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Abstract

This technical meme@rovides a syntactic areemanticbasis forstate transition
diagrams (STDs) as they are usedifi@er description oftatetransitionmachines
(STMs) with input andoutput. STMs serve forthe specification ofsystem
components. We workvith STDs with transition rules labelled byinput and
output patterns and prend postconditions. Wextendour notation tosupport
specifications that deal with the timing of input and outputvels. In particular,
we work out the following concepts

» the semantic model of STMs with input and output,

» the semantic model of STDs in terms of predicate logic,
» the description of STMs by STDs,

» the definition of stream processing functions by STMs,
* asyntax for STDs and their labels.

In contrast to approachéke statechartg¢see [HareB7]) werather start from a
semantic ntoon of a STMand then devep a tunedgraphical description
technique for it. We show also some methodological aspects such as the use of a
partitioning ofnodes in STDss arefinementstep that leads to STDs with
independentransactiondor input andoutput. Webriefly discusshierarchical

STDs, time-outs, interrupts, and pre-emption.

7 This work was partiallysponsored bythe Sonderforschungsberei@%2 "Werkzeuge undMethodenfiir die
Nutzung paralleler Rechnerarchitektureahd the industrial researchproject SysLab sponsored bySiemens
Nixdorf and by the DFG under the Leibniz program.
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1. Introduction

The description ofthe behaviour ofreactivesystems bystatetransitionsystems asvell as by
state transition diagramsppears as amea in manyapproaches incomputing science.
However, there exist aumber of significant ifferences betweerthe various approaches,
ranging from #empts to givea visual formalisnfor the description ofsystems such astate
charts (see [Hared7]) or the systemdescription languag8DL (see [SDL88]) to approaches
with a muchmorelogical, formal descriptioras inthe work of Lamport onTLA (see [Abadi,
Lamport 88, 90]) othe I/0O-automata of Lynchluttle, and Stark (sefeynch, Tuttle 87, 89]
[Lynch, Stark 89], and [Lynch, Vaandrager 95]).

Typically, visual formalismsexhibit anumber ofunsolved problems witliespect to the
cleanness angreciseness dheir semantics. Seften, although visual formalismare rather
suggestive in a firssight, by acloser look itturns ou thata number ofundamentakemantic
guestionsare notsolved atall and emain unclear. Onthe otherhand, the more logical
formalisms like TLA of Leslie Lamport orthe I/O-automata ofNancy Lynchuse rather
sophisticatedogical concepts includingemporal logic or trickyfairnessassumptions.This
makes it often unnecessary difficufor engineers, who ingeneral predr visualised
presentations of behaviour descriptions, to work with these approaches.

X: Data| ® Q y: Data| ®
P

q: Data*

(a) The Component Q as a Data Flow Node with State Attribute

x:d/-{q = q«d} {g=«bq O0qgzc} x:®/y:d
X:®/y:®{q =} xd/-{q = qdb)

{g=h} x:®/y:d{q' = o}

(b) State Transition Diagram

Fig. 0 Description of an Interactive Queue by a Data Flow Node and a STD (Data is the sort of data elements,
® is the request signal)

In this paper ware interested in good compromise betweesemanticrigor and suggestive
presentation. With thigoal, we devep a graphical formalisnfor the description of the
behaviour of system components whichased on aigorous matematicalsemantics. Sttly
speakingthe graphicaformalismsareonly syntactt sugarfor writing logical formulas. This
allows us to work ausystemdescriptionsusingthe graphical formalism an generatérom




Focus FX -3- Mai 30, 1997

these documentsgical formulas that allow udogical manpulationsand to prove properties
about the specified components. Furthermortheftescriptionfollows particular simpleules
we can generate even executable prototypes as a means to experiment with the behaviours.

We work with gtate trangtion diagrams (STDs) as agraphical description techique for
specifyinggate trangtion machines (STMs). As asemanticand metbdological basis we use
Focus (see [ocus 92]). It provides anextremely powerful, matlematical model for
distributed, concurrent, interactive, real-time systdtiarthermore provides comprehensive
class of conceptfor the logical specificationiefinement, andrerification of interactive and
reactivesystems. Thdlack box behaviour(the "abstract semantics") of STMs is described in
terms of the Bcussystem model.

The mathematical and logical style of the syntaxat®sis not always very well-suited for
a practical use, however, since engineers in praateaot familialwith and ne fond of large
logical formulas thagrise ifan untunedogical formalism isused.Moreover,often properties
of systemshave to be written by tolengthy, unintelligible, intricate formulas. Therefore, we
need a bettetuned, more suggestivedescriptionformalism. In the following, we use the
semantic and syntactlzasis forthe description of BCUS componerg andcomposedsystems
as the basis of STDs.

We start with a simple motivating example of a STD. We do not explairdétail but only
use it to demonstrate otgchniques. We define@ simpleinteractivequeue astsown in Fig. 0.
Fig. 0 shows in part (a) the queueaadata flow node witlts channehames andorts. Inpart
(b) it describeghe behaviour by eéSTD. Itsinternal data state igiven by thevalues of the
attribute q which are sequences of datmdisated in (a). Te nodes othe STDstand for sets
of states. Th transitionsshow pre- and postconditions agell as patterns of incoming and
outgoing messages. A precise description of their meaning is given later.

Our paper is structureas follows: section 2 definghe concept ofSTMs with input and
output. Section 3 defineshe mathentical conceptsfor STDs. Section 4introducesstream
processing functions to represent the behavioaowofponents. Section defineshow torelate
stream processing functiots STDs.Section 6 definethe syntax ofSTDs. Section 7relates
the syntax to the mathematical notion of a STD. Se&tigives a number afxamples. Section
9 introduces STDs that allow us to specify als timing ofmessagesSection 10 deals with
multithreaded STDs and sectionwith hierarchical STDsThis way wedemonstraténow the
basicsemantic concept ddTMs can berepresented bysTDs andhow this notation can be
extended tdime, hierarchy, angarallelism.After the conclusionwe treat the alternating bit
protocol as an extended example in the appendix.

2. System Components as State Transition Machines with Input and Output

The mathematical systemodel of FOCcusis used talescribeinteractiveand reactivesystem
components. Aa@amponent is connected to tbatsideworld by communicationchannels. Its
description is based on the following sets that determine its syntactic interface:

I set of input channels (each of which has assigned an individual sort),

O  set of output channels (each of which has assigned an individual sort),

M  set of messages (in the theoretical parts of the paper we work for simplicity with the
same unifam messagéor eachchannel, inthe examples weavork with specific
message sets for each channel by providing an individual sort for each channel).
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These elements define the syntactic interface of a component as shown in Fig. 1. For simplicity,
we do notwork with sortedchannels inthe theoreticapart of this paper buuse forevery
channel auniversalsort M. This keepsthe formulas more readable. Inexamples andppli-

cations wework with sortedchannelshowever. The tharetic partscan easily be extended to

the multisorted case, however,this way the famulas get more lengthy and less
comprehensible.

x1: M . M;
1- V1 » f y1- Wi .
Xn: Mp Ym: Mm

Fig. 1 A Data Flow Node Describing the Syntactic Interface of a Component

A communication pattern for a set ofchannels C is represented by a mapping p: av’,

which assigns a finite sequence of messages to every channel in the set C. \¢& Woiteghe

set of valuation functions G M”. By M* we denote the set of finite sequences over the set M.
A mathematicabystemmodelbased on statassesstatetransitions tadescribethe allowed

state changes. It includes in addittorthesets of sorted/O-channels in the syattic interface

of the component listed above a set

State

which denotes the set of states (the state space) of the component. Wihddéfiaaviour of a
STM by a state transition function

A: Statex | * _ (Statex O* — Bool)
and a nonempty set
State [ State

of initial states. ASTM with transition functiomA works operationally asollows. Given the
input pattern i the predicaféo, i) characterises all paire’( 0) of state®” that may be reached
from statec whenthe inputpattern i isavailableissuing aitput asdescribedby the output
pattern o.

