TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

Refinement Principles
Supporting the Transition from
Asynchronous to Synchronous

Communication

Ketil Stglen

TUM-19537
SFB-Bericht Nr.342/20/95 A
November 1995

TUM-INFO-11-95-137-100/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1995 SFB 342 Methoden und Werkzeuge fur
die Nutzung paralleler Architekturen

Anforderungen an: Prof. Dr. A. Bode
Sprecher SFB 342
Institut fiir Informatik
Technische Universitat Minchen
D-80290 Miinchen, Germany

Druck: Fakultat fur Informatik der
Technischen Universitat Miunchen

Refinement Principles
Supporting the Transition from
Asynchronous to Synchronous Communication

Ketil Stglen
[nstitut fiir Informatik, TU Miinchen, D-80290 Miinchen, Germany
email:stoelen@informatik.tu-muenchen.de

Abstract

We present three refinement principles supporting the transition from sys-
tem specifications based on (unbounded) asynchronous communication to sys-
tem specifications based on (bounded) synchronous communication. We refer
to these principles as partial, total and conditional refinement, respectively. We
distinguish between two synchronization techniques, namely synchronization by
hand-shake and synchronization by real-time constraints. Partial refinement
supports synchronization by hand-shake with respect to safety properties. To-
tal refinement supports synchronization by hand-shake with respect to both
safety and liveness properties. Finally, conditional refinement supports both
synchronization by hand-shake and by real-time constraints. We discuss, relate
and show the use of these principles in a number of small examples.

1 Introduction

Any method for system development, which depends on that boundedness con-
straints — constraints imposing upper bounds on the memory available for some
data structure, component or channel — are imposed already in the requirement
specification, is not a very useful method from a practical point of view.

Firstly, such boundedness constraints may have a very complicating effect and thereby
lead to a reduced understanding of the system to be developed. Boundedness con-
straints also complicate formal reasoning and design. Thus, it seems sensible to
avoid imposing these constraints as long as possible — in other words, to impose
these boundedness constraints only in the later phases of a system development.
Secondly, the exact nature of these constraints is often not known when the require-
ment specification is written. For example, in the requirement engineering phase of
a system development, it is often not clear in what programming language(s) the
system is to be implemented or on what sort of architecture the system is supposed
to run. Thus, in that case, it is known that some boundedness constraints are to be
imposed, but not exactly what these are.

On the other hand, since any computer system has only a bounded amount of mem-
ory, it is clear that at some point in a system development such boundedness con-
straints have to be imposed. Thus, in a system development it must be possible to

move from system specifications based on unbounded resources to system specifica-
tions based on bounded resources. Unfortunately, the usual principles of behavioral
and interface refinement do not always support this type of refinements.

In this paper we concentrate on a particular aspect of this problem, namely the
transition from system specifications based on (unbounded) asynchronous commu-
nication to system specifications based on (bounded) synchronous communication.
We distinguish between two synchronization techniques, namely synchronization by
hand-shake and synchronization by real-time constraints. By synchronization by
hand-shake we mean all sorts of time independent, demand driven or acknowledg-
ment based synchronization.

We propose three refinement principles, namely partial, total and conditional refine-
ment. Partial and total refinement support synchronization by hand-shake. Partial
refinement is restricted to specifications which only impose safety properties. To-
tal refinement preserves both safety and liveness properties, but is not as general
as we would have liked. Conditional refinement supports both synchronization by
hand-shake and by real-time constraints.

The rest of this paper is split into five sections. In Section 2 we introduce the
underlying semantics. In Section 3 we explain what we mean by a specification, and
we define the usual principle of behavioral refinement. In Section 4 we introduce the
three refinement principles, namely partial, total and conditional refinement, and
show how they can be used to support synchronization by hand-shake. In Section
5 we show how conditional refinement can be used to support synchronization by
real-time constraints. Finally, there is a conclusion giving a brief summary and a
comparison to approaches known from the literature.

2 Semantic Model

We represent the communication histories of channels by timed streams. A timed
stream is a finite or infinite sequence of messages and time ticks. A time tick is
represented by /. The interval between two consecutive ticks represents the least
unit of time. A tick occurs in a stream at the end of each time unit.

An infinite timed stream represents a complete communication history; a finite timed
stream represents a partial communication history. Since time never halts, any
infinite timed stream is required to have infinitely many ticks. We do not want
timed streams to end in the middle of a time unit. Thus, we insist that a timed
stream is either empty, infinite or ends with a tick.

Given a set of messages M, by M*, M* and M* we denote respectively the set of
all infinite timed streams over M, the set of all finite timed streams over M, and
the set of all finite and infinite timed streams over M. We use N to denote the set
of natural numbers, and N, ., to denote NU {oo}. Given s € M* and j € N, s|;
denotes the prefix of s characterizing the behavior until time 7, i.e., s|; denotes s if
j is greater than the number of ticks in s, and the shortest prefix of s containing j
ticks, otherwise. Note that s|., = s. This operator is overloaded to tuples of timed
streams in a point-wise style, i.e., t|; denotes the tuple we get by applying |; to each
component of ¢.

A named stream tuple is a mapping o € a — M* from a set of channel identifiers to

timed streams. Intuitively, « assigns a (possibly partial) communication history to
each channel named by the channel identifiers in a. The operator | is overloaded to
named stream tuples in the same point-wise style as for tuples of timed streams.
Given two named stream tuples a € a — M¥, 3 € b — M* such that a Nb = 0; by
a W [we denote their disjoint union, i.e., the element of a Ub — M such that

cea= (a¥f)(c)=alc), ceb= (aWp)(c) = pB(c).

Moreover, for any set of identifiers b, o], denotes the projection of a on b, i.e., o, is
the element of a Nb — M* such that

ceanb=(a]y)(c) = alc).

A function
T€(i—M®)—(0o— M=)

mapping named stream tuples to named stream tuples is pulse-driven iff
Va,B€i— M*:jeN:al; =8 = 7)) =7(B8) G+

Pulse-drivenness means that the input until time 57 completely determines the output
until time j 4+ 1. In other words, a pulse-driven function imposes a delay of at least
one time unit between input and output and is in addition “lazy” in the sense that
the function can be (partially) computed based on partial input. We use the arrow
2 to distinguish pulse-driven functions from functions that are not pulse-driven.
We model specifications by sets of pulse-driven functions. Each function or subset
of functions contained in such a set represents one possible implementation. For
example, a specification of a component, whose input and output channels are named
by ¢ and o, respectively, is modeled by a set of pulse-driven functions F' such that
F C (i — M®™) EiN (0 — M™).

7;1\02 Z.2\01
i1ﬂ02 igﬂol

1 T2

Ol\iz Y Y Oz\il

Figure 1: Network Characterized by 7, @ 7

Pulse-driven functions can be composed into networks of functions — networks which
themselves behave as pulse-driven functions. For this purpose we introduce a com-
position operator ®@. It can be understood as a parallel operator with hiding. For
example, the network pictured in Figure 1 consisting of the two functions

7'16(1.1—>M00)£>(01—>MO°)7 72€(i2_>Moo)i>(02—>Moo)a

where 7, Niy = 0y N0y = i3 N0y = iy Noy = B, is characterized by 7, @ 7. Informally
speaking, any output channel of 7, and input channel of 7», and any output channel
of 75 and input channel of 71, whose names are identical, are connected and hidden
in the sense that they cannot be observed from the outside.

