T UM

INSTITUT FUR INFORMATIK

Specification of Real-Time and Hybrid Systems in
FOCUS

Olaf Muller
Peter Scholz

TUM | 9627
Juni 1996

TECHNISCHEUNIVERSITATMUNCHEN

TUM | NFO 06- 1996-19627- 350/ 1. - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1996 MATHEMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Typescript: ---

Dr uck: Mat henati sches I nstitut und
Institut fur Infornati k der
Techni schen Uni versitat Minchen

Specification of Real-Time and Hybrid Systems in
FOCUS *

Olaf Muller Peter Scholz

Institut fur Informatik, Technische Universitat Minchen
D-80290 Miinchen, Germany

E-mail: {mueller,scholzp}@informatik.tu-muenchen.de

*This work is partially sponsored by the German Federal Ministry of Education and Research (BMBF)
as part of the compound project “KorSys” and by BMW (Bayerische Motoren Werke AG).

Abstract

Functional specifications in FOCUS have been used to specify and verify designs
of a number of reactive, discrete systems. In this paper we extend this specification
style to deal with real-time and hybrid systems. As mathematical foundation we
employ Banach’s fixed point theory in metric spaces. The goal is to show that
the theory used for discrete functional specifications smoothly carries over to real-
time and hybrid systems. An example of a thermostat specification illustrates the
method.

Contents

1 Introduction
1.1 Related Work

1.2 Overview

2 Specification with Stream Processing Functions
2.1 Dense Communication Histories,

2.2 Stream Processing Functions oo

3 Composition Operators
3.1 Sequential Composition Lo
3.2 Parallel Composition
3.3 Feedback Operator

4 Specification of Components

5 Example
5.1 Thermostat as Open System
5.2 Thermostat as Closed System

6 Conclusion and Further Work

1 Introduction

Hybrid systems are dynamical systems consisting of both discrete and continuous compo-
nents. They are used to model the behavior of embedded real-time systems in a physical
environment. This topic is becoming very active in Computer Science, due to the increas-
ing importance of embedded and real-time systems and the emergence of results showing
that some techniques used for the specification and verification of reactive, digital sys-
tems can be adapted to deal with hybrid systems. By their nature hybrid systems form an
interdisciplinary topic that lies at the junction of Computer Science and Control Theory.

From the control theory or dynamic systems viewpoint, it is interesting to investigate
hybrid systems concerning the questions usually asked in these disciplines, such as the
problems of analysis of dynamic behavior, realizability, and controller synthesis.

On the other hand, from the traditional computer scientist viewpoint, hybrid systems
can be seen as a natural extension of reactive systems by the introduction of analog
components into the model. Therefore, computer scientists rather investigate how to carry
over their description and specification languages for reactive and/or real-time systems to
hybrid systems, together with their proposed methodology for analysis, verification, and
refinement.

In this paper we take the viewpoint of a computer scientist and extend the formalism
of functional specification in FOCUS [BDDT93, Bro93, BD92] to deal with real-time and
hybrid systems. Functional specifications describe the behavior of a system as a network
of functions, where every function processes infinite streams of incoming messages and
yields infinite streams of outgoing messages. In the discrete setting, several approaches
have been taken to give functional specifications a semantics:

e In [Bro93, BD92] domain theory is used to develop a semantic model for discrete
stream processing functions together with a tailored refinement methodology.

o In [GS96] metric spaces are employed to give a semantics for functionally specified,
discrete mobile data-flow networks.

We follow the second approach and extend the static parts of [GS96] to a description and
specification method for hybrid systems. Our goal is to show that only slight modifications
must be carried through, so that the whole theory smoothly carries over to the hybrid
case:

First, discrete streams of type IN — M have to be replaced by dense streams of type
IR, — M, where M denotes the set of all messages. Second, the property of a discrete
stream processing function to be strongly pulse driven (delay between input and output
of at least one time step) has to be changed to an adequate property for dense streams,
called delayed (delay between input and output of at least 6 > 0). These modifications
allow us to employ Banach’s fixed point theorem as in the discrete case to prove the
well-definedness of a functional specification.

1.1 Related Work

Recently, a number of description and specification languages for reactive and/or real-
time systems together with their proposed methodology for analysis, verification, and
refinement were extended to deal with hybrid systems. An overview of the growing field

can be found in [GNRR93, AKNS95, AHS96].

