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Abstract

In this report� the SysLab system model is complemented in di�erent ways�
State
box models are provided through timed port automata� for which an op

erational and a corresponding denotational semantics are given	 Composition is
de�ned for components modeled in the state
box view as well as for components
modeled in the black
box view	 This composition is well
de�ned for networks
of in�nitely many components	 To show the applicability of the model� several
examples are given	
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Chapter �

Introduction

The SysLab project aims at providing a scienti�cally well
founded approach
for software
 and system development	 Within SysLab� the system model �see
�RKB���� �KRB���� serves as a common reference model for the de�nition of
the semantics of the SysLab description techniques� for de�ning notions of
correctness for transformation rules and for the tool system to be developed	

The main emphasis of the technical report �RKB��� was to motivate the need for
such a system model and to provide a common understanding and terminology
for the project participants	 Therefore� a very concise and abstract formal
description of the system model has been given� while leaving intentionally
many technical questions open	 In particular� no glass
box view for elementary
components has been given	

This report complements �RKB��� in many di�erent ways	 State
box models are
provided by timed port automata� for which an operational and a corresponding
denotational semantics are given	 Composition is de�ned for components mod

eled in the state
box view as well as for components modeled in the black
box
view	 This composition is also well
de�ned for networks of in�nitely many com

ponents	 Also� some minor revisions concerning the system
model have been
made	 To show the applicability of the model� several examples are given	

The paper is organized as follows� In the following section� we repeat the main
motivation for the SysLab system model from �RKB���	 The third section
introduces streams as a basic mathematical concept for the paper	 The fourth
section is dedicated to basic components� i	e	 to components that are not dis

tributed	 Here two views are presented� called the state
box view and the
black
box view	 In Section �� networks of components are introduced	 These
allow to model the spatial or logical distribution of a system	 In Section ��
the introduced techniques are used to specify the SysLab system model� which
can be seen as a special system architecture appropriate for the kind of sys

tems studied in SysLab	 In Section �� the applicability of the system model is
demonstrated by two examples	 The paper ends with a conclusion	
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Chapter �

Goals of the SysLab system

model

Before we formally de�ne the SysLab system model� we want to present the
context in which the system model is used	 Therefore� in the following section
we brie�y outline the state
of
the art in the area of software engineering in
theory and practice� and give an overview over the goals of the SysLab project	
In the remainder of this section� we put up requirements for the SysLab system
model	

��� Software Engineering Methods

Methods for systems and software development� like OMT �RBP��
�� Fusion
�CAB����� and GRAPES �Hel���� model a system in di�erent abstraction levels
and under di�erent views	 Within the process of modeling they use description
techniques like entity
�relationship
diagrams and their object
oriented exten

sions� state automata� sequence charts or data
�ow diagrams	 A critical point
of existing commercial methods is that the de�nition of the description tech

niques as well as the relationships between di�erent description techniques of
a method is usually only given informally	 A lot of problems during the ap

plication of the methods exist� which are caused by the ambiguous and vague
interpretation of the semantics of the used modeling concepts�

� the communication between the persons involved in the project is more
di�cult� because of ambiguities arising from informal semantic descrip

tions�

� it is impossible to de�ne formal relationships between di�erent description
levels and to de�ne rules to transfer information between two description
levels�

� a solid basis for tool support is missing�
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� and moreover even in one description level there is a lack of clarity con

cerning the consistency and completeness of a set of documents	 Issues
concerning �consistency� and �completeness� can only be tackled infor

mally	

As a consequence� it is understandable why tool systems for methods ��CASE

Tools�� often do not cause the expected gain in productivity� The information
which can be acquired by the use of methods is� because of the de�cient semantic
foundation of the methods� not very evident	 As a result of this the functionality
of tools is mostly purely restricted to document editing and managing functions	

Recently� various approaches for formalizing methods of systems and software
development were given	 Well known are the so
called �meta
models�� origi

nating in the context of tool integration� �see �CDI�
�� �Tho��� and �HL����	
However� by this �models� almost only the abstract syntax of the description
techniques is captured	 An overview of several projects concerning the integra

tion of structured methods with techniques of formal speci�cation can be found
in �SFD�
�	 In �Hus���� the British standard method SSADM �AG��� is formal

ized using the algebraic speci�cation language Spectrum �BFG����	 The work
of Hussmann goes further than the approaches described in �SFD�
�� because
Hussmann states a mathematical model of the information systems modeled by
SSADM to which he relates the di�erent description techniques which occur in
the method	 This approach o�ers a complete analysis of the semantics of the
SSADM
description techniques and their relationships� the de�nition of condi

tions for consistency and completeness of a set of description techniques� and a
simple basis for obtaining prototypes by functional programs	

��� The role of the system model in SysLab

The SysLab
project aims at developing a practicable method for system
 and
software development	 The method is required to be scienti�cally founded�
such that it does not show the above
mentioned disadvantages due to the lack
of a semantic foundation	 Moreover� in SysLab a prototype a tool system will
be created	 The formalization should not end in itself� but it should provide
the semantic basis for the check for consistency of the concepts	 The semantic
foundation is achieved by the usage of a uniform system model for SysLab	
This abstract mathematical model of information processing systems is used
as semantic basis for all description techniques de�ned in SysLab� such as
object diagrams� state diagrams� data
�ow diagrams� etc	 The correctness of
all transformation rules for the transformation of documents is de�ned in terms
of the system model	 Each document� such as an object diagram� is regarded
as a proposition over the mathematical system model	

The formalization of description techniques leads primarily to a deeper com

prehension of the meaning of the descriptions� the aspects on which statements
are given� and their inter
relations	 Therefore� description techniques could be
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used more objectively	 Furthermore� it is possible to state conditions for con

sistency and completeness of a set of description documents� and to de�ne and
to analyze relationships between description documents of di�erent abstraction
levels	 This is demonstrated in �Rum���	 Moreover� formalization is an impor

tant mile
stone on the way to a more e�ective tool support of methods� because
semantic
preserving transformations between di�erent description techniques
are feasible which �nally result in executable code	 Finally� a �exible applica

tion of formal techniques� which is necessary in safety
critical applications� is
possible	

��� Requirements on the system model

It is the aim of this paper to provide a common basis for all people involved
in the SysLab
project concerning the notion of system used and concerning
the de�nition of the semantic of the various description techniques	 Therefore�
the system model has to cover all phases and all description techniques of the
SysLab method� and it may not be restricted to a certain class of informa

tion processing systems� such as business applications	 From that results the
requirement that the system model has to be as general as possible	

On the other hand� it should be easy to de�ne a semantics based on the system
model for the description techniques to be developed	 This leads to the require

ment that the system model has to be tailored for the description techniques
we aim at	 This means for instance that we aim at a model supporting the
dynamic creation and deletion of components ��objects��	

The basic assumption with respect to the structure of information processing
systems is that such systems are hierarchically and modularly constructed from
a number of components� which may interact in parallel and which can be
viewed as information processing systems for themselves	 In this case� we call
the system a distributed system	 Distribution here means spatial distribution as
well as logical distribution of functionality across components	 However� there
are systems which can not be parallelized or distributed any further	 Such
basic components can be modeled using state automata with input and output	
The repeated decomposition of a system into subsystems yields a hierarchical
system� the structure of which can be viewed as a tree with distributed systems
on the inner nodes and with basic components on the leaves	