A STM is nondeterministic, irgeneral. Ineachtransitionstep for astatec and it accepts a
communication pattern i of its input streams and produces a successor statemmunication
pattern, o for its output streams. These paifs ¢) arechosennondeterministicallyfrom a set
of pairs ofstates and dput patterns.For this kind of STMs weaepresenthe set ofpossible
updated states and outputs dfansition by a predicate. @burse, sets gbairs ofstates and
output patterns can be used here instead of predicates as well.

3. State Transition Diagrams

In this section we introducthe mathematal concept of alogical interpretation ofdate
trangtion diagram (STD). A first example of a STD is given in Fig. 0. Without dealing with the
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particular form of the syntax of a STD we introduce a number of predicates that are defined by a
STD. We use a STD to describe a state transition machine (STM).

A STD is syntactically a finite directed graph tieansists of aet K ofnodes kand afinite
number of arcs (calletlansitions) between the nodeshe nodesare labelled byidentifiers and
by formulas (called thenode predicates) and thearcs are labelled bycertain terms called
trangition rules.

For each node K K of the STD &finite number ofstatetransitionrules withthe node k as
their source is defined that way. Each transition has a node as its source and a node as its target.
A nonempty sebf the nodes ofthe STD is markedo be initial. Weuse anarc without a
transition rule and without a source to indicate the initial nodes. Mathematically, we work with a
predicate

initial; K — Bool

that yields true for those nodes tha¢ initial nales. At leasbne nodehas to beanarked to be
initial. In our introductory example in Fig. 0 the node called Empty is marked as initial.

In addition to the STD we describadata statespace by defiing a set of éributes together
with their sorts. They can be seen as the program variables. In our introductory exafigle in
0 we useonly onedata state attribute denoted by g that is an identdiea sequence oflata
elements as indicated in the data flow node in part (a).

The state of the STMescribed bythe STD isdecomposed into data state and acontrol
state. The control state space is determined by the seidds K. The data statpage is the set
of valuationsfor the stateattributes.Let Data Statebe the set of data states which are
represented by the set of valuatiémsthe attributesWe definethe setof statescalled State as
follows:

State = Kx Data_ State

We interpret a STD by a STM as follows. With each nodekkwe associate a predicate on the
data states (this is inspired by [Paech, Rumpe 94])

S« Data_State» Bool

that characterises tiset of datestates representdry thenode k. Thanitial stateset Statg of
the STM is defined by all the initial nodes of the STD and is specified by the following equation

State) = {(k, o) O State: initial(k){ Sc(0)}

Each node kI K has i [J N outgoing arcs that represérgnsition rules thaall have the node
k as their source. &ansition rulej with 1< j < ng for the source node k consists ofamn to a
target node t(k, j) andtaansition pattern. The transition starts in the node k or more precisely in
a state othe sethat isdescribed bythe nodepredicate &. It leads to a nodgk, j) or, more
precisely, to a state in the set described by the predigrtg that characterises the set of states
of the target node.

The transition pattern describes the

» precondition expressed in terms of the state attributes under which a transition is enabled,
» the input messages on the input channels needed for a transition,

 the output produced on the output channels in a transition,

 the postcondition, characterizing the data state after execution of the transition.

The preconditiorund the input mesages fornthe input pattern. In themost puristic view the
input pattern is the enabling condition such thattransitioncan be executefl and only if the
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enabling condition isvalid. A transition patternconsists of annput patternand an output
pattern:

Input Pattern for node K K and transition rule j, ¥ j < nk:
Ql: Data_States | ¥ — Bool

Output Pattern:
Rl : Data_States | * . (Data_State O* - Bool)

The semantics of the STD with nodeS K with the transition rules j = 1, ...xs given by a
state transition function:

A: {(k, o) O State: {(0)} x 1 * - (Statex O* — Bool)
that is specified by the equation
A((k, 0), 1).(k', d"), 0) =
S(o) 00j, 1<j< ne tk, )) = k' 0Q (o, i) DR (g, i).(o", 0) O Sc(a”)

From a methodological point of view,gt certainly advisabléo insist onthe puristic viewthat

the enabledness of @ansition is solelydetermined bythe inputpattern.Then whenever an
input pattern is valid a output pattern angtate have to exist thiaffill the output patterns. In
mathematical terms in the puristic approach we require

S(0) 0Q (0, i) O, 0: R.(a, i).(0", 0) 0 Sk, (0"

This condition guaranteethat every statand inputfor which the input pattern and the
precondition applies can be processed. Then transitiaysbe selected bipoking only at the
input pattern and the precondition. A STD with this property is caifad pattern enabled.

In addition, being puristic we might require the condition

Sk(0) 0Q, (0, i) OR. (0, I).(0", 0) 0 Sk, j)(0)

if we want to be surdhat every successorstate of atransition rulealways fulfils the
requirements ofhe targenode. Ifthis condition isfulfilled, thenall the stateso’ that can be
reached according to the proposition

Rl (o, i).(0", 0)

fulfil the node predicateg, j(0') associated witlthe targehodeanyhow.Then the transition
diagram is calledutput pattern complete.

We do not followthe puristic view inthe examples but are rathidseral in thefollowing,
however. We do not raih thepuristic requirements and do rforbid thatthe node predicate
restricts the set of reachable stategddition tothe transitionpredicate I{g This can make the
transition formuhs much shorter inertaincases. Note that waso do not require that every
state in the target;& j) can actually beeached by dransition. Neverthelesgor a detailed
analysis of aSTD it may be helpful tdring it into aform wherethe conditions above are
fulfilled.
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4. Stream Processing Functions as Models of Component Behaviours

In this section we introdudie concept of atream and that of a stregocessing function.

Let M be a set of messages. By the setviv denote theset ofinfinite sequences ovehe set

of messages M. The setNan be understood to be represented by the total mappings from the
natural numberB! into the message set More precisely, wevrite S° for the fundion space

N* - S andN* for N \ {0}. Formally, we define the seff timed streams (sesso [Broy83])

by

For everyset of channels C, every mapping x:-CMU provides acomplete communication
history. Note that the set (G M*)® and the set C. (M*)*® are isomorphic. Moreovethe set
MU is isomorphic to the set streams ovethe set MO {V} with an infinite number oftime
ticks (here/ denotes a time tick; we assumél M).

