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Abstract

We show that techniques for monad composition can be used nicely
for modeling object-oriented programming concepts. In this functional
setting, we develop a new model for composing objects from individual
features in a modular way. Features are similar to abstract subclasses,
but separate the core functionality of a subclass from overwriting meth-
ods. We view method overwriting more generally as resolving interactions
between two features. The interaction handling is specified separately and
added when features are composed. This generalizes inheritance as found
in object-oriented languages and leads to a new view of objects in a func-
tional setting. Our concepts are implemented in Gofer and generalize some
monadic programming techniques, where objects correspond to monads,
features to monad transformers, and feature interactions are resolved by
lifting functions through monad transformers.

1 Introduction

In this paper we model object-oriented programming concepts in a functional lan-
guage and present generalizations of conventional object-oriented programming.
Whereas the latter allows to develop classes of objects in an incremental man-
ner, we just compose objects from a set of features, which replace classes. This
approach was motivated by the recent interest in feature interactions in telecom-
munications, where service unit provides for of a set of (telephone) features. The



crucial point is that some features may interact and have to be adapted in the
presence of each other. This idea will be used for a novel approach to object-
oriented programming. We consider such interaction handling for two features at
a time and compose features with the appropriate interaction handling in a way
which generalizes inheritance and method overwriting as in object-oriented pro-
gramming. The flexible composition of features is achieved by advanced concepts
of functional programming, in particular the monads and monad composition
techniques. Our techniques allow to use object-oriented techniques while pre-
serving the benefits of a higher-order lazy functional language, and also advance
object-oriented programming concepts.

The feature model allows to compose objects from individual features (or
abstract subclasses) in a fully flexible and modular way. Its main advantage is
that objects with individual services can be created just by selecting the desired
features, unlike object-oriented programming. A feature is similar to an abstract
subclass and consists of a base implementation which

e adds functionality to an object
e may assume that the extended object provides other features.

e may add local state to the object (or may extend the used domains, e.g. by
error cases)

Features are similar to abstract subclasses or mixins [5, 4]. The main difference
is that we separate the core functionality of a subclass from overwriting methods
of the superclass. We view overwriting more generally as a mechanism to resolve
dependencies or interactions between features, i.e. some feature must behave
differently in the presence of another one. For this purpose, we need to provide
lifters, which adapt a feature to the context of another feature by overwriting
methods. This leads to a new view of inheritance, as feature interactions are
resolved between two features on a mutual basis. In contrast, inheritance just
overwrites the method of the superclass.

The base functionality of a new feature is based on the functionality of the
required ones and on the newly added state. This idea of assuming other features
is a further difference to usual abstract subclass concepts. Note that the extended
object can obviously have more than just the required features.

We use a modular architecture for composing features and the required in-
teraction handling to a full object. As we only compose objects, there is no real
notion of a class, which is hence often confused with the (type of) objects. The
techniques we use for composing features have been developed for composing
monads [20, 15] and have been used for handling interactions in interpreters for
programming languages with several features [18, 9]. We program such feature
interactions by lifting functions of one feature to the context of the other. This
gives an architecture for composing features and interactions.



Whereas inheritance is used to extend a class with local state and functional-
ity, we generalize this process and compose objects with individual services from
a set, of features. Although inheritance can be used for such feature combinations,
all needed combinations, including feature interactions, have to be programmed
explicitly. In contrast, we can (re)use features by simply selecting the desired
ones when creating an object.

We claim that feature-oriented programming is advantageous for the following
reasons:

e [t yields more flexibility, as objects with individual services can be composed
from a set of features. This is clearly desirable, if many different variations
of one software component are needed or if new functionality has to be
incorporated frequently.

e As the core functionality is separated from interaction handling, it provides
more structure and clarifies dependencies between features. Hence it en-
courages to write independent, reusable code, as in many cases subclasses
should be an independent entity, and not a subclass.

Our main technical contributions towards object- or feature-oriented program-
ming are as follows.

e Using concepts for monad composition, we introduce a novel model for
programming features in a modular and composable way which generalizes
inheritance or subclassing.

e We show that some functionality (an undo function) which depends on
several features can be implemented abstractly for any feature combination
using type computations via type classes.

e We generalize some programming techniques used in [18] to generic classes
of stateful and error monads.

