi(c,d,0,7) = 0.f,(1&0,0&0,0,Z)~0.f(g(rt.iy, rt.iz), m(0, =7))
(9) and the definition of ¢ and £, imply:

(10) 0.f,(c,d,0,%) = =z~a.f(g(rt.i1, rt.is), m(0, =7))

(10) and (2) imply:

(11) o.f,(c,d,0,%) = ntb(m(0, =%))~0o.f(g(rt.ir, rt.iz), m(0, =Z))

(11) and definition of f imply:

(12) 0.f,(c,d,0,%) = 0. f(1&0, 0&0, 0, 2)~0. f(g(rt.i1, rt.is), m(0, =Z))
(4) and (12) imply:

(13) o.f1(c,d,0,2) = o.f(c,d, m(0,%))

which ends the proof

Case 2: “no change”

(14) ftiy =0A ftis =0

(4) and (14) imply:

(15) g(i1,42) = (0&0, 0&0)~g(rt.iy, rt.is)

(4) and (15) imply:

(16) o.f1(c,d,0,7) = o.f,((0&0,0&0) ~g(rt i1, rt.is), 0,7)

(16), the definition of f, and the fact that g applied to an element yields 0&0 or 1&0 imply:
(17) o.f1(c,d,0,2) = 0.f,(0&0,0&0,0,Z)~0.f, (g(rt.ir, rt.i2), 0, Z)
(17) and induction hypothesis imply:

(18) o.f,(c,d,0,7) = .f,(0&0,0&0,0, %) ~a.f(g(rt.iy, rt.is), m(0, 7))
(18) and the definition of ¢ and f, imply:

(19) o.f1(c,d,0,7) = Z~0.f(g(rt.iy, rt.is), m(0, 7))

(19) and (2) imply:

(20) o.f1(c,d,0,7) = ntb(m(0,z))~0c.f(g(rt.iy, rt.is), m(0, 7))

(20) and definition of f imply:

(21) o.f1(¢,d,0,7) = 0.f(0&0,0&0,0,2)~0.f(g(rt.iy, rt.is), m(0, 7))
(4) and (21) imply:

(22) o.fi(c,d,0,2) = o.f(c,d, m(0,7))

which ends the proof

16

Case 3: “clear”

(23) ftiy #1L Aftis =1 (ft.iy =0 is taken here — ft.iy = 1 is analagous)
(4) and (23) imply:

(24) (i1, 12) = (0&0, 1&0)~g(rt i1, rt.is)

(4) and (24) imply:

(25) o.f1(c,d,0,7) = o.f,((0&0, 1&0) ~g(rt i1, rt.is), 0,7)

(25) and the definition of f, imply:

(26) o.f1(c,d,0,2) = 0.f,(0&0,1&0,0,Z)~0.f,(g(rt.i1, 7t.i2),0,0)
(26) and induction hypothesis imply:

(27) o.f1(c,d,0,7) = o.f,(0&0,1&0,0,Z)~a.f(g(rt.iy, rt.is), m(0, 0))
(27) and the definition of ¢ and f, imply:

(28) o.f,(c,d,0,7) = 0—~a.f(g(rt.ir, rt.iz), m(0,0))

(28) and (2) imply:

(29) o.f1(c,d,0,7) = ntb(m(0,0))~a.f(g(rt.iy, rt.is), m(0,0))

(29) and definition of f imply:

(30) o.f1(c,d,0,7) = 0.f(0&0,1&0,0,%)~0.f(g(rt iy, rt.i5), m(0, 0))
(4) and (30) imply:

(31) o.fi(c,d,0,2) = o.f(c,d, m(0,%))

which ends the proof

»