We denote the set

C - MU
of channel valuations by streams by

C
For the set

C - (MY
we write

C**
We denote for every natural numbét N and every streamX MU by
XU

the sequence ofhefirst i sequences ithe stream Xx. It represents thequences of messages
communicated in the first i time intervals. By

XOM* 0O Me

we denote the finite or infinite stream that is the result of concatenating all the finite sequences in
the stream x7™Xs a finite sequence if ananly if a finite number ofsequences in x are
nonempty. Going from the stream xt@arresponds to time abstraction. Irthe stream x we
canfind out in whichtime interval a certairmessagearrives, while in X we see only the
messages in their order of communication but not their timing.

For streams.,zz, 0 M* O M® we denote by .2z, the concatenation of ttetreams. If zis
infinite then 77z, = z.

For streams,zz, 0 M* 00 M= we define a prefix ordering as follows:

£z - 0z OM OM®: 2'2,= 2z,
We use both notations| xandxintroducedfor streams x alséor tuples, channelvaluations,
and sets of timed streams by applying them pointwise.

Fig. 1 describes the syntactic interface of a componentthattinputchannels x, ..., x, of

the sorts My, ..., M, and theoutput channels iy ..., ym of sorts Mi, ..., Mn. In the
theoretical treatment we assume for simplicity always-Ml and M = M.
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We representhe behaviour of gossibly nondterministic omponent withthe set of input
channels | and the set of output channels O by a function:

F:1 - O)

This function yields the set of output histories F.x for each input history x.
However, not everyunction of that functionality can b&een as @roperrepresentation of
the behaviour of a component. Only if a set-valued function on streams datidgnproperties
we accept it as the representation of a behaviour. To give a precise definition of these properties
we introduce a number of notions more formally. A function

F:I - O)

is called (note that a function f — O can beseen as apecial case of set-valued function
and therefore all definitions carry over)

o timed, if for all i O N we have
xui=zii O FX)Li=F(z)i

» timeguarded, if for all i 0 N we have
xii=zi O FX)Li+1 = F(z)L i+1

« realisable, if there exists at least one time guarded functidn = O, such thafor all input
histories x:

fx OF.x

By [F] we denote the set difne guarded functions f witliix O F.x for all input histories

X. Realisabilitymeansthat there is gdeterministic) stratgy (not necessarily computable,
however) that in a component implentation makessure that forevery inputhistory x
interaction message by message leads to an output history that is contained in RhatNote
if a deterministicstrategydoes not exist, then a noneetinistic strategydoes not exist,
either.

» fullyrealisable, if it is realisable and for all input histories x:
Fx={fx: f0O[F]}

We assume itthe following tha streamprocessing functions #h representhe behaviour of
components are always time guarded and fully realisable.

5. Translation of State Transition Machines to Stream Processing Functions

In this section we define an abstract semantics for STMs using stream processing functions. We
consider only the time independent case to start with. We associate a stream processing function
with a STM that is given bythe transition functionA using the following definition. More
precisely, we associate a time guarded functipwikh every state [1 State as defined by the
following equation:

Fo(x) ={y O O:
(QOi0 1*,00 O*, o' 0State, xO I,y O O:
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y =0y'0X =i"x" A (o, i).(c", 0) Oy' O Fg'(x")) O
(Qid1*:iex0 o O O%, o' OState: A(o, i).(c", 0))}

The first (existentially quantified) part of tlght-hand side of this defininggaation treats the
case where at least onetbé transition patternapplies. The seconghrt treats the casehere
for the input stream x none of the transitpaiterns applies. This caemappednto arbitrary
output and is calledhaos. This technique guarantees that the functigrsfalways realisable.

If we do not want tassociate a ch#o, but a more specifibehaviour to input situations
where no input pattern applies, w&n work withdefault transitiongfor instancetime ticks) or
simply drop the secondclause inthe definition. Working with chaos, however, has the
advantage thaadding input patterns) a transitiondiagramfor input for which no pattern
applied so far is a correct refinement step in the development process (see [Rumpe 96]).

A situationfor which a lesdiberal treatment thanhaos is suggestive tee casewvhere an
input pattern is dtipossible butnheverrealised. This igshe case ifor someinput pattern i for
which A(o, 1).(o', 0) holds forsomestatec’ and some outpgypatterno andfor the input
history x we have

X Ei

but (i £ X ). This means that, speakingdperational terms, wean never bsure that we get
further input bat eitherenables the ruler definitively shows thathe rule cannot bepplied.
However, in such aase onlytime ticks may begenerated asutput, since togenerate other
output mayturn out to beincorrect (with respect tathe transitionrelation) byinput arriving
later. If only time ticks argenerated, in thend theSTM generates amfinite stream of empty
sequences

If the STD contains cycleben the definition of & is recursive. Irthis case, wecannot be
sure that bythe deining equationabove thebehaviour & is uniquelyspecified.Therefore we
define Ry to be the largest (in the sense of elementwise set inclusion) time guarded ftnattion
fulfils this equation.

Our model of thébehaviour of a componentorks with timed input and outpustreams.
Since the input and output patterns as introdud®Eyve do notefer totiming, in the definition
we work with the time abstractions othe inputand outputstreams. Of course, waay also
work with input patternghatrefer totime. Wewill come backo this issue in sen 9. The
explicit time concept in thebehaviourmodel of a componerdllows us also tadeal with
priorities in transitions and with a reaction due to lack of input.

To avoid theproblems with unguarded recursion tinady lead todefining equations the
fixpoints of which are not unique, we may assudaneonvenience that for eveimgput patten
i with the property

A(o, i).(o', 0)

every sequence in the output pattern o for efithe channels contaira least ondéime tick or
one message. Formally this requirement is expressed by replacing the equation

y=oy'
in the definition above for the functior; By the formula

Y In fact, this is not @eep problem sincthese pathologicabehaviorsare ruledout by the realizabilityclosure
RC which is a mapping that mapset valued function Bnto thelargestfully realizablecomponentcontained
in F. It is defined by RC[F].x £f.x: f O [F] }.
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Oo'00**:y=0"y'0o=0'[1 cOO: 0.c% ©
Then the equation iguarded.Every message thatccursin an output stream is then caused
explicitly by atransition ofthe STM or bychaos. Interms oftiming, wemay even refine the
assumption above and assume that every transition requires at least one timaltids orput
and output channels.

We even permit transitions with empty ingétterns. Irthis case wespeak ofspontaneous
trangitions. If we work with our assumption thédr a transition orevery inputchannelthere is
at least one time tick, then a spontandcassition is only enableif there are nanessages but
only time ticks on the input channels.

The assumption that transition rules are always guarded, at least by time ticks, leads to a very
robust model of time with a propeotion of causality. Howevewhen specifying components
where timing propertieare notsignificant, itmay be to getid of thetiming requirements for
transitions. A component behavior

F:1 - @ O)

is calledtiming independent, if for all x, zO I we have
x=z0 Fx=F.z

The we may use the operator
retime:( - [ O)) - (I - @ O))

to get rid of ubconvenient time resrtiction. We assume

retime(F).x =F.X

The function retime rearranges all the time ticks in the input and output streams. We may choose
in the implication odering the largesttime guarded functan for retime(F) that fulfils the
equation aboveThen all timings that aregpossibleare allowed. Of course, weequire that
retime(F) is again time guarded to guarantee a proper time flow.

Note: Priorities and Spontaneous Transitions
Since our basic model ofsystem behaviour iimed we may introducepriorities for the
transitionrules, too.Let us assumethat thetransition rule R hasa higherpriority than the
transition rule B. Suchpriorities may be indicatedor instance by special graphical means in
STDs.