We are interested in a system model in which each kind of interaction is express

ible	 In our opinion� each kind of interaction can be viewed as the exchange
of messages between the interacting components	 Such components can be
modeled as having input ports to receive messages from their environment� and
output ports to send messages to their environment	 Ports constitute the in�
terface of a component� they provide the only possibility for the interaction
between a component and its environment	 The behavior of such a component
is the relationship between the sequences of messages on its inputs ports and
the sequences of messages on its output ports	 Systems and their components
encapsulate data as well as processes	 Encapsulation of data means that the
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state is not directly visible to the environment� but can only be accessed using
explicit communication	 Encapsulation of processes means that the exchange
of a message does not imply the exchange of control� and that therefore each
component is itself a process	

Exchange of messages between the components of a system is asynchronous	
This means that a message can be sent independently of a possible readiness of
the receiver to receive the message	 The requirement for asynchronous commu

nication results from experience in the project Focus �BDD����� Asynchronous
system models provide the most abstract system model for systems with mes

sage exchange	 They can easily be modeled using stream processing functions�
for which a multitude of tractable speci�cation techniques for untimed as well as
for timed systems exist ��GS��a�� �BDD�����	 Moreover� for stream processing
functions a powerful theory for compositional re�nement has been developed	
By using an asynchronous system model� in contrast to process algebraic ap

proaches like the �
calculus �Mil��� or CCS �Mil���� we do not have to tackle
synchronization issues	 To take into account synchronization is in our opinion
an issue which is irrelevant in the early phases of system development	 How

ever� synchronization can easily be encoded in our model� e	g	 by using an
appropriate protocol	

If possible� the system model should not impose any constraints concerning
the addressing of messages	 One possibility for addressing is that input and
output ports are statically connected through channels	 Alternatively� it is also
possible in our model to address messages using identi�ers� as they are used in
the context of object
oriented programming languages	 Moreover� in de�ning
the semantics of object
oriented programming languages we can not assume that
the set of components is static� but we have to allow for the dynamic generation
of components	 These requirements lead to two concepts for communication	
The �rst uses ports and the second uses identi�ers	 The system model has to be
prepared for both communication concepts� where one of them or a combination
of both may be chosen if the system model is applied	

However� our system model is not concerned with further object oriented con

cepts like class descriptions or inheritance hierarchies	 These are regarded as
description techniques� the semantics of which is de�ned using the mathematical
system model	

To allow for the consideration of systems in which time is relevant� the system
model has to provide an explicit notion of time which goes beyond the causality
relation formalized e	g	 by the monotonicity requirement for stream processing
functions �BDD����	 We assume that a discrete time� which is obtained by
partitioning the time scale into equidistant time intervals� is su�cient for the
purpose of SysLab	
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Chapter �

Basic Notions

We model an interactive system by a network of autonomous components
which communicate via directed channels in a time
synchronous and message

asynchronous way	 Time
synchrony is achieved by using a global clock split

ting the time axis into discrete� equidistant time units	 Message
asynchrony is
achieved by allowing arbitrary� but �nitely many messages to be sent along a
channel in each time unit	

��� Communication Histories

We model the communication histories of directed channels by in�nite streams
of �nite streams of messages	 Each �nite stream represents the communication
history within a time unit	 The �rst �nite stream contains the messages received
within the �rst time unit� the second the messages received within the second
time unit� and so on �see Figure �	��	 Since time never halts� any complete
communication history is in�nite	

......
m1 m2

... mk

time unit j

1 j

Figure �	�� Timed stream

Let D be the set of all messages	 Then �D�� is the set of all complete commu

nication histories� and �D��� is the set of all partial communication histories�	

�For an arbitrary set S� we denote by S� the set of �nite streams over S and by �S� the set
of in�nite streams over S�
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A named communication history is a stream tuple � � �I � �D��� assigning to
each channel named by the elements of I a complete communication history�	
Similarly� a partial named communication history � � �I � �D���� assigns
to each channel named by the elements of I a partial communication history	
Note that if I � � then both I � �D�� and I � �D��� contain exactly one
named stream tuple� the empty stream tuple and the empty partial stream
tuple respectively	

Given a timed stream s � �D�� and natural number j� s�j denotes the pre�x
of s containing exactly the �rst j sequences	 The � operator is overloaded to
named stream tuples in a point
wise style� i	e	 for a named stream tuple �� ��j
denotes the result of applying �j to each component of �	 In an element
wise
style� it is also extended to sets of named stream
tuples	

��� Sum and Projection

Named sequences of messages and named communication histories can be com

bined and restricted using the overloaded sum and projection operators	 Before
de�ning these operators� let us denote by �ln � I � D� the content of the
named communication history � � I � �D�� at time unit n	

De
nition � �Sum� For any I� J such that I � J � � we de�ne the sum on

named sequences as follows�

� � �I � D��� �J � D��� ��I � J�� D��

��� ���i�
def
�

�
��i� if i � I

��i� if i � J

We overload this sum to communication histories such that for all n�

� � �I � �D���� �J � �D���� ��I � J�� �D���

��� ��ln
def
� �ln ��ln

�

De
nition � �Projection� The projection of � � I � D� on O is written as

�jO� It is an element of �I �O�� D� such that�

��jO��i�
def
� ��i� for each i � �I �O�

The projection of � � I � �D�� on a set of names O is also written as �jO� It
is an element of �I �O�� �D�� such that for all n�

��jO�ln
def
� ��ln�jO �

Note that if I � O � � then �jO and �jO represent the empty named sequence
and the empty named stream tuple respectively	 Projection is extended to sets
of named stream
tuples in an element
wise style	

�Note that I � �D�� and �I � D
�� are isomorphic and therefore interchangeable�
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Chapter �

Basic Components

In this section� we present two views on basic components	 In the state�box view
�HM���� a basic component is modeled using some kind of state machine� so
called timed port automata	 In the black�box view� we abstract from the internal
structure of a system and model a component solely by its external behavior�
which is given by a set of functions mapping input streams to output streams	

��� State�Box View

There are many automaton models for modeling interactive systems	 Examples
are I�O
automata �LS��� and automata with output �RK���	 In this paper we
use timed port automata� which provide an elegant way to model timed and
untimed components in our system model� and which can be easily composed	

����� Timed Port�Automata

In the state
based approach� we model components by timed port automata�
as de�ned in �GR��� and similarly in �Rum���	 Their interface consists of a set
of input and output ports	 To achieve modularity� ports may be hidden	

De
nition � �Port signature� Let D be a set of data values and I�O�H

pairwise disjoint sets of input� output and hidden or internal ports respectively�
A port signature is a tuple � � �D� I�O�H�� Given a port signature � �
�D� I�O�H�� we denote by C � I �O �H the set of all ports in �� �

As we already pointed out in the introduction� components communicate asyn

chronously	 As a consequence� timed port automata are not allowed to block
their environment	 Therefore� in every state� they have to react to every possi

ble input	 The automata are timed� i	e	 each reaction �or transition� takes place
in one time unit	 The input or output associated with a transition consists of
a �nite sequence of messages	 The empty sequence denotes the absence of any
input
 or output message	
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De
nition � �Timed port automaton� A timed port automaton is a tuple
A � ��� S� S�� �� where�

� � is a port signature�

� S is a set of states�

� S� � S is the set of start states�

� � � S � �C � D�� � S is the transition relation� which is required to be

reactive�

	s � S� i � �I � D�� � 
t � S� � � �C � D�� � �s� �� t� � � � �jI � i�

�

Note that reactiveness requires the existence of at least one transition in every
state� even if the automaton does not have any input channels	 This assures time
progress because any transition takes place in exactly one time unit	 Another
consequence is that a timed port automaton cannot have an empty transition
relation	

If �s� �� t� � � we also write it as s
�
�� t or simply as s

�
� t if � is clear from the

context	 A named sequence � � N � D� is called an input action if N � I�
an output action if N � O and a hidden action if N � H	 Input and output
actions are also called external actions	

