T UM

INSTITUT FURINFORMATIK

Formal Semantics
of
Time Sequence Diagrams

Christian Facchi

TUM | 9540
Dezenber 1995

TECHNISCHEUNIVERSITATMUNCHEN

TUM | NFO 12- 1995-1 9540- 300/ 1. - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1995 MATHENMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Typescript: ---

Dr uck: Mat henati sches I nstitut und
Institut fur Infornmati k der
Techni schen Uni versitat Minchen

Formal Semantics of Time Sequence Diagrams

Christian Facchi
Institut fir Informatik
Technische Universitdt Minchen
D-80290 Minchen
E-Mail: facchi@informatik.tu-muenchen.de

December 29, 1995

Abstract

Time Sequence Diagrams (TSDs) are a graphical representation employed
to clarify the communication between service users and a service provider in
the ISO/OSI basic reference model. In this paper we define the syntax and
semantics of a textual representation for TSDs. As well, we provide a method for
translating TSDs into this language. Furthermore, some extensions of TSDs are
introduced that allow some special facets of an arbitrary layer to be described.

1 Introduction

The ISO/OSI basic reference model [ISO84a, CCI88a] describes different layers for
the modularization of computer communication. According to [VL86] a specifica-
tion of one layer should start at the highest level of abstraction. Therefore, service
specifications are need as requirements rather than protocol specifications, which
can only describe the implementation of a service. Thus, every layer has an ISO or
CCITT! document which specifies its services. These specifications are in natural
language, supplemented with some additional formal and semi-formal material. The
natural language and the semi-formal parts may lead to unintended interpretation
ambiguities, which should be avoided in an international standard. To avoid misin-
terpretation we believe that it is necessary to develop a formal service specification
for every layer. Therefore, we propose that the semi-formal parts of such specifica-
tions should be transformed into formal ones in a schematic way. Toward this goal,
we provide such a transformation for Time Sequence Diagrams. (Translations for
other semi-formal parts can be found in [Fac95].) Later the natural language part of
such specifications, which is usually layer specific, can be formally specified. The dif-
ferent specification parts are then combined into a complete service specification. In
[VSvSB91] this is called a constraint oriented specification style. With this approach
a pure formal specification of a service can be derived.

We note that the method presented in this paper only provides a proposed formal
semantics for TSDs and has not been authorized by a standardization organization.

In 1993 the CCITT became the Telecommunication Standards Sector of the International
Telecommunication Union (ITU-T). If a document is published by CCITT, this organization name
is used instead of ITU-T in the sequel.

Our method is only based on examples given in the ISO/CCITT documents or in
literature.

Section 2 introduces the basic concepts and formalisms. In Section 3 the syntax
of a simple language (TSD-DL) for the representation of TSDs is introduced. For
this language a denotational semantics, which is based on traces, is given in Section
4. A development of TSD-DL expressions for arbitrary TSDs is the main part of
Section 5. In Section 6 some example TSD-DL expressions for TSDs are presented.
In Section 7 extensions of TSDs are proposed and discussed. Section 8 presents a
semantics without restriction of the service user’s behavior.

2 Basic Concepts

In this section we give a short introduction to Time Sequence Diagrams and our
formalism.

2.1 Time Sequence Diagrams

Time sequence diagrams, in the sequel abbreviated as TSDs, are a semi-formal means
of describing a specific property of a service specification. TSDs are defined in
[ISO87a, CCI88b] (a newer version is in [ISO94|) by some examples. We restrict
our semantic foundation to the first definitions, because the basic reference model
[ISO84a] is based on them. In the sequel we will discuss the differences between the
two definitions of T'SDs.

TSDs are considered to be at most semi-formal, e.g. in [BHS91], because they
are described in [ISO87a, CCI88b| without a formal semantics. It is our intention to
show that and how they can be formalized.

With TSDs timing precedences between service primitives can be expressed. In
the following, the term “events” is used instead of “service primitives” as an abbre-
viation.

Figure 1: Example TSD

In Figure 1, a TSD describing the temporal ordering of the events a, b, ¢ and d
is presented. The two vertical lines, which denote the Service Access Points (SAP),
divide three different communication partners from left to right: User A (on the
left-hand side), the service provider (between the two vertical lines) and user B (on
the right-hand side). The vertical lines also denote an increase in time downwards.
Therefore a temporal ordering of service primitives at each SAP is given. Two
service primitives at different SAPs can be related by a solid line, which indicates
a timing precedence. For example in Figure 1 the event b takes place after event a.

Events connected with a tilde (~) are not related with respect to time. Therefore
any temporal ordering of the events ¢ and d in Figure 1 is allowed.

A service specification uses a set of T'SDs to describe service behavior. Therefore
it is necessary to define a combination of TSDs. However, the interpretation of the
combination is hidden in the graphical representation of TSDs and therefore has to
be defined in the semantics of TSDs. In the following we will informally introduce
our interpretation of the combination of T'SDs. Therefore, we define some notions
in an informal way which will later be formalized.

The TSDs of a service specification can be regarded as a description of the gen-
eration principle for the allowed sequences of events, which we call scenarios. To
clarify the semantics of a TSD description of a service we introduce the notion of
scenaric interpretation, which describes one possible scenario of a TSD without rep-
etition. The complete interpretation describes an arbitrary number of repetitions of
TSDs. The scenaric interpretation of a single TSD describes the allowed scenarios
of events, where it is not possible that only a prefix of these scenarios take place. In
other words the scenaric interpretation requires that all events of a TSD take place.