Given that

i = (i1 \ 02) U(i2\ 01), 0= (01 \iz) U0y \ 1),
for any o € i — M, we define
(m @m)(a) =Y, W, where ¢ =7(af;, W0];,), 0=m7(afi, Wef;,).

Note that the pulse-drivenness of 7; and 75 implies’ that for any « there are unique
1, 6 such that

w = Tl(a|i1 & 9|i1)7 0= 7—2(04|iz & w|i2)'

Thus, 7, @ 7» is well-defined. It is also easy to prove that 7, ® 7, is pulse-driven.
As will be shown below, the composition operator ® can be lifted from functions to
specifications in a straightforward way.

3 Specification and Refinement

We now explain what we mean by a specification. In fact, we introduce two differ-
ent specification formats, namely formats for time dependent and time independent
specifications. The former format differs from the latter in that it allows real-time
constraints to be imposed. We also introduce the usual principle of behavioral re-
finement. However, first we define some useful operators on streams.

3.1 Operators on Streams

We also use streams without ticks. We refer to such streams as untimed. Given a
set of messages M, then M>, M* and M¥ denote respectively the set of all infinite
untimed streams over M, the set of all finite untimed streams over M, and the set
of all finite and nfinite untimed streams over M.

Given A C M U {./}, (timed or untimed) streams r and s over M, and integer j:

e #r denotes the length of r, i.e. oo if r is infinite, and the number of elements
in r otherwise. Note that time ticks are counted.

e (ay,as,..,a,) denotes the stream of length n whose first element is a;, whose
second element is a,, and so on. () denotes the empty stream.

e A@©r denotes the result of filtering away all messages (ticks included) not in
A. If A={d} we write d©r instead of {d}©r. For example

{a,b}©(a,b,\/,c,v/,a,/) = (a,b,a).

L As a consequence of Banach’s fix-point theorem [2], since pulse-driven functions can be under-
stood as contracting functions in a complete metric space.

e r|; denotes () if j < 0, the prefix of 7 of length j if 0 < j < #r, and r otherwise.
We define r|,, = r. This operator is overloaded to stream tuples in a point-wise
way. Note the way | differs from this operator.

e r~ s denotes the result of concatenating r and s. Thus, {(a, b) ~ (¢, d) = (a,b, ¢, d).
If r is infinite we have that r~s = 1.

e 7 denotes the result of removing all ticks in r. Thus, (a,+/,b,+/) = {(a,b).

3.2 Specification Formats
We write time dependent specifications in the following form
S=(i>o) "R

S is the specification’s name, and ¢ and o are finite, repetition free lists of identifiers.
The identifiers in ¢ name the input channels, and the identifiers in o name the
output channels. The lists are not allowed to have identifiers in common. We refer
to the elements of these lists as the input and output identifiers, respectively. The
label td is used to distinguish time dependent specifications from time independent
specifications. As we will see below, the latter are labeled by ti. R is a formula
in predicate logic with the identifiers of ¢ and o as its only free variables. In R
each of these identifiers represents a timed infinite stream modeling the complete
communication history of the channel named by the identifier. Thus, ¢ and o name
the input and output channels, respectively, and R characterizes the relationship
between their communication histories. We will often refer to R as the i/o-relation
and to (i > o) as the syntactic interface.
For any mapping a € C' — D and formula P, whose free variables are contained in
C and vary over D, a = P holds iff P evaluates to true when each free variable ¢ in
P is interpreted as a(c).
Since there is an injective mapping from repetition free lists to totally ordered sets,
we will often treat such lists as if they were sets. The denotation of a time dependent
specification S = (i > 0) ¥ R can then be defined as follows

[S] &ef {re(i— M=) (0 — M®)|Va: (ad(a)) = R}.
A time independent specification can only be used to specify the time independent
behavior of a component. A time independent specification has almost the same
syntactic structure as a time dependent specification

S=(i>o) R
The only difference is that the label td has been replaced by ti and that the input
and output identifiers occurring in R now vary over arbitrary untimed streams. We
allow these streams to be finite since a timed infinite stream with only finitely many
ordinary messages degenerates to a finite stream when the ticks are removed.
Given a named stream tuple o € a — M, by @ we denote the element of a — M¥

such that Ve € a : @(c) = a(c). The denotation of a time independent specification
S = (it>0) : R can then be defined follows

[S]¥ {re(i— M=) L (06— M) |Va: (aWr(a)) E R}

The composition operator @ can be lifted from pulse-driven functions to speci-
fications in a straightforward way. Let S; and S, be two specifications whose
syntactic interfaces are characterized by (i3 >o0;) and (iy > 0y), respectively. If
it Niy =0, Noy = 0,0 = (iy \ 02) U(ig\ 01) and o = (01 \ i2) U (02 \ i1), then
S1 ® Sy denotes the network pictured in Figure 1 with 7; and 7 replaced by S; and
Sy, respectively. We define [S; @ S, | to be the set of all

T€(i— M=) (0 — M>)
such that
Vaoe(i—-M>):An e[S],nme[S]:m(a)=(rn @)).

Note that this definition is not equivalent to the point-wise composition of the func-
tions in [Sy] and [S»]. However, this alternative denotation based on point-wise
composition, obtained by moving the two existential quantifiers ahead of the univer-
sal, is of course contained in [S; @ Sy]. In fact, the way [] is defined implies that
for any specification S and function 7, if

VO:3r' e[S]:7(0)=1'(0)

then 7 € [S]. Thus, the denotation of a specification is always closed in this sense.
This closure property makes our model fully abstract [5] and simplifies the definitions
of refinement.
In the sequel we distinguish between basic and composite specifications. The latter
differ from the former in that they consist of several specifications composed by ®.
A time independent specification

S=(i>o) R
is said to be safe if it only imposes safety properties. To formally characterize what
this means, we introduce some helpful notations. For any formula P, repetition free
list of identifiers a, and list of expressions c of the same length as a, by P[%] we denote
the result of replacing each occurrence of an element of @ in P by the corresponding
element of c¢. Moreover, for any repetition free list of identifiers a, we use a € T to
declare each element of a to be of type T'. Finally, for any lists of expressions a and ¢
of the same length, a C ¢ holds iff each element of « is a prefix of the corresponding
element of c. We may then formally define S to be safe iff

Vie M®, 0€ M : R& Yo' € M*: 0 C o= R[%].

3.3 Behavioral Refinement

We represent the usual principle of behavioral refinement by ~~. It holds only for
specifications whose syntactic interfaces are identical. Given two specifications S
and Sy, then S; ~» Sy iff [S5] C [S;]. Thus, S, is a behavioral refinement of S
iff any pulse-driven function which satisfies S, also satisfies S;.

Clearly, ~~ characterizes a reflexive and transitive relation on specifications. More-
over, it is also a congruence modulo ® in the sense that

51W§1A52W§2:>51®52W§1®§2.

