EXTENDED DESCRIPTION TECHNIQUES FOR
SECURITY ENGINEERING*

Guido Wimmel and Alexander Wisspeintner
Institut fur Informatik, Technische Universitat Miinchen, D-80290 Miinchen, Germany
wimmel@in.tum.de, wisspein@in.tum.de

Abstract There is a strong demand for techniques to aid development and modelling of
security critical systems. Based on general security evaluation criteria, we show
how to extend the system structure diagrams of the CASE AaotoFocus
(which are related to UML-RT collaboration diagrams) to allow modelling of se-
curity critical systems, in particular concerning components and channels. Both
high-level and low-level models of systems are supported, and the notion of secu-
rity patterns is introduced to provide generic solutions for security requirements.
We explain our approach on the example of an electronic purse card system.

Keywords: Security Engineering, Graphical Description Techniques, Software Engineering,
Requirements Engineering, Security Properties, Design Patterns, Security Pat-
terns, Formal Methods, CASE, AutoFocus, UML-RT.

1. INTRODUCTION

In developing distributed systems—in particular applications that communi-
cate over open networks like the Internet—security is an extremely important
issue. Many customers are reluctant to take part in electronic business, con-
firmed by recent attacks on well-known portal sites or cases of credit card fraud
via the Internet. To overcome their reluctance and make E-Commerce and
mobile systems a success, these systems need to become considerably more
trustworthy.

To solve this problem, on the one hand there are highly sophisticated col-
lections of evaluation criteria that security critical systems have to meet, like
the ITSEC security evaluation criteria (ITSEC, 1990) or their recent successor,
the Common Criteria (CC) (Common Criteria, 1999). The Common Criteria
describe security related functionality to be included into a system, like authen-
tification, secrecy or auditing, and evaluation assurance levels (EALS) for its

*This work was supported by the German Ministry of Economics within the FairPay project

2

development. The strictest level is EAL7 (Common Criteria, 1999, part 3, p.
66), where a formal representation of the high-level design is required.

On the other hand, research has produced many formal methods to describe
and verify properties of security critical systems, ranging from protocol mod-
elling and verification (Burrows et al., 1989; Lowe, 1996; Paulson, 1998; Thayer
et al., 1998) to models for access control, like the Bell-LaPadula model (Bell
and LaPadula, 1973) or the notion of non-interference (Goguen and Meseguer,
1998).

Such formal methods however are rarely used in practice, because they re-
quire expert knowledge and are costly and time-consuming. Therefore, an in-
tegrated software development process for security critical systems is needed,
supported by CASE tools and using graphical description techniques. This re-
duces cost, as security problems are discovered early in the development process
when it is still inexpensive to deal with them, and proof of meeting evaluation
criteria is a byproduct of software development. In addition, systems devel-
oped along a certain integrated “security engineering process” will be much
more trustworthy.

In this paper, we describe a first step towards using extended description
techniques for security modelling. As a basis for our work, we use\heo-

Focus description techniques. TheuToFocus (Huber et al., 1998b; Slo-
tosch, 1998; Broy and Slotosch, 1999) system structure diagrams are related
to UML-RT collaboration diagrams and describe a system as a set of com-
municating components. The corresponding CASE tool developed at Munich
University of Technology supports user-friendly graphical system design and
incorporates simulation, code and test case generation and formal verification
of correctness. The main advantage of the usdofroFocus over a more
general description technique as UML is its simplicity. Besides, there exists
a clear semantics for the description techniques (for general UML description
techniques, defining a formal semantics is still subject of ongoing research). As
a start, in our work we focus on security properties of communication channels.
We show how certain important security properties of communication channels,
such as secrecy and authenticity, can be modelled at different abstraction lev-
els of the system design and explain our ideas on the transition between these
levels, using generic security patterns. We give definitions of the meanings
of our extended description techniques, based o\ttreoFocus semantics.