In a state transition system that is corkeith respect to thipriorities werequire:whenever
for an input stream x for a time point j the input pattern of rylegplies to a prefix

X1]
then thetransition rule R mayonly be chosen ithereexists atime point j' such that for the
initial input

X1]

the pattern of théransition rule R with the lowerpriority applies butnot the pattern of the
transition rule Rwith the higher priority.

Spontaneousransitionsare transitions with arempty inputpattern. Inother words, the
transition can bselectedwithout getting anyspecific inputmessagesSpontaneous transitions
are not a problem in our setting. However, if nave cyclesn STDsall transitions of which
arespontaneous, thenkeehaviour is inalded that nevetakes any inputnto accountagain.
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This perhaps unintended behaviour can be avoidedduyring thata spontaneousansition is

only allowed if a timdick arrives on each of thehannelsThen a transition isnly allowed if

there is no input whin atime interval. This allows ugo supporttransitions with"negative"

input patterns. Such a transition is only possible if there is no input on theiséicated input
channels within somé&me bound. The idea of"negative” inputconditions can also be
introduced to our version of STDs. A negative input condition expresses testa@ttchannels
there is not input. In ouwase this ieasily translated ia positive condition: othe respective
channel we receive a time tick. We will come back to this issue in section 9. O

Note that we camive along these lines a preciseatmentfor sophisticated concepigke
priorities and spontaneous transitiahe to ourcarefully chosensemantic model that includes
time. Without an explicit notion (at least on the semantic leveljimn& apropersemantical
treatment of priorities or of spontaneous reactions is difficult (or even impossible).

Note the impssibility to talk about prioritieswithout an explicit notion of time. If two
transition rules Rland R2 areenabled at the santiene and R1lhas ahigherpriority than R2,
then of course always R1 should be executed. However, if only &#alided then we have to
admit that R2 may be executed till the time paihere R1 getenabled. If we do ndtave any
information about the timepoints which R1 and R2jet enabled theany temporalrelation
may be given and we may freely (nondeterministicatlgbosebetween R1 andR2. This
nondeterminismis, of course, not @ropermodel of priorities. Only if wehave anexplicit
notion of time in our model we can express formally what the idea of a priority means.

6. Syntax of State Transition Systems

A pragmatic and practically applicabledescription techique of system behaviours has to

provide concreterepresentations ithe form of a specific syntax for all parts of a STD

description. In this section we introduce such a concrete syntax (see also [Grosu et al. 96b]).
We describe the interface of a component by the following sets of channels:

I set of input channels (with assigned sorts of messages for each channel),
@] set of output channels (with assigned sorts of messages for each channel).

We describe this interface graphically by a data flow node as shown schematically in Fig 1. Let
for this purpose the following sets be given:

M set of messages (could be one specific for each channel, if channels are assigned
sorts),
State set of states (the data state space).

The set State is described syntactically by a number of declaratizarsabfes (also called the
attributes of the state) together with their sorts:

v1:D1, ..., b: Dn.

Here D, ..., [y are thesorts ofthe variables.They can belescribed bysort declarations or
simply assumed to be givemhe description othe state space cdme givenby graphical
means, too, such as for instance by an extended E/R-diagram.

The state predicatefor the nodes ofthe diagram can easily be written by Boolean
expressions (formulas of predicate logic).
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A transition rule is described bylabel in the STDconsisting ofan inputpattern and an
output pattern (separated by /") of the form:

{A}x1Es, .../ y1:B1, ...{C}

Here A and C are Boolean expressions, x and y, ... are input and output channelg, E .
and By, ... areexpressionglenotingmessages or sequences of messagekesfort of the
channel. The expressiongay contain the attributeg v..., \n and the primed attributes;y
..., V' as well adreeidentifiers. Weusethe commonconvention that by v' we denote the
value of the state attribute v after the transition, while v denotes its value before the transition.

It may improve the readability &TDs if weabbreviateevery formula and every transition
rule in a diagramby an identifier and collect their meaning in aable. As anotational
convention, we may leave out the names of channels if the described components have only one
input channel(or one output channel) or if by thesort information thechannel can be
determined uniquely.

7. Relating the Syntax to the Semantics

How to associate with a syntactic input/output pattern the predicates introduced in section 3 may
seem quiteobvious. So we do not givéis quite straightforwardformalisation in ful detail.
What maydeserve some attentiomowever, isthe treatment ofhe free variables the input
and output patterns.
Formally the data state space Data_State of a STD which includes the attributes w, of
the sorts b, ..., Oy is represented by the set of valuations of the attributes:

State = p: {vy, ..., 1} - D:01i, 1<i<n:o(vj) O Dj}

where the Pare the sets of data elements associated with the sobsiBnotes the universe of
all data values:

p=[] D
i=1

A state is, by this definition,\@aluation of thestate attributes4v ..., \, that is consistent with
the sort restrictions. Let V denote the set, {v., \n} of identifiers for dtributes and V' denote
the set {M', ..., W'} of primed attribute identifiers. Let X be a set of further identifiers.

For simplicity we consider only transition patterns of the form

{A} x:E / y:B {C}
for ddining the semantics. Ayeneralisation obur semanticdefinitions togeneral pattesis
rather straightforward and should be obvious. For our transition pattern we assume that

* E is an expression of the sort of the channel x,
 Ais aBoolean expression,
* B s an expression of the sort of the channel y,
+ Cis a Boolean expression.

Each oftheseexpressiongontains freadentifiers from the set VO V' O X. In a more
restricted approach weould notadmitoccurrences othe primed identifiersrom V' in the




Focus FX -13 - Mai 30, 1997

expressions A, Eand B. Howeer, often it is notationally convenient taise v' inthese
expressions, too. This avoids the use of additional free identifiers.

We define the pattern predicates as follows (leg \b&l the valuatiorflunction that associates
a value with each expression or formula,cbyve denote valuation®r all identifiers in V, V'
and X :

Qo, )= : Valg[A] O
OcOli.c =if c = xthen «Valy[E)> else o fi U
OaldV:o(a) =a(a)
Note that the last line makes sure thando coincide for all attributes of the state.
R(o, i).(0', 0)= Lo :  Valg[C] OValg[A] O
O cO I i.c =if ¢ = xthen «Valy[E]> else « fi [
O cO O: o.c =if ¢ = ythen Valy[B]> else o fi O
OalV:o(a) =a(a)d
OalV:o'(a =a(a)
This fixes the semantics of our syntax. Note that we have made sure that
R(o, i).(0", 0) 0 Q(o, i)

For notational convenience we admit to replace the postconditiobyattatements in the form
of an assignment. So we write

vi=v+1

to express v' = v + 1 and that all other attributes remain unchanged.

8. Examples

In this section we give a number of small and medium size examples of specificat®hB by
We start with a very simple one.

Example: The Sorting Cell

The sorting cell can be used to bualdetwork for sorting seqenceof naturalnumbers.Each
cell stores at mosbne naturahumber. First walescribethe data modeivhich, inthis simple
case, consists only of a sort declaration:

sort M = Nat | {®}

The element ® is used as a dummy in the ptdeenumber. Thaort Natdenoteshe set of all
natural numbers. The syntactic interface of the sortingodlits statespace areepresented by
a data flow node as it is shown in Fig. 2.