4 Synchronization by Hand-Shake

As already mentioned, in this paper we consider two synchronization techniques,
namely synchronization by hand-shake and synchronization by real-time constraints.
In this section we propose refinement principles supporting the former.

The close relationship between specification formalisms based on hand-shake com-
munication and purely asynchronous communication is well-documented in the lit-
erature. For example, [6] shows how the process algebra of CSP can be extended
to handle asynchronous communication by representing each asynchronous commu-
nication channel by a separate process. A similar technique allows different types
of hand-shake communication to be introduced in a system specification based on
purely asynchronous communication: each asynchronous channel is refined into a
network of two components which internally communicate in a synchronous manner,
and which externally behave like the identity component.

Consider a network consisting of two time independent specifications S; and Sy com-
municating purely asynchronously via an internal channel y, as indicated by Network
1 of Figure 2. We want to refine Network 1 into a network of two specifications S
and S, communicating in a synchronous manner employing some sort of hand-shake
protocol — in other words, into a network of the same form as Network 4 of Figure
2.

Using the technique proposed above, we may move from Network 1 to Network 4 in
three steps, employing the usual principle of behavioral refinement:

e Step 1: Insert an identity specification I between S; and S, of Network 1, as
indicated by Network 2 of Figure 2. It follows trivially that

51®SQW51®I®SQ.
Thus, Network 2 is a behavioral refinement of Network 1.

e Step 2: Refine the identity specification into two sub-specifications I; and I,
which communicate in accordance with the desired protocol. We then get
Network 3 of Figure 2. Clearly, it must be shown that

IWII®I27

in which case it follows by transitivity and congruence of ~» that Network 3 is
a behavioral refinement of Network 1.

e Step 3: Finally, if we can show that
S, @I, ~ Sy, I, @ Sy ~ Ss,
we have that
Sy @ Sy~ Sy ® S,

by transitivity and congruence of ~». Thus, in that case, Network 4 is a
behavioral refinement of Network 1.

Network 1

ql

S1 Ss,
Y ls
Network 2
Ql [=}
S1 1 Sy

Network 3

ql

S

Network 4

ql

Figure 2: Introducing Synchronization by Hand-Shake

10

Unfortunately, this strategy is rather tedious, and more importantly: it can only
be employed to internal channels. To handle external channels accordingly, a more
general refinement principle than behavioral refinement is needed. This refinement
principle must allow for the introduction of additional feedback loops. For example,
without this generality it is not possible to synchronize the communication between
S; and S, in Network 1, using a hand-shake protocol. Of course, one may argue that
the synchronization could be conducted via the environment, but this is not what
we want. Thus, with respect to our example, this generality is needed in order to
build up a connection from S, to S; allowing S, to communicate acknowledgments
or demands.

4.1 Partial Refinement

Consider two time independent specifications S and S such that (i > o) is the syn-
tactic interface of S. In the previous section we have seen that a refinement principle
supporting synchronization by hand-shake must allow for the introduction of addi-
tional feedback loops. This implies that if S is a refinement of S in this sense, S
must be allowed to have additional input and output channels. Thus, given that
(11> 0) is the syntactic interface of S, we assume that ¢ C 7 and o C 0.

We now want to characterize what it means for S to refine S. If only the “old”
channels are considered, one might expect this to be equivalent to insisting that for
any function 7 satisfying S and any input history there is a function 7 satisfying S
which behaves in the same way as 7 with respect to this input history. However,
due to the synchronization conducted via the new channels, the computation of 7
can be halted too early because the required acknowledgments or demands are not
received. Thus, in the general case, unless we make certain assumptions about the
environment’s behavior, this requirement is too strong. On the other hand, since
a safety property only says something about what a component is not allowed to
do, and nothing about what it has to do, the possibility that the computation of
7 is halted too early is not a problem if S is safe. Thus, the proposed definition is
adequate if we are only interested in safety properties. Formally, given that S and
S are safe, we say that S is a partial refinement of S, written S < S, iff

Vie[Sl,a€i—M>:3Fre[S]:7(a)l, =7(a:).

Note that if i = 7 and 0 = 6 then ~» degenerates to ~» with respect to safe specifica-
tions. It is straightforward to prove that ~> characterizes a reflexive and transitive
relation. Moreover, it is also easy to prove that ~» is a congruence with respect to
@ in the same sense as ~». Thus, partial refinement has the same nice properties as
behavioral refinement and is therefore equally well suited as a refinement principle
for modular system development. Unfortunately, most specifications are not safe —
they also impose liveness constraints. Thus, a more powerful refinement principle is
needed.

11

4.2 Total Refinement

Consider once more the two time independent specifications of the previous section.
As already argued, since the computation of a component satisfying S can be halted
too early because a required acknowledgment or demand is not received, the defi-
nition of partial refinement is too strong if S also imposes liveness properties. In
that case, the relation has to be weakened by some sort of environment assump-
tion — an assumption constraining the communication histories of the “new” input
channels. Let a« € © — M and assume { is the set of new input channels, i.e.
i = 7\ i. For many synchronization protocols it is enough to require that on each
new input channel infinitely many messages are received. We use inf(c, i) to denote
this environment assumption. Formally:

inf(c, 1) € Ve €7 : #alc) = 0.

Based on this environment assumption, we define S to be a total refinement of S,
written S ~~ S, iff
Vie[S],a€i— M= :3re[S]:inf(a,i) = 7(a), = 7(a).

It is easy to see that total refinement degenerates to behavioral refinement if ¢ = 7 and
o = 6. Moreover, due to the pulse-drivenness constraint imposed on the functions
characterizing the denotation of a time independent specification, it follows that total
refinement implies partial refinement if the specifications are safe. It is also easy to
prove that < characterizes a reflexive and transitive relation on time independent
specifications. Unfortunately, < is not a congruence with respect to ®. In the
following, we use Rg to represent the i/o-relation of a basic specification S.

Example 1 Total refinement is not a congruence:
To see that total refinement is not a congruence with respect to ©@, consider the
four time independent specifications Si,.5,,.5, S2, whose syntactic interfaces are
characterized by (¢ z), (2> k), (¢, 2), (2> x, k), respectively, and whose i/o-
relations are defined as below
def def

RS1 =z =4, RS“I =z = Q|#a:+17

Rg, ¥k =2z, Rgzd:e'ck:z/\x:d#z_l.
Note that x is a new feedback channel from 32 to 5’1. Clearly, S, N gl and S, NS 5’2.
Since

RS1/\R52 jk:q,

it follows that S; ® Sy behaves as an identity component. On the other hand, by
inspecting S, and S, it is clear that any correct implementation of S, can send a
second message along z only after having received at least one acknowledgment along
x. Moreover, it is also clear that any correct implementation of S, can output the
first acknowledgment along x only after having received at least two messages along
2. These causality constraints are semantically imposed via the pulse-drivenness?.
Thus, any correct implementation of S; @S, will never output more than one message

?Remember that also time independent specifications are interpreted in terms of pulse-driven
functions and timed streams.