Example � �The timed merge automaton� The automaton FM � de�ned

by FM � ��� fsg� fsg� ��� where � � �D� fi� jg� fog� ��� consumes data items
from the channels i and j and sends them to o� The automaton is fair� i�e� it

never neglects any incoming message inde�nitely� The automaton has only one

state which is also the initial one� The transition relation is de�ned as follows��

� � fs
fi��a� j ��b� o��cg

�� s j 
p � fi� jg�c � a � pri�p� c� � b � prj�p� c�g

where

prk�k � p�m � a� �m � prk�p� a�
prk�l � p�m � a� � prk�p� a�
prk�	� 	� � 	� for k� l � fi� jg and k 
� l

Each transition corresponds to a merge of a and b� Note that if a or b is 	 then

c is b or a� respectively� �

����� Executions� Schedules and Behaviors

De
nition � �Execution
 schedule
 behavior� An execution of an automa�

ton A is an in�nite sequence s�� ��� s�� ��� 
 
 
 such that s� � S� and 	i � si
�i
�

si��� We denote the set of all executions of A by execs�A��

��c is the length of sequence c� m � a appends the message m in front of sequence a�

��



The schedule sched��� of an execution � is the subsequence of � containing
only actions in �� We denote the set of schedules of A by scheds�A��

The behavior beh��� of an execution or schedule � is the subsequence of �

containing only external actions	 We denote by behs��� the set of all behaviors
of �� �

Note that schedules and behaviors are named communication histories	 Given
an automaton A and an input stream
tuple � � I � �D��� we denote the set of
behaviors of A with input � by A��� and write it simply ��� when A is clear from
the context	 Formally�

A��� � f� � behs�A� j �jI � �g

For a deterministic automaton A��� is a singleton for each �	

����� Strongly Pulse Driven Automata

Timed port automata have a characteristic property� they process their input

incrementally	 In other words� at any moment of time� their output does not
depend on future input	 This property is called pulse�drivenness and it has two
variations� strong pulse�drivenness and weak pulse�drivenness	

The output produced in time unit t by a strongly pulse
driven automaton is
not only independent of future input but also of input received in the same
time unit	 The output produced by a weakly pulse
driven automaton in time
unit t can also depend on the input received in time unit t	 Hence� the strongly
pulse
driven automata introduce a delay between input and output while the
weakly pulse
driven automata may not	

De
nition � �Pulse driven automata� An timed port automaton A is called

strongly pulse
driven i�

	�� �� n � ��n � ��n � ��� jO�n�� � ��� jO�n��

An automaton A is called weakly pulse
driven i�

	�� �� n � ��n � ��n � ��� jO�n � ��� jO�n �

For a deterministic automaton� weak pulse
drivenness says that we can unfold
the automaton into a tree of in�nite broadness and depth� whose nodes are
marked by states and whose branches are marked with input� output and hidden
messages �C � D��� that lead from the father�s state to the son�s state	

Due to reactivity of an automaton� each node in the unfolded tree has at least
one branch for every input of I � D�� due to determinism it has at most one
branch for every input of I � D�	 Each path in the tree corresponds to a
behavior � and each level n corresponds to the set of all behaviors ��n	

For a nondeterministic automaton� the same unfolding is possible� but now each
node in the unfolded tree may have more than one branch for a given input	
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Theorem � Every timed port automaton is weakly pulse�driven�

Proof� An immediate consequence of reactiveness	 �

Theorem � The timed merge automaton TMA is weakly pulse�driven but not

strongly pulse�driven�

Proof� Trivial �

Sometimes we want to require strong pulse
drivenness only on particular subsets
of the input and output channels	

De
nition � �Strong pulse�drivenness with respect to �G�P �� A timed

port automaton A is strongly pulse�driven with respect to �G�P �� where G � I

and P � O� i�

	�� �� n � ��jG��n � ��jG��n � ��jInG��n�� � ��jInG��n��
� ���� jP ��n�� � ���� jP ��n��

Obviously� if P � � then each automaton is strongly pulse�driven wrt� �G�P ��
�

An example of a strongly pulse
driven automaton is the bu�er given below	

Example � �A bu�er with restricted delay� The bu�er automaton

BUF � ���D�� f	g� �� where � � �D� fig� fog� ��

consumes data items from i and reproduces them with a �nite delay on o� The

order of the incoming messages is preserved and the bu�er capacity is unre�

stricted� The contents of the bu�er is modeled by the set of states D�� To

ensure that every received message is also sent� we enforce BUF to send at least

one message if the contents of the bu�er is not empty� The transition relation is

de�ned below� where � denotes the concatenation operation on �nite sequences�

� � fa� s
fi��b� o ��ag

�� s� b j �a� b � D�� � �a� s 
� 	� a 
� 	�g

Note that the delay of every message is bounded by the input received earlier� �

��� Black�Box View

In many cases� for methodical reasons one is interested in a more abstract view
of a component than the view given by a state machine or by a network �see the
following section�	 In such cases� the black
box view� also called the history

based approach� can be used �GS��b� GR���	 In the history
based approach we
model components by sets of functions	

Each function has the form f � �I � �D��� � �O � �D���	 It maps named
input histories to named output histories	 The names of the input channels
build the set I and the names of the output channels build the set O	

��



The reason for working with in�nite histories is that if no action is communi

cated along an input channel within a time unit� then an empty message se

quence occurs in the input history	 The lack of this timing information causes
the fair merge anomaly �Kel���	

The functions should behave similar to deterministic automata� i	e	� they should
process their input incrementally	

De
nition � �Pulse driven functions� Stream processing functions whose

output until time j �j � �� is completely determined by the input until time j

are called weakly �strongly� pulse
driven� Formally�

	�� �� j � ��j � ��j � f����j � f����j �weakly pulse�driven�

	�� �� j � ��j � ��j � f����j�� � f����j�� �strongly pulse�driven�

We use the arrow � for sets of strongly pulse�driven functions and the arrow
w
� for sets of weakly pulse�driven functions� �

Strongly and weakly pulse
driven functions correspond to contractive and non

expansive functions in the metric of streams �see �GS��b� GR����	 As a con

sequence� by Banach�s �xed point theorem� strong pulse
drivenness guarantees
unique �xed points of feedback loops	

Theorem � Projection is a pulse�driven function� Sum is a pulse�driven func�

tion in each argument�

Proof� ��� ���n and ��jO��n only depend on ��n and ��n	 �

To allow non
deterministic components� we model components by sets of weakly
pulse
driven functions�

De
nition 	 �Components� A component whose input and output channels

are named by I and O� respectively� is given by a nonempty set of weakly pulse�

driven functions

F � �I � �D���
w
� �O � �D����

that is closed in the sense that for all weakly pulse�driven functions f of the
same signature

�	� � �I � �D��� � 
f � � F � f��� � f ������ f � F
 �

The above de�nition is very powerful	 It not only makes the model fully abstract�
but it also allows us to handle unbounded nondeterminism	 Note that the
use of relations instead of sets of functions is problematic in connection with
unbounded nondeterminism �see for example �Cos��� NP�
��	

��



Chapter �

Networks

A component may be distributed in a network of subcomponents	 In this case a
third view� the so called network
view describes the distribution of a component	
It is given by the set of subcomponents as well as their connections	 Formally�
connections are described by named streams	 Two components sharing a chan

nel as input resp	 output stream are connected together	 Moreover� in this
section we show how one can derive the state
box as well as the black
box view
of a distributed component if the corresponding views of its subcomponents are
given	