For example, in [ACH"95] a theory of hybrid finite automata has been developed. For
verification purposes, these automata are restricted to linear hybrid automata, where all
variables follow piecewise-linear trajectories. For this subclass of systems the standard
symbolic model checking techniques for reachability analysis can be carried over. Ap-
proximation techniques allow a treatment of systems whose verification problem is not
decidable and for which the iterative verification procedures do not converge.

Besides model checking, also refinement techniques have been extended to deal with hybrid
systems. As examples, that are by no means representative, we mention I[/O Automata

[LSVW95] and TLA, which has been extended to TLA+ [Lam93].

1.2 Overview

The rest of the paper is organized as follows: Section 2 introduces stream processing
functions and relates them to the corresponding notions in the theory of metric spaces.
In Section 3 composition operators are defined that are used to build networks out of
single functions. In particular, the mathematical foundation of the feedback operator
is presented. In Section 4 a short guideline for the specification of components with the
concepts introduced so far is presented. Section 5 illustrates the specification method with
the simple example of a thermostat. Finally, Section 6 gives a conclusion and highlights
topics for future work.

2 Specification with Stream Processing Functions

We regard a distributed system as a network of components that exchange messages via
directed channels. On every input or output channel messages are received from, or sent
to, the environment. Therefore, every channel reflects an input or output communication
history of the system.

The system itself is described by a set of functions, where each function processes input
histories and produces output histories according to its specification. To describe under-
specification or nondeterminism we use sets of functions instead of single functions.

2.1 Dense Communication Histories

Communication histories of discrete systems can be modeled by sequences of messages,
i.e., functions of type IN — M, where M denotes the set of all messages [Bro93, BDD*93].
For hybrid systems this model has to be extended to incorporate real time. One possibility
is to add real time stamps. In the literature this is known as sampling semantics [MP93].
Here, instead, we develop a super dense semantics and therefore introduce real time or
dense streams.

Let M be the (potentially infinite) set of all messages. A dense stream x over a set M is
represented by a total function z : IRy — M, where IR, denotes the set of all non-negative
real numbers. Since we describe reactive systems, which continuously respond to stimuli
from the environment, time never halts, and we use IR, as the time scale instead of time
intervals. The set of all dense streams is denoted by MF+. For every dense stream x we
abbreviate the restriction x| q by | 1.

In order to motivate the usefulness of this definition we have adapted the example of a
thermostat from [ACH195], where it is presented by means of hybrid automata.

Example 1 (Dense Stream) The temperature of a room in a cool environment can be
modeled by a dense stream x. We assume that without the presence of any heater, the
temperature decreases according to the exponential function x(t) = Oe 1t where t denotes
the time, O the initial temperature, and K is a positive constant determined by the room.

A mathematical treatment of functional specifications requires dealing with feedback
loops. In the discrete case, dealing with streams of type IN — M, the semantics of
such loops has been successfully described as least fixed points of functions over do-
mains [Bro93, BDD*93]. The underlying mathematical model is Scott’s domain the-
ory [SG90, Win93]. Fixed points of stream processing functions over dense streams,
however, are more naturally and elegantly described by the fixed point theory of Banach.
It is based upon the mathematical background of metric spaces. In order to specify loops
of stream processing functions in Section 3, we therefore introduce the main concepts of
metric space theory.

Definition 1 (Metric Space) A metric space is a pair (D, d) consisting of a nonempty
set D and a mapping d : D x D — IR, called a metric or a distance, which has the
following properties:

(1) Ye,ye D: dlz,y)=0 & x=y

(2) Ye,ye D: d(z,y)=d(y,x)

(3) Va,y,z€ D: d(a,y) <d(z,z)+d(z,y).

We need a metric for dense streams, which is defined in the sequel.

Definition 2 (The Metric of Streams) The metric space of dense streams (MTH+ d)
is for all x,y € MT+ defined as follows: d(z,y)=1inf{27'|te Ry Nz|t=ylt}.

From this definition a metric d™ for n-tuples of streams (M™T+)" can be easily derived.

m

[

n

Figure 1: Stream Processing Function

Let n € IN and x,y € (MT+)" then d™(x,y) is defined as
d(”)(x,y) = max{d(z;,y;) | 1 <i < n}.