See also (Jurjens, 2001) for first work on integrating access control models into
UML description techniques, and (Lotz, 2000) for formal definitions of security
properties using the Focus method.

This paper is structured as follows. In Section 2, we give a short introduction
to AuToFocus. In Section 3, we present the extensions/AafToFocus
system structure diagrams to model security properties of channels. The usage
of these techniques is demonstrated in Section 4, with the help of an example

Extended Description Techniques for Security Engineerin@

model of an electronic purse system. We conclude in Section 5 with a summary
and indicate further work.

2. AuTtoFocus

AutoFocus/Quest (Huber et al., 1998a; Slotosch, 1998; Philipps and Slo-
tosch, 1999) is a CASE tool recently developed at Munich University of Tech-
nology with the goal to combine user-friendly graphical system design and
support of simulation, code generation and formal verification of correctness.

AuToFocus supports system specification in a hierarchical, view-oriented
way, an approach that is well established and facilitates its use in an industrial
environment. However, itis also based on the well-founded formal background
Focus (Broy et al., 1992), and a fairly elementary underlying concept: commu-
nicating extended Mealy machines.

System specifications iIhuToFocus make use of the following views:

s System Structure Diagrams (SSDs) are similar to collaboration dia-
grams and describe structure and interfaces of a system. In the SSD
view, the system consists of a number of communicating components,
which have input and output ports to allow for sending and receiving
messages of a particular data type. The ports can be connected via chan-
nels, making it possible for the components to exchange data. SSDs can
be hierarchical, i.e. a component belonging to an SSD can have a sub-
structure that is defined by an SSD itself. Besides, the components in an
SSD can be associated with local variables.

= Data Type Definitions (DTDs) define the data types used in the model,
with the functional language Quest (Philipps and Slotosch, 1999). In
addition to basic types as integer, user-defined hierarchical data types
are offered that are very similar to those used in functional programming
languages like Gofer (Jones, 1993) or Haskell (Thompson, 1999).

= State Transition Diagrams (STDs) represent extended finite automata
and are used to describe the behaviour of a component in an SSD. Tran-
sitions consist of input patterns on the channels, preconditions, output
patterns, and actions setting local variables when the transition is exe-
cuted. As the main focus of this paper is extending SSDs, we will not
describe STDs in detail at this place.

s Extended Event Traces (EETS) finally make it possible to describe
exemplary system runs, similar to MSCs (ITU, 1996).

The Quest extensions (Slotosch, 1998\toToFocus offer various con-
nections of AuToFocus to programming languages and formal verification

4

tools, such as Java code generation, model checking using SMV, bounded model
checking and test case generation (Wimmel et al., 2000).

3. EXTENDING SYSTEM STRUCTURE DIAGRAMS

The main difference between security critical systems and traditional systems
is the consideration of attacks. A potential third party could try to overhear and
manipulate security critical data. To decrease the risk of attacks to a minimum,
special security functionalities are used. For example, encryption is a common
principle to inhibit overhearing of the communication between two agents.

It is state of the art to use graphical description techniques for system spec-
ification. For the specification of security critical systems, we need special
description techniques to deal with the particularities of those systems. We
extend theAuToFocus description techniques to fulfill the needs of security
engineering. In this paper the extensions ofaheroFocus SSDs, mentioned
in Section 2, are described. The extensions of the structure diagrams allow the
definition of security requirements. Furthermore it is possible to specify the
usage of security functionality to fulfill the defined requirements.

We use special tags for the security extensions to the SSDs. These security
tags are assigned to particular diagram parts and have a defined semantics. The
following sections describe the different security extensions made to the SSDs.

3.1 SECURITY CRITICAL SYSTEM PARTS

To model and evaluate security aspects of distributed systems, it is always
necessary to define its security critical parts. The identification of security
critical parts should be done very early within the system development process.
This task is typically part of the analysis phase. In the Common Criteria,
the security critical parts of a system together form the Target Of Evaluation
(TOE). The following definition will make our notion of security criticality
more precise.