��� Composition of State�Box Views

In this section� we �rst show how two automata can be composed into a new
automaton	 This result is then generalized to the composition of in�nite sets
of automata	 Moreover� we introduce a hiding operator which provides control
over the scoping of channels	

����� Binary Composition

When composing automata the �rst to decide is� whether automata should be
allowed to write on the same channels or not	 In the case of the one
to
many
composition only one automaton is allowed to write on a given channel	 This
assures that no merging of messages is necessary	 We also require that hidden
channels are private	

De
nition �� �Compatible port signatures� The signatures �� and ��
are called compatible i� O� �O� � H� � C� � H� � C� � � �

If two automata are composed� the output channels of one automaton are con

nected to the input channels with the same name of the other automaton	 A
graphical illustration is given in Figure �	�	 The set of hidden channels of the
composed automaton is the union of the sets of hidden channels of the compo

nents	

��
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Figure �	�� Binary composition

De
nition �� �Binary composition of signatures� If �� and �� are com�
patible then the sets

I � �I� n O�� � �I� n O��� O � O� �O�� H � H� �H�

are pairwise disjoint� We may therefore de�ne the composition of �� and ��
to be the signature �� � �� � �D� I�O�H�� As before C � I �O �H� �

The main di�culty of untimed approaches is composition	 The absence of in

formation about the causality or the relative timing of the messages exchanged
by two automata leads to the Brock
Ackerman anomaly	 The I�O automata
approach introduces causality between messages by arranging them in a linear
order� the synchronized merge of the messages of each automaton	 Synchro

nization takes place when one automaton sends a message which the other
automaton has to accept due to its input enabledness ��LS���� �BDDW����	 To
make interleaving possible� each transition of an I�O automaton is marked with
only one message� either an input or an output message	 As a consequence�
this approach is not explicitly concurrent	 This is the case even if one would
introduce special time transitions	

We work with a global clock� each transition takes place in the same� constant
unit of time in both automata	 Hence� our approach is time�synchronous and
message�asynchronous	 By using a global clock� we have enough causality in

formation to obtain a very simple yet powerful notion of composition� the set
of input and output messages of the composed automaton at a given time n
is simply the union of the input and output messages of the components at
the same time n	 Note that union also takes care for communication	 If an
output channel of one automaton is connected to an input channel of the other
automaton� the input channel does not appear in the composed automaton	

��



De
nition �� �Binary composition of automata� Given two timed port
automata A� and A� with compatible signatures� Then the binary composition
of A� and A� is A� �A� � ��� S� S

�� �� which is de�ned as follows�

� � � �� � ���

� S � S� � S��

� S� � S�� � S�� �

� �� � �� � S � �C � D��� S

�� � �� � f�s�� s��
�
� �t�� t�� j s�

�jC�� t� � �� � s�
�jC�� t� � ��g �

Similarly to the composition for I�O automata� this composition allows au

tomata to block each other� e	g	� the composition can have an empty transition
relation	

Example � �Blocking� Given two automata with complementary signatures

A� � ���� fs�g� fs�g� ���� �� � �N� fig� fog� ��
A� � ���� fs�g� fs�g� ���� �� � �N� fog� fig� ��

and with the following transition relations� where �� a appends the natural

number � in front of the sequence a�

�� � f�s�� fi �� a� o �� �� ag� s�� j a � N
�g

�� � f�s�� fo �� a� i �� �� ag� s�� j a � N
�g

The composed automaton

A � ��� � ��� f�s�� s��g� �s�� s��� �� � ���� �� � �� � �N � �� fi� og� ��

has an empty transition relation ������ because there is no � � fi �� a� o �� bg
such that b � �� a as required by the �rst automaton and that a � �� b as
required by the second automaton� This can be interpreted either as divergence

or as blocking� In the second case each automaton waits without success for an

output produced by the other automaton� �

Since �� � �� is empty� A is not a timed port automaton	 This means that
composition is a partial operation	 However� if the output produced by one
automaton is independent of the output produced by the other automaton then
the automata cannot block each other and the composition is well de�ned	

Theorem � Given two timed port automata A� and A�� Let G � I� �O� and

P � I� �O�� If either A� is strongly pulse�driven with respect to �G�P � or A�

is strongly pulse�driven with respect to �P�G�� then �� � �� is well de�ned� that

means A� �A� is a port automaton�

The proof for this and the following two theorems can be seen in �GR���	 In
the sequel we always assume that the conditions required by the above theorem
hold	 Note that if any of G or P is empty� the composition is well de�ned even
if both automata are only weakly pulse
driven	

��



Theorem � Given timed port automata A� and A�� Then

execs�A� �A�� � fe j ejA�
� execs�A�� � ejA�

� execs�A��g
scheds�A� �A�� � fe j ejA�

� scheds�A�� � ejA�
� scheds�A��g

behs�A� �A�� � fe j ejA�
� behs�A�� � ejA�

� behs�A��g

Strong pulse
drivenness is preserved by composition	

Theorem � If A� and A� are strongly pulse�driven automata then so is A� �
A��

����� In�nite Composition

We now extend these results to the composition of in�nitely many components	
In�nitely many components are used to model dynamic creation and destruction
of components in the system model	 For example� the in�nite set of all instances
of a class can be represented by an in�nite set of components in the system
model	 These objects are created and deleted by sending appropriate messages
to them	

Observe that in�nite composition cannot be done by a generalisation of binary
composition to arbitrary ��nite� composition� because there is a limit process
involved	

De
nition �� �Compatible port signatures� Given a countable set J � The

signatures ��j�j�J are called compatible i�

Oj �Ok � Hj � Ck � Hk � Cj � �

for each j� k � J� j 
� k� �

Observe that while output channels are private� input channels may be shared
among signatures	

De
nition �� �In
nite composition of signatures� Given a compatible set

of signatures ��j�j�J 
 Then the sets

I � �
S
j�J Ij� n �

S
j�J Oj�� O �

S
j�J Oj � H �

S
j�J Hj

are pairwise disjoint� We may therefore de�ne the composition of ��j�j�J to

be the signature �j�J�j � �D� I�O�H�� As before C � I �O �H� �

De
nition �� �In
nite composition of automata� Given the set of timed

port automata �Aj�j�J with compatible signatures� The in�nite composition of
�Aj�j�J is

�j�JAj � ��� S� S
�� ��

��



which is de�ned as follows�

� � � �j�J�j�

� S � �j�JSj�

� S� � �j�JS
�
j �

� �j�J�j � S � �C � D��� S

�j�J�j � fs
�
� t j 	j � J � s�j�

�jCj
� t�j� � �jg

�

Theorem � Given the timed port automata �Aj�j�J with compatible signa�

tures� Let Ifj � Ij � O and O
f
j � Oj � �

S
k�J Ik�� If every component Aj is

strongly pulse�driven with respect to �Ifj � O
f
j �� then �j�J�j is well de�ned� i�e��

�j�JAj is a timed port automaton�

Proof� We have to show that �j�J�j is reactive	 Given s � �sj�j�J and

i � I � D�	 Since each Aj is strongly pulse
driven wrt	 �I
f
j � O

f
j �� the output

on Of
j at a time unit does not depend on its input on the feedback channels I

f
j

at this time unit	

This means� the output of � O � D� such that of jAj
� o

f
j for all j � J is

completely determined by the state s and the input i	 Since Ifj �
S
k�J O

f
k � the

input for Aj is �xed and given by �i� of �jIj 	 By the reactivity of Aj � we can

�nd a state tj and a �j such that �jjIj � �i� of �jIj and �s�j�� �j � tj� � �j	 Take
t � �tj�j�J for the next state and � such that �jAj