An exposition of feature-oriented programming as an extension of an imperative
language, namely Java, appears in [24]. This paper also includes a detailed com-
parison to object-oriented programming. Here, we focus the functional essence
of this approach and on more advanced concepts, such as exception handling.
This can also be viewed as semantical model of the core of the imperative version
in [24].

We demonstrate our concepts by two examples, including some telecommu-
nication features, where feature interactions have recently attracted great at-
tention [27, 8]. For more examples in this area of telecommunications we refer
to [25].

For implementing our concepts with monads we generalize techniques devel-
oped in [18]. In our model, classes correspond to monads, which can be viewed



as particular abstract data types. The interesting point is that (some classes of)
monads compose nicely and that we can build monad transformers, which trans-
form an abstract data type to another. This is used to add features to objects.
For instance, the mainly used monad transformers add (local) state (and extra
functionality), from which we draw the comparison to inheritance. We show that
implicit state via monads is essential for our abstract programming techniques.
Similarly, overloading via type classes is important, as the type of polymorphic
functions in feature implementations can only be determined after an object is
composed from a set of features.

To compare this work with earlier results on monads, note that Moggi [20]
aimed at lifting monads just by their types. This was extended to liftings for
particular types of monads in [18], using their specific properties. Our technique
is to name concrete instances of monad classes (e.g. state monads) and to program
liftings depending on the names, but using generic liftings for the class of monads.
As the names are identified with features, this clearly goes along the ideas of
inheritance. Furthermore, we mostly use just state monads, which compose easily.

In the following, we present our concepts for writing features by an example,
which will be the running example. Although we only use functions to access
local variables of an object, the relation to object-oriented programming and to
other concepts of inheritance should be clear. It is examined in detail in [24].

After a brief introduction to the technical concepts in Section 2, we show
the concepts of stateful features in Section 3 and of error features in Section 4.
The problems of multi-feature interaction are discussed in Section 5, followed by
examples for stack features in Section 6. Another example for feature interactions
in telecommunications is presented in Section 7.

1.1 A First Example

In the following, we show a small example modeling stacks with the following
features:

(Basic) Stack, providing push and pop operations on a stack implemented by
a list.

Counter, which adds a local counter (used for the size of the stack).

Undo, adding an undo function, which restores the state as it was before the
last access to the object.

In an object-oriented language, one would extend a class of stacks by a counter
and then extend this by undo. In general, a concrete class is added onto another
concrete class. We will extend this to independent features which can be added
to any object. For instance, we can run a counter object independently, or with
undo.



The full implementation of the stack example contains six features which can
be used modularly in many combinations.! It includes variations of the counter
and the undo function. For instance, there is a version with a one-step undo and
one with many-step undo. Another feature for handling stack underflow, based
on a class of error features, is shown later in Section 4. We show in Figure 1

Environment
e @ ™\
Undo: A A A A A undo
(- )
Counter: T T size, inc, dec
. /
e N\
Stack: push, pop
> ~)

Figure 1: Composing features (rounded boxes) by lifters (boxes with arrows)

an example for feature composition with liftings, many more combinations are
shown in Section 6. In this example we first add the counter to the basic stack.
For this new object to support the stack feature, we have to lift the functions
push and pop, indicated by arrows in the box denoting the lifting. This gives,
like inheritance, a new object with two features, consisting of the inner two
boxes. Since there are interactions between the two features, we must provide
individual lifters for push and pop. Otherwise, one can use the default ones
for composing orthogonal, independent features. With the undo component, we
proceed similarly. Note that the functions push and pop are lifted again to undo,
now with the lifter from stack to undo.

Clearly, these features are not independent. For instance, when adding the
counter, the functions push and pop must, in addition, increment or decrement
the counter. With traditional inheritance, this is achieved by overwriting of
methods and by possibly calling the method of the superclass. In our setting,
such dependencies are described by a lifting from one feature to a new context.
Thus, liftings depend on two features.