Definition 1 (Security Critical). By security critical parts of a distributed
system we mean parts that deal with data or information that has to be protected
against unauthorized operations (e.g. disclosure, manipulation, prevention of
access etc.). In particular, security critical system parts are connected with
security requirements such as secrecy, authentication or auditing, and according
to required strictness of evaluation might be subject to formal modelling.

We want to make the distinction visible within the graphical system descrip-
tion. Therefore we annotate security critical system parts with the security tag
«critical». Both components and channels can be tagged. To mark non criti-
cal system parts, «noncritical» is used. A system part without a «critical» or

Extended Description Techniques for Security Engineering

<<critical>> (\ <<critical>> <<critical>>
A data B

\

Figure 1 Security Critical System Parts

«noncritical» tag is non critical by default. Figure 1 shows an SSD. It consists
of two security critical components and one security critical channel.

3.2. PUBLIC CHANNELS

The special aspect of security critical systems is the possibility of attacks.
Hostile subjects can manipulate the system by overhearing and manipulating
the communication between the subsystems. To distinguish private commu-
nication channels of a system from public channels, we use the two security
tags «private» and «public». A «private» channel is a channel a hostile party
has no access to. The hostile subject can neither overhear nor manipulate the
communication that takes place via the channel. Vice versa a hostile party can
overhear and manipulate all communications of a «public» channel. If neither
«private» nor «public» are used, we assume by default that the communication
channel is not publicly accessible.

Definition 2 (Private Channel). A «private» channel has the same semantics
as a normal channel withiAuToFocus, i.e. itis a dedicated connection from
one component to another.

Definition 3 (Public Channel). The semantics of a «public» channel without
secrecy and authenticity introduced in Section 3.6, is defined by the SSDs
shown in Figure 2. Using a «public» channel (Figure 2(a)) is an abbreviation
for having an intruder included in the model that has access to the channel
(Figure 2(b)). The behaviour of the intruder is defined by the threat model—for
example, the intruder usually can overhear, intercept or redirect messages. It
is possible to model this behaviour in a flexible way using ugingroFocus

State Transition Diagrams (STDs) (Wimmel and Wisspeintner, 2000).

The identification of private and public channels should be done during the
analysis phase of the system development process, right after the identification
of the security critical parts. Every security critical channel must be analyzed
with regard to accessibility—for the other channels, this is optional. The result
of this analysis is documented by using the tags for private and public channels.

<<public>>
N
A C/ data

(a) «public» Channel

A (data Intruder ()&' B

(b) Defined as an Intruder between the Two Agents

Figure 2 Semantics of a Public Channel

3.3. REPLACEABLE COMPONENTS

Conventional system structure diagrams always show a system in normal
operation, e.g. an ordinary electronic purse card component with the specified
functionality communicating with the point-of-sale component. In addition to
manipulation of the communication link (man-in-the-middle attack), another
attack scenario is imaginable: the attacker could try to communicate with the
rest of the systenn place ofthe purse card. In this case, there is no ordinary
purse card in the system, but a faked one (that in particular usually does not
contain private keys of ordinary cards, except if they leaked).

We mark components that can be replaced by faked ones by the attacker with
the «replace» tag, and components that can not be replaced with the «nonre-
place» tag. If neither «replace» nor «nonreplace» is used for a component, the
component is non replaceable by default.

Definition 4 (Replaceable Component). Figure 3 shows the semantics of a
«replace» component. Using a replaceable component (Figure 3(a)) is an ab-
breviation for specifying two different system scenarios. The first scenario de-
scribes the structure of the system with the specified compar{€igure 3(b)).

In the second scenario (Figure 3(c)) the attacker exchanges the component by
another component’. o> has the same component signature likeut has an
arbitrary behaviour that can be defined by the threat model.

