T UM

INSTITUT FUR INFORMATIK

The SDL Specification
of the Sliding Window Protocol
Revisited

Christian Facchi, Markus Haubner, Ursula Hinkel

TUM | 9614
Varz 1996

TECHNISCHEUNIVERSITATMUNCHEN

TUM | NFO 03- 1996-19614- 300/ 1. - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1996 MATHEMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Typescript: ---

Dr uck: Mat henati sches I nstitut und
Institut fur Infornmati k der
Techni schen Uni versitat Minchen

The SDL Specification of the Sliding Window

Protocol Revisited

Christian Facchi} Markus Haubner, Ursula Hinkel
Institut fur Informatik
Technische Universitat Miinchen
D-80290 Munchen
{facchi,haubnerm,hinkel } @informatik.tu-muenchen.de

March 31, 1996

Abstract

We present the results of a case study in which the use of SDL tools was analysed
on the basis of the sliding window protocol. We chose the SDL specification of the
protocol which was first published by the ISO. While editing and simulating the
SDL specification we found out that the specification contains significant errors
and does not meet the informal description of the protocol. We describe these
errors and give a correct version of the SDL specification.

1 Introduction

CCITT?! and ISO have standardized the formal description techniques (FDT) Estelle,
LOTOS, SDL and MSC for introducing formal methods in the area of distributed systems
in order to improve their quality. The specification and description language SDL is one
of them. SDL is a widespread specification language, which, in our opinion due to its
graphical notation and structuring concepts, is well-suited for the formulation of large
and complicated specifications of distributed systems.

We will present some results of [Hau95] in which the use of SDL tools is analysed.
Because of its practical relevance and simplicity we chose the sliding window protocol
as a case study for specification. An SDL description of the sliding window protocol is
given in [ISO91, Tur93]. The goal of [Hau95] was the transformation of this description

*New address: Siemens AG, PN KE TCP31, D-81359 Miinchen, Christian.Facchi@pn.siemens.de

'In 1993 the CCITT became the Telecommunication Standards Sector of the International Telecom-
munication Union (ITU-T). If a document has been published by CCITT, this organization name is
used instead of ITU-T in the sequel.

to the representation of the tools examining the functionality and the user adequacy
of the tools. This was followed by an examination what features the tools offer for
simulation and testing of SDL specifications. While editing and simulating the protocol
we found some incorrect parts within the specification of the sliding window protocol
[ISO91, Tur93]. The specification does not meet the informal description of the protocol
in [ISO91, Tur93]. We will explain these discrepancies by examples which we drew of the
simulation. Then we will present a corrected specification with respect to the previously
found errors.

This paper is organized as follows. In Section 2 we will give an informal introduction
to the sliding window protocol. Section 3 contains an overview of SDL. The main part of
this paper describes the errors that we found and their correction in Section 4. Section
5 summarizes the results and draws a conclusion.

2 The Sliding Window Protocol

The sliding window protocol is a widespread protocol describing one possibility of the
reliable information exchange between components. The sliding window protocol can
be used within the data link layer of the ISO/OSI basic reference model [ISO84]. Due
to its purpose it describes a point to point connection of two communication partners
without an intermediate relay station. The latter aspect is dealt with in higher layers of
the ISO/OSI basic reference model. Note that the connection establishment and discon-
nection phase are not part of the sliding window protocol. It serves only to establish a
bidirectional reliable and order preserving data transfer within an existing connection.

The basic principle of a sliding window protocol is the usage of a sending and receiving
buffer. For the sender it is possible to transmit more than one message while awaiting
an acknowledgement for messages which have been transmitted before. In hardware
description an equivalent property is called pipelining.

The protocol can be described as follows ([Stg95]): The sender and the receiver com-
municate via channels that are lossy in the sense that messages may disappear. Messages
may also be corrupted which has to be detectable by the protocol entity. Each message is
tagged with a sequence number. The sender is permitted to dispatch a bounded number
of messages with consecutive tags while awaiting their acknowledgements. The messages
are said to fall within the sender’s window. At the other end, the receiver maintains a
receiver’'s window, which contains messages that have been received but which to this
point in time cannot be output because some message with a lower sequence number is
still to be received. The receiver repeatedly acknowledges the last message it has suc-
cessfully transferred to the receiving user by sending the corresponding sequence number
back to the sender.