A metric space (D,d) is called complete whenever each Cauchy sequence converges to
an element of D [Eng77]. The metric space on stream tuples ((MT+)", d) is complete
[Eng77]. Complete metric spaces are a presupposition for Banach’s fixed point theorem.
This theorem, which will be explained later on, guarantees — under certain assumptions
— the existence of a unique fixed point of loops in functional specifications.

2.2 Stream Processing Functions

Components of real time or hybrid systems can be functionally specified by stream pro-
cessing functions over dense streams. Components are connected by directed channels to
form a network. Each channel links an input port to an output port. A (m,n)-ary stream
processing function with m input and n output ports is a function f with

£y (afte)y

where M; and M, represent two (not necessarily different) sets of messages. The graphic
notation of f is pictured in Fig. 1. If we want to express some kind of nondeterminism
we describe components by a set of stream processing functions rather than by a single
function.

Our operational understanding that stream processing functions model interacting com-
ponents leads to a basic requirement for them. An interactive component is not capable
to take back an output message that it has already emitted. This requirement can be
fulfilled by a certain kind of stream processing functions, namely behaviors.

A stream processing function is said to be a behavior if its input until time ¢ completely
determines its output until time . It is said to be a delayed behavior if its input until
time ¢ completely determines its output until time ¢ + 6 for 6 > 0. In other words, a
delayed behavior imposes a delay of at least an arbitrarily small real value between input
and output. Here, 6 denotes the delay of f. It is quite realistic to assume components to

be delayed because reactive systems always need a certain time to react. Instantaneous
reactions, however, can be expressed by (non-delayed) behaviors.

Definition 3 ((Delayed) Behavior) A (m,n)-ary stream processing function f is called
a behavior if

Va,y € (MP)™ L€ Ry sxlt=ylt= fe)Li= f(y) L0
and a delayed behavior (with delay 6 > 0) if

Yo,y (MP)" te Ry calt=ylt= fle)[(t+8) = fly) L(1+29).

Note that the operator | is overloaded to stream tuples in a point-wise style, i.e., x | ¢ for
a stream tuple x € (MT+)™ denotes the tuple we get by applying | # to each component
of z.

The equivalent property in Scott’s theory is monotonicity. From a theorem by Knaster
and Tarski it is well-known that monotonic functions over complete partial orders have a

least fixed point [Win93].

We model specifications by sets of (delayed) behaviors. They can be composed into
networks of functions, which themselves behave as (delayed) behaviors. For this purpose,
we will introduce three composition operators in the next section. For one of them, the
feedback operator, the existence of a unique fixed point of the feedback loop is guaranteed
only for delayed behaviors. To prove this formally we introduce a notion corresponding
to delayed behaviors in metric space theory.

Definition 4 (Lipschitz Functions) Let (Dy,dy) and (Dz,ds) be metric spaces and let
f Dy — Dy be a function. We call f a Lipschitz function if there is a constant ¢ > 0
such that the following condition is satisfied for all v,y € Dy:

dy(f(x), fly)) < - di(z,y).

The Lipschitz constant Lip(f) of a Lipschitz function f is denoted by the infimum of all
¢ that fulfill the above mentioned inequation. If Lip(f) < 1 we call f non-expansive. [f
Lip(f) <1 we call f contractive.

The following theorem relates the notions of behaviors and delayed behaviors to non-
expansiveness and contractivity. Whereas the first ones have a operational justification,
the latter ones represent their transfer to metric space theory and will be used as a
requirement for Banach’s fixed point theorem.

Theorem 1 A stream processing function is a delayed behavior iff it is contractive with
respect to the metric of stream tuples. A stream processing function is a behavior iff it is
non-expansive with respect to the metric of stream tuples.

Proof 1 We prove the first statement of the theorem. First, we prove the only-if-direction.
Suppose that d™ (x,y) = 27" and that [is a delayed behavior with delay 6. d'™(z,y) =

27" implies that x | to = y [to. Therefore, f(z)|(to+6) = f(y)l(to+8). Finally, we get
inf{270 [t € Ry A f(z) [t = f(y) Lt} <270+) =278 40" (2). Since 27° < 1 for all
0 >0, f is contractive.

Now, we prove the if-direction. Suppose that d")(x,y) = 2741, d"(f(2), f(y)) = 27",
and that [is contractive, i.e., Ic < 1 : Ya,y : d™(f(x), fy)) < ¢-d"(x,y). Then
2=t < ¢ <1 =2° This implies because of the monotonicily of the logarithmic function
that t; < ty. We can find some 6 > 0 with t + 6 = t5. As a consequence we get
elty=ylti= fle)(t1+6) = fly)L(t1 +). In other words, [is a delayed behavior.