To compose several features, liftings have to be more general: For any object
having the set of features A, we can add feature b and lift the functions of each

!Code available via the autor’s home page.



feature in A individually to the new context. Then we have an object which
provides b as well. Using the structure of liftings, it is easy to model classical
inheritance. Consider adding a feature b to an object with features A. To obtain
a concrete subclass, one just has to merge the code of the feature a with all
the lifters from a € A to b. Repeating this for all features, we can create a
concrete class hierarchy for a particular object composed from some features.
This amounts to the main difference to inheritance.

In the example, there are two lifters needed (two boxes) for adding undo to
the object with counter and basic stack features. This is the main difference to
inheritance, where a concrete class undo would extend a class with counter and
stack and would redefine some of their functions. Whereas all this happens in one
subclass, it is separated (and much more reusable) in three entities: one feature
and two lifters.

Note further that lifting push and pop to undo does not depend on the counter;
only the lifted versions of push and pop are lifted again by a lifter which depends
on undo and basic stack.

We argue that liftings can nicely resolve many typical interactions between
features, such as handling an extended local state. For instance, there is another
interesting interaction between undo and counter. If a size request is followed by
undo, shall the state before size or the one before the last push/pop request be
restored? Such choices motivate a modular design, where not only the compo-
nents are decoupled, but also their interaction. For instance, if the counter is not
used, we do not want to bother with this complication.

1.2 Programming Features

To give a first idea of how to program features, we show (some of) the code for the
stack and the counter features. Our concepts are provided by Gofer functions [13]
and type constructions. We use the constructor classes of Gofer [14], which extend
Haskell’s type classes [21] and have been partly adopted in Haskell 1.3 [22].

We use monadic state transformers modeling implicit state as in imperative
languages, which is essential for the desired flexibility and modularity. Composing
features is done by the type system of Gofer with type constructions and type
classes. A type class declares certain functions for its member types. Observe
that type classes do not correspond to classes in object-oriented programming,
but determine if a type has some feature. Thus a type can be in several type
classes, vaguely reminiscent of multiple inheritance. Compared to object-oriented
programming, type classes resemble the idea of interfaces, as e.g. in Java [10].

A type isin a type class (e.g. StackMonad or CountMonad) if the corresponding
functions are provided in an instance declaration, as shown below. We use the
type constructors StackT,CountT to add features to a type. For instance, if m
is the type of an object (a monad), then StackT s m is a new type which also
supports the stack feature with a local state of type s.



In the following code, the first type declaration for StackT declares that
StackT is a state transformer, adding implicit state to the object of type m.?
The second statement declares that StackT [Int] m is in the class StackMonad
of stacks of integers.® (Note that [Int] is the type of lists over Int.) Furthermore,
we have to give implementations for the functions which the feature provides, here
push and pop. Note that we write types, type constructors and type declarations
in italics.

-- add implicit state of type s
-- to m (simplified here)
type StackT s m = StateTrans s m

instance StackMonad (StackT [Int] m)

where
push a = do{ s <- get;
put (a:s) }
pop = do{ s <- get;

put (tail s);

result (head s)}
is_empty = do{ s <- get;

result (s==[]) }

In the above implementation, the do-notation for sequential computations in
monads is used. Each statement in the do construct may compute a value and
assign it to a local variable, e.g. s <- get assigns the result of get to s. In such
a monad computation the added, implicit state can be modified via the functions
put and get. Note that these access functions always refer to the implicit state
of the “current” feature.

Next we show the counter feature, whose functions are also implemented via
state transformers.

type CountT Int m = Statelrans Int m

instance CountMonad (CountT Int m)

where
size = get
inc = do{ i <- get;
put (i+1) }
dec = do{ i <- get;
put (i-1) }

2State transformers will be explained in detail later. Also, the following type declaration is
shortened. The full code and the class declarations are shown later.