We demonstrate the advantages of the sliding window protocol by an example: Sta-
tion A wants to transmit 3 frames to its peer station B. Station A sends the frames 1, 2
and 3 without waiting for an acknowledgement between the frames. Having received the
three frames station B responds by sending an acknowledgement for frame 3 to station

A.

Due to its practical relevance there exist a number of formal descriptions of the
sliding window protocol [ISO91, MV93, Tur93, vdS95| in different specification techniques
e.g. SDL, LOTOS, Estelle and process algebras.

For evaluating the SDL tools we selected the SDL specification of the sliding window
protocol [ISO91, Tur93]. It is based on a sliding window protocol using “go back n”
according to [Tan88]. For simplicity we describe only a unidirectional flow of data. Thus
it is possible to distinguish two components: transmitter and receiver. Note that the flow
of acknowledgements is in the opposite direction to the data flow. Each frame is identified
by a unique sequence number. As an abstraction of real protocols in which a wrap
around may occur an unbounded range of sequence numbers is used in [ISO91, Tur93].
The sequence number is attached to each data frame by the transmitter and it is later
used for the acknowledgement and for the determination of the frame’s sequential order.
The transmitter increments the sequence number for each new data element.

lowest highest
unack sent

transmitter window size

Figure 1: Transmitter window

The transmitter window shown in Figure 1 is used for buffering the unacknowledged
frames. The variable lowestunack is used as an indicator for the lowest sequence number
of an unacknowledged frame which has not necessarily been sent. Initially it is set to
1. The variable highestsent indicates the sequence number of the last sent frame and is
initialized by 0. Both values determine the size of the transmitting window bounded by
the constant tws.

If the transmitter wants to send a data frame, then it has to check first whether the
actual window size (highestsent — lowestunack) is less than tws. If this condition is not
fulfilled the data frame is not sent until it is possible. In the other case the transmitter
increments highestsent by one, emits the data combined with highestsent as sequence
number and starts a timer for that sequence number. Whenever a correct acknowledge-
ment (not corrupted and with a sequence number greater or equal than lowestunack)
is received, then all timers for frames with lower sequence numbers beginning by the re-
ceived one down to lowestunack are cancelled. Then lowestunack is set to the received
sequence number incremented by one. When a timeout occurs all timers according to the
sequence number of the message for which the timeout has occurred up to highestsent
are reset and the corresponding frames are retransmitted in a sequential order start-
ing with the message for which the timeout occurred. This includes also the repeated

starting of the timers.

next highest
required received

receiver window size

Figure 2: Receiver window

In Figure 2 the second window which is located at the receiver is presented. The
receiver window is used to buffer the received frames which can not yet be handed out to
the user because some frame with a lower sequence number has not been received. The
variable nextrequired, whose initial value is 1, is used to indicate the sequence number
of the next expected frame. The maximum size of the receiver window is described by
the constant rws. If a noncorrupted frame is received with a sequence number in the
range of [nextrequired..nextrequired + rws — 1] all messages starting by nextrequired
up to the first not received message are delivered to the user. Then nextrequired is
set to the number of the first not received message and nextrequired — 1 is sent as an
acknowledgement to the transmitter.

3 The Specification and Description Language SDL

SDL (Specification and Description Language) is a formal language for the specification
of interactive, distributed systems. It provides both a graphical and a textual notation.
SDL is intended for the specification of protocols in telecommunication applications, but
is now increasingly used in other application areas. SDL is recommended by the CCITT
and the ITU-T. Its first version was issued in 1976, the most recent version known as
SDL 92 is published as Z.100 ([CCI93]) and includes object oriented extensions. We will
give a short overview of SDL which explains the language constructs used in the later
description of the Sliding Window Protocol. Detailed introductions of SDL are given in
[BH93, OFMP*94].

SDL is used to describe the internal structure, the behaviour and the data of a system.
An SDL system description is composed of blocks which are connected with each other
and with the environment by channels. A block is a set of processes which are connected
with each other and the block environment by signalroutes. Blocks describe the internal
structure of a system whereas processes represent the behaviour of a system.

A process is a communicating extended finite state-machine, that is, a communicating
finite state automaton with the additional use of data variables. It consists of a finite
number of states and transitions connecting these states. A process reacts to stimuli

represented by signal inputs. A process is either in a state waiting for input signals or
active, performing a transition.