The alternative part of the combination of TSDs is defined by an arbitrary choice
of the scenarios described by single TSDs. The complete interpretation of TSDs cov-
ers the repetitive part of the combination which is defined by an arbitrary interleaving
of one scenario with the repetition of this scenario. The complete interpretation of
a TSD is derived by an interleaving of an arbitrary number of scenarios which are
the result of a scenaric interpretation. This view is necessary to describe a possibly
reordering of data during the data transfer in lower layers. A detailed motivation of
the chosen combination is given in [Fac95].

TSDs describe neither a safety nor a liveness property in the sense of [AS87].
They express a combined safety and liveness property. This is a consequence that
due to the chosen scenaric interpretation of TSDs all events have to happen.

2.2 Traces

With a global view of time the timing precedence of two events at different SAPs
can be examined. Therefore traces are chosen as a semantic basis. Such a set of
traces can be used for the interpretation of TSDs.

Traces are used to describe a history of events in distributed systems. They are
possibly infinite sequences of events, which are denoted by the type Trace Event 2.

e & is used as constructor and € as empty trace.<ai, as,...,a,> is an abbrevi-
ation for a;&as ... &a,&e¢.

e o denotes the concatenation. If s is an infinite trace s ot = s holds.
e [denotes the usual prefix ordering: sCt = 3s'. (sos’ =t)

e The filter function a(©t yields the subpart of the trace ¢ consisting only of the
elements a. E.g. the following holds: a(©<a,c,a,b,a> = <a,a,a> For sim-
plicity a set can be used as first operand: {a,c}©<a,c,a,b,a> = <a,c,a,a>

ZNote that Trace is used as a type constructor. Trace Event is an instantiation of the polymor-
phic type Trace «

o # yields the length of a trace. The length of an infinite trace is oo.

e fix denotes the fixpoint operator, which yields the least fixpoint of a function.
E.g. fixAs.1&s denotes an infinite trace consisting of only 1’s. For a detailed
explanation see e.g. [LS87].

As usual with traces an interleaving semantics is taken in the following in which
simultaneous happening events can not be expressed. This can be extended to real
concurrency, in which simultaneous events are possible, by introduction of a set of
events instead of events as basic elements of traces. This would make the notation
more complicated.

A more detailed introduction to the formalism we use can be found in [BDD*93].

For the definition of the formal semantics of TSDs we introduce the strict function
filter. The filter function is polymorphic, because it is later used with traces of
different sorts.

filter: o X Trace o X Trace [— Trace 3
ps = € V xs = ¢ = filter(el,ps,xs)=¢

filter(el,p&ps,x&xs) = if (el = p)
then x&filter(el,ps,xs)
else filter(el,ps,xs)

The function filter(el,ps,xs) extracts the trace of all elements of a trace xs whose
elements at the corresponding position in ps are equal to the element el. ps is later
used as a prophecy parameter to simulate an arbitrary segmentation of a trace.

Example 1: The filter Function
In this example the effect of the filter function is demonstrated.
filter(1,<1,0,1,2>,<a,b,c,d>) = <a,c>
filter(4,<1,0,1,2>, <a,b,c,d>) = <>
Even infinite traces can be used:
filter(1,<1,1,2,2,...>,<a,b,a,b,...>) = <a,b>

filter(1,<1,2,1,3,4,2,...>,<a,a,b,a,a,b,...>) = <a,b>

3 Syntax of TSD-DL

In this section the BNF syntax of the Time Sequence Diagram Description Language
(TSD-DL) is defined. The basic elements of this language are events and operations.
An event is a service primitive with additional information about the direction and
the source. Initially, we omit this additional information.

(1) <TSD> ::= <Event>

(2) <TSD> ::= <TSD> — <TSD>
(3) <TSD> := <TSD> ~ <TSD>
(4) <TSD> = <TSD> ® <TSD>
(5) <TSD> ::= <TSD> | <TSD>
(6) <TSD> = <TSD>%

In line 1-4 the elements for the construction of a single T'SD are introduced. Line
5 and 6 represent combination operators which we use to express how TSDs are put
together. Two elements can be sequentially combined by the operator —. The ab-
sence of a timing relation between two elements is described by the ~ operator. The
conjunctive combination of timing precedences is described by ®. The alternative
composition of separated TSDs is achieved by the | operator. The last combination
operator is ¥, that describes a repetition of a TSD-DL expression.

In the following, we give a few examples of how TSDs can be expressed by TSD-
DL.

Figure 2: TSD with two elements

The TSD shown in Figure 2 defines that the event a leads later to an event b. This
timing precedence, which describes the scenaric interpretation, can be expressed by
the TSD-DL expression ¢ — b. Note that both events have to take place. The —
symbol denotes an additional timing precedence.

Figure 3: TSD with four elements

The TSD of Figure 3 describes a scenario with four events, where first a, then b, then
¢ and finally event d takes place. This leads to the scenaric interpretation expressed
with the TSD-DL expression (a — b) — (¢ — d). Because — is associative also
a — (b — (¢ — d)) can be used, but the first expression is closer to the graphical
representation.