3Polymorphic stacks are possible via a binary class StackMonad, using the extra argument
for the type of the stack. However, this leads to ambiguous types later.
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It remains to lift the functionality of stack to the context of a counter. The
following instance declaration states that (CountT Int m) has the stack feature,
under the preconditions (stated before the =>) that m has the stack feature, i.e.
StackMonad m, and that (CountT Int m) is a CountMonad.

instance (StackMonad m,
CountMonad (CountT Int m)) =>
StackMonad (CountT Int m)

where
push a = do{ inc ;
lift (push a)}
pop = do{ dec ;
1ift pop}

The code for push first calls the increment function of the counter and then
via 1ift (push a) the push function of the inner object (“superclass”) of type
m. Roughly speaking, 1ift corresponds to the function super as e.g. in Smalltalk
and is, like get and put, defined later. Alternatively, if there is no interaction,
one would just write

pop = lift pop

which could also be made a default (as implicit in object-oriented programming).
With the above code, an object of type

CountT Int (StackT [Int] m)

provides both features and behaves as expected. In general, liftings should pre-
serve the functionality of the lifted features, i.e. an individual feature always
behaves identically (if no others are used in between). For the standard lifting,
this can be shown similar to [18].

The implementation of the undo feature is more involved and is presented in
Section 5. The idea of the simple undo implementation is to save the local state
of the object each time a function of the other features is applied (e.g. push, pop).
The undo feature raises several new issues:

e The lifting of functions of the other used features is schematic: Always save
the state first and then call the function to be lifted. In contrast to object-
oriented programming, this can be done once and for all by a particular
function

lift_undo f =
do{ local_s <- lift gets ;
put (Some local_s) ;
(1ift £) }



which lifts any function f to the undo feature. Note that 1ift gets refers
to the state of the inner object.

e undo depends essentially on all “inner” features, since it has to know the
internal state of the composed object. Since we work in a typed environ-
ment, the type of the state to be saved has to be known. This multi-feature
interaction is solved by an extra feature, which allows to read and write the
local state.

2 Monads, Type Classes and Features

In the following, we explain the technical background needed for our feature
model. The ideas are based on investigations on features in programming lan-
guages [18]. The concept of monads has been introduced to programming for
modeling state in functional languages [16] and for writing code which is easy to
modify [26]. Both aspects will be essential in our context.

2.1 Type Classes

A type class in Haskell is essentially a set of types (which all happen to provide
a certain set of functions). Each class declaration introduces a new class and a
set of new function names, which are overloaded for each member of a class. For
instance

class Eq a where
eq :: a — a — Bool

introduces the class Eq of all those types a which provide a function eq :: a —
a — Bool. A class declaration is like a module interface: it separates declarations
from implementations. Instance declarations provide the members of classes and
concrete implementations for the member functions, e.g.

instance Eq Int where
eq = eq_int

In general we can instantiate classes not just by base types but also by type
terms. For example, we may wish to express that a type [a] admits equality
provided a does. This is achieved by the following instance declaration, where
the Haskell notation => allows to add a list of type assumptions (here Eq a) for
the new instance Eq [a.

instance Eq a => Eq [a] where
eq [1 [ = True
eq (a:as) (b:bs) =
and [eq a b, eq as bs]



Note that the last two eq expressions refer to two different instances of Eq, one
for a and one for [a].

2.2 Constructor Type Classes

The extension to constructor classes of Gofer [14, 22] allows n-ary type classes.
Furthermore, these arguments may not just be types, but can be type construc-
tors. Let x be the kind of types [3]. Then, for instance, the type constructor | |
(in mixfix notation) is of “kind” % — x, as it maps types to types. Constructor
classes are often used when standard type classes are too coarse to describe the
types of the member functions. The standard example is the binary container
class, whose instances typically are lists and trees:

class Container c¢ a where
member :: a — (¢ a) — Bool

Here we can express that the type ¢ a depends on a. If ¢ a is replaced by a type
s, in a class Container’ s, then the type of member :: a — s — Bool would
be too general: we cannot write a sensible function which for any type a checks
membership in a type s. Typical instance declarations are:

instance Container List a where
member e [] = False
member e a:s = or [eq e a,
member e s]

= Leaf a
| Node (T'ree a )
(Tree a )

data Tree a

instance Container T'ree a where
member e (Leaf a) =-eq e a
member e (Node a b)
or [member e a, member e b]

2.3 Monads

Programming with monads provides a compromise between imperative languages,
where statements affect an implicit, global state, and stateless functional lan-
guages, where all information flow is — sometimes tediously — explicit. Monads
also separate building computation (e.g. composing state transformers) and run-
ning a computation.