Each process is associated with an input port in which arriving signals are inserted
in the order of arrival. Signals which are received by the process at the same time are
placed in random order. The input port acts as an unbounded FIFO-queue which holds
the signals until they are consumed by the process. Whenever a process is in a state it
accepts stimuli from its input port. It removes the first signal from the input port. The
consumption of this signal initiates a transition in which the process may execute some
actions. The transition is terminated by a state or a stop symbol. Signals which are
not explicitly mentioned in a state as stimuli will implicitly be consumed without effect.
This results in an empty transition leading back to the same state.

A process may use local data variables which represent its data state. Values of
variables are manipulated in tasks. Signals may carry data values. The data concept
is based on abstract data types. SDL offers some predefined data types like Boolean,
Integer, Real or Charstring. The recommendation Z.105 ([IT95]) defines how the abstract
syntax notation ASN.1 ([CCI88]) can be used to describe data and messages in SDL
specifications.

SDL provides a timer mechanism. A timer is set with an expiration time during a
transition and runs independently from the process. Processes have access to the global
system time using the expression NOW. When a timer expires a timer signal is put into
the input port. A timer may be reset before its expiration.

A procedure represents a self-contained part of a process. It can be parameterized
in the usual way by means of formal parameters. Procedures are useful when the same
sequence of states and transitions appears repeatedly in a process specification. A pro-
cedure may be called during a transition of a process. The execution of the transition is
suspended until the termination of the procedure call.

4 An Analysis of the Sliding Window Protocol

In this section we present the errors that we found in the SDL specification of the sliding
window protocol ([ISO91, Tur93]). We will first describe each error in an abstract way
and then we will show a scenario in which it occurs.

We give only a short description of the structure of the SDL specification which is
presented in full details in [Tur93]. The specification is based on SDL 88. Figure3 gives
an overview of the structure of the specification but omits signals, channel identifiers
and data declarations.

The SDL specification of the protocol is composed of three blocks: TransmitterEn-
tity, ReceiverEntity and Medium. The users of the transmitter and the receiver are part
of the environment and interact with the system by signals. The two blocks Transmit-
terEntity and ReceiverEntity communicate via channels with the block Medium. The
block Medium models an unreliable medium and is described in Section 4.4.1. The
block TransmitterEntity consists of the process Transmitter which includes two proce-

system Sliding Window Protocol
Transmitter Receiver messages
messages to the recetving user
from the sending user Entity Entity 9
Medium
block Transmitter block ReceiverEntity
Entity
messages messages
from the sending user Transmitter Receiver [to the receiving user
to/from Medium to/from Medium

Figure 3: The structure of the SDL specification

dures: ReleaseTimers and Retransmit. The block ReceiverEntity consists of the process
Receiver which includes the procedure DeliverMessages.

4.1 Errors Concerning the Sequence Number

In the formal description of the sliding window protocol ([ISO91, Tur93]) unbounded se-
quence numbers are attached to the messages. When it sends a message, the transmitter
has to start a timer for that message. Each message is related to an individual timer.
However, the number of timers existing at the same time is bounded. In the following
we describe an error which is based on this discrepancy.

4.1.1 Description of the Error

In the process Transmitter, after a new message was sent, the timer is set to the sequence
number of the message modulo tws by the statement “set(now + delta,tim(hs mod
tws))” (highestsent is abbreviated by hs). However, after a timeout, the parameter of
the timer is treated as if it contained the sequence number itself and not the modulo
number (see left diagram in Figure 4).

In the procedure Retransmit the same error occurs. Instead of the sequence number

Data Transfer
Window Closed,

tim (seqno)

Data Transfer
Window Closed

tim (seqno)

process Transmit

This transition describes the reaction

to the input of the timer signal.
The process Transmit calls the procedures

- ReleaseTimers and Retransmit with the
ReleaseTimers X seqno := hs -
parameter seqno which denotes the

seqno,hs) hs - dt

() sequence number of the message which (hs - seqno) mod tws
has to be retransmatted. I

Retransmit ReleaseTimers

(seqno,hs,cq) (seqno,hs)

Data Transfer Retransmit
Window Closed (seqno,hs,cq)
Part of the specification of the process Transmit in [ISO91, Tur93] Data Transfer
indow Closed

Corrected version of the specification

Figure 4: The use of sequence numbers in Process Transmitter

of the retransmitted message the sequence number modulo tws is sent and used to set
the timer (see left diagram in Figure 5).

The procedure Retransmit calculates the sequence numbers of the messages to re-
transmit modulo tws, so the receiver will not accept retransmitted messages that have
sequence numbers which differ from the modulo sequence number.