A description of all TSDs of a service is: (TSD; | TSD, | ...| TSD,)%. Here
TSD; is an arbitrary TSD-DL expression for the scenaric interpretation of a single

TSD. The intuition behind this TSD-DL expression is that each TSD; describes
the scenaric interpretation of one TSD. All TSDs of one layer can be alternatively
combined using |. This leads to the scenaric interpretation of all TSDs of one layer:
(TSD, | TSD, | ...| TSD,,). However, the scenaric interpretation describes exactly
possible sequences of events of T'SDs without repetition. An arbitrary number of
repetitions, in other words the complete interpretation, is achieved by the operator

w

4 A Denotational Semantics of TSD-DL Expressions

A TSD-DL expression describes a set of traces of events. To simplify the description,
predicates are used to denote sets. In the following a TSD-DL expression T'S can be
inductively transformed into a predicate Prg(t) with the following intuition:

Prs(t) holds iff a trace t of events, which is denoted by the sort Trace Event,
is correct with respect to the construction rules described in the TSD-DL
expression T'S.

The denotational semantics of a TSD-DL expression is defined as follows:

1. Basic TSDs:

P,(t) = (t=<a>) iff a: Event
Note that P,(t) holds only if the trace ¢ consists of one element a.

2. Sequential Composition:
Prs, _.1s,(t) = 3sy, 89 :Trace Event.
t= S1 0 82/\PT51 (81)/\PTS2(82)
3. Interleaving Composition:
Prs, .rs,(t) = 3bs :Trace Bool.
#bs = coAPrg, (filter(true, bs,t))
APrs, (filter(false,bs,t))
4. Conjunctive Composition:

Prs,@rs,(t) = Prs, () A\Prs, (t)

5. Disjunctive Composition:

Prs,rs,(t) = Prs, (t)VPrs,(t)

6. Repetition:

Prs«(t) = dns :Trace Nat.
#ns = oo A Vn: nat. Prs(filter(n,ns,t))
V filter(n,ns,t) =€

The operator £ is used to describe an arbitrary, possibly infinite fair interleaving
of TSDs, i. e., a total segmentation of a trace into disjoint parts. E.g: P,—;)=(t) holds
for the infinite trace ¢t = fixAs.<a,b>os, because ns = <1,1,2,2,...>. Another ex-
ample: P, _y)e(t) also holds for t = fixAs.<a,a, b>os, because ns = <1,2,1,3,4,2,...
The last trace describes a property, which can not be approximated from finite be-
havior. For every finite prefix t' of ¢, P,_s)«(t') does not hold. Ounly in the infinite
trace t, does there exist, for every event a, a corresponding event b.

Remark: Modification of the Semantics of Basic TSDs

If the empty trace would be included in the definition of basic TSDs in line
1, the basic property of TSDs that every event of a TSD has to take place is
violated. This can be seen if the definition of the basic case P,(t) = (t = <a>)
would be modified. In the following example the effects of including the empty
trace in the definition of the semantics of basic TSDs is shown.

1’. Basic TSDs:

P!(t) = (t=<a> V t=e) iff a: event

The TSD-DL expression of the TSD shown in Figure 2 would have after a sim-

plification the semantics using the same definition of the sequential composition

given by line 2:
Pl

a—b

(1) = (t = eVt = <a>Vt = Vt = <a,b>)

This would give a trace which consists only of the event a a correct semantics.
That is not intended by the TSD. O

The semantics of a TSD-DL expression expr is defined as the set of all traces
where P,,,, holds:
lexpr]rso = {t € Act?| Py (t)}

In this, Act“ is the set of all traces over the actions denoted by ACT.

To take stock, we have now defined a formal semantics of TSD-DL expressions.
What remains is the transformation of the graphical representation of TSDs to TSD-
DL expressions. Then we will have given the graphical representation of TSDs a
formal semantics, using TSD-DL as an intermediate step.

5 Transformation of Time Sequence Diagrams to TSD-
DL Expressions

In this section a formal interpretation of TSD into TSD-DL expressions is presented.
We note that, because only an informal semantics of TSDs exists the presented
formal semantics can only be validated and not formally compared.

5.1 A First Step to the Interpretation of TSDs

Every TSD is translated into a TSD-DL expression. In the graphical representation
of a TSD two corresponding service primitives on different SAPs have a timing
precedence relation, which is represented by —, or no timing relation, which is
represented by ~. The combination of more TSD parts can be achieved by the
temporal ordering on the time axis (see Figure 3).

The TSD of Figure 1 is used in [CCI88b, ISO87a] to explain the meaning of TSDs.
Even this TSD leads to an interpretation difficulty. One possible interpretation of
the TSD shown in Figure 1 is the TSD-DL expression: (a — b) — (¢ ~ d). In this
interpretation it is guaranteed that event d takes place after event b. A more rigorous
approach is that ~ describes a real absence of a timing relation. Then it can only
be stated that event a takes place before event b, a before d and b before c. In this
interpretation it is allowed, that event d takes place before event b. This leads to the
TSD-DL expression a — ((b — ¢) ~ d). Note that the second interpretation includes
the first one and is therefore more general. The second interpretation is given in the
service specification of the network layer in [ISO87b, CCI88d] as an extra verbal
addition. In [CCI88c| the same TSD is used for the service specification of the data
link layer, but no additional text about the interpretation is explicitly given.