Case 4: “still waiting for iy
(32) ftia =L Aftis#L

which is trivial because of monotonicity

Case 5: “still watting for i5”
(33) ftin#£LAftis=1

which is trivial because of monotonicity
Induction hypothesis (Induction on n)
Y9, fiyeoos o i RgAN(N\ CTBIT.f;) = 3f : CNT(n).f AViy, iz, c,d, o1, ... 0n

ji=1

g(ir,i2) = (¢, d) = ((0.file,d) = 01 Ao fa(or,d) =02 A .. A0 fr(on_1,d) = 0,)
= 0.f(c,d) = (01,...,04))

17

Inductive case (Induction on n)

Must be shown that:

Vg, f1,- s fat1 :R.g/\(/\ CTBIT.f;) = 3f: C'NT(n—i—l)f/\Vzl,zz,c d,o1,...,0n41 :
=1

g(i1,42) = (¢, d) = ((o. fl(C d) =01 No.falor,d) =02 A Ao foyi(on,d) = 0p41)
= o.f(c,d) = (01,...,0n41))

To show this we refer to internal functions fl, .. ,fn+1 and f used to define fi,..., fo41 and f. The
proof for the initial values, which are only covered by fi,..., fay1 and f, is trivial. The functions
fl, ce fn+1 and f are based on states. To relate the concrete states in fl, - ,fn_l_1 to the abstract

state in f we again use the function declared in (1) and (2). Assume:

(34) 0=1(0,...,0)
We then get the following proof-obligation:
_ n+1
Vg, Fiveeo s s Rg A (N CTBIT.f)
ji=1
(35) = Elf : CNT(H + 1).f/\Vi1,i2,C, d, 01y s Opgl, 21y -y Zngl -
g(il,i2) = (C, d) = N
((U.fl(cld, 0,21)_: o1 AN A fii(0n,d,0,Z041) = Ony1)
= O'.f(c, d, m(O, (51, .. .,5n+1))) = (01, ceey On+1))

To prove (35) we first of all show that the lemma (36) holds:

Vg, fapi, /7 Rg ACTBIT fuyr ACNT(n).fr
:>E|f:m(n+1).fAVi1,i2,c,d,01,...,0n+1,31,...,2n+1 :
(36) glir,iz) = (¢, d) =
U.fN(c, d,m(0,(Z1,...,Zn41))) =)
o fr(e,d,m((0,...,0),(Z1,...,Z0))) B 0. fy1(0on,d,0,Z041)

The proof of (36) is by induction on the sum of the lengths of ¢; and é5. The base case #ié; + #iz =0
follows trivially because of monotonicity. We assume that (35) holds for #¢; + #ié2 = n. We want to
show that (36) holds for #iy + #i2 = n + 1. Assume

(37) g(il, 22) = (C, d)
(38) Z=(Z1,..,Zns1)
There are six cases to consider:

Case 1: “count but not transmitted beyond o,” — Z must not be (1,...,1,Z,41)

39 ftll—l/\ftlz—o

(39)

(37) and (39) imply:

(40) g(i1,ia) = (1&0, 0&0)—~g(rt.iy, rt.is)
(37) and (40) imply:

(41)

. f(c d,m(0, 7)) = o.f((1&0, 0&0) ~g(rt.i1, rt.iz), m(0, 7))

18

(41) and definition of f imply:

(42) a.f(c,d,m(0, 7)) Uf(l&O,O&O,m(G),)?))A

o.f(g(rt.iy, rt.is), m(0, ntb(btn(Z) + 1))
We assume:

(43) ntb(btn(Z)+ 1) = (Ty, - -, Unp1)

(43) and (42) and Induction hypothesis imply:

o.f(e,d,m(0,Z)) = o.f(1&0,0&0,m(0, Z))~)
o fr(g(rtdy, rtiz), m((0,...,0), (T, -, 9,))) D - frq1(g(rt.on, 7t.iz),0,Z41)

(44) and definition of f and of & imply:

sy AEAmOD) = @ T D)~
o.fr(g(rt.iy, rtda), m((0,...,0), (7, .-, 7,))) P U.fn_l_l(g(rt.on, 7t.42),0,Zp41)

(45) and definition of m and ntb imply:

(46) U.ji(c, d,m(0, Z)) = ntb(m((0,...,0),(¥y,---,7,))) @(2n+1)
o. fr(g(rt.ir, rtiz), m((0,...,0), (T, ... ¥,))) Do fryi(g(rt.on, rtiz),0,Zn41)

(46), (39) and definition of 7 imply:

(44)

. f(c,d,m(0,2)) = o.f7(1&0,0&0, m((0, ..., 0), (Z1, ..., %n)) D (Zng1)
o.fr(g(rt.iy, rtda), m((0,...,0), (7, ..., 7,))) Po iy 1(yg (rt O, Tt.42),0,Zp41)

(47), (40) and (37) and the definition of € imply:
(48) o.f(c,d,m(0, 7)) = o.f(c,d, m(0, 7))

(47)

which ends the proof

Case 2: “count but transmitted beyond 0,” — Z has to be (1,...,1,Z,41)

(49) ftii=1Aftin =0

(37) and (49) imply:

(50) (i1, ia) = (1&0,0&0)~g(rt.i1, rt.is)

(37) and (50) imply:

(51) o.f(e,d, m(0,Z)) = o.f((1&0, 0&0) ~g(rt.iy, rt.iz), m(0, Z))
(51) and definition of f imply:

o f(c,d,m(0,2)) =0 f(1&o 0&0, m(0, Z))~

o.f(g(rt.iy, rt.is), m(0,(0,...,0,Zn11)))

Induction hypothesis implies:

o.f(c,d,m(0,2)) = . f(1&0,0&0,m(0, Z))~

o. [(g(rt.ir, rtiz), m((0,...,0),(0,...,0)) P o.fry1(9(rt.on, rt.iz),0,7Z541)

(52)

(53)

19

(53) and definition of f and of & imply:

(54) .f(e,d,m(0,Z)) = (0,. ..,0) B(-Znp1)— i
o. [(g(rt.ir, rtiz), m((0,...,0),(0,...,0)) P o.fry1(9(rt.on, rt.iz),0,7Z541)

(54) and definition of m and ntb imply:

(55) U.j'i(c, d,m(0, Z)) = ntb(m((0,...,0),(0,...,0))) @(—'E,H_l)f\
o.f?(g(rtdy, rtiz), m((0,...,0),(0,...,0)) P 0. fnyr(g(rt.on, rt.iz), 0,72, 41)

(55), (49) and definition of f* imply:

.f(c,d,m(0,Z)) = o.f7(1&0,0&0,m((0,...,0),(L,..., 1)) B(~Fns1)~
o.fr(g(rt.éy, rtda), m((0,...,0),(0,...,0)) P U.fn_l_l(g(rt.on, rt.42),0, " Zn41)

(56), (50) and (37) and the definition of € imply:
(57) o.f(e,d,m(0,2)) = o.f(c,d, m(0, 7))

(56)

which ends the proof

Case 3: “no change”

(58) ftiy =0A ftis =0

(37) and (58) imply:

(59) g(i1,is) = (0&0, 0&0) ~g(rt iy, rt.is)

(37) and (59) imply:

(60) o.f(c,d, m(0, 7)) = o.f((0&0, 0&0)~g(rt.iy, rt.iz), m(0, 7))

(60) and definition of f imply:

(61) o.f(c,d,m(0,2)) = .f(0&0,0&0, m(D, Z))~a.f(g(rt.ir, rt.iz), m(0, Z))

Induction hypothesis implies:

a.f(c,d,m(0,2)) = o.f(0&0, 0&0, m(U 7))~ i
o. [(g(rt.ir, rtiz), m((0,...,0),(Z1,...,Zn))) B 0. frii(g(rt.on, rt.42),0,Z,41)

(62) and definition of f and of & imply:

o f(c,d,m(0,7)) = (zl,..)@(zm)
(63) o.fr(g(rt.iy, rtda), m((0,...,0),(Z, ..