12

along k. Since both S; ® S, and S; @ S, have ¢ as their only input channel, and
since it may be the case that #¢ > 1, it follows that

S, @ So~h S; @ Ss.
O

The problem observed in Example 1 can be understood as deadlock caused by an
erroneous synchronization protocol. What is required is some proof obligation, more
explicitly — some freedom from deadlock test, characterizing under what conditions
total refinement is a “congruence” with respect to ®. Firstly, we want a proof
obligation which takes advantage of the fact that we have already proved that S; N
and S, N §2_ This suggests it should be independent of S; and .S,. Secondly, to allow
systems to be developed in a top-down style, this proof obligation must be checkable
based on the information available at the point in time where the refinement step is
carried out. For example, it should not require knowledge about how S, and S, are
implemented.

With respect to a network as in Example 1, it is enough to check that, when the
computation halts, then the output along z will not be extended if additional input
is received on the feedback channel z. This is equivalent to verifying the proof
obligation below

Rs, A Rg, = R [0,
where z’ is a new identifier. We now prove that this proof obligation guarantees
S1®.8, N 5’1 ® 5’2, given that 5; s gl, Sy NS 5’2 and that the syntactic interfaces are
as in Example 1.
Let 7 € [S,@5,], a € {g} — M>. The definition of @ implies there are 7, €
[Si], 72 € [So] such that 7(a) = (71 ® 7»)(a). This means there are § € {k} —
M=, 6e{z} = M=, o€ {xr} - M> such that

flaWo) =96, R(6)=cwp, (7O7%H)(a)=_,
There are two cases to consider:
e If inf(o,2) then S; % S, and Sy~ S, imply there are 7, € [S;], 0 € [S2]
such that 7 () = 6 and 75(6) = 3.

e If —inf(o,2) then there is a j € N such that o(z)|;,~v/~ = o(z), where \/~
denotes an infinite stream of ticks. Let 7] be the function such that

(awo)l; L w=7(w) ="7(w),
(awol)) Cw=7(w) =T(aWo),
aly CvAalggny LvAk> =T (vW (o], ~u) =T (vd (0l ~u)).

The concatenation and prefix operators are here overloaded to named stream
tuples in the obvious point-wise way. 7, is clearly well-defined and pulse-
driven. Moreover, it follows straightforwardly from the proof obligation that
e[S,] Clearly

H(aW(ol;~u)) =7 (awo) =7 (aWo).

13

Then S; ~ S; and Sy~ S, imply there are 7y € [Sy], 72 € [S2] such that
() = 6 and 75(6) = .

Since 7y € [S1], 2 € [So] imply 4 @ o € [Sy @Sy], it then follows that
S; @ S, s 5’1 ® gg, which is what we wanted to prove.
With respect to Example 1, if the i/o-relation of S, is redefined as below

R;, Y h=zAz=2z,
it follows by the proposed proof obligation that S; ® S, 8, @ Sy
We now show how this proof obligation can be generalized to handle arbitrary com-
position modulo ®.

Example 2 Handling additional external input channels:
To indicate the weakness of the test we have already formulated, we go through
another example. Let S, S, and S; be as in Example 1, and let

Sy = (z,i>x, k) i k=zANx =z

The behavior of S, now depends on an additional input channel i. As before, 5 N
and S, s S5. Moreover, it is also clear that S; ® .S, s S; ® S,. Unfortunately, our
proof obligation does not hold. For example, we have that

#q¢>1Ni=()AN#2z2=1= Rz NRg, Rzl JA#2 =0 = 2 =q¢.

™z’

Thus, since ' does not occur in the antecedent of the proof obligation, it follows
that it is falsified by at least this instantiation. O

With respect to Example 2, the problem is that our proof obligation does not take
the new channel 7 into account. Since ¢ is not an output channel of 5‘1, but connected
to the overall environment, the implicit environment assumption built into the defini-
tion of total refinement implies we only have to consider the situation that infinitely
many messages are received on ¢. Thus, the proof obligation can be weakened as
below:

Vie M™>: R§1 VAN R§2 = R5'1 [iﬁz,].
Note that this proof obligation is satisfied by the refinement step considered in
Example 2.
It is now straightforward to formulate a general proof obligation. Let z, y, i be
lists consisting of respectively the new input channels of S, connected to Ss, the

new input channels of 52 connected to 51, and the new input channels of 51 and 52
connected to the overall environment. Then we get the following refinement rule

Sl ”“"Sl

Sy ng

Y1 & Moo : Rgl VAN RS’Z = RS’I [i’\z’] N Rgz [z“y’]
Sl (024 52 “z 51 & 52

It is assumed that the specifications are basic. The rule can easily be generalized to
deal with n > 2 specifications.

14

The proof that this rule is sound is a straightforward generalization of the proof for
the restricted case given above. See appendix for details. Note that this rule does
not require proof work conducted earlier in the development process to be redone.
The two first premises can be checked locally; the third premise is a co-existence
check making sure that no deadlock has been introduced.

As already mentioned, although total refinement is sufficient for many hand-shake
protocols, this principle is not as general as we would have liked. The problem is that
certain synchronization protocols impose fairness constraints on the distribution of
acknowledgments or demands sent along a channel.

Example 3 Lack of generality:
To see the lack of generality, let S; and S, be defined as in Example 1. Moreover,
assume that S; and S, have the same syntactic interfaces as in Example 1, and that
their i/o-relations are redefined as below
def def

Rgl = Zz = q|#(1©m)+17 R§2 = k =z A #(1@,%’) = #Z.
Clearly, S NS 92; Moreover, we also have that 5;® 55 % 8@ Ss. However, it does not
hold that S; ~» ;. The reason is of course that the implicit environment assumption
of total refinement, namely that infinitely many messages are received on x, does
not guarantee that the required number of 1’s are received. O

4.3 Conditional Refinement

Consider once more the two time independent specifications S and S of the two
previous sections. As already argued, for certain hand-shake protocols the implicit
environment assumption of total refinement is too weak. One way to deal with this
problem is to make the environment assumption explicit and let the user himself
specify the required assumption. More explicitly, let B be a formula whose free
variables are contained in 7 U ¢ and vary over untimed streams, we say that Sisa
conditional refinement of S with respect to B, written S~z S, iff

VT € [[S’]],ocei—>M°° :dre[S]:(awT(a) EB=7(a), =1(a).

Note that the condition B may also refer to the output behavior. This is in some
cases necessary since the correct input behavior at some point in time may depend
on what has already been output.

It is clear that if ¢ = 7 and 0 = 6 then ~~,. corresponds to behavioral refinement.
It is also easy to see that for any time independent specification S and condition B,
we have that S ~-»5S. Thus, conditional refinement has the required “reflexivity”
property. It is also “transitive” in a certain sense

S1~p, So AN Sy~p, S3 = S1~p, B, 53

Conditional refinement is not a congruence modulo ® in the general case. However,
the following refinement rule is valid

S B §1

So B, Ss

B/\Rgvl /_Rs'v2 :>B1 /\B2
S1®S2WBS1®92

15

It is assumed that the specifications are basic. The rule can easily be generalized to
deal with n > 2 specifications.