The same ambiguity can be demonstrated by Figure 4.

Figure 4: Example TSD

One interpretation of the TSD presented in Figure 4 is the TSD-DL expression
(a ~ b) — (c ~ d). In this interpretation the events ¢ and b have to take place
before the events ¢ and d. The second possible interpretation is that there are only
two timing precedences between the events a and d, and between the events b and c.
This leads to the TSD-DL expression: (¢ — d) ~ (b — ¢). In the sequel the second
interpretation is chosen, because it describes only the essential parts of the timing
precedence relation.

5.2 A Schematic Interpretation Method for Separated TSDs

One way to give an arbitrary TSD a semantics is to determine for each example

TSD one TSD-DL expression. Since the number of different TSDs is limited in the

ISO or CCITT documents this method is applicable. However, the better way is a

schematic method which translates an arbitrary TSD into a TSD-DL expression.
This method is divided into four steps:

1. Dewveloping the “basic timing precedence” relation: As a starting point every
timing precedence of a TSD must be considered. There are two different kinds:
First the timing precedences of events, which take place at one SAP, given by
the time axis. Second the timing precedences between events at different SAPs,
given by the connection of two service primitives with a solid line. The timing
precedences of the TSD shown in Figure 3 are: « — d,b — ¢,a — b,c — d. For
Figure 1 the following timing precedences are derived: ¢ — d,b — c¢,a — b.
The tilde expresses no timing precedence and is therefore of no interest. The
set of timing precedences of a TSD T'S is denoted as BP(T'S).

2. Construction of the “basic precedence” expression: The basic precedence ex-
pression BPexpr(TS) of a TSD represents the basic timing precedence relation
expressed in TSD-DL. All elements of BP(T'S) are combined with the TSD-DL
operator ®, which describes a conjunctive composition:

BPexpr(TS) € {bpy®bp® ... ®bp,|{bps,...,bp,} = BP(TS)}

3. Construction of the “all happens” expression: The all happens expression
ALL(TS) describes the fact that all actions of a TSD have to happen. There-
fore all actions of a TSD T'S, whose set is denoted by ACT(T'S), are connected
with the TSD-DL operator ~:

ALL(TS) € {act, ~ acty ~ ... ~act,|{acty,... act,} = ACT(TS)}

4. Construction of the TSD-DL expression: The TSD-DL expression, which de-
scribes the scenaric interpretation of a single TSD is the conjunctive composi-
tion of the basic precedence expression with the all happens expression:

(ALL(TS))®(BPexpr(TS))

The presented method only works with events which can be uniquely distin-
guished by name. The problem is a consequence of the used ® operator which can
be avoided by transformation rules. If one event is used repeatedly in one TSD,
the events have to be tagged for the construction of a TSD-DL expression. These
TSD-DL expressions can be simplified to expressions without the operator ®, and
then the tagging can be omitted (for more details see [Fac95]).

All TSD-DL expressions derived from single TSDs of a service are alternatively
combined: (TSD; | TSDs | ...|TSD,)%. Here TSD; is an arbitrary TSD-DL expres-
sion for a single TSD.

5.3 Including Source and Direction of Service Primitives

The transformation method of Section 5.2 may lead to equivalent TSD-DL expres-
sions for different TSDs.

Figure 5: TSDs with equivalent TSD-DL expressions

Both TSDs shown in Figure 5 are transformed into the very same TSD-DL ex-
pression @ — b, because the event identified by b is used for two different events.
The distinction between these events is given by the different sources. This problem
can simply be avoided by tagging every service primitive with information about its
source and direction. We use A for the left SAP and B for the right one. The first
TSD of Figure 5 is transformed to the TSD-DL expression a’;* — b%*'; the second
TSD is transformed to al® — 0Q“*. To simplify the expression in the sequel this
additional tagging is omitted, if only one event appears once in a single TSD.

6 Some Examples of TSD-DL Expressions

In this section some examples for the semantics of TSDs and transformations of
TSDs into TSD-DL expressions are given. First the semantics of single TSDs is
shown, secondly examples for combined TSDs are presented.

The corresponding TSD-DL expression for the complete interpretation of the
TSD shown in Figure 2 is: (a — b)2 The semantics of this expression is:

Plo—pye(t) = 3ns : Trace Nat. #ns = coAVn : nat. P,_y)(filter(n,ns,t))
V filter(n,ns,t) =€

Here P,_;)(t) can be simplified by elimination of the existential quantifier:

P,_,(t)=3s1, 85 : Trace Event. (t = s, 085) A (81 =<a>) A (83 =)
= (t = <a,b>)

This leads to:

Pro—py=(t) = 3ns : Trace Nat. #ns = coAVn : nat. filter(n,ns,t) = <a, b>
V filter(n,ns,t) =€

To determine the accepted traces first finite traces are examined. FP,_p)=(
<a,b,a,b>) holds. This can be proven with ns = <n;,n;,ny,ny>ons’. Analo-
gously, Pr,_p«(<a,a,b,b>) holds, because ns = <ny,ny,ny, nay>ons’'. That P,_p(
<b,a>) does not hold can be proven with ns = <n;,ny,>ons’ by case distinction on
ny = Na.