A monad is a type constructor m with some operations and laws. If a is a
type, then m a is the type of a larger object which “wraps” a, often a function
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type (e.g. a state transformer) as shown later. In monadic style, a function from
a to b is assigned the type a — m b. There are standard functions to work with
monads, defined in the type class for monads, which builds upon the functor
class:

class Functor m where
map :: (& — b) — (ma — mb)

class Functor m => Monad m where
result :: a — m a
bind :: ma — (@ - mb — mb

Function result inserts a value into the “empty” monad and bind applies a
monadic function to a value of type m a. Note that we use the do-notation for
bind, defined as

do { x <-m ; t} =%/ m bind Ax.t

This notation extends canonically to sequences of bind applications. The monad
laws for result illustrate the “empty” monad:

(result a) bind Ab. t = [a/b]l t
m bind Ab. result b = m

where [a/b] is a substitution mapping b to a. (See [26] for more details on monad
laws.)

2.4 Features: Monads with Operations

Features are defined as monads with additional operations. These can be viewed
as predicates over types which characterize the features. For instance, for the
basic stack and counter features we define:

-—- type of stack elements
type St = Int

class Monad m =>
StackMonad m where

push 0 St — m ()
pop ::om St
is_empty :: m Bool
type Ct = Int -- type of counter

class Monad m =>

11



CountMonad m where

size ::oom Ct
inc ooom ()
dec room ()

This declares the two classes used in the introduction, StackMonad and CountMonad,
with their corresponding functions. It assumes that m is a monad. (Note that ()
is the empty type.)

3 A Class of Stateful Monads

We show in the following the underlying machinery for features which add state
to some object. The basis of state monads is a type

type StateTrans s m a = s— m(s, a)

which extends any monad m to a type of a state transformer for a state of type
s. This transformer can be applied repeatedly, i.e. StateTrans s m is again a
monad, as shown below. For the following general model, we generalize over this
type and just assume the functions closeS and openS. These access the internal
structure of state monads and are only used internally.

The ternary class StateMonadT ¢ s m, where s is the type of the added state,
m a monad and ¢ an appropriate type constructor, declares that (¢ s m) is a
stateful monad with the following functions (for some of which definitions are
included):

class Monad m =>
StateMonadT ¢ s m where
closeS ::(s — m(s, a)) — ¢ s ma

openS ::¢c s ma — s — m(s, a)
get i csms

get = closeS(As.result(s,s))
put s = csm )

put a = closeS(As.result(a,()))
lift oma — ¢csma

lift m = closeS(As. do{

x <- m; result(s ,x)})

For the functions get, put and 1lift, also definitions are provided in the class
declarations. The functions closeS and openS are used to show that any state
monad is a monad:

12



instance StateMonadT ¢ s m =>
Functor (¢ s m) where
map f xs = closeS (
As. (openS xs) s bind
A(s?,x). result(s’, f x))

instance StateMonadT ¢ s m =>
Monad (¢ s m) where
result x = closeS(
As.result(s,x))
m bind k = closeS(
AsO. (openS m) sO bind
A(s1l, a). openS (k a) sil)

This generic class generalizes the various stateful monads in [18], where the above
definition of monads is repeated for stateful monads.

3.1 Defining a Stateful Feature

With the above concepts, we can show in detail the definition of basic stack
features. Only the following data type declaration is needed,* as well as declaring
it to be a stateful monad.

data StacklT s m a =
ST M (StateTrans s m a)

instance StateMonadT StackT s m where
closeS x = STM x
openS (STM x) X

Similar declarations are needed for the counter feature. The instance declarations
for StackT and CountT can be found in Section 1.2.

4 A Class of Error Monads

As for stateful monads, we can similarly define a generic monad which adds extra
values to the computation. For instance, with the above definition of stacks, stack
underflow results in a program error. Using error monads, we can cope nicely
with such cases. In applications it is then possible to use stacks with or without
error handling as needed.