In the development process, replaceable components should be identified
during the analysis phase together with the identification of private and public

Extended Description Techniques for Security Engineering

<<replace>> data
A G B
(a) «replace» Component
A < data B

(b) Scenario 1: Component not Exchanged

A C data B

(c) Scenario 2: Component Exchanged
Figure 3 Semantics of a Replaceable Component

channels. It is only necessary to analyze security critical components with
regard to replaceability.

3.4. ENCAPSULATED COMPONENTS

An encapsulated component is a component that only consists of not pub-
licly accessible subcomponents. In this way an attacker has no possibility to
manipulate or exchange the subsystems of this component. Furthermore, the
communication within the component cannot be overheard. The security tag
«node» is used to mark a component as an encapsulated one. The identification
of encapsulated components is done together with the identification of private
and public channels and replaceable components.

Definition 5 (Consistency Condition of «node»). A «node» component only
consists of «private» channels and «nonreplace» components.

One example for an encapsulated component is an automated teller machine
(ATM). An ATM is encapsulated in a way that unauthorized persons are not

8

able to manipulate system parts. Overhearing the internal communication is
also not possible.

3.5. ACTOR COMPONENTS

Most systems interact with their system environments. It is often desired to
illustrate the system environment in the graphical system design. Components
that are not part of the system are called actors. We point out actors by using
the tag «actor». A typical example for an actor is a system user. The system
user interacts with the system without being part of it.

Actor components can never be marked with the «critical» tag. Anactor is not
part of the system and therefore there is no need to analyze the actor itself with
respect to security aspects. But an actor can interact with our system in a way
that affects our security requirements. To visualize these critical interactions,
channels between actors and the system components can be annotated with the
«critical» tag.

3.6. SECRECY AND AUTHENTICITY

The mostimportant security properties of communication channels—in addi-
tion to integrity, availability and non-repudiation—are authenticity and secrecy.
For this purpose, we will introduce tags «secret» and «auth» for channels in
the SSDs. The security properties of channels are identified in the high-level
design phase, taking place after the activities of the analysis phase. It is only
necessary to specify security properties for security critical, public channels.

There are many possible definitions for authenticity and secrecy in the se-
curity literature (see (Gollmann, 1996)). In the following, we give a definition
based on our model.

During the high-level design phase, we assume that the defined requirements
of secrecy and authenticity are fulfilled automatically, if the corresponding tags
appear on the channels. Consequently these requirements restrict the possibil-
ities of an attacker. In the low-level design, the validity of these requirements
has to be ensured by proper mechanisms.

Definition 6 (Secret Channel in High-Level Design). A message sent on

a «secret» channel can only be read by its specified destination component.
Therefore, we can assume in high-level design that a «secret» and «public»
channel can not be read by the intruder. But the intruder could write something
on it. Figure 4 shows the semantics of a secret and public channel.

Definition 7 (Authentic Channel in High-L evel Design). A message received
on an «auth» channel can only come from its specified source component.
Therefore, an «auth» and «public» channel can not be written by the intruder.

Extended Description Techniques for Security Engineerin®

<<public>>
A N <<secret>> B
O data

(a) «secret» and «public» Channel

A <> data %/ data . B

Intruder

* The "S"

(b) Intruder can Write Data

circle represents a switch component that distributes all incoming data to all outgoing channels.

Figure 4 Semantics of a Secret and Public Channel

But the intruder could possibly read data from it. Figure 5 illustrates the se-
mantics of an authentic channel.

There are some relations between our notion of security critical and secrecy
and authenticity. A security critical channel references to data that should be
protected against attackers (see Definition 1). Secrecy and authenticity are
security properties. These security properties defines concrete requirements
concerning the protection of data against attackers.