10

Now we turn to the behavior of infinite traces. Let ¢ be an infinite sequence
of <a,b>, in a formal notation: ¢ = fixAs.<a,b>o0s. P,_;=(t) holds e. g. for
ns = (fixAf.An.<n,n>of.n + 1).1 This is not surprising, because for every finite
prefix ¢ of t P, (t') holds.

A slightly more sophisticated case is: t = fixAs.<a,a,b>os, which is an in-
finite repetition of <a,a,b>. Informally for every event a there exists an event
b, which takes place later. This can be shown with ns = (fixAf.An.<2 x n,2 *
n+ 1,n>of.n 4+ 1).1 . From a practical point of view it is not surprising that
Plo—p)e(fixAs.<a,a,b>o0s) holds, because for every a there exists exactly one b which
happens later. Therefore, the liveness part of the TSD is fulfilled.

That P, (fixAs.<a, b, b>os) does not hold can be shown with ns = <n,ns,n3>
ons’ and case distinction.

CONreq DATreq
CONind DATind
CONresp
CONconf

Figure 6: Example TSDs

The TSD-DL expression for the TSDs shown in Figure 6, is after some simplifi-
cation:

(((CONreq — CONind) — (CONresp — CONconf))(DATreq — DATind))*
Now
[(((CONreq — CONind) — (CONresp — CONconf))|(DATreq — DATind))%];so

describes the set of all traces which are correct with respect to the TSDs presented
in Figure 6. This example demonstrates that the presented representation can be
used also to describe the TSD part of a real layer specification.

7 Extensions to TSD-DL

With TSD-DL the TSD part of a service specification can be formally described.
However, some facets of a service specification are not covered by the used graphical
notation for TSDs. This is a consequence of the verbal additions in the ISO or
CCITT documents. In this section, some extensions of TSDs are presented. With
these extensions it is possible to describe the TSD part of an OSI service formally,
including some features like a formalization of connection disruption or the service
primitive’s parameter. We name our extension time sequence diagram description
language extended (TSD-DLext).

11

7.1 Formalization of Connection Disruption

Many original service specifications using TSDs are not able to deal correctly with
data-loss in the case of a connection disruption, or they handle it with an informal
addition.

An example for this is the INRES service [Hog89, Hog91], which has been de-
veloped to represent a simple example service. The motivation for using the INRES
service instead of a concrete ISO/OSI service is that for the INRES service there
exists an informal and a formal specification. The latter is used to avoid misinter-
pretations. In [Hog89, Hog91] the data transfer of the INRES service is informally
specified with the TSD presented in Figure 7.

DATreq DATreq
DATind

DISind

Figure 7: Data transfer in the INRES service

In the TSDs presented in Figure 7 every data request (DATreq) leads to a data
indication (DATind) or disconnect indication (DISind). For example, suppose a
service user issues five DATreqs. Suppose also that only the first one is successful
and leads to one DATind and then the connection is disturbed. Due to the TSDs
presented in Figure 7, the service provider has then to emit four DISind. But this
is in contrast to the formal specifications of the service in LOTOS, SDL and Estelle
in [Hog89, Hog91], where in this case only one DISind has to be sent. Therefore, in
[BHS91] an additional TSD that we show in Figure 8 is suggested.

DATreq

Figure 8: Extension of the data transfer in the INRES service

Using the additional TSD presented in Figure 8 it is now possible that only one
DISind is sent. But then the TSDs of Figures 7 and 8 also describe an insecure data
transfer too, because loss of data is possible during two successful data transfers. A
first solution is to forbid this behavior in the connection part of a service specification,
which describes the properties of a connection. however, this would lead e.g. in
[ISO84b] to a huge number of TSDs, because in the transport layer every TSD can
be interrupted. As a consequence, all possible interruptions of all TSDs have to be
given in detail.

To avoid this problem a new operator for TSDs is introduced in Figure 9.

12

DATreq—

\—>DATind

interrupted by: DISind

Figure 9: TSD with kill-operator

The corresponding TSD-DL expression of the TSD presented in Figure 9 is
(DATreq — DATind)% 1 DISind

with the semantics that a DISind may interrupt the complete interpretation of
DATreq — DATind.

With the same method the verbal addition in the service definition of the trans-
port layer in [ISO84b, CCI88e] can be totally formalized. This verbal addition de-
scribes that the transport layer service primitives T-DISCONNECTrequest or T-
DISCONNECTindication may terminate any of the other sequence of service prim-
itives.

7.2 Including Parameter of Service Primitives

Normally, service primitives are used in TSDs without parameters. However, the
parameters of data transfer service primitives are important, because they are the
essential part of a communication. The simple introduction of parameters leads to
the TSD presented in Figure 10.

DATreq(x)
DATind(x)

Figure 10: Data transfer with parameters

This shows a correct data transfer. It does not include the residual fatlure prob-
ability concept, in which non detectable transfer errors are possible. This concept is
a part of the OSI basic reference model [ISO84a] and therefore ought to be modeled.
To describe this behavior we extend Time Sequence Diagrams with parameter re-
strictions. With this concept parameters which are in a previously defined relation
are describable in TSDs. For example, the TSD pictured in Figure 11 defines that
DATreq(z) and DATind(y) belong to same TSD iff x &~ y holds.