� �j for the action	 �

The obvious generalization of theorem � to in�nite composition is left to the
reader	

����� Hiding

Hiding is a very important operation which provides control over the scoping of
channels	 This is of great importance in the modular development of reactive
systems	

There are two reasons for using a separate hiding operator instead of a compo

sition which automatically hides the interconnected channels	 First� the com

position with hiding is not associative	 Second� our compositionality result for
behaviors could not have been formulated in the simple way we did� because the
component behaviors would have contained information which were not present
in the behavior of the composed automata	

De
nition �� �Hiding� Given a timed port automaton

A � ��� S� S�� ��� where � � �D� I�O�H�

and a set P � O� The automaton 
 P � A is then de�ned as follows�


 P � A � ���� S� S�� ��� where �� � �D� I�O n P�H � P � �

It is easy to see that 
 P � A is a timed port automaton	

��
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Figure �	
� Binary composition

��� Composition of Black�Box Views

In the preceding section we studied how components modeled by automata
can be composed	 Because in many cases components are not modeled using
automata� but using the black
box view� it is also important that one can
compose such black
box components	

����� Binary Composition

We de�ne the composition slightly more general than in �GS��b� because we
relax the pulse
drivenness requirements and allow one
to
many communication	

De
nition �� �Binary composition� Given two components F� and F� with

input channels in I� and I� and output channels in O� and O��

F� � �I� � �D���
w
� �O� � �D���� F� � �I� � �D���

w
� �O� � �D���

such that I� �O� � I� �O� � O� �O� � �� Let J � I� �O� and P � I� �O��

If either F� is strongly pulse�driven with respect to �J� P � or F� is strongly

pulse�driven with respect to �P� J� then we may compose them in accordance

with Figure ��	� We refer to the resulting network as the binary composition of

F� and F� and write it as F� � F�� Formally�

I � �I� n O�� � �I� nO��� O � O� �O��

F� � F� � �I � �D���
w
� �O � �D����

F� � F� � ff j 	� � 
f� � F�� f� � F� �

f��� � o� p where o � f����� p�jI��� p � f����� o�jI��g

�


�



Theorem � F� � F� is a component�

Proof sketch� That F� � F� 
� � follows straightforwardly from Banach�s
�xed point theorem	 Closedness follows from the nesting of the quanti�ers
�
f�� f
 
 
 
 inside of 	��	 �

����� In�nite Composition

De
nition �� �In
nite composition� Given the components �Fj�j�J with

input channels in Ij and output channels in Oj�

Fj � �Ij � �D���
w
� �Oj � �D����

such that Ij�Oj � Oj�Ok � � for each j� k � J� j 
� k� Let Ifj � Ij��
S
j�J Oj�

and O
f
j � Oj � �

S
j�J Ij� be the feedback channels of Fj�

If each Fj is strongly pulse�driven with respect to �Ifj � O
f
j �� then the in�nite

composition �j�JFj is de�ned as follows�

I � �
S
j�J Ij� n O� O �

S
j�J Oj �

�j�JFj � �I � �D���
w
� �O � �D����

�j�JFj � ff j 	� � 	j � J � 
fj � Fj �

f���jOj
� fj���� o�jIj � where o � f���

�

Theorem 	 Given components �Fj�j�J � then �j�JFj 
� ��

Proof� Since Fj is a component for each j� we may �nd functions fj such
that fj � Fj 	 We de�ne function g such that�

g � �O � �D���� �I � �D���� �O � �D���
g�p� ��jOj

� fj���� p�jIj �

where p � �O � �D���	 As composition of all fj is g contractive ��GR���� in each
Oj 	 Since this de�nition is equal to g�p� �� � �j�J g�p� ��jOj

� g is contractive in
p	 By Banach�s �xed
point theorem� f � �g is well de�ned� yielding a function�

f � �I � �D���� �O � �D���

which is by construction f � �j�JFj 	 �

Theorem �� �j�JFj is a component�

Proof� By theorem � it is enough to prove that �j�JFj is closed	 Suppose

f � �I � �D���
w
� �O � �D��� and

	� � 
f � � �j�JFj � f��� � f ����


Then for a given � and f � there are functions fj � Fj such that�

f ����jOj
� fj���� o�jIj � where o � f ����



�



Hence� for every � there are functions fj � Fj such that�

f���jOj
� fj���� o�jIj � where o � f���


In other words f � �j�J Fj 	 �

����� Hiding

As for timed port automata� hiding provides control over the scoping of chan

nels	 This is of great importance in the modular development of reactive sys

tems	

De
nition �	 �Hiding� Given a component F with input channels in I and

output channels in O

F � �I � �D���
w
� �O � �D���

and a set of channel names P � O� The component 
 P � F is de�ned as

follows�


 P � F � �I � �D���
w
� ��O n P �� �D���


 P � F � ff j 	� � 
g � F � f��� � g���jOnP g

�

Theorem �� Given a component F with inputs in I and outputs in O and a
set P � O� Then 
 P � F is also a component�

Proof� Trivial	 �







Chapter �

System Model

In the previous sections we presented techniques for modeling di�erent views of
a system and for relating these views	 We will now show how the SysLab system
model can be de�ned using these techniques	 In comparison with �RKB���� we
have also slightly extended the model� because we now also allow the duplication
of messages and broadcast communication	

��� Outline of the System Model

The SysLab system model serves as an underlying semantic model mainly
used to de�ne the semantics of description techniques used in the SysLab
method	 It is itself based on pure mathematics	 The system model aims at
describing general information processing systems� not just focusing for instance
on hardware
 or database systems	

The system model is hierarchical and modular	 It is hierarchically composed of
interacting components� where the leafs in the hierarchy are called basic com�

ponents and internal nodes are called distributed components	 All components
interact just by message passing via input and output ports	 Data �states� of
components are encapsulated� no sharing occurs	 Messages between compo

nents are sent asynchronously	 No addressing concept for messages is coded in
the system model	 This allows for using identi�ers as e	g	 in object
oriented
systems as well as using direct connections as e	g	 in hardware systems	 Dy

namic creation of components can be coded in our model by using possibly
in�nite sets of components� which can be �created� and �deleted� by special
messages	

We do not abstract from time� because this on the one hand allows us to
describe real
time systems and on the other hand prevents semantic problems
as e	g	 the merge anomaly	 We use a discrete linear time by dividing in�nite
communication histories into in�nitely many intervals of the same length	


�



��� Component Hierarchy

If we adopt a glass
box view when looking at a real system we �nd a hierarchy
of components which are conceptually or spatially distributed	

To describe this view we attach a unique identi�er to every component in the
system	 We therefore use the enumerable set of identi�ers ID	 To describe the
system hierarchy we use the function

Parts � ID� P�ID�

where Parts�i� denotes the identi�ers of all sub
components of component i	

A component c is a basic component exactly if Partsc � �	 We distinguish
between the set of basic components IDb and the set of distributed components
IDd	 Both sets are a partition of the total set of identi�ers� i	e	 they are disjoint
and their union is the total set of identi�ers ID	

Note that Parts must denote a tree� but this tree may be in�nitely broad and
deep to model dynamic processes	 A special identi�er RootSystem � ID denotes
the root of this tree	

��� Signature of Components

Every component with identi�er c � ID has a set of input and output ports
which are used to receive and send messages to other components	 These ports
build the signature of a component	 Given an enumerable set of portnames P
we attach input ports Inc and output ports Outc to every component c � ID by

In � ID� P�P �
Out � ID� P�P �

Every port is connected to at most one component�

c 
� d� �Inc �Outc� � �Ind �Outd� � �
Inc �Outc � �

��� Behavior of Components

Besides its signature� every component has a behavior	 We allow our com

ponents to be nondeterministic	 This is modeled by using a set of stream
processing functions with appropriate signature for every component�

Behavior
c�ID � ��Inc � �D���

w
� �Outc � �D���
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As basic components de�ne their behavior on their own� the behavior of dis

tributed components is composed of the behaviors of their parts and of the
behavior of the communication medium	 The communication medium will be
introduced later for modeling the transmission of messages among components
and their ports	

��� Basic Components

A basic component is not distributed	 Its behavior can be given either in a
property oriented way as a black
box or in a state oriented way as a state
box	
Given a global set ST of states� we assign a subset of these states to every basic
component�

States � IDb � P�ST �


The set of states is usually determined by data de�nitions	 For example in
object
oriented frameworks� these states are made of attribute de�nitions	 More

over� under some circumstances we may also encode a control part in the state
set	

A set State�c contains the initial states of the component c�

State�c � Statesc

To describe the behavior of a basic component c� a state transition relation �c
is used	 It is allowed to describe nondeterminism as well as underspeci�cation
of the basic component	 So we have a nondeterministic transition relation of
signature�

�c � Statesc � �Inc �Outc � D��� Statesc

de�ning at least one pair of successor state and output for every state and every
input on the input ports	 Together with the signature� the initial state and the
state set the transition relation forms a timed port automaton Ac

Ac � ��Inc� Outc� ��� Statesc� State�c � �c�	

As described in �GR���� every port automaton Ac generates a set of weakly
pulse
driven stream processing functions ��Ac��	 This set determines the behavior
of component c�

c � IDb � Behaviorc � ��Ac��	


�



��� State of Basic Components

The above mentioned global set of states ST comprises the data as well as the
control state of each component	 The data state is usually described by some
kind of algebra� resp	 its sorts	 In an implementation the control state is given
by some kind of program counter	 In the more abstract system model� we
may represent a control state by a prophecy variable determining future output
together with the data state� that will be reached� when all the prophecy output
is done	 Thus� internally we do not stutter the reaction of a component to some
input stimulus by subsequent internal transition on data states� but process
the �nal data state immediately and keep the resulting output messages in an
output bu�er as prophecy	 This allows us to deal only with consistent sets of
data states and to have control states represented	

As the input of a component is timed� we have to accept input messages at
every time	 To get a further degree of description freedom we decide to add an
input bu�er for not yet processed input messages and thus get a state space
similar to �GKRB���	 The state space of every basic component c � IDb can
be seen as�

Statec � �Inc � D���Datac � �Outc � D��

and the initial state space as�

State�c � f	g �Datac � f	g

where Datac is the data space of a basic component	

��� Sorts in the System Model

The data states of basic components and the input and output channels of every
component are usually typed	 Therefore� we associate a sort of an algebra with
every

� channel p � P �and therefore its messages� and every

� space of data states Datac of basic components c � IDb	

Thus� we assume the existence of an underlying algebra that provides sorts for
all necessary sets of the system model	 Algebras can be described conveniently
using abstract data types	

��	 Communication Medium

A distributed component c is made of at least one part �subcomponent�	 Ev

ery kind of computation of c is performed within these parts	 However� the
connection structure of these parts and the strategy of message deliverance is
not coded in its parts� but in an additional �component� called communication
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medium	 This communication medium is also responsible to deliver messages
from and to the environment of a component	 It may therefore be considered as
a membrane between the parts of a component as well as between the interior
and the environment of a component	 The communication medium has to obey
several restrictions�

� Messages with same source and destination port have to maintain order�

� no messages are generated�

� messages are not modi�ed�

� the destinations of a message do not depend on the state of the commu

nication medium�

� every destination of a message receives a message exactly once	

In contrast to the system model in �RKB���� we now require the communica

tion medium to duplicate messages� if there is more than one destination for
a message	 This generalization allows us to model broadcasting� as well as the
wiring of hardware� where one output channel is often connected to several
input channels	

In principle the communication medium is allowed to delay messages� but not
in�nitely long	 If one is interested in specifying real
time systems� the medium
may be re�ned to a medium without delay	 Although the medium is not nec

essarily a component that is intended to be implemented� we may describe the
communication medium as an ordinary component	 It has a signature and a
behavior and because of the possible delay also an internal state	 In Figure �	� a
network view shows how a component c is decomposed into the communication
medium CMc and the parts of c	

OutcInc

CMc

component c

InPartsc

OutPartsc

Partsc

Figure �	�� Distribution of a component
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The communication medium of the distributed component c is modeled as com

ponent CMc	 As signature� it has all the output ports of the parts of c as input
ports and vice versa and the input
 and output ports of component c itself	 We
de�ne�

OutPartsc�
S
d�Partsc Outd

InPartsc�
S
d�Partsc Ind

The communication medium CMc then has the following signature� de�ned by
using two further de�nitions Originsc for the input channels and Destinationc
for the output channels of CMc	

Originsc � Inc �OutPartsc
Destinationsc� Outc �InPartsc
CMc � �Originsc � �D���

w
� �Destinationsc � �D���

The behavior of the communication medium can now be described by a timed
port automaton	 This description gives another view on CMc but allows ba

sically the same behavior as described in �RKB���� generalized by the new
duplication mechanism for messages	 The communication medium is modeled
as a set of bu�ers� containing the messages that are still to be delivered	 The
�rst purpose of the communication medium is therefore to distribute the in

coming messages into the proper bu�ers	 As the destination of a message does
not depend on the internal state of the communication medium� a function
destinationc will be de�ned to determine the set of destinations of a message
within communication medium CMc	 Similarity� originc determines the unique
origin of a message�

destinationc� D � P�Destinationsc�
originc � D � Originsc

Note that the functions destinationc and originc depend on the component c in
which they are used for message distribution	 This is all we require about these
two functions in the system model	 If the system model is used� destinationc
and originc have to be specialized further by stating additional properties	 For
instance� to prevent messages from being lost� we may require destinationc to
be not empty for any message�

	c � IDd� d � D
 destinationc�d� 
� �

If exactly one destination for every message is required� we may in addition
state�

	c � IDd� d � D
 jdestinationc�d�j � �
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Function distributec collects the incoming messages at one time interval and
distributes them to the proper bu�ers�

distributec � �Originsc � D��� �Destinationsc � D��
	d � Destinationsc� o � Originsc� �


F ilter�fmjoriginc�m� � og� distributec���
d� �
Filter�fmjd � destinationc�m�g� �
o�

The application of Filter�M� s� removes all messages not inM from the streams
s	 This way� the above formula expresses the requirement that all messages from
all origins are put in the appropriate bu�ers for their destination	

Now the timed port automaton for the communication medium can be de�ned	
We give a very general de�nition that can be specialized to various kinds of
communication media	 Note that if the set Originsc is not �nite� distributec
is a partial function	 In this case it may happen that within one time unit
in�nitely many components send a message to the same receiver	 To prevent
this problem� it is necessary to ensure that at every moment of time just a �nite
subset of components is active	

The timed port Automaton CMAc for communication medium CMc is de�ned
by�

CMAc � ��� S� S
�� ��

where

� � �Originsc�Destinationsc� ��
S � �Destinationsc � D��� �Destinationsc � fNilg��

S� � f��x
	� fairlist�j	d � Destinationsc
 Filter�d� fairlist� ��g
� � f��s� d�l�� � � �� �t� l��j��t � s�distribute��� � �s
d 
� 	� �
d 
� 	�g

The set of states S is composed of

� a bu�er for every destination port�

� a fairness list of destination ports to prevent in�nite delay of messages in
these bu�ers	