Definition 8 (Consistency Condition of «secret» and «auth»). If a channel is
marked to be security critical and the communication is visible for an attacker,
the data sent via the channel must be protected in a suitable manner. In this
case, during the high-level design phase the protection of data must be ensured
by a security property. A «critical» and «public» channel must be «secret» or
«auth» or both.

3.7. INTEGRITY

We assume that «secret» or «auth» channels also provide message integrity,
i.e. a message received on an «auth» channel is guaranteed not to have been
modified. In future, the integrity property could also be modelled separately.

10

<<public>>
A N <<auth>> B
Q data

(a) «auth» and «public» Channel

A <>< data S data . B

X

/

Intruder

(b) Intruder can Read Data

Figure 5 Semantics of an Authentic and Public Channel

3.8. CHANNEL REQUIREMENTSIN LOW-LEVEL
DESIGN

In the low-level design phase, taking place after the high-level design phase,
the system specification is refined. In this phase, security functionalities can be
used to ensure the security properties and requirements.

We can define the usage of symmetric encryption, asymmetric encryption
and corresponding signatures to realize the requirements of secrecy and au-
thentification. The security tag «sym» marks a channel. It defines that the
realization of the channel must use a symmetric encryption algorithm to ensure
the secrecy requirements. Furthermore the «asym» tag is used to define the
usage of an asymmetric encryption algorithm.

It is also possible to specify the encryption algorithm that should be used
to guarantee secrecy. The security tag «encalg <Name> [Parameters]» can
be used together with a channel to specify the usage of a specific encryption
algorithm. We can specify additional parameters of the algorithm. For example
it is possible to define the key length of the encryption keys. Authenticity can
be realized by using specific authentification protocols. The tag «authprotocol
<Name> [Parameters]» defines a specific authentification protocol to be used.

Extended Description Techniques for Security Engineerind.1

By choosing a specific encryption algorithm for realizing secrecy, we per-
form a refinement step. Special encryption drivers are introduced to perform the
encryption and decryption tasks. The data that is sent between the two encryp-
tion drivers is encrypted. To realize a specific authentification protocol, special
protocol drivers are introduced. Furthermore, additional channels between the
protocol drivers are needed to allow bidirectional communication.

Afterthese refinements, the statements on access of the intruder to the channel
in Definition 6 and Definition 7 change for «public» channels: the intruder now
does have read and write access to the channel. The encryption mechanism on
the channel must ensure that the intruder cannot manipulate the channel in an
improper way, so that the security requirements stated by «secret» and «auth»
are still fulfilled.

Definition 9 (Secret and Authentic Channelsin Low-L evel Design). In low-
level design, «public» channels implementing secret or authentic communica-
tion have to be modelled by including appropriate security functionality.

A convenient way to do this is usirggcurity patternsSecurity patterns are
generic solutions for common security problems. Figure 6 shows such a pattern
for the simple case of encryption (guaranteeing secrecy). The communicating
components now include protocol drivers for encryption and decryption of
the messages, so the original channel is replaced by an encrypted one. This
encryption pattern could be extended by including protocol drivers for key
agreement, a public key server or a whole public key infrastructure. Other
security patterns, for instance providing auditing functionality, are possible.

4. EXAMPLE—ELECTRONIC PURSE
TRANSACTION SYSTEM

In the previous section, we have introduced extensions for SSDs to deal with
security requirements. Now, we use the extended SSDs to model an example
system from the area of E-Commerce, an electronic purse card system. The
given specification conforms with tt@ommon Electronic Purse Specification
(CEPS), an international standard for an electronic purse environment (CEP-
SCO, 2000). Figure 7 shows the complete system structure of the electronic
purse system consisting of several sub-components.