Also this rule has the nice property that proof work conducted earlier in the de-
velopment process does not have to be redone. The two first premises are local
constraints; the third is a co-existence check making sure that no deadlock has been
introduced.

We now prove that the rule is sound. Let 7y,1%,,01, 09, %,y be mutually disjoint lists
of identifiers, and let - be a concatenation operator for such lists. Moreover, let
(ty-x>o-y), (y-ia>x-09), (s - T >0y -y) and (§ -7 > T - 09) be the syntactic
interfaces of S;, S, 5’1 and 5’2, respectively. Assume that i; C 7, 0, C 0y, iy C 1o,
02 C 0y, z C 2,y Cy, and that the three premises hold.

Let 7 € [[§1®§2 |, a1 €4y — M>, ay € iy — M> be such that

(O{l] iy G %(Oél G 052))): B.

The definition of @ implies there are 7; € [S, I, =€l S,] such that 7(a; W ay) =
(71 @ T)(ay W ay). It follows there are) € 6, — M>, 03, € 6, — M>,6 € & —
M= o € y— M, such that

%1(041Lﬂ6):(ﬂ1b90), %Q(U&Jag):((swﬁg)

It follows straightforwardly that (o Wa, W3 WH WoWo)) = BA Rz ARz, in
which case the third premise implies (ay Was W 5 W G WdW o)) = By A By. This
and the two first premises imply there are 7, € [Sy |, 72 € [Sz] such that

F1(ar Wo)|o,uy = (Bilo, Woly) = Ty, W.),
7:2(0' W a2)|zU02 = (6|w W 52|02) = 7—1(0|y & Oz2|i2).

The way this was deduced, the definition of @ and the fact we have unique fix-points
imply the conclusion. Thus, the soundness of the refinement rule has been verified.

Example 4 The refinement step of Example 2:
The correctness of the refinement step of Example 2 follows straightforwardly by the
rule proposed above if the three conditions are defined as below

def def

B = #i > #4q, By & #a > #q -1, By & true.
O

Example 5 The refinement step of Example 3:
The correctness of the refinement step of Example 3 follows straightforwardly by the
rule proposed above if the three conditions are defined as below

def def

B = true, B, = #(1©x) > #q — 1, By ¥ true.
O

5 Synchronization by Real-Time Constraints

Above we have shown how partial, total and conditional refinement can be used to
support synchronization by hand-shake. In this section we show that conditional
refinement also supports synchronization by real-time constraints. Timed streams

16

capture real-time in the sense that the interval between each pair of consecutive
time ticks represents the same least unit of time. Consider two time dependent
specifications S and S. For simplicity, since we in this section do not consider
synchronization by hand-shake, we assume that both specifications have the same
syntactic interface (i > 0). Let B be a formula whose free variables are contained in
i U o and vary over infinite timed streams. We say S is a conditional refinement of
S with respect to B, iff

vie[S]aci—M>:3re[S]: (aWi(a)) E B = 7(a)=r(a).

Example 6 By real-time constraints:
Consider the two time dependent specifications defined below

Slz(qby)§(zjy:§, SQE(ybs)tz?Ezy.
Each correct implementation of S; ® S, requires an unbounded amount of internal
memory. The reason is that the overall environment may send arbitrarily many
messages between two time ticks along ¢. Since, due to the pulse-drivenness, any
correct implementation delays the output with at least one time unit, S; must be
able to store arbitrarily many messages. Consider the auxiliary predicate

def

bud(i, k) % V) € N : #(il41)) — #(il,) < k.
It holds for an infinite timed stream ¢ if the maximum number of messages received
between two consecutive time ticks in ¢ is less than k. We may use this predicate to
synchronize the communication as below

$1=(¢>y) ¥ bud(q. k) = 7 =7 A bnd(y, k).

S, = (ys) b bnd(y, k) = 35 =7 A bnd(s, k).
In the case of S; ©® S, we may find an implementation requiring an internal memory
capable of storing maximum m messages, where m depends on k and how fast the

chosen architecture allows input messages to be forwarded along the output channels.
Clearly

S, @Sy A S @ Ss.

The reason is that S; @ S, may behave arbitrarily as soon as the environment falsifies
bnd(g, k). On the other hand, it is clear that

S1 @ S5 ~bnd(q,k) Sy @ Ss.
This follows easily since

bnd(q, k) A Rs, A Rz, = bnd(q, k) A bnd(y, k).
O
Even if S~ S holds, it may be the case that S allows an implementation which itself
breaks the condition B or forces the environment to break the condition B. To avoid
such refinements it is enough to impose well-formedness conditions on B. One may

also formulate well-formedness conditions making sure that the predicate B is only
constraining the behavior related to synchronization. For example, with respect to

17

hand-shake synchronization, one may introduce a well-formedness condition making
sure that the condition B only constrains what is received on the “new” feedback
channels. However, a detailed discussion of well-formedness conditions is beyond the
scope of this paper.

6 Conclusions

In this paper we have introduced three principles of refinement. Their properties can
be summed up as below. Partial refinement supports synchronization by hand-shake
with respect to safety properties and is a congruence modulo ®, but does not support
synchronization by real-time constraints. Total refinement supports synchronization
by hand-shake with respect to both safety and liveness properties and allows mod-
ular top-down design, but is not very general and does not support synchronization
by real-time constraints. Conditional refinement supports both synchronization by
hand-shake and by real-time constraints with respect to both safety and liveness
properties and allows modular top-down design. As we see it, the main contribution
of this paper is that we have shown how refinement principles based on explicit or
implicit environment assumptions can be used to support the transition from system
specifications based on purely asynchronous communication to system specifications
based on synchronous communication. However, in particular conditional refinement
seems to have a much broader application area. See appendix for detailed proofs of
the different claims made in this paper.

As explained in [4], behavioral refinement can be generalized to interface refinement
by relating the concrete and abstract interface by a representation function in the
style of [7]. The three refinement principles proposed above can be generalized
accordingly.

We refer to [5] for a detailed investigation of the underlying semantic model.

The principles of partial and total refinement were defined in [10], but in a less gen-
eral setting. Conditional refinement is a straightforward generalization of behavioral
refinement — so straightforward that it seems unlikely that this idea is new. For ex-
ample, what [1] refers to as conditional implementation is closely related. Moreover,
the decomposition theorem of [1] seems to allow related refinements with respect
to complete systems. Contrary to us, their co-existence proof is formulated with
respect to the more abstract specifications. An attempt to tackle the transition from
unbounded to bounded resources in the context of algebraic specifications can be
found in [3].

With respect to conditional refinement, instead of using explicit conditions one may
calculate the weakest conditions under which the concrete specifications refine the
abstract specifications. However, we find the use of explicit conditions more practical.
The refinement principles proposed above can of course be reformulated in other
settings. For example, if the refinement principle of the rely/guarantee method [8]
is weakened along the lines proposed in this paper some of the problems reported in
[12] seem to disappear.