13

DATreq(x)
DATind(y)

X2y

Figure 11: Data transfer with parameter restrictions

Here = is an equivalence relation, which describes the class of non detectable
errors. The TSD presented in Figure 11 can be transformed to a new TSD-DL
expression

Var x,y With x = y: DATreq(x) — DATind(y)

where x and y are bound variables with the restriction that = = y holds. Now the
relation between the service primitive’s parameters x and y can be expressed. The
service primitives DATreq(x) and DATind(y) are described by the TSD of Figure
11 only if x = y holds.

The extended T'SD can also be used to describe the negotiation of quality of ser-
vice parameters during the connection establishment phase. Then a partial ordering
has to be used instead of the equivalence relation =.

7.3 Syntax and Semantics of TSD-DLext

Now we discuss how to syntactically and semantically model our extensions. The
syntax of TSD-DLext is a simple extension of the syntax of TSD-DL with

<TSD> ::= <TSD> 71” <TSD>
<TSD> ::= Var <varlist> With <boolexpr> ":” <TSD>

” "M

where <varlist> is a list of variable identifiers separated by ”,” and <boolexpr> is
a boolean expression.
The formal semantics of the kill operator f is:

Prs,irs, (t) = Prg, (t)
V dsy, s, t" : Trace Event. t = s 0 sy,
A PTSK(Sk)
A S1 Sé €
A Prg, (syot)

A correct trace for the TSD-DLext expression T'S; 1 T'Sk is a correct trace with
respect to T'Sy, or a trace interrupted by T'Sx, where the interrupted trace is a prefix
of a correct trace with respect to T'S;.

The formal semantics of a parameter restriction is defined by:

Pyar 2,y With anyrs(t) =30,y x =y A Prs(t)

For simplicity the semantics is only for a variable list with two variables given.

14

8 The Formal Semantics of TSDs with Unrestricted Ser-
vice User’s Behavior

In the previously defined semantics no substantial distinction between input and
output action is made®. However, if a service provider has to be specified, the
behavior of the service users, who deliver the input service primitives, should not be
restricted. In the previously defined semantics the occurrence of the input service
primitives can be restricted by a specification as can be seen in Example 2.

Example 2: Restriction of the Service User’s Behavior

In this example the restriction of the service user’s behavior by the previous
defined semantics is shown.

<—i2

il_’\
| »01

02 +—

Figure 12: TSD,

The scenaric interpretation of the TSD presented in Figure 12 is:
Ty = [(iy — 01) = (iz — 02)] 750 = {<i1,01,42,00>}

Let the set of all input actions be I} = {i,is,...}, the set of all output actions
be O; := {01,0y,...}. The trace <i,> is not an element of 7;. But this trace
should be included, because the service provider should not be able to block a
service primitive, which is received as an input. Equivalently the trace <i,, 0,>
is also not an element of 7. But it has to be, because the service provider
behaved correctly and waits for the service primitive i, whose occurrence it
can not influence. O

Example 2 shows that the behavior of the service users, who form the environment
of the component to be implemented, is restricted. To avoid this restriction we adopt
the assumption/commitment style [AL90, AL93, SDW93, BS94] for trace sets. In
[AL93] a logical presentation of the behavior of a component is given by A —> C.
The behavior of a component is described by two parts. The assumption part A
describes the necessary behavior of the environment; the commitment part C gives
the rules for the component. A —> C holds when either A and C' hold, or when A
does not hold and C holds at least until to the point in time where A does not hold.

3This is a consequence of the informal specification of TSDs in [ISO8Ta, CCI88b], where the
treatment of input and output actions is not distinguished.

15

The previously defined [7'S];s,» denotes the trace set in which both A and C for
a given TSD T'S hold. In the following we describe an extension for this trace set,
where A is first violated.

There are two possibilities for inputs that violate the assumption A first:

o false input: After a false input a completion to a correct behavior is not possi-
ble. E.g. the trace <i»> in Example 2. Here the safety part of the assumption
does not hold.

o missing input: These are input actions that are necessary for the completion to
a correct trace. E.g. the trace <i;,0;> in Example 2. In this case the liveness
part of the assumption is violated.

The formal definition of the extensions with false input is given for a set of traces
T, a set of input actions I and a set of output actions O by:

Eruseing(T,1,0) :={toi&kx| €I,z (IUO)"
At € PRE(T)
Ato<i>¢ PRE(T)}

PRE denotes the set of all prefixes: PRE(T) := {t,| 3t € T. t,Ct}. All traces with
prefix t o <i> are elements of the set of false input actions, iff ¢ is a prefix of a correct
trace of T" and ¢t appended with the input action ¢ is not an element of the prefix set
of T.

The extension regarding missing inputs is defined by:

Emissing_inp(T7 -[7 O) = {t| t ¢ T
ANTiel. to<i>¢€ PRE(T)
A(Yo € O. to<o> ¢ PRE(T)V<o> € PRE(T))}

A trace t is an element of the extended trace set, iff the following properties hold:
First according to t ¢ TAt o <i> € PRE(T) it is guaranteed that one input action
has to happen. Then it has to be ensured that every necessary and possible output
action of the component has to be performed. The only output action which can
occur is a spontaneous action, which is the first element of a TSD. Then according
to the semantics of TSDs <o> € PRE(T') holds.