The system user possesses an electronic purse card. The card has some
amount of money stored on it and the user can pay with the card at a dealer
using a point-of-sale (POS) terminal. The electronic purse card is involved in
several security requirements. For example, together with other components
the electronic purse card must ensure that an attacker can not steal any money
from the whole transaction system. Therefore the card is a security critical com-
ponent («critical»). Furthermore, the purse card should be realized by a single
integrated chip. It is an encapsulated component («node») and consequently

12

<<public>>
A ~_s<encalg <Name> [Parameter]>> B
Q data

(a) «public» Channel using a Specific Encryption Algorithm

A Jyenc data)__enc(data
(data) . enc(data)

data

A Decrypt Encrypt
Intruder

(b) Intruder can Read and Write Encrypted Data

Figure 6 The Encryption Security Pattern

we assume an attacker has no possibility to overhear or manipulate the com-
munication within the electronic purse card. An attacker could try to produce
a faked card and he could replace the valid card by the faked one. The security
tag «replace» of the componeankctronicPurse Visualizes this possibility.

The electronic purse card can communicate with the other components over
its interface. It offers ports to read the balance, decrease the balance and set
the balance to a specific value. Tggpa1 operation of the card is used by the
Pos, a card loading terminal at the bank of the card owngsugrBank) and by
thecardreader cOmponent. The operation of reading the balance is not security
critical because everybody who possesses an electronic purse is allowed to read
the stored balance of the card. Consequently the chagsgla andreturnBal
do not have the «critical» tag. But an intruder could build a special adapter
to overhear all communication between the electronic purse card and the other
components. To express this possibility the communication chagagis,
returnBal, decreaseBal andsetBal are marked with the <<pUb|iC» tag.

If the user wants to load money onto his card, he must go to his bank
(1ssuerBank) and use a special card terminal. The chanwetal is used to
transfer money from his bank account to the card. This channel is security
critical, because it affects the security requirement about an attacker stealing

Extended Description Techniques for Security Engineerind.3

<<critical>> <<auth>>

&

loadCard(int)

N <<critical>> <<public>>
returnBal(int <<critical>> <<auth>> <<secret>> <<critical>>
IssuerBank cashCredit(int) AcquirerBank
* %
<<public>> <<critical>> <<critical>>
getBal <<public>> <<public>>
<<auth>> <<auth>>
setBal(int) <<secret>>
cashCredit(int)

X

<<critical>> <<public>>

ElectronicPurse

<<public>>
returnBal(int)

<<public>>
getBal

g?%

<<critical>> <<auth>> <<critical>>
<<replace>> decreaseBal(int) <<replace>>
<<node>> <<node>>

POS

<<public>>
getBal

<<public>>

<<public>> <<public>> pay
returnBal(int
returnBal(int) <<public>> (int)
getBal .
<<node>> <<public>>
getBal <<actor>>
ézrr?jﬁ)?lae(:;? <<public>> User

Figure 7 Electroni

returnBal(in

&

¢ Purse Card System

14

money. We use the property of authentification («auth») to ensure that the card
and the card terminal are valid.

The card reader is a simple device for the user to check the amount of money
that is stored on the card. An attacker can exchange the card reader by another
component («replace»). On the other hand the card reader component is en-
capsulated («node»). No security requirements are defined for this component
and therefore the component is not security critical.

Theros component is a card terminal located at a dealer. The user can insert
the electronic purse card into the terminal in order to pay for goods pdsis
directly involved in the money transaction process. Therefore this component
is security critical. Theos is encapsulated to prevent manipulations within the
unit. But a malicious dealer has the possibility to exchange the POS terminal
by a faked unit.

The ros component can instruct the electronic purse card to decrease its
balance by a given amount. The operati@areaseBal is part of the money
transaction process and the communication to perform the operation is security
critical. To comply with our security requirement that an intruder cannot steal
any money, we must ensure that only a vald is able to decrease the amount
of money on a money card. Thes must authenticate itself in a way that the
card is sure to communicate with a vatigs. This fact is visualized in the SSD
by the «auth» tag annotated to thereaseBa1l channel.