(63) and definition of m and ntb imply:

(64) U.j'i(c, d,m(0, Z)) = ntb(m((0,...,0),(Z1,...,Zn))) @(EH_H)A
o. [(g(rt.ir, rtiz), m((0,...,0),(Z1,...,Zn))) B 0. frii(g(rt.on, rt.42),0,Z,41)

(64), (58) and definition of f» imply:

(62)

Zn)) B o frii(g(rt.on, rtia),0,Z,41)

a.jj(c, d, m(0,2)) = o.f7(0&0,0&0, m((0, .. .,0),(Z Z1, 5 70) D (Fagr)

(65) o.fr(g(rt.iy, rtda), m((0,...,0),(Z1,...,Z));@ ((rt On, 7.92),0,Zn41)

20

(65), (59) and (37) and the definition of) imply:
(66) o.f(c,d,m(0, %)) = o.f(c,d, m(0, 7))

which ends the proof

Case 4: “clear”

(67) ftiy #L Aftig =1 (ft.iy =0 is taken here — ft.iy = 1 is analagous)
(37) and (67) imply:

(68) (i1, iz) = (0&0, 1&0)~g(rt.iy, rt.is)

(37) and (68) imply:

(69) o.f(c,d, m(0,7)) = o.f((0&0, 1&0)~g(rt.iy, rt.i2), m(0, 7))

(69) and definition of f imply:

(70) o.f(c,d, m(0,7)) = 0.f(0&0, 1&0, m(0, Z))—~0o. f(g(rt.i1, rt.iz), m(0,0))

Induction hypothesis implies:

(71) o f(c,d,m(0,2)) = . f(0&0,1&0,m(0, Z))~
o. [(g(rt.ir,rtiz), m((0,...,0),(0,...,0))) P o.f,41(g(rt.on, rt.i2),0,0)

(71) and definition of f and of & imply:

(72) . f(c,d,m(0,2)) = (0,...,0)(0)~ i
o.f?(g(rtdy, rtiz), m((0,...,0),(0,...,0)) P 0. fni1(g(rt.on, rt.i),0,0)

(72) and definition of m and ntb imply:

(73) o.f(c,d,m(0,2)) = ntb(m((0, ..., 0),(0,...,0))) B(0)~

o. [(g(rt.ir,rtiz), m((0,...,0),(0,...,0))) P o.f,41(g(rt.on, rt.i2),0,0)
(73), (67) and definition of f* imply:
(74) o.f(e,d,m(0,7)) = a.f7(0&0,1&0, m((0, . .., 0),(Z1, ..., Zn))) B(0)~

o.fr(g(rt.iy, rtiz), m((0,...,0),(0,...,0)) @ o.f,41(g(rt.on, rt.i3),0,0)
(74), (68) and (37) and the definition of) imply:
(75) o.f(e,d,m(0, 7)) = o.f(c,d, m(0, 7))

which ends the proof

Case 5: “still watting for i1”
(76) ftin =L Aftig #£L

which is trivial because of monotonicity

Case 6: “still watting for is”

(TT) ftii L Aftis =1

21

which is trivial because of monotonicity

Now we want to show (35) based on the lemma (36). We assume
(78) g(ir,i2) = (¢, d)

(79) U.fl(c, d,0,71) =01 A... A U.fn+1(on, d,0,Zp41) = Ont1

Now we have to proof

(80) o.f(c,d, m(0,2)) = (01,...,0n41)

(78), (79) and (80) imply:

(81) U.f(c, d,m(0,7)) = (U.fl(c, d,0,71),..., U.fn_l_l(on, d,0,Zn41))
definition of € implies:

(82) o.f(e,d,m(0,2)) = (0.f1(c,d,0,71),...,0.f,(0n-1,d,0, %)) B
O-'fn-l—l(On’ da Oa En+1)

Induction Hypothesis implies:

(83) o f(c,d,m(0,2)) = o.f"(c,d,m((0,...,0),(Z1, ..., %)) D
O-'fn-l—l(On’ da Oa En+1)

which holds because of (36)

22