In each transition� one destination port is removed from the fairness list	 If the
corresponding bu�er is not empty a message to the removed destination port
is sent	

To ensure fairness� in the initial fairness list each destination port has to occur
in�nitely often	 Nil denotes� that no output has to occur	 Thus only internal
actions take place	 Moreover� initially all output bu�ers are empty	

Note that the automaton CMAc is only weakly pulse
driven	
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��
 Distributed Components

Given a distributed component c � IDd� and assuming given port automata
Ap for every part p � Partsc� together with the automaton CMAc for the
communication medium� a timed port automaton Ac for component c can be
composed	 As shown in Section �� there are restrictions on the composability
of components	 If only weak pulse
driven automata are composed� some kind
of blocking may occur	 To prevent this� a notion of strongly pulse
drivenness
with respect to �G�P � has been developed in the previous section	 The de�ni

tion has also been extended to get well de�ned composition for in�nitely many
components	

In Figure �	� the composition of distributed component c is shown	 It is of the
general form for black
box views�

CM� ��p�PartscBehaviorc�

and for corresponding state
box views�


 �InPartsc �OutPartsc� � CMAc � ��p�PartscAc�

This composition is not necessarily well de�ned� due to the fact that all involved
automata may be just weakly pulse
driven	 However� we give two su�cient
conditions for well de�nedness�

Theorem �� �strong pulse�drivenness of communication medium� If

the communication medium automaton CMAc is strongly pulse�driven� the com�

position of Ap� p � Partsc and CMAc is well de�ned�

Proof� First we observe� that �p�PartscAc is just a parallel composition of
compatible automata without any feedback	 According to Theorem �� we get
�Ifj � O

f
j � � ��� �� for every Aj and thus trivially strong pulse
drivenness of Aj

with respect to �Ifj � O
f
j �	 Thus A � �p�PartscAc is well de�ned	

Next� CMAc and A are compatible automata that are composed by the bi

nary variant of �	 As CMAc is strongly pulse
driven� Theorem � ensures well
de�nedneess of the overall composition	 �

Theorem �� �strong pulse�drivenness of parts� If the automaton Ap for

every part p of a component c is strongly pulse�driven� the composition of Ap� p �
Partsc and CMAc is well de�ned�

Proof� Similarly to the above given proof A � �p�PartscAc is well de�ned	
As all components are strongly pulse
driven� so is their parallel composition A	
Again Theorem � ensures well de�nedness of the overall composition	 �

Strongly pulse
drivenness of the communication medium can be ensured by re

stricting the transition relation accordingly	 The timed port Automaton CMASc
for strongly pulse
driven communication medium CMc can be de�ned by�
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CMASc � ��� S� S
�� ���

with �� S� S� as before and new
�� � f����s� d�l�� � � �� �s�distribute���� l��j���s�
d 
� 	� �
d 
� 	g

The input � is stored in the next state� whereas the output � is taken from the
actual state� and therefore has been stored earlier	 To keep on progress� for
every channel d the output �
d is not empty if there are messages in the store
���s�
d	

A strongly pulse
driven communication medium imposes a delay of at least one
time unit for every message	 Such restrictions of the transition relation are
allowed� as long as reactivity is preserved� because the above given proofs and
theorems do not use the structure of CMAc	 Observe� that �

� � � and due to
the re�nement calculus for port automata de�ned in �Rum����

��CMASc�� � ��CMAc��

If we want the composition result to be strongly pulse
driven again� we can use
the following theorem�

Theorem �� �strong pulse�drivenness of composed automaton� The

composition

CMAc � ��p�PartscAc�

is strongly pulse�driven again� if the the automaton Ap for every part p of a

component c is strongly pulse�driven� and no message from the environment of

c is sent back to this environment by the communication medium CMA�

	d � D
originc�d� � Inc � destinationc�d� �Outc � �

Proof� Theorem �� ensures well de�nedness of the composition	 The above
stated condition ensures� that incoming messages �from Inc� of a time unit are
only sent to the parts of the component	 This ensures a strong pulse
drivenness
of the communication medium CMAc with respect to �Inc� Outc�	 As all parts
are strongly pulse
driven this property is preserved by the composition� meaning
CMAc���p�PartscAc� is strongly pulse
driven with respect to �Inc� Outc�	 This
is equivalent to strong pulse
drivenness of CMAc � ��p�PartscAc�	 �

From Theorem �� follows immediately that the use of a strongly pulse
driven
automaton CMASc always leads to a strongly pulse
driven composition	
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Chapter �

Examples

To get a better understanding how the presented system model can be applied�
we now give two examples	 The �rst example� a FIFO
Queue� is an example for
a typical software system	 The second example� an RS
�ip�op� is taken from
the area of hardware design	

��� Queue

We model an interactive queue which stores incoming messages of type Value
and dispenses them on request in a FIFO
order	 Because this is a well
known
example� we do not specify the black
box behavior of queues here	

The queue has the identi�er qu� the input port qui� and the output port quo	
It is implemented by a linked list of queue elements	 The set of identi�ers
for the queue elements is given by the in�nite set IDQ � ID	 As common in
object
oriented systems� message addressing is done via identi�ers	 Identi�ers
are su�cient� because we design every component to have exactly one input

and one output port	 For every q � IDQ� qi and qo denote the input respectively
the output port of queue element q	 IDQi and IDQo are the corresponding sets
of all input
 and output ports of queue elements�

Inq � fqig�Outq � fqog
Inqu � fquig�Outqu � fquog

A queue element contains an ordinary value of set Value or the special value
None to indicate that no ordinary value is contained	 If a queue element contains
a value� it also contains the identi�er of the next queue element �the rest of the
queue�	 Otherwise it uses a special element Nil to indicate that no next element
exists	 Thus a queue element has two attributes�

val � Value � fNoneg
next � IDQ � fNilg

�




val� None

qui

quo

val�val�

next�

Queue qu

Figure �	�� Dynamic structure of a queue

At each point of time only a �nite subset of queue elements contains values	 We
therefore may depict the state of a Queue by its �nite set of elements containing
values	 Figure �	� depicts a two element queue	 The messages of the input port
of an element of class Queue are dispatched to its elements	 Accordingly the
messages from queue elements to the environment are collected and emitted
through the output port	 The signature of queue elements consists of two kinds
of messages� to enque new values at the end of the queue �enq� and to deque
values at the top of the queue �deq�	 The signature of queue elements is�


enq�x � Value�

deq�receiver � ID�

The dequed value� as well as the identi�er of the rest of the queue are sent
to the explicitly given receiver with message deq
d�v�next�	 Besides the above
de�ned signature� every message is in addition augmented with the identi�ers
of the sender and of the receiver component	 The set of messages D is therefore
de�ned by�

D � ID� ID� fenq�v�� deq�id�� deq
d�v� id�jv � Value� id � IDg

We have to ensure well de�nedness of automata composition	 Therefore� we
decide the communication medium to be strongly pulse
driven	 Hence our queue
elements only have to be weakly pulse
driven	 The communication medium is
of type�

CMqu � �IDQ
o � fquig � �D���

p
���IDQi � fquog � �D���
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A dynamic change of the interconnection structure between components is pos

sible via changing attributes containing component identi�ers	 The dynamic
creation of components can be modeled in the following way� Components that
did not receive or send a message until a point in time are regarded as not yet
created	 Components are created if some message is sent to them by another
component �the creator�	 To model this� we give the creator a su�cient list
newIDs containing the identi�ers of all components it can create	 Initially the
queue element q�� encoding the empty queue� is assumed to be active	 The
creational function toCreate of type

toCreate � IDQ� �IDQ�

delivers this list of identi�ers creatable by a given component	 It de�nes a
partition on IDQnfq�g� because every component can be created exactly by one
other component	 It also de�nes a tree with root q�� because no circular creation
dependencies are possible	 To represent the set of still available identi�ers� we
use a third attribute newIDs � �IDQ� to the state of queue elements	 This
attribute is implicit� meaning that the programmer has no explicit control over
this variable	 It is also not intended to be implemented as an attribute� but it
is only used for modeling purposes	 In concrete implementations using object
oriented programming languages� ID is implemented by the runtime system of
the implementation language	