The dealer can submit the earned money to his bagju{rerBank) using
the casnCredit channel. This channel is security critical. The communication
medium is a standard telephone line and the potential attacker has possibilities
to overhear and manipulate the communication. This fact is expressed using
the «public» tag on this channel. To ensure that an attacker can not overhear or
manipulate the transferred data, the «secret» and «auth» tags are used.

The channekasncredit between the two banks is used to transfer money
from one bank to the other. The communication takes place via an open network
(«public» channel). We must ensure secrecy and authenticity for this channel
to protect the transaction data. Both bank components are security critical, but
we do not see arisk that a potential attacker can act as a faked bank component.
Thus the «replace» tag is not used for both banks.

Finally let us have a look at th&ser. The user is not part of our system.
Therefore the «actor» tag is used. The user can initiate the paying process
at aros. The initiation of the paying process is not security critical (it just
corresponds to inserting the card, whereas the amount of money to be withdrawn
is negotiated outside of the system). The critical part of the paying process takes
place between the money card and the Furthermore, the user can load the
card with some amount of money. During this action, an amount of money
is transferred from his bank account onto the card. This operation is security
critical because an attacker could try to transfer money from a foreign account

Extended Description Techniques for Security Engineerind.5

to his own electronic purse card. Thus we need some kind of authentification
to perform this operation, e.g. the user must enter a PIN code before the money
transaction is performed.

5. CONCLUSIONSAND FURTHER WORK

This work is only the beginning of an effort to extend graphical description
techniques for distributed systems with security aspects to support methodical
development of security critical systems. We used the CASEAantoFo-
cus, the description techniques of which are related to UML-RT, for its sim-
plicity and clear semantics and the possibility to give our security extensions a
straightforward and unambiguous meaning.

We showed how to extenduToFocus system structure diagrams by se-
curity tags, both for high-level and low-level design. The transition from high-
level to low-level design is aided by the possibility to use security patterns. The
description techniques were illustrated with the help of an example from the
field of E-Commerce, an electronic purse card system.

We focused on the consideration of channels and system structure. In fu-
ture, additional security properties such as integrity and availability are to be
included. The specification of channels and components in low-level design
needs to be detailed, using classifications as pointed out in (Eckert, 1998). Be-
sides, it seems very promising to further examine security patterns providing
generic architectures for specific security functionality and evaluate their use
within the development process. The refinement of security requirements and
security functionalities together with its influence on correctness verification is
also part of our research activities.

Also, state transition diagrams (STDs) specifying the behaviour of a com-
ponent can be extended in a similar way with security properties. For this
purpose, it suggests itself to classify the data received and sent on the ports and
to use models such as Bell-LaPadula or non-interference—similar as it is done
in (Jurjens, 2001) for Statechart diagrams. When the behaviour of components
is specified, formal proofs can be carried out (by hand or automatically via
model checking) that the specified security properties are fulfilled.

EETs (extended event traces) can also be enriched by cryptographic prim-
itives and security properties, and thus be used to specify and verify security
functionality of a component. Examining software development of security
critical systems with the help ciuToFocus EETs (using protocols from the
CEPS purse card system as a case study) is subject of ongoing work.

Acknowledgments

Helpful comments and encouragement from Oscar Slotosch are gratefully acknowledged.

16

References

Bell, D. E. and LaPadula, L. (1973). Secure computer systems: Mathemati-
cal foundations and model. Technical Report M74-244, The MITRE Corp.,
Bedford MA.

Broy, M., Dederich, F., Dendorfer, C., Fuchs, M., Gritzner, T., and Weber, R.
(1992). The Design of Distributed Systems—An Introduction to FOCUS.
Technical Report TUM-19202, Technische Univeritat Minchen.

Broy, M. and Slotosch, O. (1999). Enriching the Software Development Process
by Formal Methods. IrCurrent Trends in Applied Formal Methods 1998
pages 44-61.

Burrows, M., Abadi, M., and Needham, R. (1989). A logic of authentication.
Proceedings of the Royal Society of Londqra26:233-271.