D Note that we repeat the condition MBA] in the definition of R to make sure that the binding of the variables
in X is consistent in E, B, C, and A.
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x: M y: M
— | Cell | =/

rM v:M s: M
— -«

Fig. 2 Data Flow Node Giving the Syntactic Interface and the Local Data State Space of the Sorting Cell

The data state space is given by the declaration of the attribute
v:M
We describe the behaviour of the data flow node by a STD. The initial state is labéftet by

The sets of data states associated with the nodes representing the control states are specified
by predicate logic as follows:

Empty: V=®
Waiting: v=®

Full: VZ®
We see that in this case, as often, the state sets associatéaevittiividualnodes bythe data
state predicates are not disjoint. O

The fact that the data state setthefnodes are not disjoilstnot aproblem. Theactualstate of
a component is represented bpair, consisting of arelemento [ Statefrom the data state
space and a node k of the STD represetitiagontrol statsuch that o) holds. Thenode k
can be seen as the control state.

xd/-{v' =d}

S® /- sd/-{v' =d}

Fig. 3 STD Defining the Behaviour of the Sort Cell (let d be of Btat)

Example: A simple store
We follow again the scheme we havged inthe previous exampleWe describeghe syntactic
interface of the component called store by the data flow node given in Fig. 4.

y: RetMem store

x: CalMem | a Location — MemVals
— " »

Fig. 4 Data Flow Node Giving the Syntactic Interface of the Store




Focus FX -15- Mai 30, 1997

Let Location be the sort of memory locations and MemVals the sort of values that can be stored
in the memory. The data model of the component store consists of the sorts of messages that are
declared as followis

sort CalMem = put (i: Location, d: MemVals) | get (i: Location)
RetMem = ret (c: CalMem, rv: RetVals)
RetVals = MemVals | {MemFail, Ack}
The set State is declared by the attribute
a: Location- MemVals

Initially all memory cells have the initial value initial_val which is a distinguistlechent of the
set MemVals

Initial: a(i) = initial_val

In the STD for the component store we work with only ongendn such a case, vixetter do
not use a STD at all, but rather work with a set of transitions very simildtAo(see [Abadi,
Lamport 90]).

x:put(i, d) / y:ret(put(i, d), Ack) {a'(i) = dIJ |, j#i: a'()) = a()}

x:put(i, d) / y:ret(put(i, d), MemFail) {a' = a}

x:get(i) / y:ret(get(i), a(i)) {a' = a}
x:get(i) / y:ret(get(i), MemFail) {a' = a}

Fig. 5 STD with only One Node

The transitions can be gathered into a table. This way we can avoid to write long formulas in the
STDs.

Tab. 1 Transition Table

name input output postcondition

Write | x:put(i, d) y:ret(put(i, d), Ack) a()=d0o j,j#i:a() =a()
WriteFail |x:put(i, d) | y:ret(put(i, d), MemFail) a'=a

Read x:get(i) y:ret(get(i), a(i)) a'=a
ReadFail | x:get(i) y:ret(get(i), MemFail) a'=a

2 Throughout this paper we use a notation for the declaration of sorts with an obvious meaning.
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We can use the table together with the STD given in Fig. 6, which only refers to labels included
in the table.

Write
WriteFall
Read
ReadFail

Fig. 6 STD with Abbreviations for Transitions

The STD in Fig. 6 containgnly one nodeln such acase, apointedout, it is an overl to

work with aSTD atall. However, wemay replace the STD bgne that containsvo nodes
such thatachtransition is split intdwo, one that accepts the input and thext one which
produceghe output. Then we need a mogetailed statespace tostorethe location(and the

value)for which reading or writing isrequired. Sathe statespace is giverby the attribute
declaration

a: Location—» MemVals, ¢: CalMem

The table Tab. 2 lists all the transitions occurring in the STD given in Fig. 7.

Tab. 2 Transition Table for the Decoupled STD

name | condition input output postcondition
Com X:e - c'=dla' =a
Write | ¢ =put(i, d) - yret(put(i, d)Ack) |a'(i) =dld j,jzi:a() = a()
WriteFail| ¢ =put(i, d) - y:ret(put(i, d), MemFail a'=a
Read c = get(i) - y:ret(get(i), a(i)) a'=a
ReadFail c¢ = get(i) - y:ret(get(i), MemFail a'=a
Write
WriteFal
Read
ReadFdi
-
Waiting Executin
>
Com

Fig. 7 STD for the Store with Transition Rules Separated into Input and Output
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This refined version othe store hagabstracting frontiming) the sameébehaviour ashe store
described by the diagram given in Fig. 6. O

The exampleaboveshows a technique fatetailingand refininga STD bysplitting its nodes
and its transitions (sedso [Rumpe 96] forefinementsteps on STDs). l&ll nodeshave only
transition rules where éier theinput pattern or the output patternempty,the STDis called
decoupled. Such STD<orrespond closely tthe I/O-automata of [LynchStark 89] where in
each transition exactly one input or one output message is processed.

So far, we have shown examples of STDs only for the description of components and a first
example of a refinemenNow we show how to pubgether components intonetwork such
that they ooperate.Since STDs describset-valuedfunctions onstreams, forwhich a
composition withindataflow netsis well-defined (see [Byy, Stglen94]), we canuse this
concept of compositioimmediatelyfor statetransitiondescriptions, too. Wdemonstrate this
with the help of a simpleomponent callediriver that co-operates witthe memory of the
previous example.

Example: Store Driver

A driver is a componerthat controlsthe access tdahe memory encapsulated in the component
store. It receives calls and forwaittiem to the memoryt may retrya call forthe memory if a
memory call fails. However, iay stoptrying at any timegven before itried atall. We use
our general specification scheme again to describe the driver.

Tab. 3 Table of Sorts

MemLocs memory locations,

MemVals memory values,

Prids identifiers for processes,

CalMem = put (i: Location, d: MemVals) | get (i: Location) memory calls,

Retvals = MemVals | {MemFail, Ack} return values,

RetMem = ret(c: CalMem, rv: RetVals) return messages of the memory,
Returns = ren(c: Calls, m: RetVals) return messages of the driver,
Calls =ca(pi: Prlds, mc: CalMem) calls for the driver.