The proposed refinement principles have not been justified with respect to some sort
of observation language as for example advocated in [9]. Instead, the well-suitedness
of behavioral refinement as defined in [4] has been taken for granted. Both total and

18

conditional refinement characterize behavioral refinement in the sense of [4] modulo
certain assumptions about the environment.

In practice, specifications are often written in an assumption/commitment form.
Some of the proof-obligations proposed above can then be replaced by more sophis-
ticated rules. See [11] for assumption/commitment rules with respect to the semantic
setting of this paper.

7 Acknowledgments

The author has benefited from many discussions with Manfred Broy on this and
related topics. Pierre Collette, Bernhard Moller and Oscar Slotosch have read erlier
drafts of this paper and provided many helpful comments. Financial support has
been received from the Sonderforschungsbereich 342 “Werkzeuge und Methoden fir
die Nutzung paralleler Rechnerarchitekturen”.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. Technical Report 118,
Digital, SRC, Palo Alto, 1993.

[2] P. America, J. de Bakker, J. N. Kok, and J. Rutten. Denotational semantics of
a parallel object-oriented language. Information and Computation, 83:152-205,
1989.

[3] M. Breu. Endliche Implementierung algebraischer Spezifikationen. PhD thesis,
Technische Universitat Miinchen, 1991. Also available as Report TUM-19111,
Technische Universitdat Munchen.

[4] M. Broy. Compositional refinement of interactive systems. Technical Report 89,
Digital, SRC, Palo Alto, 1992.

[5] R. Grosu and K. Stglen. A denotational model for mobile point-to-point
dataflow networks. Technical Report SFB 342/14/95 A, Technische Universitét
Miinchen, 1995.

[6] J. He, M. Josephs, and C. A. R Hoare. A theory of synchrony and asynchrony.
In Proc. IFIP WG 2.2/2.3 Working Conference on Programming Concepts and
Methods, pages 459-478, 1990.

[7] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1:271-282, 1972.

[8] C. B. Jones. Specification and design of (parallel) programs. In Proc. Informa-
tion Processing 83, pages 321-331. North-Holland, 1983.

[9] T Nipkow. Non-deterministic data types: Models and implementations. Acta
Informatica, 22:629-661, 1986.

19

[10] K. Stolen. A refinement relation supporting the transition from unbounded to
bounded communication buffers. In Proc. MPC’95, Lecture Notes in Computer
Science 947, pages 423—-451, 1995.

[11] K. Stplen. Assumption/commitment rules for data-flow networks — with an
emphasis on completeness. 1996. To appear in Proc. ESOP’96.

[12] J. C. P. Woodcock and B. Dickinson. Using VDM with rely and guarantee-
conditions. Experiences from a real project. In Proc. VDM’88, Lecture Notes
in Computer Science 328, pages 434-458, 1988.

A Proofs

We use S € (i > 0) to say that (i > o) is the syntactic interface of the specification
S. Moreover, we employ (i) as a short-hand for (i — M>).

A.1 Partial Refinement

Proposition 1 (transitivity) Given time independent specifications S, € (i; >
01),Ss € (iy > 02) and S3 € (i3 > 03) such that

(].) . Sl "?"} 52,

(2) . 52 "?"} 53,

(3) 11 C g C g,

(4): 0, C oy Cos.
It then holds that

(5) : Sy~ Ss.

Proof: Let
(6):m3 €[S],
(7) <Z3>
(2), (3), (4),
(8):m €
(9) = 73(c

(6), (7) imply there is a 7, such that
[S]]
)
(

0, = Ta(0liy)-

(1), (3), (4), (7), (8), (9) imply there is a 7, such that
(10): € [S1],
(11) = m5(@loslo, = T2(alis)lo, = Ta(alisi,)-

(3), (4), (11) imply

(12) = m5(@)lo, = mu(ali,)-
The way (12) was deduced from (6), (7) implies (5).

Proposition 2 (congruence) Given mutually disjoint lists of identifiers iy, is, 01,
Oy, &, § and time independent specifications S; € (iy -x > 01 - y),S € (y-iy >

x-03),5 € (11 -T>0,-7) and gge(gj-% > & - 09) such that

20

(].) . Sl'\g—)glv

(2) : 523"527

(3)21 gila Olgala i2g527 02g627 l'gjf, yg?]
It then holds that

(4)51@523"}5’1(85’2

Proof: Let
5):7€[S1®8S],
(6) : ay € (ir), az € (ia).

(5), (6) imply there are 71, 75 such that
(7):7 e[S]

(8):%26[[92]],
(9): 7l Wan) = (71 ©) (e W).

(9) implies there are [3;, (5, 0, o such that
(10) : By € (01), B2 € (02), 6 €(T), 0 €(7),

(11) : (e W) = (B W o),
(12) : (o Way) = (6 W fy),
(13) : (71 @ 7o) (o W) = (B W).
(1), (2), (3), (6), (7), (8), (10), (11), (12) imply there are 7, and 7, such that
(14): 1 €[S],
(15) Ty S [[]]
(wyn®aeﬂ&®&k
(17) - T 1()|01Uy ﬁl|01 & U|y - Tl(a1|n & 6|)
(18) : 7o(0 W 2)|auo, = 0z W Balo, = Ta(0]y W als,)-
(13), (17), (18) imply

(19) : (71 @ T2) (1 W a2)|oyu0, = Bilo, W Balo, = (11 @ 7o) (uu]s, W aals,).
The way (19) was deduced from (5), (6) implies (4).

A.2 Total Refinement

Proposition 3 (total refinement implies partial refinement) Given S € (i >
0) and S € (1> 0) such that

(1): 858,
(2):i Ci,0C 5
(3): 5,5 are safe and time independent.

It then holds that
(4): 8% 8.

Proof: Let

21

(5):i=1\1.
Assume
(6): S S.

We prove that this assumption leads to a contradiction. (6) implies that there are
7,a such that

(7):7€[S],
(8) s a € (0,
9):Vre[S]:7(a), #7(cfy).

(3), (7), (9) imply that there is a j such that

(10) : 0 < j < o0,
(11) V7 e [S]: (T(a)lo)l; # T(ci)l;-
Let o/ be such that

(12) : o’ € (i),

() Oél] 1= Oél] 1,

(14) : Ve €i: a/(c) = 0.
(1), (7), (14) imply there is a 7 such that

(15):7e[S],

(16) : 7(e/)]o = 7(];)-
(13), (16) and the pulse-drivenness of 7,7 imply

(A7) = (T(@)lo)l; = (7(a)]o)]; = (T('[i))]; = (7(fi))l;-
(17) contradicts (11).

Proposition 4 (transitivity) Given time independent specifications S, € (i; >
01),Ss € (iy > 02) and S3 € (i3 > 03) such that

(1) : Sl“f“"SQ,
(2) . 525‘953,
(3)3i1 C iy Cig,
(4): 0, C oy Cos.

It then holds that
(5) . Sl "f"> 53.