The second equivalence can be proven accordingly.

3 Composition Operators

The definition of networks is the main structuring principle on the functional specification
level. There is no (semantical) difference in principle between a single component and a
network of components. A network can be defined either by recursive equations or by
special composition operators. We choose the second alternative and consider three basic
composition operators, namely sequential/parallel composition and feedback.

In our functional specification technique, networks of components can be represented by
directed graphs, where the nodes represent components and the edges represent point-to-
point, directed communication channels (see, for instance, Fig. 2).

3.1 Sequential Composition

Sequential composition is simply defined by functional composition of two stream pro-
cessing functions. The graphic representation of this composition is pictured in Fig. 2.

Definition 5 (Sequential Composition) Let f and g be (m,n)-ary and (n, k)-ary stream
processing functions, respectively. Then fog is the (m, k)-ary stream processing function

defined by
(fog)(x) =g(f(x)).

The following theorem and corollary depict important properties of the sequential com-
position:

Theorem 2 The sequential composition of two Lipschitz functions f : Dy — D, and
g : Dy — Ds is a Lipschitz function with constant Lip(f) - Lip(g).

Proof 2 da(g(f(x1)). g((22))) < Lip(g) - dal (1), f(x2)) < Liplg) - Lip(f) - di(wr,).

Corollary 1 The sequential composition of two behaviors is a behavior. The sequential
composition of two delayed behaviors with delays 61 and by, respectively, is a delayed
behavior with delay 61 + 65. The sequential composition of a behavior and a delayed
behavior is a delayed behavior.

Figure 3: Parallel Composition

Due to the above theorem, the proof of this corollary is obvious.

3.2 Parallel Composition

The parallel composition is defined intuitively. Sticking two components orthogonally
together yields a component which input/output ports consists of all input/output ports
of the composed components (see Fig. 3). Formally:

Definition 6 (Parallel Composition) Let f and g be (m,n)-ary and (k,[)-ary stream
processing functions. Then fllg is the (m+k,n+1)-ary stream processing function defined
by

(Fllg) e, s @mer) = (F(x1, ooy @m)y 9(Tmgts ooy Tingk))

As for the sequential composition, an equivalent property can also be formulated for the
parallel composition:

Theorem 3 The parallel composition of two behaviors is a behavior. The parallel com-
position of two delayed behaviors with delays 61 and 64, respectively, is a delayed behavior

10

with delay min(61,62). The parallel composition of a behavior and a delayed behavior is
a behavior.

Proof 3 We prove the second statement of the theorem. Let f be a (m,n)-ary delayed
behavior with delay 61 and g be a (k,1)-ary delayed behavior with delay 65. Without loss of
generality we assume that 6; < &y. Let z,y € (MT+)F then g(x) | (t+8) = g(y) | (t + &2)
implies that g(x) | (t461) = g(y) L (t4+61). The other statements can be proven accordingly.

Note that the sequential composition of a behavior and a delayed behavior is a delayed
behavior, whereas the parallel composition of a behavior and a delayed behavior is “only”
a behavior.

3.3 Feedback Operator

Systems described by functional specifications may contain loops. In the graphic notation,
this is denoted by circular graphs (Fig. 4). The feedback operator feeds k output channels
back to k input channels of a (m + k,n + k)-ary delayed behavior.

Definition 7 (Feedback Operator) Let f: (M) s (MB+)F — (M) x (MB+)k
be a (m+ k,n + k)-ary delayed behavior. Then p* f is a (m,n)-ary delayed behavior such
that the value (z1,...,2,) of (u*f)(x1,... ,2m) is calculated as follows:

(Z1y e ey Zns Yty ooy k) = f(@1, ooy Ty Y1y e oo YE)

where (y1,...,yx) is the solution of the equation

(Y1s- - YE) = Y(or,ozm) Y155 Yk

Here gz,) s defined as a (k, k)-ary delayed behavior:

~~~~~ Im

g(xl ..... xm)(ylv s 7yk) — ﬂ—n-l-l,n-l-k(f(xlv cees Ty Y1y e ey yk))
where 7,11 n4k denotes the projection on the last k ports.

The central issue of our contribution is that the fixed point operator is well-defined, i.e.,
that the unique solution of

W1 Uk) = Giorenam) 1o -5 k)
exists. The existence of this fixed point is guaranteed by Banach’s fixed point theorem:

Theorem 4 (Banach’s Fixed Point Theorem) Let (D, d) be a complete metric space
and [ : D — D a contractive function. Then there exists an x € D, such that the following
holds:
(1) == f(x) (¢ is a fized point of f)
(2) YyeD: y=fly)=y=xa (visunique)
(3) Vze€D: x=1limysof"(2) where
flz) ==z
=) = f(" (=)

11



,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4: Feedback Operator

Proof 4 For instance, see [Sut75].

In the context of this paper, we can apply Banach’s theorem in the following way. First
of all, the metric space ((MT+)* d®) is complete. Secondly, f is a (m + k,n + k)-ary
delayed behavior and therefore contractive. Remember that f need not to be a basic
stream processing function, but can also be a composed, delayed behavior. Moreover,

also G, ,..om) : (MT+)F — (MT+)* is by definition a contractive function. Altogether, all
assumptions of Banach’s fixed point theorem are fulfilled and the existence of a unique
fixed point (y1,...,Yx) of g(zy,...om) is ensured. Hence, every delayed behavior has a unique
fixed point.

Banach’s fixed point theorem is the counterpart of Knaster/Tarski’s fixed point theorem in
the theory of metric spaces. However, note that Knaster/Tarski’s theorem only guarantees
the existence of a [least fixed point, i.e., that potentially more than one fixed point can
exist. In contrast, Banach’s fixed point theorem guarantees the existence of a unique fixed
point.

Again it is a straightforward proof to show that the feedback p* f is a delayed behavior,
provided that f is a delayed behavior.

4 Specification of Components

The here presented notion of specification of components is defined according to [BDD193].
A component is modeled by a non-empty set of behaviors, which is represented by a predi-
cate on functions. Each function from this set corresponds to one particular, deterministic
behavior.

12



Hence, a functional specification of a component C' is given by the predicate
P (M) - B
which describes the following set S of (m,n)-ary behaviors
{f+ (M) — (My™)" | P(f) A [ is a behavior}.

This is denoted by [C] = S. Every (m,n)-ary behavior describes a potential input/output
behavior of the component. The composition operators defined in Section 3 can easily be
lifted to sets:

[CioCa] = {foglfelCi] AgelCa]}
[C1 ] €] flglfelCi]AngelC]}
[*C] = {"(H1f € [CT)-

If the above set only contained one single element, it would represent a deterministic
component.

In most cases components are modeled not only by behaviors but by delayed behaviors.
Delayed behaviors with delay 6 usually have an undefined output stream during the
interval [0,6). Thus, during this interval, nothing can be said about the input/output
behavior of the component. The component remains underspecified in this time and
therefore behaves non-deterministically.

To abolish this underspecification, we can assume that the component generates a prede-
fined value during the interval [0,6), as we shall see in the example.

5 Example

In this section we give a functional specification of a thermostat, a simple hybrid system
used as an introductory example in [ACH*95]. The temperature of a room is controlled
by a thermostat, which continuously senses the temperature and turns a heater on and
off. The temperature is governed by differential equations.

When the heater is off, the temperature T'emp of the environment, denoted by the dense
stream z, decreases according to the function z(#) = @c¢~5! (see Example 1). When the
heater is on, the temperature of the environment follows the function x(¢) = Qe ! +
h(1—e %), where h is a constant that depends on the power of the heater, © is the initial
temperature of the room, and K is a constant determined by the environment. K can be
considered to be direct proportional to the geometric size of the room. We wish to keep
the temperature between min and max degrees and turn the heater on and off accordingly.

13



Figure 5: Thermostat Modeled as Open System

5.1 Thermostat as Open System

The controlling part of the resulting system for this informal description is shown in Fig. 5.
The system consists of the two components Control and Heater. The first one is described
by a set Control of functions fo, described by the predicate