These definitions can be combined to a semantics for TSDs without restriction
of the service user’s behavior for a TSD-DL expression Texpr, a set of input actions
I and a set of output actions O:

[[Texpr]](f{s’g) = E([[Tepr]]Tsva I, O)

where

_E‘(T'7 I, O) = T U Efalse_inp(T7 I, O) U Emissing_inp(T7 I, O)

Some TSDs that, at a first glance seem strange, can be interpreted.

16

Example 3: Difficult to Implement TSD

This example demonstrates the interpretation of a TSD which is difficult to
understand with respect to a later implementation.

a—f_b—»b

Figure 13: Example TSD

The complete interpretation of the TSD presented in Figure 13 yields the
TSD-DL expression (a ~ b)<. Let I := {a,i} and O := {o} then: T} :=
[(a ~ b)) rsp = {t € Trace{a,b}||#a©t = #bOt}

The extension regarding false inputs is defined as:
Etoise_inp([(@ ~ b)4] 755, I,0) = {t o i&x|t € PRE(T))Ax € Trace{a,i,b}}
The extension regarding missing inputs is defined as:

E,issing_inp([(@ ~ b)) 750, I,0) = {t € Trace{a, b}|#a©t < #bOt}

Here the interpretation of a strange behavior can be demonstrated. A correct
implementation with respect to the TSD of figure 13 can provide an arbitrary
number of b’s. The service provider hopes that later the service user will send
a fitting number of a’s. If that does not happen the service user has violated

the rules first. Therefore the assumption part does not hold and this trace has
to be included. O

Example 3 shows an interpretation of a TSDs which is not easy to be imple-
mented. The in this paper defined concept of missing input makes the interpretation
possible. Note that the difficulties regarding the tilde symbol have as consequence
that in [I[SO94] it is only presented in the appendix.

9 Conclusions

In this paper a formal semantics for TSDs is developed. This gives a number of
advantages. Chief among these is that the unambiguous description of a service is
possible, demonstrated by our solutions of the interpretation problems of Figures
1 and 4. Because of their lack of precision, TSDs have until now been used only
for commentary and overview purposes, as stated in [BHS91]|. Using the semantics
presented in this paper, it is possible to use TSDs as a clear and non-ambiguous
description. Furthermore they can be utilized as a basis for the usage of formal
methods in later development steps.

Note that our semantics is not officially justified and therefore it is only a sug-
gestion for a formal semantics of TSDs. That a formal approach is necessary can be

17

seen explicitly in a recent version of the TSD definition[ISO94]. In this definition
the difficulties with the interpretation of ~ result in putting the ~ operator into the
appendix of this standard. These difficulties are solved by our semantics, without
restricting the service user’s behavior.

In our formal semantics it is possible to state that

Po—_py=(fixAs.<a,a,b>os)

holds. This is a major difference to most process algebraic approaches, where infinite
elements can be reached only by an approximation process e.g. [BW90, Hoa85] and
therefore our approach can lead to more abstract TSD descriptions.

If an executable interpretation of TSD-DL is desired, then it is possible to give
a LOTOS [ISO89a| based semantics, because of the close relation of the TSD-DL
operators to a process algebra. However, the introduction of the delayed choice
operator [BM94] is necessary. This operator is essential for describing TSDs in a
modular way. As an example let <a,b> be the sequence described by one TSD and
<a, c> of another one. The combination of both T'SDs expressed in a process algebra
is:

(a.b) + (a.c)

However, then
(a.b) + (a.c) # a.(b+c)

holds. As a consequence the nondeterministic choice which TSD is described must
be done before or at least at the time when the action a happens. If the choice
has been wrong, a deadlock appears even if the correct action would follow. For
example the sequence <a,b> is chosen after an a occurs and then occurs the action
c. To describe TSDs in a modular way the negation of the last formula should
hold. To describe such a behavior in [BM94] the delayed choice operator has been
introduced. Since our approach can be seen as a process algebraic one we introduced
a nondeterministic operator with an equivalent behavior.

Using our approach it is possible to transform schematically one part of an ar-
bitrary OSI service specification into a formal specification. After the formal speci-
fication of all parts of a service specification based on traces a formal development
of an implementation, e.g. using stream processing functions can be achieved as in
[BDD*93, DW92].

The main advantage of the schematic development of a service specification is
that it is not necessary to construct specifications from scratch for every layer as in
[ISO89b, ISO92]. In this paper, such a schematic development has been carried out
for only one aspect concerning the TSD part. A method that covers the remaining
aspects is presented in [Fac95].

The formal approach to describing TSDs shows that some special aspects of some
OSI layers can not be formally expressed by TSDs. This does not lead to a problem
in the ISO/CCITT documents, because they are not formal. In Section 7 some
extensions of T'SDs are introduced to describe these aspects. Even in a non-formal
description these extensions lead to more clarity.

18

Acknowledgment

I thank Manfred Broy, Qystein Haugen, Max Fuchs, Konrad Slind and Ketil Stglen
for careful reading preliminary versions of this paper and providing valuable feedback.

References

[AL90]

[AL93)]

[AS87]

[BDD+93]

[BHS91]

[BM94]

[BS94]

[BWYO]

[CCI88a]

[CCI8sD)

[CCI88¢]

[CCI8sd]

Martin Abadi and Leslie Lamport. Composing specifications. Technical
Report 66, Digital System Research Center, October 1990.