Whereas stateful monads build upon a particular function type (StateTrans),
we use a sum type here:

4Note that we use an extra constructor STM to define StackT via a data type definition.
This is needed for type checking.
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data Err e a = Data a | Error e

type ErrT e m a = m(Err e a)

Thus ErrT adds error elements of type e to a monad m. Note that this composes

with state monads. For instance, we obtain the type

(ErrT e (StackT s Id)) a =
STM( s — Id(s, Err e a))

The class of error monads supports open and close functions as for state monads,
plus generic functions to inject and check errors (put_err, read_err), and the

canonic lifting function lifterr.’

class Monad m =>
ErrMonadT c¢ s m where

openE c:ecsma — m(Err s a)
closeE  :: m(Err s a) — ¢sma
put_err :: s — c s m a
read_err :: ¢ s ma — c¢ s m Bool
lifterr :: ma — c¢csma

lifterr ¢ = closeE (map Data c)

put_err s =
closeE(result(Error s))
read_err m =
closeE(map isError (openE m))
where
isError (Error s)
isError (Data x)

Data True
Data False

Showing that ErrMonadT ¢ s m is a monad is more complicated.

It can for

instance be shown if we assume that m is any StateMonad. For this we use the
concepts of [15], which can be generalized to classes of monad transformers.

For instance, an error handler for stack underflow is written by lifting stack
over Err, using Int for error values. Since we only use the base functions of
ErrMonadT, we don’t need to introduce an extra class and a type constructor for

this. (An example with an explicit class is shown in Section 7.2.)

instance (StackMonad m ,

5Due to the type system, the function cannot be overloaded to work under the same name
as in stateful monads. Adding an extra class for monad transformer is no solution, as typing

does not permit to declare instances for both classes of monads.

14



ErrMonadT ErrT Er m)=>
StackMonad (ErrT Er m)
where

pop = do{

b <- is_empty ;

if b then (put_err 0)

else (lifterr pop)}
lifterr (push a)
lifterr is_empty

push a
is_empty

Lifting other, independent features is canonical:

instance (CountMonad m,
ErrMonadT Err1l s m) =>
CountMonad (ErrT s m) where
size = lifterr size
inc lifterr inc
dec lifterr dec

This lifting can even be generalized to any state monad, if CountMonad is inde-
pendent of all other stateful features.

In the current model for features, we have just provided generic monad compo-
sition for a set of stateful features with one error feature. Although it is possible
to use several error features, it is easier to use one error monad transformer and
to build other features on top of it. For instance, we only use the integer 0 as
error message here and leave others open for other error cases. (In case several
features use the same error message, we can treat this as an interaction.)

5 The Undo Feature: Multi-Feature Interaction

We continue the stack example by introducing the undo feature, which has in-
teresting interactions with several other features. The problem is that the undo
feature must access the local states of all (stateful) features the object already
has. Since we work in a typed setting, we also need the type of all local states.
Hence undo depends on several features. As we work with standardized monads,
it is possible to add an auxiliary feature,® which determines the state of an object
and provides access to it. Thus undo can be added to any feature combination.
The additional class SMonad for stateful monads is declared via

class Monad m => SMonad s m where
gets :: m s
puts :: s — m s

6Not shown in Figure 1.
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This binary class declares that monad m has state s and provides access functions.
Instances can be defined schematically for both classes of monads, e.g.:

instance (SMonad sO m,
StateMonadT ¢ s m) =>
SMonad (s,s0) (¢ s m)
where
gets = do{s <- lift gets ;
g8’ <- get ;
result (s’,s) }
puts (a,b) = do{s <- 1lift (puts b);
put a }

This expresses that ¢ s m has state (s, s0), if m has state s0. Now we can define
the undo feature via SMonad as follows. Since there may be no saved state for
undo, we use the data type Option for the copy of the local state in the following
code:

data Option a = Some a | None

data UndoT' s m a =
UT M (StateTrans s m a)

instance StateMonadT Undol s m where
closeS x = UTM x
openS (UTM x) = x

class Monad m => UndoMonad m where
undo :: m ()

instance SMonad s m =>
UndoMonad (UndoT (Option s) m)
where
undo = dof
u <- get ;
case u of
None -> result ()
Some ul ->
lift (puts ul)}