4.1.2 Erroneous Scenario

Suppose the transmitter window size is 5 and the value of highestsent (abbreviated by
hs) is 12. Suppose further the receiver is waiting for a retransmission of message 11,
because message 11 was corrupted. Having received the timer signal, the transmitter
will retransmit the messages 11 and 12 with the sequence numbers 11 mod tws = 1 and
12 mod tws = 2. The receiver already got the messages 1 and 2 , so it will ignore the
newly transmitted messages and will still be waiting for message 11. Now the sliding
window protocol is in a livelock, where the transmitter will retransmit messages 11 and 12
with sequence numbers 1 and 2 forever and the receiver will never accept them, because
their sequence numbers are lower than nextrequired.

procedure Retransmit

p := p mod tws; Setting of timers for messages set(now+delta,

ket(now + delta, tim(p)) which have to be retransmitted tim(p mod tws))

by the Transmitter.

p:= (p + 1) mod tws, The variable p denotes the sequence p:=p+1

number of the message for which the

timer has to be set.

Part of the specification of the procedure Retransmit in [ISO91, Tur93] Corrected version of the specification

Figure 5: The setting of timers in the procedure Retransmit

4.1.3 Correction of the Specification

In order to solve this problem and to keep the changes to the specification minimal,
concerning the process Transmitter we insert the assignment seqno := hs — (hs —
seqno) mod tws in a task after the input symbol of the timeout signal (see right di-
agram in Figure4). It calculates the correct sequence number from the modulo se-
quence number and highestsent, so the correct sequence number will be passed to
the procedures ReleaseTimers and Retransmit. In the procedure Retransmit the line
“p:= (p+1) mod tws” is changed into "p := p + 1”7 and in the task “p := p mod tws;
set(now + delta,tim(p))” the assignment is removed and the set statement is changed
into “set(now + delta, tim(p mod tws))” (see right diagram in Figure 5).

4.2 Errors Concerning the Closing of the Transmitter Window

The transmitter has only a limited buffer for messages which have been received but have
not yet been acknowledged. If this buffer is filled up, the transmitter does not accept
any more messages and the transmitter window is closed, as shown in Figure 6.

4.2.1 Description of the Error

In the process Transmitter the transmitter window is closed too late. Even if there
are tws unacknowledged messages, lowestunack + tws is greater than highestsent and
the window is still open. As a consequence the next message that is sent will also use
the timer of the lowest unacknowledged message, although it is still in use. Therefore
one timer is used for two different messages. If the lowest unacknowledged message is
not received correctly by the receiver the transmitter will not get a timeout for this
message. The transmitter will not retransmit the message and the receiver will not pass

message

true false

(Data Transfer) (Window Closed)

Figure 6: Closing the transmitter window

on any messages until it will have received the missing message. Thus the sliding window
protocol is in a livelock.

4.2.2 Erroneous Scenario

Suppose tws = 5, highestsent(hs) = 5, lowestunack(lu) = 1 and the queue is set to
< 1,2,3,4,5 > (five messages have been sent, they are all still unacknowledged)?. The
transmitter window is full and should have been closed after message 5 had been sent.
However, the evaluation of the condition hs < lu+tws (5 < 145) in the decision symbol
returns true, so the window is not closed. Suppose the transmitter sends message 6. Now
the queue < 1,2,3,4,5,6 > keeps more than tws elements. As a consequence the timer
for message 1 is overwritten with the timer for message 6, because in the set statement
set (now + delta, tim (hs mod tws)) the timer instance 1 is attached to both messages.
One message later than expected the condition hs < lu + tws (6 < 1 + 5) evaluates to
false and the transmitter window is closed.

4.2.3 Correction of the Specification

The condition hs < lu + tws is changed into hs < lu + tws —1, so the transmitter
window will be closed one message earlier, just in time.

2Note that the messages are represented only by their sequence numbers. For simplicity we have
omitted their content.

4.3 Errors Concerning the Spooling of the Transmitter Queue
in the Retransmit Process

During the retransmission of messages spooling of the messages stored in the transmitter

queue is necessary, because the message that got the timeout has to be retransmitted

first. In the following we describe an error which occurs during this spooling process (see
Figure 7).

procedure Retransmit

This part of the specification describes the spooling of the

Kl — transmatter queue. The variable p denotes the sequence number

w1 of the message which has received the timeout.
p-lu
kl >0 true
(false) -
spooling
kl:=kl-1

Figure 7: The spooling of the transmitter queue

4.3.1 Description of the Error

In the procedure Retransmit the message queue is spooled to the first message to be
retransmitted. However, the calculation of the messages that have to be spooled is
incorrect, because the queue is always spooled one message further than it should be.
As a result, when the messages are retransmitted the message bodies will not fit to their
sequence numbers.