Tab. 3 showsll thesorts involvedlt definesthe datamodel. The syntactic interface of the
component driver is described by a data flow node.

r: Returns . y: RetMem
<«—— driver AR
s: Calls g ggltll\s/len x: CalMem

Fig. 8 Data Flow Node Giving the Syntactic Interface of the Driver

The local data state space of the component driver is described by the following attributes:
z: Calls, a: Returns

The STD given in Fig. 9 fixes the behaviour of the component driver.
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-Irren(z, rv(a) y:d/-{ad =d}

sib/-{z' =bda" = ret(mc(b), MemFail)} {rv(a) = MemFail} - / x:mc(z)

Fig. 9 STD for the Driver and its State Attributes

The driver isdesigned taooperatewith the store. Thedriver may try forever inthe case of
memory failures, if we do nanakeany fairnessassumptions. Taet rid of this "unfair"
behaviour, we may add the liveness condition

#r=#s
that expresses that every input leads to an output under the assumption
#X=#y

that expresses that all calls sent on channel x to the store get eventually served. It is very helpful
that thestatetransition descriptiortan be combinedith logical equations texpress lieness
properties. Wemay introducemore refinedfairnesspropertiesfor the driver thatway. For
instance the driver may guarantee teeturn never MmFail provided a messagdifferent to
MemFail is guaranteed by the store if the driver retries long enough. O

The driver can be composed witle componenstorespecified inthe previous examlp. This

composition isasynchronous as it @efined in ©CUS (see [Ocus 92]). By combining the

driver and the store, we obtain a component wagdin can belescribed by &TM. Its state

space consists of the product of all st@te spaces of the subcomponents. In additiomesd

buffers in the state space to store the messages sent on internal channels but not yet received.
Such bufferscan beavoided, however, if we worlith special decouple@TDs defining

STMs that do all their transitions with input from internal channels in two steps. In the first step

the input isreceivedand in afollowing stepwithout inputthe outpti is produced. Weequire

here that in every control state for every nonempty input an input pattern can be selected without

producing output. By such a refinement the buffers have to become part of the state space.

Example: Composing the Driver and the Store
The interface of the drivemnd the stordit togethersuch that wamay compose them ahown
in Fig. 10.

r: Returng—; y: RetMem
<+—Driver <+—— Store

) Z: Calls x: CalMem
s: Calls o RetMant:

Fig. 10 Composition of the Driver and the Store
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This compositiorcanalso be described by taxtual syntax (segAndl 95]). Asthe diagram
suggests, the channels x and y are hidden and therefore called internal channels.

The driverand thesecond version ofhe memory component are already iffoam that
allows us to work without additional buffers for the channels when combining their state spaces
into a state space for the state transition description of the composed system. O

Of course theintroduction ofthe buffers can only be avoidedcompletely, ingeneral, if the
decoupling is broken down onto the level ofiudual steps and in every node every input can
be accepted. Only then evengessage can @ocessedvithout immediatelygeneratingurther
messagesnd thus noadditional buffers are needed tstore messagesn input channels,
provided the system does the corresponding schedaicigunsfast enough. For &tate view

on composed systems see [Grosu et al. 96a].

9. Describing Time Dependent Components by STDs

So far wehave onlystudied STDdor the specificatin of the behaviour oftime independent
components. Now wextendour approach tdime dependentomponents. For them weve
to use input patterns that refer explicitly to time.

We define a timed STM that works witimd input and output patterby a state transition
function

A: Statex | ** _, (Statex O** _ Bool)

A timed input segment(d | ** is concatenated to a timed input streainh k by the operator ~.
This operation is defined as follows (let &1d *):

(iI"@) (<b>"x) = i"(«a"b>"x)

The operator ~ concatenates two sequerce®f sequences by soatenating the last sequence
in x with the firstone iny.

An input segment( | ** fits to a stream XJ | if it is a "generalisedprefix, abbreviated
by i E¢ x. This relation is defined by:

icix e OzO:i"z=x

We associate a stream processing functwith a STM withthe transition functiom by the
following definition that associates a functiog \With every state [ State by the equation

Fo()={y 0O: (QiOl**, o0 O**, o' OState, xO I,y O O:
y=oydx=ix0A(o,i).(c, o)y O Fg(x)) O
(Qidl**:ig;x0O o O O**, o' O State: A(0, i).(0", 0))}

Again we choose forthe set-valued function 4 the largest(with respect to set inclusion)
function for which the equation abovholds. This definition of the semantics ofimed state
transition systemby streamprocessing functions quite straightforward More sophisticated
is the syntax of STDs for timed components.

We startwith anexplanation ofthe time model. Eachtransition isexecuted at &me point.
Thus each node inteansitiondiagram is reached at a pointtime. Then itmay take a while
until an inputpattern may become abled. Thetime distance (thenumber oftime ticks)
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between the reaching of a node by a transitiontia@gattern i becoming enabléat the next
transition is denoted Y. It is formally defined by

d=min{ ON:icyxij}

Informally & defines the number diime ticks that takeplace after th&urrent controlstate has
been reached by a transition until thput pattern becomesnabled. Weamay refer tod in the
specifyingformulas. According to oudefinition we can besure that inthe timedcase a
transition is carried out ason as possible. A&on asnoughinput is available to enable an
input pattern the transition is carried out and the target state is assumed imniediately

We wantto work with relativetime and with absolutdime in gplications. Absolute time
always refers to the time distance between the initialisation of the system and the time at which a
certain evenhappensAbsolutetime allows us also to speabout dates (days$ours, years)
provided, we specify the absolute timetlo¢ initialisation of thesystem (system start-ujne)
and also indicate whidime unit(frequency)the systemworks with for its time intervalssuch
as for instance microseconds, milliseconds, seconds, minutes or days.

Basically we are interested txpressthe following timing propertieswhen specifying
component behaviour:

* delay by some time span with lower and upper bounds,

» time-out, watchdog (guaranteed reaction within timends,captured byupper bounds on
the delay),

* pre-emption, interrupt (immediate reaction on timed events),

» clocks, timers.

We need a special notation to express time events in STDs.

A simple syntaxfor timed input patterns is obtained if we allotime ticks v as pseudo
signals inthe input peterns andefer to thetime when a nodavas reachedrlhereforeall we
need is a timingonvention. Byt we denotethe alsolute time at which a node hadeen
reached.

Example: Timer
The timer is a component that works with the following input and output sorts:

sort Tin = set (t: Nat)
sort Tout = {time-out}
Its interface is described by Fig. 11.

X'—Tm, Timer

y: Tout c: Nat
‘—

Fig. 11 Timer Interface

The state space of the timer consists only of the time attribute:
c: Nat

% This implies that an input pattern is always avoided if another one gets always enabled sooner.




Focus FX -21- Mai 30, 1997

that stores the number the ticksuntil the time-outoccurs. If ¢ = Gthe timer is noset. The

behaviour ofthe timer is described bythe STDgiven byFig. 12. There, byv we denote the

time tick signal which according to our semantic model indicates the end of a time interval.
The control state predicates are defined by the following formulas

Notset: c=0

Set: c>0
For this example we do not have to refer to absdinte but only tothe relativetime captured
by the time concept that is part of our system model. O

We typically refer to absolute time business application§here weexpress that aavent can
take place at absolute timéy a transition with the precondition

{t+d=vy..} .../ ..

Heret + d denotes the absolute time

Explicit time allows us to be very explt aboutsophisticatechotions likeinterrupts, and
time-outs. Aspecial case arsoft time-auts wheresharptime oundsare notrequired but a
reaction is requested eventually if thesre lack of input. A typical example is the repetition of
sending a message for the sender in the alternating bit protocol if an acknowledgement signal is
missing (see appendix).

set(0) / -
{c=1} V/timeout

{k>0} set(k) /- {c =k}
{c>1V/-{c =c1}

{k>0} set(k) /- {c =Kk}

Fig. 12 STD of the Timer

Negative input conditions:

In many applications we are interested to reaentually due tenissing input.More precisely,
the component is required to react if @specific channed message iexpected budoes not
arrive within a certain interval oftime (reaction ontime out). Of course,this informal
description is not precisenough. Amore precise descriptionas toindicate how long the
component waits until it responds.