The other interesting point about undo is lifting of functions of other features.
The advantage is that lifting proceeds via the following generic scheme, which
first extracts the local state of the object, updates the saved state and then calls
the lifted function:

16



liftundo f =
do{local_s <- lift gets ;
put (Some local_s) ;
(lift £) }

Lifting for the basic stack features proceeds canonically:

instance (SMonad sO m,
StackMonad m ) =>
StackMonad (UndoT (Option s0) m)

where
push a = liftundo (push a)
pop = liftundo pop

There is an interesting interaction when the counter is used. For lifting size,
which does not affect the state, we can either overwrite the saved state or leave
it unchanged (as shown in the comment in the code below). In the former case,
undo after size will have no effect. With our model of feature interaction, we
just have to use the appropriate lifting function for interaction resolution.

instance (SMonad s m,

CountMonad m ) =>
CountMonad (UndoT (Option s) m)
where

size liftundo size
-— alternative: = 1lift size
i liftundo inc
liftundo dec

inc
dec

Currently, just one lifting between two features is possible due to the type system.
A further step would be to allow more liftings and to parameterize over liftings.

6 Using the Stack Features

A simple example for an object (monad) with two features is the following, which
uses the identity monad Id with no features as base monad. By the following type
declarations features are selected.” Running the above state transformers requires
extra machinery for injecting an initial state and for extracting the computed
value.

-- stack with counter

"Gofer can infer the types without these declarations, but the inferred type is too general,
as Gofer allows several (base) implementations for a type class.
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testl :: (CountT Ct (StackT [St] Id)) St
testl =  do{

push 1 ;

push 2 ;

size } -- computes 2

-— stack with undo

test2 ::  (UndoT (Option ([St],()))
(StackT [St] Id)) [St]

test2 = dof

push 1 ;

push 2 ;

push 3 ;

undo ;

p2 <- pop ;

undo ;

pl <- pop ;

result [pl,p2]} -- computes [2, 2]

-- stack with counter + undo
test3 ::  (UndoT (Option (Ct, ([St],())))
(CountT Ct (StackT [St] Id))) [St]

test3 = dof

push 1 ;

push 2 ;

push 3 ;

undo ;

p2 <- pop ;

s <- size ;

pl <= pop ;

result [p1,p2,s]}

-- computes [1, 2, 1]

—-— counter with undo
test4 :: (UndoT (Option (Ct, ()))
(CountT Ct Id)) St
testd = dof
inc;
inc;
undo;
size } -- computes 1
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7 Feature Interaction in Telecommunications

In telecommunications, feature interaction problems have led to a new research
branch [27, 8] focusing on such interaction problems which hinder the rapid cre-
ation of new services. The problem in feature interaction stems from the abun-
dance of features telephones (will) have. For instance, consider the following
conflict occurring in telephone connections: B forwards calls to his phone to C. C
screens calls from A (ICS, incoming call screening). Should a call from A to B be
connected to C? In this example, there is a clear interaction between forwarding
(FD) and ICS, which can be resolved in several ways. For many other examples
we refer to [7].

We demonstrate our techniques, including an example for virtual functions,
with the following set of features for this domain of connecting calls:

e ICS (incoming call screening)
e Forwarding of calls
e Error handling for busy phones (also used for disallowed calls)

The first two of these features add local state, i.e. the origin of the call, which is
not needed for the other features.

In this application, there are similar feature interactions as in the last section.
The interactions mostly stem from extending the environment or from resource
conflicts. The first can be handled by liftings, the second by the order on features.

Our full implementation contains another feature, called OCS (outgoing call
screening), which is similar to ICS. Already with four features and several reso-
lutions to the interactions, there are many different feature combinations.

7.1 Forwarding

The goal in the following is to provide functionality for connecting calls.