4.3.2 Erroneous Scenario

Suppose a scenario in which four messages are in the transmitter window,

queue =< 1,2,3,4 >, [u = 1.

Now message 2 receives a timeout, so p = 2.

The spooling of the messages in the queue starts:

Eli=p—lu+1=2—-14+1=2

k1 =2>0

The queue is rotated once: queue =< 2,3,4,1 >

Despite the fact that the messages are in the correct order the spooling of the messages

10

continues.

El:=k1—-1=1

k1=1>0:

The queue is rotated a second time: queue =< 3,4,1,2 >

kl:=k1—-1=0

Now the value of k1 > 0 is false, the spooling is finished and the retransmission starts.
Message 2 is retransmitted with the first element in the queue so the new message has
the sequence number 2, but the body of message 3. Sequence number 3 will be combined
with message body 4 and sequence number 4 will be sent with the message body 1. As
the checksums are calculated after the new combinations the receiver will not notice the
altered sequence of the message bodies and the message is corrupted.

4.3.3 Correction of the Specification

To correct the spooling in the procedure Retransmit the calculation of k1 has to be
k1 :=p — lu instead of k1 :=p — lu + 1 in Figure 7.

4.4 Errors Concerning the Medium

Transmitter and receiver exchange their data and acknowledgements over a medium.
This medium models an unreliable channel, which can nondeterministically lose, cor-
rupt, duplicate or re-order messages. However, in SDL 88 there exists no means for
expressing nondeterminism. Therefore, in [[SO91, Tur93| hazards are introduced, as
shown in Figure 8. The process MsgManager is responsible for the treatment of the data
within the medium. Its nondeterministic behaviour is modelled by introducing the guard
process MsgHazard. This process sends hazard signals to the MsgManager suggesting
which operations are to be carried out by the MsgManager on the data which are stored
in a queue: normal delivery (MNormal), loss (MLose), duplication (MDup), corruption
(MCorrupt) or reordering (MReord) of messages.

The treatment of acknowledgements within the medium is handled by the process Ack-
Manager. For modelling its nondeterministic behaviour the process AckHazard is intro-
duced and specified similar to MsgHazard.

4.4.1 Description of the Error

A hazard may send signals to its manager, although its manager’s queue is empty. Some
operations performed by the manager on the queue after having received a signal produce
an error if the queue is empty.

4.4.2 Erroneous Scenario

Suppose message 3 waits in the queue mgq to be transmitted:
MediumMessageQueue : mqg =< 3 >
Suppose that the hazard signal M Normal appears:

11

block Medium

MsgHazard signallist Im = MNormal,MLose, MDup,
MReord, MCorrupt;

signallist la = ANormal, ALose, ADup,
mm AReord, ACorrupt;

[(Im)]

Data from
Transmitter Entity MsgManager r Data to
RecewerEntity
Acknowledgements 1 AckManager Acknowledgements from
to TransmitterEntity RecewverEntity

[(1a)]

aa

AckHazard

Figure 8: Structure of the block Medium

qitem := qfirst(mq) =3

Now the queue is empty:

mq := qrest(mq) = gnew

Message 3 is sent to the receiver.

Suppose the hazard signal M Normal appears again:

Then gitem is set to qfirst(mq) = qfirst(gnew)

According to the axiom ¢first(¢gnew) == error! the execution of the SDL system will
stop and an error message will be displayed.

4.4.3 Correction of the Specification

To prevent these errors the manager always checks if its message queue is empty when it
gets a signal from its hazard. Only if the message queue is not empty the hazard signal
will be processed, otherwise the manager will not do anything.

12

5 Conclusion

During the early stages of system development system designers interact with users to
capture the problem domain and to analyse the system’s requirements. This results in
an informal description of the behavior of the system usually based on natural language.
If formal methods are used this requirement specification is achieved by formal notations
like SDL, LOTOS, Estelle or MSC.

The transition from an informal to a formal specification is a crucial point in the
development of systems. The formal requirement specification has to be validated to
ensure that the formal description corresponds to the specifier’s intuition. This process
is called validation. The validation of a specification is very important, because later for-
mal (or maybe informal) development steps are based on this requirement specification.
If in later development steps an inadequacy of the requirement specification is found,
an expensive redefinition and reimplementation of the existing specifications and imple-
mentations has to be done. Furthermore, based on a formal requirement specification
the following steps can be carried out in a purely formal way ([BDD193]).