If the waiting time is bounded then we simphay work with timed STDSA special case is
that no specificime bound is given. Irother words, theomponentas toreact eventually if
there is no input but it should wait at least saytone unit after itmay react finite number of
times spontaneously. To express such a situation we write for channel x

X -
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in the inputpattern.This means that ithere is no input orthe channel x aftesomefinite
nonempty amount of time the transition rule fires. We call teiftadi me-out. O

Interrupts:

The idea of an interrupt is that by some exteenaht the current activity @f system is stopped

and another activity is started. The critical issue here is at which points of an activity an interrupt

is accepted. Weall thisthe interrupt granularity. An important requirement is that an interrupt

is executed at the earliest point in time at which it caexXeeuted. In other erds, aninterrupt

is described by a transition rule with a high priority. This is easily expressible in our formalisms

as long as wehave individual interruptchannels. Otherwise we have tavork with

messages/channels with priorities. Then certain input patterpsoaessed asoon as they get

valid. Earlier unprocessed input that arrived before the interrupt happened is dropped or saved.
O

Pre-emption:

Pre-emption is very similar to interrupt. The odlfference is that thactivity thatis interrupted
is not continued at the pointvtas interrupted, buif at all, at a freshpoint that is independent
of the state irwhich the componenivasinterrupted. Thiscorresponds tsomespecified re-
initialisation. O

With our notation pre-emption can be easigkpressed in STDs biyansitions with a higher
priority and astate concepthat forgets aboutthe control state irwhich the interrupt was
received. Tomodel interrupts weeither have tesavethe controlstate explicitly aswell as
relevantparts ofthe state space or we have to introduce a tuned notation along the ideas
histories as found of statecharts. éeme backo this issueunderthe headingf hierarchical
STDs.

Of course,depending orthe application,special notations araseful to support #exible
notation ofinterrupts andeaction on lackingnput on specific channelgor more technical
details on timed STDs see [Mdller, Scholz 96] and [Broy et al. 97].

10. Multithreaded STDs

So far we have onlyworked with single-threaded Bs. At every point intime exactly one
node is enabled. iay be interesting to extenour concept to multithreaded STDs. In a
multithreaded STD the control state is not only characterised by one node but by a set or even a
multiset of nodes. The number of threads may of course change dynamically.

To give semantics tmultithreaded digrams we have to extendr definition of F; for a
single state [] State to k whereZ [ State is a set (or even a multiset) of states. We tozdy
the nontimed case. For simplicity we assume that for each node in the transition diagram at most
one thread is active Otherwise we have to work with multisets of threads. We define

Fs(x) ={y O O:
(Qi0I1*,000% 0c0,x 01,y 00,c UState:
y=0"y'OX=i"x"0A (o, i).(c", 0)dy' O Fz\ohgo (X)) O
(Qi0I*,oF:iexX0 b0 O*, ¢ OState: A(g, i).(c", 0))}

Y This applies, in particular, for a number of state machines with single threads composed in parallel.
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This definition showsthat in a multithreaded automaton tiansitionswork interleaved. If

transitions work on disjoint sets of input and output channels, howeverahdye carried out
in parallel.For certain apptations additionafairness assumptioraboutthe relativespeed of

the different threads might be useful.

Example: RPC

Our driver inthe example in ection 8 can handlenly one request at a time. To hble to
handle more thaone request at ime weintroduce a sePrlds of processorand define the
state space as follows:

v : Prlds - state (z: Calls, a: Returns)

We work with a multithreaded diagranfor more preciselywith a family of single threaded
diagrams thaare executedh parallel). For all processidentifiers p 0 Prlds we give one
transition diagram. For an expression R that denotes a record of sort

cons(sel: My, ..., seh: Mp)

we use the convention that for an expression E
with R: E

stands for the expression
E[seh(R)/sel, ..., sel(R)/se}]

Fig. 13 shows the STD of the multithreaded driver.

For every p O Prids:with v(p):

-/ riren(z, rv(a) y:d/-{a' =d}

{pi(z) = p} sib/-{z' =bOa" = ret(mc(b), MemFail)} {rv(b) = MemFail}- / x:mc(2)

Fig. 13 STD for the Multithreaded Driver

Initially, all default outputs are memory failures:
Initial: a(v(p)) = MemFail

Note that the syntdic interface ofthe multithreadedDriver coincideswith that of the single-
threaded driver. O

In a multithreaded ST set ofnodes isactive. Each transition movesthe controlof one of
these nodes to another one. Chaotic default transitions are only allowed if for ribe@ative
nodes a transition is enabled.

Note: If we usea set ofnonconnected STDsach ofwhich works with disjoint sets of
channels, wecan decomposehe dataflow node ina set ofdataflow nodes that work in
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parallel. Vice versa, a data flow diagrarnere we hava transitiondiagramfor eachnode is a
special case of multithreaded state transition system. O

Multithreaded STDs correspond to the concept of pa@alposition ofstate machines as it is
found in statecharts (see [Harel 87]).

11. Hierarchically Structured STDs

STDs may be hierarchically structured. Then we give for certain nodes not just a state predicate,
but a complete STAgain. Sahe node hasts own local cotrol statespace and itfcal state
space predicates and @&n localstateattributes. Thdocal STDassociated with hierarchical
node is activated whenever we enter the node and deactivated, whenever we leave the node. We
either may initialise the diagram again every timeenter it (inthe case opre-emption) or we
may freeze the edrol anddata state it is inwhen weleave it(in the caseof interrupt) and
reactivate it asoon as weenter itagain. Theidea of hierarchicaBTDs leads tgparticular
notions of refinement of STMs.

For hierarchical STDs we may distinguish two cases:

(1) Thechannels inall the STDs inthe nodesdeal with a disjoint set of input and output
channels compared with the transitions at the upper level.

(2) Thechannels to which the STDs in the nodes refer are the same as the channels in the upper
level of transitions.

In the case (1) the levedse decoupled. Ithe cas€2) the hierarchyseems lessignificant and
canjust be seen as @otational abbreviation. BhierarchicalSTDs wemay nicelydescribe
interrupts if we give priority to upper level transitions.

Local statesmay bepersistent onon-persistent-or apersistenhierarchicalnode itsstate
(the actualnode andhe values ofthe local attributes) arestoreduntil the diagramis activated
again.

Example: Video Remote Control
We specify a video remote control component VRC. Its syntactic interface is described by a data
flow node as given in Fig. 14.

X: Signal VRC y: Display
—_—> ———»

Fig. 14 Syntactic Interface of the VCR

We define a very simple version only. We use the following sorts that deésggnals sent to
the VCR and the observations that are caused by them:

sort Signal = {on, off}] {ch[i]: i 0 [1:16]} O {c1t, ct, vt, vi, voff, von}
sort Display = {ch[i]: iCJ [1:16]} O {vol[i]: i O[0:7]}




Focus FX -25- Mai 30, 1997

By the signals ¢, ... we control the channels of the video and by the signals.vwe control
its volume. The state space is defined by the following attributes

a: {on, off}, c: [1:16], v: [0:7]

The behaviour of the VCR is defined by the STDFiig. 15andFig. 16. Double circles mark
hierarchical nodes.

x:on/y:ch[1], y:vol[3] {c'=10 v'=3}

Off {mzon} xxm/-

x:off /-

Fig 15 Top Level STD of the VCR

ANE
von/vol[v] ANE
voff/-

vt ivol[v'{v' = min(i+1, 7)}
vi/olv' {v' = max(i-1, 0)}
von/-

voffivollvl{v' = 0}

Fig. 16 STD for State Predicate Vol of the VRC

Here we use the convention thdjo postconditions stated, irthe successostate thevalues
of the attributes do not change. More formally expressed, a = a' holds for all attributes a.