CEPSCO (2000). Common electronic purse specifications: Business require-
ments. Version 7.0, available from http://www.cepsco.com.

Common Criteria (1999). Common criteria for information technology se-
curity evaluation version 2.1. Technical report, Communications Secu-
rity Establishment (Canada), Service Central de la Sécurité des Systemes
d’Information (France), Bundesamt fur Sicherheit in der Informationstech-
nik (Germany), Netherlands National Communications Security Agency,
Communications-Electronics Security Group (United Kingdom), National
Institute of Standards and Technology (United States), National Security
Agency (United States).

Eckert, C. (1998)Sichere, verteilte Systeme — Konzepte, Modelle und Systemar-
chitekturen professorial thesis, Technische Universitat Miinchen.

Goguen, J. A. and Meseguer, J. (1998). Security Policy and Security Models.
In Proceedings of 1982 IEEE Symposium on Security and Privacy

Gollmann, D. (1996). What do We Mean by Entity AuthenticationPioceed-
ings of 1996 IEEE Symposium on Security and Privacy

Huber, F., Molterer, S., Rausch, A., Schatz, B., Sihling, M., and Slotosch, O.
(1998a). Tool supported Specification and Simulation of Distributed Sys-
tems. Ininternational Symposium on Software Engineering for Parallel and
Distributed Systempages 155-164.

Huber, F., Molterer, S., Schatz, B., Slotosch, O., and Vilbig, A. (1998b). Traffic
Lights—An AutoFocus Case Study. 1998 International Conference on
Application of Concurrency to System Desigages 282—-294. IEEE Com-
puter Society.

ITSEC (1990). ITSEC. Information Technology Security Evaluation Criteria—
Harmonised Criteria of France, Germany, the Netherlands, the United King-
dom. Version 1.

Extended Description Techniques for Security Engineerind. 7

ITU (1996). ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).
ITU-TS, Geneva.

Jones, M. P. (August 1993)n Introduction to Gofer

Jirjens, J. (2001). Towards Development of Secure Systems using UML. In
FASE '01: Fundamental Approaches to Software Engineetimgppear.

Lotz, V. (2000). Formally Defining Security Properties with Relations on
Streams. In Schneider, S. and Ryan, P., editBlsctronic Notes in The-
oretical Computer Sciencgolume 32. Elsevier Science Publishers.

Lowe, G. (1996). Breaking and fixing the Needham-Schroeder Public-Key Pro-
tocol using FDR. In Margaria and Steffen, editof&CAS volume 1055 of
Incs pages 147-166. sv.

Paulson, L. C. (1998). The inductive approach to verifying cryptographic pro-
tocols.Journal of Computer Securit$(1-2):85-128.

Philipps, J. and Slotosch, O. (1999). The Quest for Correct Systems: Model
Checking of Diagramms and DatatypesAlsia Pacific Software Engineering
Conference 1999

Slotosch, O. (1998). Quest: Overview over the Project. In Hutter, D., Stephan,
W., Traverso, P., and Ullmann, M., editoipplied Formal Methods—FM-
Trends 98 pages 346—-350. Springer LNCS 1641.

Thayer, F., Herzog, J. C., and Guttman, J. D. (1998). Strand Spaces: Why is
a security protocol correct? IRroceedings of 1998 IEEE Symposium on
Security and Privacy

Thompson, S. (1999Haskell: The Craft of Functional Programmingddison-
Wesley Longman.

Wimmel, G., Létzbeyer, H., Pretschner, A., and Slotosch, O. (2000). Specifica-
tion Based Test Sequence Generation with Propositional Ldgignal on
Software Testing Verification and Reliabilit}0:229-248.

Wimmel, G. and Wisspeintner, A. (2000). The Needham-Schroeder Protocol—
an AutoFocus Case Study. Internal report, Technische Universitat Miinchen.