The use of formal methods forces a system developer to write precise and unambigu-
ous specifications. That is the basis of the application of tools that offer a syntactic
check, validation and simulation of the specification. Note that a formal requirement
specification does not guarantee a correct specification. It only describes the system’s
requirements in an unambiguous way. By using validation techniques like e.g. simulation
or proving some properties (see for instance [Jon90]), errors of the specification can be
detected in early development steps. We first read the SDL specifications of the sliding
window protocol without noticing the errors mentioned in Section 4. However, the sim-
ulation in [Hau95] which is indeed a testing of some specification’s aspects showed these
inconsistencies. Note that these specifications were published first as a technical report
of ISO [ISO91] and then in [Tur93] without noticing any errors.

Our analysis of the sliding window protocol has resulted in a significant improvement
of the corresponding SDL specification. However, we cannot guarantee the absence of er-
rors in the corrected specification, because we only tested the specification by simulation
and so the number of errors decreased. In [Stg95] it is outlined how Focus can be used
for top-down development of SDL specifications which results in a correct SDL specifi-
cation if the correctness of each refinement step has been properly verified. Especially
due to a higher abstractness of a specification the validation process can be simplified.

Although a formal specification may contain errors (which of course should be avoided)
it helps the designer to achieve a better understanding of the system to be built. Design
inconsistencies, ambiguities and incompleteness are detected in an early stage of software
development.

13

Acknowledgements

We thank Manfred Broy, Stephan Merz, Franz Regensburger and Ekkart Rudolph who
have read earlier drafts of this paper and provided valuable feedback. We also thank
Verilog and Siemens AG for their tool support. Especially the simulators of Geode from
Verilog and SICAT from Siemens AG helped us to find the errors in the SDL specification.

References

[BDD 93]

[BHO3]

[Jon90]

[CCI8S)

[CCI93]

[Hau95]

1SO84]

1S091]

1T95]

IMV93]

[OFMP+94]

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. We-
ber. The Design of Distributed Systems — An Introduction to FOCUS.
SFB-Bericht 342/2/92 A, Technische Universitdt Miinchen, January 1993.

R. Brak and . Haugen. FEngineering Real Time Systems. Prentice Hall,
1993.

C. B. Jones. Systematic Software Development Using VDM. Prentice Hall,
1990.

CCITT. X.208, Specification of Abstract Syntax Notation One (ASN.1).
Blue Book, FASCICLE VIIL.4, Recommendations X.200-X.219. CCITT,
1988.

CCITT. Recommendation Z.100, Specification and Description Language
(SDL). ITU, 1993.

M. Haubner. Vergleich zweier SDL-Werkzeuge anhand des Sliding Window
Protokolls, 1995. Fortgeschrittenenpraktikum, in German.

[SO. ISO 7498: Information Processing Systems - Open Systems Intercon-
nection - Basic Reference Model, 1984.

ISO/IEC. Information technology - Open System Interconection - Guide-
lines for the Application of Estelle, LOTOS and SDL. Technical Re-
port ISO/IEC/TR 10167, International Organization for Standardization
Geneva, 1991.

ITU-T. Recommendation Z.105, SDL92 Combined with ASN.1
(SDL/ASN.1). ITU, 1995.

S. Mauw and G.J. Veltink. Algebraic Specification of Communication Pro-
tocols, volume Cambridge Tracts in Theoretical Computer Science 36. Cam-
bridge University Press, 1993.

A. Olsen, O. Fergemand, B. Mgller-Pedersen, R. Reed and J. R. W. Smith.
Systems Engineering Using SDL-92. Elsevier Science, 1994.

14

[Stp95]

[Tan88]

[Tur93]

[vdS95]

Ketil Stglen. Development of SDL Specifications in FOCUS. In Rolv Brak
and Amardeo Sarma, editors, SDL '95: with MSC in CASE, pages 269-278.
North-Holland, 1995.

Andrew S. Tanenbaum. Computer Networks (second Edition). Prentice
Hall, 1988.

Kenneth J. Turner, editor. Using Formal Description Techniques. John
Wiley & Sons, 1993.

Jan L.A. van de Snepscheut. The Sliding-Window Protocol Revisited. For-
mal Aspects of Computing, 7:3-17, 1995.

15