Fig. 17 Decomposition of the Node Von of the VCR
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ct /ch[c] {c' = c+1 mod 1p
c! /ch[c']{c' = c-1 mod 16}
chli] /ch[i] {c' = i}

Fig. 18 STD for the Node Cha of the VRC

The predicates that define the state sets associated with the nodes are defined as follows:
Off: a=off Uc=10v=3

On: a=on
Von: true
Voff: v=0

The hierarchical decomposition is very helpful to keep the STDs small and manageabhle.

Of course, wemay comime timedinput patterns also witlierarchical STDs. Hierarchical
STDs can be explained asagher straightforwardotationalextension offlat STDs. For every
hierarchical node with k subnodes we introduce an attribute h that may assume one of the values
{0, ..., }. Every outgoing arc from the hierarchical node is replaced by n arcs from each of the
nodes insidehe hierarchicahode.All these arcare labelled by theame transitiopattern as
the transition atthe higherlevel. We only add ithe postcondition h := for the arcs coming
from node | if the hierarchical node is persis{@ates its history arttius modelsn interrupt).
Otherwise we assign an initial node to h. Every ingoing arc we replace by n arcs one for each of
the nodes jand addthe precondition h = j taeeach ofthe transitionrules. Of course, h is
initialised by one of the internal nodes that are initial.

According to ourconcept that anode in a transitiordiagram daotes a set ofbtates, a
hierarchicalnode also denotes a set of states obtainethdynion of the statesets of the
internal nodes

12. Conclusion

Clearly our idea of a STlhasmuch incommonwith the concepts ofktatecharts. Heever, in
contrast to statecharts and the suppottio STATEMATE, whichwere developed vemnuch
aiming at a practicallyelpful toolfor a graphicalsystemdescriptiontechnique, weare rather
interested im cleanand simplesemantic modehnd atailored graphicabescriptiontechnique
for it. We believe thatthe oftenconfusing andpainful discussionsabout thesemantics of
statecharts are andication of ot only atheoretical ppblemwith the semantics of statecharts
but alsoare asign of adeeppracticalproblem of statechartsObviously, the meaning of the
chosennotation islessintuitive and self-explaining than anticipatethis may lead toserious
methodological problems when using statecharts.

Also the explanation of theemantics as given ithe recentpaper Harel, Naamed 96]
contains a number of design decisions that are not clearly justified (for the formal semantics of a
cleanversion of a subsetf statecharts, seazareth etal. 96]; for ideashow to clean up
statecharts, see [Philipps, Scholz 97a], [Bh8i, Scholz 97b], [Rlipps, Scholz 97c], [Scholz
96a], [Schiz 96b] and [Scholz etal. 96]). Moreover,the many gimmick®f statecharts hide
and obscure the basic semantic conceptsb®lieve thattonsequenéncapsulation o$tates, a




Focus FX -27 - Mai 30, 1997

strictly logical treatment of statgpaces antransitionrules, asimple time model, and proper
notion of interfaces lead to a better manageable description medium.

There aremany description formalismsased on STDs (such astended finiteSTMs; for
object oriented5TDs sedRumpe,Klein 96]). Prominentexamplesare, amongothers, SDL,
statecharts, or ARGOS. All these formalisms suffer under the unpreciseribes sémantics.
This iswhy we decided not to introduce a graphical formalism in fir& placeand then to
define its semantics butather to startrom a semantic modelnd developa graphical
description formalism for it.

We consider ourrgphical specification methgdst asa notationasugar forthe description
of systems in dirm logical and mathematicaframework.Everything writtenin the graphical
style can also be presented btableand translatediirectly into aset oflogical formulas. The
formulas, howeverare notnecessarily easi¢o read. Ingeneral, theyare more lengthy and
contain some syntactic noisehe particular chioe of thenames in aliagram,the structuring,
and the layout othe diagram may in addition help tmderstandhe behaviour ofsystems in
more detail.

Since diagramsare, in our casenothing than syntactic sugaall the techniques from
mathematical modelsd logicaltechniques fodescribingsystemsdevelopedor FOCUS carry
over immedately. So weimmediately get dormal notion of propertyefinement, aformal
notion of interaction refinement, and we can compose systems as demonstrated [Beeyalso
Stalen94]). Therefore we casider what wehave presented as attempt tobring closer
together theechniquesused inpracticetoday and thetheoreticalwork towardsthe formal
foundations that are more in the target of the research carried out today.
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Appendix:
In this appendixwe give afurther simple examplefor the usage of STDs in system
specification.

Example: Alternating Bit Protocol
As an example we consider the alternating bit protocol. It has the structure as given in Fig. 19.
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x:Data

Sendel

bs:Bit
d:Data

-28-
cl:M c2:M
—|  Medium —
c4:Bit Medium c3:Bit

Receiver

br:Bit

Fig. 19 Data Flow Net of the Alternating Bit Protocol

We use the following sorts:
sort Data
sort M = m(d:Data, b:Bit)

The STD of the component Receiver is given by Fig. 20.

c2:m(d,br) /r.d,c3:br {br = = br'}
c2:m(d,=br) / c3:br {br = br'}

Receiving

Fig. 20 STD of the Receiver

Mai 30, 1997

r:Data

The state space of the receiver is indicated by the data flow node given in Fig. 21.

c2:M _
I Receive
- r:Data
. r:Bi
c3:Bit

Fig. 21 Receiver as Data Flow Node

The syntactic interfacand the attribtes of thedataspace of thesenderare givenby the data
flow node of Fig. 22.

X: Data Sendei
—»

bs : Bit

d : Data

cl:M
—»

c4:Bit
—»

Fig. 22 Sender as Data Flow Node

The sender has a more sophisticated STD. It is shown in Fig. 23.
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x:e/-{d:=¢€} - / c1:m(d, bs}{ unchanged}

c4: -/- { unchanged}
{bs = =t} c4:t/ - { unchanged}

{bs=1 o4t/-{bs:=bs}

Fig. 23 STD of the Sender

In this STD we have a spontaneous transition modelling a soft time-out. It is needed for the case
where messagexmelost. Note, however, thdtere we have cyclewhereall transitions are
spontaneous. Therefore we better use the conventisgbntaneousansitions consume one
time tick or replace théransition -/- by c4l/- requiring that aransmission is done only on
empty input (more precisely no input over a certain time interval) on channel c4.

The component Transmitter is very simple. Fig. 24 shows it as a data flow node.

cl:M c2:M

Medium | =27 o

Fig. 24 Transmitter as Data Flow Node

Fig. 25 showsthe STD of thetransmitter. Itdoes ot include any fairnessassumptions.
Fairness assumptionsan be includedby prophecies inthe statespace orby additional
equations for the transmitter.

clm/c2:m
clm/-
N
Y,

Fig. 25 STD of the Transmitter
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