Proof: Let

(6):73 €[Ss],
(7) 10 € <i3>7
(8): Ve €iz\ iy : #a(c) =

(3), (8) imply
(9) : Ve € i3\ is : #alc) = oo.
(2), (3), (4), (6), (7), (9) imply there is a 75 such that

22

(10) : € [S2],
(11) = m5(@)lo, = T2(ali,)
(3), (8) imply
(12) : Ve € iy \ 1y : #(ali,)(c) = oo.
(1), (3), (4), (7), (10), (11), (12) imply there is a 7; such that
(13):mp €[S1],
(14) : 7-3(05)|02|01 = TZ(a|i2)|01 = Tl(a|i2|i1)‘
(3), (4), (14) imply

(15) : 7s(a)lo, = T1(eds)-
The way (15) was deduced from (6), (7), (8) implies (5).
Lemma 1 Given two time independent specifications S € (i > o), Se (i-71>0), a
function 7, two named stream tuples o € (7), € (T) and j € N such that

(1):iC% oCo, iNr=40,

(2) : S~ S,

3):7e[S],

(4) : Ve e (7\ 1) : #alc) =

(5) :Veer: B(c) = Blo)ly ¢,

(6) :Vo e (7): (aW(Bl;~0)¥T(aWf)) = Rs.

Then there is a function T such that

(M:7e[S],
(8): 7(afs) = 7w B)l,.

Proof: Let 7 be a function such that

9): (¥ P); Lw= 7(w) = 7(w),

(10) : (W Bl;) Cw = 7(w) =7(aWw),

(1) s aly CoAalgey ZoAk 2)= 7o (Bl ~u) =7(vW (Bl ~u)).
It is clear that 7 is well-defined. We want to prove that 7 is pulse-driven. Assume
there are w,w’ € (U 7) and k € N such that

(12) : wly = w'ly.
It is enough to show that

(13) s F(w)lhsr = T (W) kg
There are four cases to consider

(14) : k <,

() k>]/\(a+ﬁ)ljzwa

(16) : k>]/\Ea+ B); CwA (w)lk C «,
3)

(17 k> iAW), EwA (wl) £ o

Assume (14): (13) follows from the pulse-drivenness of 7 since (9), (10), (11) imply
that 7 behaves as 7 until time 7 + 1.

23

Assume (15): (13) follows from (9) and the pulse-drivenness of 7.
Assume (16): (13) follows from (10), (11) and the pulse-drivenness of 7.
Assume (17): (13) follows from (11) and the pulse-drivenness of 7.

(3), (6), (9), (10), (1) imply

(18): 7 €[S].
Let w be such that

(19) : (e w 5l;) E w,
:Vcefz#w:oo

, (18), (20) imply there is a 7 such that

(23) : 7(efs) = 7(w]s) = 7(w)|, = 7(@ W B)],
(23) implies (8).
Proposition 5 (congruence) Given mutually disjoint lists of identifiers iy, is, 01,

02, &, y and time independent specifications S, € (iy-x > oy -Yy),S € (y-iy >
x-0y),51 €5 -T>01-7) and Sy € (§ -0y > T - 0y) such that

(1) : zl—zl\zl, 01 =01\ 01, I =13 \ia, 00 =02\ 02, =2\, J=7\Y,
(2): 8, Sy,
(3) : Sy~ Sy,
(4)3i1§517 01 C 01, 1y Sy, 00 S0y, v C 7, y Cy,
)

(5 :Vil,%EM%:Rgl/\RgZ:}Rgl[%]/\RSZ[
It then holds that
(6) : SI®SQ'\L§1®§2-

yy]

Proof: Let

(7):7€[S5®5,],
(8; sy € (1), ay € (1y),

(9):Ve €y Uiy : #(ag Way)(c) = oo.

(7), (8) imply there are 71,75 such that
(1)716[[51]],%26[[52]]7
(11) : T(o Wan) = (71 @ T2)(on W ae).

(11) implies there are f3;, (3, 0, o such that
(12) : By € (01), B2 € (02), 6 €(T), 0 € (§),
(13) : 71(041 Wwo) = (hWo),

(14) : (o Way) = (6 W fa),
(15) : (71 @ o) (1 W) = (81 W 3).

Let &1, 22, 71,72 be such that

24

(16) : & =2 Ua, §= 101U,
(17) : Ve € (&, UTy) : #(0Wo)(c) = oo,
(18) : Ve € (T2 U7s) : #(0Wa)(c) # oo.
(18) implies there is a j such that
(19): 0 < j < o0,
(20) : Ve € (Z3U) : (bW o)(c) = (6Wa)(c)l; ~ /-
(10), (13), (14) imply
(21): (qWoW B Wo) = Rs,,
(22) : (cWar W W By) = Rg,.
(5), (9), (13), (21), (22), (23) imply
(23) : (a1 Wols, W ((8lz,)], ~0) W 51 Wo) |= Ry,
(24) : (alg, W ((0]5,)]; ~0) War W6 W) = Rg,.
(1), (2), (9), (10), (16), (17), (20), (23), Lemma 1 imply there is a 7; such that
(25) :m e[S
(26) = m(uls, Wolo) = Ta(ar Wo)|o,uy = (Biloy Waly).
(1), (3), (9), (11), (16), (17), (20), (24), Lemma 1 imply there is a 75 such that
(27) :m € [S2],
(28) : 72(0], W a2|12 = T2(0 W @2)|2u0, = (0] W Bafo,)-
(15), (26), (28) imply

(29) : (71 @ T2) (1 W 2)|oyu0, = (Biloy W Beloy) = (11 @ T2)(euiiy @ ealsy).
The way (29) was deduced from (7), (8), (9) implies (6).

A.3 Conditional Refinement

Proposition 6 (“transitivity”) Given time independent specifications Sy € (iy >
01), 52 € (iy > 02) and S3 € (i3 > 03) such that

(1) : Sy~ Sy,
(2) : Sy ~p, Ss,
(3)21 §Z2 glg,
(4): 01 C 0y C 0.

It then holds that
(5) . Sl ~ B1ABs 53.

Proof: Let

(6): 73 €[53],
(7) : a € (i3),
(8) : (W T3(x)) = By A Bo.

(8) implies

25

(9) : (e« W r3(a)) = Bs.
(2),
€[S],

0
1) s m5(@)lo, = a(aliy)-

(
(1
(1
(

(3),

:7'16[[51]],

: 7_3(05)|02|01 = 7_2(Oé|i2)|01 = Tl(a|i2|i1)‘

(15) = m3()|o, = Ti(as,)-
The way (15) was deduced from (6), (7), (8) implies (5).