-- type for phone numbers
type Dn = Int

class PMonad m =>
FWDMonad m where
forward :: Dn — m Dn

Forwarding only uses two (constant) lookup functions fd_check and fd with

forwarding information and adds no local state. For simplicity, we use a state
transformer which adds no state.
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data Fwdl s m a =
FTM (StateTrans () m a)

instance StateMonadT FwdT () m where
closeS x = FTM x
openS (FTM x) = x

instance FWDMonad (FwdI () m) where
forward nr =
if (fd_check nr)
then result (fd nr)
else result nr

7.2 The Busy Monad

The Busy monad provides a function for raising a busy signal and is based on
the error monad.

class Monad m => PMonad m where
raise_busy :: m a

type Phonel = ErrT ()

instance ErrMonadT ErrT () m =>
PMonad (PhoneT m) where
raise_busy = put_err ()

7.3 Incoming Call Screening

For ICS we use a state monad with the origin of the call as local state:

data IcsT' m a =
ITM (StateTrans Dn m a)

instance StateMonadT IcsT Dn m where
closeS x = ITM x
openS (ITM x) = x

class IcsMonad m where
check_ics :: Dn — m Dn

The corresponding implementation uses a function check_ics1, which checks
disallowed callers:
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instance IcsMonad (I¢sT Dn m) where
check_ics dest = dof
orig <- get;
if (check_icsl orig dest)
then result dest
else raise_busy }

7.4 Resolving the ICS/Forward-Interaction

To resolve the interaction between forwarding and ICS, we lift the forward func-
tion to ICS. If we choose the standard lifting by

instance (FWDMonad m,
StateMonadT IcsT a m) =>
FWwDMonad (Ie¢sT a m) where
forward a = lift (forward a)

then the local state added by ICS is not affected by forwarding. Hence, the ICS
check uses the origin of the call. If the intermediate hop is to be used, we would
write

forward a = do{put a;
lift (forward a)}

instead. Note that get and put refer to the ICS feature here. Again, lifting
allows a modular resolution of the interaction between two features.

8 Conclusions and Related Work

We have presented a novel model for feature-based programming where features
can be defined individually and are separated from interactions with other fea-
tures. This is the main difference to other concepts of abstract subclasses or
inheritance. Thus it is much more flexible and has a larger potential for reuse.

We have shown that the architecture of monad compositions is suitable for
typical feature and interaction handling. It should be noted that we use monads
mostly to provide an abstract interface to implicit state. Apart from this, our
composition techniques are essentially just composition of abstract data types,
for which we use type classes. This, however, does not hold anymore if other
“programming features”, e.g. error handling, are involved.

Note that we only construct one object from some set of features. Using
several objects can be done by some model of object identifiers (as for instance
in [17]). This, however, is orthogonal to the feature model. Modeling a global
object store with monads is possible, but the type system of Gofer cannot express
all the needed construction nicely.® For this extension, dependent types would

8 A Gofer program is available from the author.
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be useful, as an object should have information about the type of its instance
variables, which are maintained in a global store. Hence, we currently work on
formalizing this using LEGO [19].7

Another extension to our presentation are virtual methods with late binding.
Using virtual methods in a feature can just be seen as an assumption on the
full object, which is composed of several features. When creating an object, this
assumption can be discharged. As this requires to have a notion of objects, it is
practical to model this with a global object store, as discussed above.

Type classes provide for a nice implementation, but do not fully match our
programming concepts. First, we generally assume an interface (or class) defini-
tion for a feature with just one concrete base implementation plus several liftings,
whereas type classes would allow for more implementations.'® Furthermore, some
features cannot be made polymorphic, as the Gofer type class system requires all
type variables in the parameters of a class to appear in the type declarations of
member functions.

Another approach to model subclassing and inheritance with type classes was
presented in [12]. In this extension of Haskell, classes can be defined by extending
(or reusing) other classes, but the work does not go beyond the concepts of object-
oriented languages.

Compared to the modular interpreter in [18], we develop a concept of features
on the language level, instead of describing semantics of a programming language.
Furthermore, we generalize the programming techniques used in [18] and also
address the problem of dependencies between several features. For the model
of features, we also need the idea of assuming certain other features, as shown
above. In earlier works [16, 26], monads are used to write easy to modify code with
stateful features. We go the step beyond and write easy to configure components.
In other words, we make the possible modifications explicit.

Type theoretic approaches, e.g. [2, 1, 23], aim at modeling object-oriented
phenomena, but not at features. The essential difference is that features are
designed such that we can add a feature to any object which supports the required
other features.

Acknowledgments. The author is grateful to W. Naraschewski and to M. Broy
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