Po : (Temp™ — {on,off}F+) — IB.

FEach function fo with Po(fe) = true produces signals off or on, if the incoming stream of
temperature signals overshoots max or undershoots min, respectively. These signals serve
as an input stream for the Heater:

Py - ({on,off} P+ — {0, 1) - B

that produces the corresponding heating power, which can be 0 or . Note that we model
only the heating power of the heater, but not the resulting absolute temperature. The
temperature of the room is regarded as part of the system’s environment. This is different
from [ACH"95], where the temperature is an inherent part of the system description.
Therefore, the environment is there modeled as part of the system.

In fact, the model of hybrid automata does not emphasize on an interface concept to
the environment, so that [ACH195] describes merely closed systems without dividing the
overall specification into system and environment. The advantage of our approach is its
modularity, which allows us to separate the environment from the system specification.
This is one of the essential issues of our approach. The application of our functional
specification method to the thermostat example shows that indeed only the environment
behaves continuously. The system itself, i.e., Controller and Heater behave as value-
discrete components. They produce signals on, off, 0, and k. The environment, however,
is characterized by the temperature, which is denoted by a real-valued (T'emp) stream.

In the sequel, we give the precise specifications of the components Control and Heater.

First of all, we define Control = {fc | Po(fc) A fc is a delayed behavior}:

folz) =1y

14



where the output stream y is defined by the predicate FPg:

Vy € {on,off}F+ Vi € IRy : 2(t) < min = y(t+6c)=on A
x(t) > max = y(t+6c)=off A
min < z(t) < max = y(t+ oc) = y(t).

Here 6 > 0 denotes the delay of the component Control. However, this specification leaves
the value y(?) in the interval [0, 6¢) unspecified. We can abolish this under-specification
by simply extending fo. We define y(¢) = off in this interval and get a determinis-
tic component, i.e., a one-element set. Now, we specify the Heater = {fu | Pu(fu) A
fm is a delayed behavior}:

fuly) ==
where the output stream z is defined by the Boolean predicate Py:

Vze {0,h} B+ Vte R, : y(t)=off = z(t+ég)=0 A
y(t)=on = z(t+bg) = h.

Again, to avoid under-specification, we define z(¢) = 0 for ¢ € [0, 65) and get a determin-
istic component, represented by a one-element set. Being a deterministic component, the
whole thermostat can then be described using the sequential composition

Control o Heater.

This component has delay é¢ + 65 according to Corollary 1.

5.2 Thermostat as Closed System

To model the continuous part of the specification, we add the environment
Env={fe|Pe(fe) A fg is a behavior}
to it, where the predicate Pg has type
Po ({017 = Temp™) — B

and we get a closed system (Fig. 6).

Env is specified as a component that cools the temperature down according to the ex-
ponential function @e~%! (see also Example 1), if the Heater is off. When it is on, the
temperature follows the function @e=5* 4+ h(1 — e_Kt). We combine these two functions
to one function x(t) = O Kt z(t)- (1 — e_Kt) and get:

fe(z)==x
where the output stream x € T'emp®+ is defined by the differential equation:

2'(t) = z(t) — KOx(t)

15



p(foo fao fr)

& € Temp™+ y € {on, off}F+ z € {0,h} T+

Figure 6: Thermostat Modeled as Closed System

where 2'(t) denotes the first differentiation of x(¢). Using the product rule for differenti-
ations, it can be calculated as follows:

() = —OKe Kt 2(t) — (1) - oK 4 2(1) - (—K)e_Kt)
= K(z(t) — @)e—Kt
= z(t)— KOux(t)

and get Pg(fg) &
Vz e {0, R} Vo € Temp®™ Vi€ Ry : fr(z) =x Aa(t) = 2(1) — KOz(1)

as overall result. Env and Control o Heater form a closed system in the shape of a

feedback:
p'(Control o Heater o Env).

This definition is well-defined, as the occurring fixed point is uniquely determined accord-
ing to our theory in Section 3: as C'ontrolo Heater contains one single contractive function
with delay 6¢ + 6, Control o Heater o Env is contractive according to Corollary 1, even
if all functions in Env have no delay at all. Therefore, Banach’s fixed point theorem can
be applied.

6 Conclusion and Further Work

We have shown that the specification formalism of discrete timed stream processing func-
tions can easily be extended to deal with real-time and hybrid systems. We could give
functional specifications with feedback a semantical foundation by introducing the concept
of delayed behaviors that allows us to employ Banach’s fixed point theorem.

Characteristic of our approach is that our functional model naturally reflects the physical
and conceptual structure of the system and its environment. In particular, it is possible