26

SFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A
342/1/90 A
342/2/90 A

342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Seman-
tics of Place/Transition-Nets, Januar 1990

Reinhard Fosmeier: Die Rolle der Lastverteilung bei der numerischen
Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-

guous Circuits, Februar 1990

Michael Griebel: Zur Losung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performance
Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen:
SETHEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks for
Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml: TOP-
SYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice Sys-
tems
Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement

Rob van Glabbeek: The Linear Time - Branching Time Spectrum

Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanalyse
von verteilten Beobachtungs- und Bewertungswerkzeugen

Peter Rossmanith: The Owner Concept for PRAMs
G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

27

Reihe A

342/19/90 A
342/20/90 A
342/21/90 A
342/22/90 A

342/23/90 A

342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A

342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A
342/3/91 A
342/4/91 A

342/5/91 A
342/6/91 A

Michael Griebel, Michael Schneider, Christoph Zenger: A combination
technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Operating Sys-
tem Structures by Timed Higher Order Stream Processing Functions
Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence for
Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distributed
Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and User’s
Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Method
for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Process
Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstraction in
Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of Aux-
iliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive Read
PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action Refine-
ment?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber: Char-
acterizing the Behaviour of Reactive Systems by Trace Sets

Ulrich Furbach, Christian Suttner, Bertram Fronhd6fer: Massively Par-
allel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Recur-
sive Atomicity

Robert Gold: Dataflow semantics for Petri nets

A. Heise; C. Dimitrovici: Transformation und Komposition von P/T-
Netzen unter Erhaltung wesentlicher Eigenschaften

Reihe A
342/7/91 A

342/8/91 A
342/9/91 A

342/10/91 A
342/11/91 A
342/12/91 A

342/13/91 A

342/14/91 A
342/15/91 A
342/16/91 A

342/17/91 A
342/18/91 A

342/19/91 A
342/20/91 A
342/21/91 A
342/22/91 A
342/23/91 A
342/24/91 A

342/25/91 A
342/26/91 A

342/27/91 A

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf diinnen
Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Parallelism
in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompakti-
fizierung von Programmen fur VLIW-Architekturen

Reiner Miiller: Implementierung von Algorithmen zur Optimierung von
Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert
Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hofstetter,
Rainer Knodlseder, Jaroslav Kremenek, Siegfried Langenbuch, Robert
Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner, Bernhard Ries,
Thomas Treml: TOPSYS - Tools for Parallel Systems (Artikelsamm-
lung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid solution
of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Algebras
and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas
Treml, Roland Wismiiller: The Design and Implementation of TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive logic
programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden zur
Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis of a
Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hierarchical
Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Christian
B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Languages for
Specifying Parallel Inference Systems

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parallelization of Inference Systems by using
an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed System:
On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-

troduction to the Parallel and Distributed Programming Language
ParMod-C

Reihe A

342/28/91 A
342/29/91 A

342/30/91 A
342/31/91 A
342/32/91 A
342/1/92 A

342/2/92 A

342/2-2/92 A

342/3/92 A

342/4/92 A
342/5/92 A
342/6/92 A
342/7/92 A
342/8/92 A
342/9/92 A
342/10/92 A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A

Claus Dendorfer: Funktionale Modellierung eines Postsystems

Michael Griebel: Multilevel algorithms considered as iterative methods
on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres, Bern-
hard Ries: Programming Tools for Distributed Multiprocessor Comput-
ing Environments

Frank Leske: On constructive specifications of abstract data types using
temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the Workshop
on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS - Revised Version (erschienen im Januar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: Summary of Case Studies in FOCUS - a
Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation of a
Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstut- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between Ab-
stract Relation Algebras and Process-Algebraic Specifications

Sergei Gorlatch: Parallel Program Development for a Recursive Numer-
ical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms for
Slicing Based Final Placement

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed

Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Riide, T. Stortkuhl: The Combination Tech-
nique for Parallel Sparse-Grid-Preconditioning and -Solution of PDEs
on Multiprocessor Machines and Workstation Networks

Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms for
Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezifkation
verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms

Reihe A

342/15/92 A
342/16/92 A
342/17/92 A

342/18/92 A

342/19/92 A
342/20/92 A
342/21/92 A

342/22/92 A

342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

342/1/93 A
342/2/93 A
342/3/93 A

342/4/93 A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms for
full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine eines
kompositionalen Beweiskalkiils fiir netzmodellierte Systeme

Frank Dederichs: Transformation verteilter Systeme: Von applikativen
zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of a
RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets

Robert Balder, Christoph Zenger: The d-dimensional Helmholtz equa-
tion on sparse Grids

Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with Concur-
rency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for the
singularity at the angular point of the lid driven cavity

Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimization of
Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics Prob-
lems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Commit-
ment Rules for Networks of Asynchronously Communicating Agents
Thomas Schnekenburger: A Definition of Efficiency of Parallel Programs
in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Christoph
Zenger: A Proof of Convergence for the Combination Technique for
the Laplace Equation Using Tools of Symbolic Computation

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sorting
and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory of
Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distributed
Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incremental
State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface (z
= f(x,y)): The Analysis and the Parallelization of Algorithms

Reihe A

342/10/93 A
342/11/93 A

342/12/93 A
342/13/93 A
342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

342/18/93 A
342/19/93 A
342/20/93 A

342/01/94 A

342/02/94 A

342/03/94 A

342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A

342/09/94 A

Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Ride: Layout Optimization with Algebraic Multi-
grid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal Mu-
Calculus using Gaus Elimination

Christoph Pflaum, Ulrich Riide: Gau$’ Adaptive Relaxation for the Mul-
tilevel Solution of Partial Differential Equations on Sparse Grids
Christoph Pflaum: Convergence of the Combination Technique for the
Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Christoph
Zenger: Pointwise Convergence of the Combination Technique for
Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas Ludwig,
Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Developing Multicom-
puter Applications on Networks of Workstations Using NXLib

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max Com-
ponent

Johann K. Obermaier: Recovery and Transaction Management in Write-
optimized Database Systems

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systemating
Coarsing Specification Parallelism

Reiner Hiuttl, Michael Schneider: Parallel Adaptive Numerical Simula-
tion

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Parallel
Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Multiple
Shooting for Optimal Control Problems Under NX/2

Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jorn Lange,
Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimization of
Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Parallel
Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Method to
Parallel Test Generation for Sequential Circuits

Reihe A

342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A

342/15/94 A

342/16/94 A
342/17/94 A

342/18/94 A
342/19/94 A
342/20/94 A
342/01/95 A
342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A

342/10/95 A

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted Version
of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-Element-
Solution of General Second Order Elliptic Differential Equations on
Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhingigkeit von Spezifikationen digi-
taler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings And
Multilevel Iterative Methods For Anisotropic Problems

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition from
Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse Grids
Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verifying
the development of a Communication Protocol in FOCUS - A Case
Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-
allel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-
necker Product of Identical Servers to a Reduced Product Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:
Auto-Correlation of Lag-k For Customers Departing From Semi-Markov
Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-
plications to Multi-dimensional Schrodinger Problems

Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsys-
tem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Networks
with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Networks -
with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software Co-
Design

Reihe A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A
342/16/95 A

342/17/95 A
342/18/95 A

342/19/95 A

342/20/95 A

Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via Integer
Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-to-
Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute
the Concurrency Relation of Free-Choice Signal Transition Graphs
Bernhard Schatz, Katharina Spies: Formale Syntax zur logischen Kern-
sprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismuiiller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into ParMod-
C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B

342/1/91 B
342/2/91 B

342/3/91 B

342/4/91 B
342/5/91 B

342/6/91 B
342/7/91 B
342/1/92 B
342/2/92 B

342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice Systems
Franz Abstreiter, Michael Friedrich, Hans-Jirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop tber
Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Methods
Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared
Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-
Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeitsregelung
Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-

eraturiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-
twurf eines Prototypen fiir MIDAS