The state set of a queue element can now be de�ned as

Statesq � �Value � fNoneg�� �IDQ � fNilg�� �IDQ�

with the initial states

State�q � f�None�Nil� toCreateq�g	

The transition diagram �q for queue element q determines the state transition
relation of a timed port automaton	 This simply means every transition takes
one unit in time	 All messages arriving within one time interval are processed
and the response is emitted	 As delay is already encoded in the communication
medium� the automata for the queue elements need not impose delay	

The transition diagram is constructed in a pattern matching
style� well known
from functional programming�

v� x � Value!next � IDQ� r � ID�newID � �IDQ�

current state in out next state

�v �next� newID� enq�x� next
enq�x� �v�next�newID�
�None�Nil �id�newID� enq�x� �x�id �newID�
�v �next� newID� deq�r� r
deq�d�v�next� �v�next�newID�
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The queue elements are not active themselves� they only react to incoming
messages by changing state and�or sending new messages	 This property allows
us to write transition diagrams in such a pattern
matching style	 The behavior
for combinations of input messages and receiving states where no entry in the
above table occurs is underspeci�ed	 This means that if such messages are
received in the corresponding states� chaotic behavior is allowed	

At last� the two functions originqu and destinationqu are de�ned to model how
messages are delivered by the communication medium�

	d� id!	qsnd� qrec � IDQ! osnd� orec � IDnIDQ

originqu�qsnd� id� d� � qsndo
originqu�osnd� id� d� � qui
destinationqu�id� qrec� d� � fqrecig
destinationqu�id� orec� d� � fquog

Note that no message duplication and no message loss is possible� as this is
usual in many software systems	

We are now able to compose all the queue elements together with the communi

cation medium to the complete queue automaton Aqu	 We also hide the input

and output ports of the queue elements�

Aqu � 
 �IDQi � IDQo� � CMqu � ��q�IDQAq�

The composition is well de�ned due to Theorem �
	 We get an in�nite product
of states Aqu	 However� due to this modeling� at every unit of time just a �nite
subset of components can be active	

To reason about the overall behavior of the complete queue� one can and should
use an abstraction of this state set and de�ne an abstract timed port automaton
that can be re�ned into Aqu	

��� RS�Flip�Flop

As a second example a standard hardware component� an RS
�ip
�op� is mod

eled	 As depicted in Figure �	
 it consists of two nor
gates	

The nor
gates are statically connected through channels ��wires��	 Therefore�
in �	
 we need not show the communication medium� but show only the static
connection of the nor
gates	 This static connection is nevertheless realized by
a communication medium� which is however very simple �see below�	

The channels do not have any delay	 Delay of exactly one time unit is introduced
by the nor
gates	 Note that each output channel oj branches into an output
channel and into a feedback channel	 Hardware usually has a time synchronous
behavior	 Therefore� in our model in each time unit exactly one message �here
simply O or L� occurs	
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Figure �	
� RS
�ip
�op example

If � is the identi�er of the �ip
�op� let nor� and nor� denote the nor
gates used
to construct the �ip
�op� i	e	 we have Partsff � fnor��nor�g	 The signature
of the three components can is de�ned as follows�

Inff � fr� sg Outff � fq� qg
Innorj � faj � bjg Outnorj � fojg

Messages between these hardware components are nothing else than logical L
and O	 However� in the system model all messages are attributed with sender
and receiver ports	 Due to direct wiring it is enough to attach the port name
of the sender�

D � fO�Lg � P

As the receiver doesn�t use the additional information that is given by the sender
portname� it is not necessary to implement this information	 This allows the
usual hardware implementation where data of form fO�Lg is transmitted via
wires	

A nor
gate doesn�t have any state besides that it delays the output of a message
for one time unit	 Thus a nor gate is strongly pulse
driven	 This modeling is
adequate� because the duration of a time unit may be chosen such that every
component shows delay �Fuc���	 A nor gate therefore is modeled with the state
space

Statesnorj � fO�Lg

and �as usual in hardware� an unknown respectively free selectable initial state�
i	e	 State�norj � Statesnorj 	 The transition relation is de�ned as follows�
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�norj � f�s� �aj �� �a� x�! bj �� �b� y�! oj �� �s� oj��� t�j
�a� x�� �b� y� � D � t � nor�a� b�g

�norj is not reactive as speci�ed above� because it doesn�t de�ne any transition
that allows input of more than one message a time unit	 Due to our assumption
on the environment� which required that exactly one message will occur on every
line in each time interval� is however su�cient	 To get a reactive automaton
�norj � we extend the automaton by adding auxiliary transitions for the other
input possibilities	 These transitions may for instance lead to a state in which
arbitrary �chaotic� behavior is possible �see �GKRB����	 While chaotic behavior
is adequate in software systems� for the modeling of hardware systems a less
liberal behavior in these cases might be adequate	 The reason is that sending
a gate more than one message within one interval of time usually will not lead
to arbitrary behavior in the future� but it may only in�uence the output of the
gate for instance in the subsequent time interval	

We will now specify the communication medium of the �ip
�op	 The commu

nication structure is given by functions originff and destinationff �

	p
originff ��b� p�� � p

originff �m� � s � destinationff �m� � fa�g
originff �m� � r � destinationff �m� � fa�g
originff �m� � o� � destinationff �m� � fq� b�g
originff �m� � o� � destinationff �m� � fq� b�g

The communication medium doesn�t delay any messages	 It therefore has just
one state and it is only weakly pulse
driven	 However� the composition of
automata is well de�ned because the nor
gates are strongly pulse
driven	 The
composed automaton is also strongly pulse
driven due to Theorem ��	

L�O

O�L

L�L

L�L

O�O

O�O
L�O

O�O
O�L

L�L
O�L

L�O

O�O

O�O
L�O
O� L
L�L

L�L L�O

O�L

Figure �	�� Port automaton for the RS
�ip
�op

We get the following composed automaton Aff � which is �up to isomorphic
renaming� depicted in Figure �	�	 In the picture� irregular inputs are omitted
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for simplicity	 As always in strongly pulse
driven automata� the output of a
transition is fully determined by its source state and therefore left out in the
transitions	

A state of a system is called stable� if it does not change without further input
from the environment	 From this automaton it is very easy to conclude how
many time units it takes to get a stable state for a given input	 One can also
see that for input O�O no stable state is reached	
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Chapter �

Conclusion

In this paper� we integrated the SysLab system model ��RKB���� �KRB����
with port automata �GR���	 To achieve this� port automata have been enhanced
by an in�nite composition operator	

The SysLab system model has been enhanced by a state based modeling tech

nique� allowing the connection between behavior of components and the state
of components	 Two di�erent approaches allow to compose state based descrip

tions of components together with the communication medium� yielding a new
state based description of the composed component	

Minor enhancements to the system model are the generalized message passing
mechanism� that comprises channel based message sending as well as broad

casting� and the introduction of types for channels and state spaces	

This paper de�nes an additional layer to the original system model	 Its pur

pose is to provide a rigorous mathematical basis to de�ne the semantics of the
di�erent SysLab description techniques that are in development	
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