16



to distinguish clearly between system and environment. In the thermostat example this
structural clarity has been documented. Furthermore, we have the impression that the
concept of well-known mathematical functions leads to a simple and clear specification
style.

In the discrete case a verification methodology by (structural, behavioral, and interface)
refinements is well studied and understood. Further work should explore how to carry
over these results to the hybrid setting. Generally, there are several possibilities to extend
our specification method with a verification methodology:

e As our specification style provides a clear distinction between environment and sys-
tem, it seems to be natural to refine the system to a discrete description. Therefore
a transformation from analog (but inherently discrete) to discrete specifications has
to be investigated. In the case of the thermostat, e.g., the system itself (Controller
and Heater) is translated to a discrete system by simply abstracting dense streams to
discrete streams (IN — M), as it is already value-discrete. Using such a transforma-
tion the system can be refined by the well known discrete verification methodology,
whereas the environment is still described with continuous mathematics.

o Alternatively, one could stay in the hybrid specification style and investigate how
the discrete refinement concepts carry over to dense streams and continuous values.

e Apart from these verification approaches through refinements it would be inter-
esting to investigate property checking methods. As hybrid model checkers such as
HyTech [ACH"95] are inherently connected to state based descriptions, an appropri-
ate formalism has to be developed for the functional description style. An advantage
of property checking is that it verifies properties of both system and environment,
whereas refinements cover the systems behavior only.

Finally, it would be interesting to analyze another type of streams as functions of type

IN — M x IR, yielding a sampling semantics.

Acknowledgment

Thanks are owed to Manfred Broy who provided first ideas concerning both dense streams
and behaviors. The authors have benefited from many discussion with Ketil Stelen on
this and on related topics. We also thank Radu Grosu and Ketil Stglen for the stimulating
technical report on discrete timed streams.

17



References

[ACH*95]

[AHS96]

[AKNS95]

[BDY2]

[BDD*93]

[Bro93|

[Eng77]
[GNRRY3]

[GS96]

[Lam93]

[LSVWO5]

[MP93]

R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3-34, 1995.

R. Alur, T.A. Henzinger, and E.D. Sontag. Hybrid Systems IIl, volume 1066.
Springer Verlag, 1996. Lecture Notes in Computer Science.

P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry. Hybrid Systems II, volume
999. Springer Verlag, 1995. Lecture Notes in Computer Science.

M. Broy and C. Dendorfer. Modelling of operating system structures by timed
stream processing functions. Journal of Functional Programming, 2(1):1-21,

1992.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.
The Design of Distributed Systems: An Introduction to Focus — Revised
Version. Technical Report TUM-19202-2, Technische Universitat Miunchen,
Fakultat fur Informatik, 80290 Munchen, Germany, 1993.

M. Broy. Interaction Refinement — The Easy Way. In M. Broy, editor, Program
Design Calculi, volume 118 of NATO ASI Series F: Computer and System
Sciences. Springer, 1993.

R. Engelking. General Topology. PWN - Polish Scientific Publishers, 1977.

R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel. Hybrid Systems,
volume 736. Springer Verlag, 1993. Lecture Notes in Computer Science.

R. Grosu and K. Stglen. A Model for Mobile Point-to-Point Dataflow Networks
without Channel Sharing. In Proc. of the 5th International Conference on Al-
gebraic Methodology and Software Technology AMAST 96, Munich, 1996. Also
available as Technical Report TUM-19527, Technische Universitat Minchen,
http://www4.informatik.tu-muenchen.de/ grosu/amast96.html.

L. Lamport. Hybrid Systems in TLA+4. In R.L. Grossman et al., editor,
[GNRRI3], 1993.

N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid 1/O au-
tomata. Technical Report C5-R9578, CWI, Computer Science Department,
Amsterdam, 1995. To appear in: Hybrid Systems III. Available under
http://www.cs.kun.nl/~fvaan/.

Z. Manna and A. Pnueli. Verifying Hybrid Systems. In Grossman et al., editor,
[GNRRI3], 1993.

18



[SGI0] D. Scott and C. Gunter. Semantic Domains and Denotational Semantics.
In Handbook of Theoretical Computer Science, chapter 12, pages 633 — 674.
Elsevier Science Publisher, 1990.

[Sut75] W. A. Sutherland. [Introduction to metric and topological spaces. Claredon
Press - Oxford, 1975.

[Win93]  G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

19