Martin Abadi and Leslie Lamport. Conjoining specifications. Technical
Report 118, Digital System Research Center, December 1993.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness.
Distributed Computing, 2(1):117-126, 1987.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and
R. Weber. The design of distributed systems — an introduction to FOCUS
— REVISED VERSION. SFB-Bericht 342/2/92 A TUM-19202-2, Technis-
che Universitat Miinchen, January 1993.

Ferenc Belina, Dieter Hogrefe, and Amardeo Sarma. SDL with Applica-
tions from Protocol Specification. Prentice Hall, 1991.

J. C. M. Baeten and S. Mauw. Delayed choice: an operator for join-
ing Message Sequence Charts. In Dieter Hogrefe and Stefan Leue, edi-
tors, Participant’s Proceedings of the Seventh International Conference
on Formal Description Techniques (FORTE 94), pages 327341, 1994.

Manfred Broy and Ketil Stglen. Specification and refinement of finite
dataflow networks — a relational approach. Technical Report SFB-Bericht
Nr. 342/7/94 A, Technische Universitiat Miinchen, 1994.

J.C.M. Baeten and W.P. Weijland. Process Algebra, volume Cambridge
Tracts in Theoretical Computer Science 18. Cambridge University Press,
1990.

CCITT. X.200, reference model of Open System Interconnection for
CCITT applications. Blue Book, FASCICLE VIII.4, Recommendations
X.200-X.219, November 1988.

CCITT. X.210, Open System Interconnection layer service definition
conventions. Blue Book, FASCICLE VIII.4, Recommendations X.200-
X.219, November 1988.

CCITT. X.212, data link service definition of open system interconnec-
tion for CCITT applications. Blue Book, FASCICLE VIII.4, Recommen-
dations X.200-X.219, November 1988.

CCITT. X.213, network service definition of open system interconnection
for CCITT applications. Blue Book, FASCICLE VIII.4, Recommenda-
tions X.200-X.219, November 1988.

19

[CCI88e]

[DW92]

[Fac95]

[Hoa85]
[Hog89]

[Hog91]

[ISO84a]

ISO84D)]

[1SO87a)

ISO8T7h]

[ISO89a]

ISO89D)

1S092]

1S094]

CCITT. X.214, transport service definition for Open System Intercon-
nection for CCITT applications. Blue Book, FASCICLE VIIIL.4, Recom-
mendations X.200-X.219, November 1988.

C. Dendorfer and R. Weber. From service specification to protocol entity
implementation — an exercise in formal protocol development. In R.J.
Linn and M.U. Uyar, editors, Protocol, Specification, Testing and Ver-
ification, XII, pages 163-177. IFIP Transactions C—8, North-Holland,
1992.

Christian Facchi. Methodik zur formalen Spezifikation des 1SO/0SI
Schichtenmodells. PhD Thesis, Technische Universitat Miinchen, 1995.
Published in Herbert Utz Verlag Wissenschaft, Minchen (ISBN 3-
931327-94-9).

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
Dieter Hogrefe. Estelle, LOTOS und SDL. Springer-Verlag, 1989.

Dieter Hogrefe. OSI formal specification case study: the Inres protocol
and service. Technical Report TAM-91-012, Universitat Bern, 1991.

ISO. ISO 7498: Information processing systems - open systems intercon-
nection - basic reference model, 1984.

ISO. ISO DP 8072: Information processing systems - open systems
interconnection - transport service definition, 1984.

ISO. Information processing systems - Open Systems Interconnection -
service conventions. Technical Report ISO TR 8509, ISO, 1987.

ISO. ISO 8348: Information processing systems - open systems intercon-
nection - network service definition, 1987.

ISO. LOTOS, a formal description technique based on the temporal
ordering of observational behaviour. ISO International Standard 8807,
February 1989.

ISO/IEC. Information technology - Open System Interconection - LO-
TOS description of the session service. Technical Report ISO/IEC/TR
9571, International Organization for Standardization Geneva, 1989.

ISO/IEC. Information technology - telecommunications and information
exchange between systems - formal description of ISO 8072 in LOTOS.
Technical Report ISO/IEC/TR 10023, International Organization for
Standardization Geneva, 1992.

ISO. Final DIS text of ISO/IEC 10731, information technology - Open
Systems Interconnection - conventions for the definition of OSI services.
Technical Report ISO/IEC JTC 1/SC 21 N 8604, ISO, 1994.

20

ILS87]

[SDW93]

[VLS6)]

[VSvSBI1]

Jacques Loeckx and Kurt Sieber. The Foundations of Programm Verifi-
cation. John Wiley & Sons, 2nd edition edition, 1987.

Ketil Stglen, Frank Dederichs, and Rainer Weber. Assump-
tion/commitment rules for networks of asynchronously communicating
agents. Technical Report TUM-19303, SFB-Bericht Nr. 342/2/93 A,
Technische Universitat Miinchen, 1993.

Chris A. Vissers and Luigi Logrippo. The importance of the service con-
cept in the design of data communication protocols. In Protocol Specifi-
cation, Testing, and Verification, volume V, pages 3-17, 1986.

Chriss A. Vissers, Giuseppe Scollo, Marten van Sinderen, and
Ed Brinksma. Specification styles in distributed systems design and
verification. Theoretical Computer Science, 89:179-206, 1991.

21

