Specification-based Test Generation for
Security-Critical Systems Using Mutations *

Guido Wimmel and Jan Jiirjens

Department of Computer Science, Munich University of Technology
Arcisstrasse 21, D-80290 Miinchen, Germany
phone: +49-89-28928362 fax: +49-89-28925310

wimmel | juerjens@in.tum.de

Abstract. In specification-based testing, test sequences are generated from an ab-
stract system specification to provide confidence in the correctness of an implementa-
tion. For security-critical systems, finding tests likely to detect possible vulnerabilities
is particularly difficult, as they usually involve subtle and complex execution scenarios
and the consideration of domain-specific concepts such as cryptography and random
numbers.

We present research aiming to generate test sequences for transaction systems from a
formal security model supported by the CASE tool AuToFocus. The test sequences
are determined with respect to the system’s required security properties, using mu-
tations of the system specification and attack scenarios. To be able to apply them to
an existing implementation, the abstract test sequences are concretized.

Keywords. Test Case Generation, E-Commerce Systems, Security-Critical Systems,
Formal Methods, Test Specification, Validation and Analysis, Test Tools, Computer-
aided Software Engineering (CASE), AutoFocus.

1 Introduction

Security aspects are playing an increasingly important role in the development of distributed
systems. However, developing security-critical systems is very difficult. Although undetected
vulnerabilities can cause enormous damage, often security-related requirements are only
formulated imprecisely and considered in the development in an ad-hoc manner. Controlling
the quality of such applications is a hard problem, and in many cases vulnerabilities are
found after the system has been put into operation.

Formal models can contribute to achieving high confidence in a system’s security. A
large number of modelling and verification approaches has been proposed (see [GSG99]
for an overview), ranging from specifications in general languages such as CSP or TLA to
protocol-specific formalisms such as CASPER (a protocol definition language that can be
translated to CSP) or BAN (a logic modelling the actions and beliefs of the parties during
execution of the protocol).

Motivated by this, our work presented in [WWO01,JW01a] aims to integrate security as-
pects into systems development, based on formal models reflecting the security requirements
and threat scenarios. Important concepts are tool support and use of description techniques

* This work was partially supported by the German Ministry of Economics within the FairPay
project.

understandable for non-expert software engineers. The formal models can later be used for
certification purposes (e.g. based on the Common Criteria for Security Evaluation), leading
to a high assurance with respect to the application’s quality.

However, in general the actual implementation is much more complex. To allow proofs of
security properties, abstraction techniques are used: in models of cryptographic transactions,
messages, keys and random numbers are usually represented by abstract data entities which
can be arguments to abstract operations such as encryption or hashing, and part of the
actual messages exchanged may have been left out. Besides, as the security model is usually
developed independently of the implementation (mostly, after the implementation, though
this is not desirable), it cannot be concluded from the correctness of a security model that
the implementation is secure.

Confidence in the correctness of an implementation can be gained by extensive testing.
Testing for security holes is usually restricted to penetration testing (a so-called “tiger-team”
of experts manually tries to break the system or tools such as SATAN are used to search for
known vulnerabilities). This approach is not satisfactory as it depends largely on the skill
of the employed tiger team or the knowledge encoded into the tool, which does not consider
application-specific security requirements.

In this paper, we show how to complement this approach by generating test sequences
from a security specification. The aim is to find those test sequences that are most likely to de-
tect possible vulnerabilities. For this purpose, we adapt methods from classical specification-
based testing to the application domain of security-critical systems. Specifically, we include
domain-specific concepts such as cryptography, knowledge or access to secrets, and threat
scenarios. Test sequences likely to detect vulnerabilities are computed using mutations of
the specification that lead to violation of the security requirements.

Besides, we show how to translate the abstract test sequences derived from the secu-
rity model to concrete test sequences that can be applied to an existing implementation.
The approach is demonstrated at the example of a part of the Common Electronic Purse
Specifications (CEPS), a proposed global standard for purse cards.

Providing a possibility to perform security testing within a general CASE tool is an
important feature of our work, since it lowers the threshold for considering security in the
development process at all. Also, specification-based testing may be a promising way of
introducing formal methods into the industrial development context, as it has been argued
before (for security-critical systems, e.g. in [FBGL94]). The work presented here builds
on experience for example from using specification-based test sequences in firewall testing
[TWO1Db].

This paper is organized as follows. In Section 2 we introduce the tool AuToFocCUS and
show how to specify security-critical systems using an extension of AUTOFOCUS models. In
Section 3 we describe our approach of generating security related test sequences from such
specifications and their concretization to implementation test sequences. Our case study
CEPS is presented in Section 4. We end with references to related work (Section 5) and
conclude in Section 6.

2 Security Models in AuToFocus

To model and test security-critical systems, we use the tool AuToFocus. AuTOFOCUS is a
CASE tool for graphically specifying distributed systems. It is based on the formal method
Focus [BS01], and its models have a simple, formally defined semantics. AUTOFOCUSs offers

standard, easy-to-use description techniques for an end-user who does not necessarily need
to be a formal methods expert, as well as state-of-the-art techniques for validation and
verification. It features simulation, code generation, test sequence generation and formal
verification of the modelled systems.

Systems are specified in AUTOFOCUS using static and dynamic views, which are concep-
tually similar to those offered in UML-RT. To be able to model security-critical systems,
we included security aspects into the AUTOFOCUS description techniques. In this section,
we briefly explain the extensions together with an abstract syntax for the relevant subset
of AuToFocus (excluding hierarchy). More motivation and examples on security modelling
are given in a less formal way in [WW01,JW01a].

System Structure Diagrams and Attack Scenarios AUTOFoCUS System Structure
Diagrams (SSDs) are similar to UML component diagrams and describe the structure and
interfaces of a system. In the SSD view, a system consists of a number of communicating
components, which have input and output ports for sending and receiving messages. The
ports are connected via directed channels.

In the abstract syntax, an SSD is a triple (Comp, Ports, Channels), where ports are as-
sociated to components by comp(p) € Comp, and channels are associated to source and
destination ports by sourceP(c) € Ports and destP(c) € Ports. A component ¢ can have local
variables v € 1Var (where 1Var is a set of variable names) such that comp(v) = c.

For security-critical systems, we have to assume the presence of an attacker trying to
exploit security holes. The capabilities of the attacker are defined using threat scenarios
incorporated into the specification, which should result from a risk analysis. For this purpose,
we define a set SecAttr = {critical, public, replace, node} of security attributes, and a mapping
secattrSSD : (Comp U Channels) — P(SecAttr) associating a set of security attributes to any
component or channel (here P(X) is the set of subsets of X). Based on the security attributes,
the relevant threat scenarios for the system can be generated automatically by AuToFocus.

The meaning of the security attributes is as follows:

— If critical € secattrSSD(c) for a component or a channel ¢, security-critical information is
processed in the component or transmitted via the channel. This is used as an indication
that security verification and testing must focus on these parts of the model.

— If public € secattrSSD(ch), then ch is a channel whose messages can be accessed and
manipulated by the attacker. The corresponding threat scenario is obtained by replacing
ch by a set of additional channels such that the communication on ch passes through a
component “Intruder”.

— If public € secattrSSD(c) for a component ¢, ¢ can be replaced by an internal attacker
having access to all secrets contained in ¢ (e.g., the attacker can access and manipulate
the program)

— If replace € secattrSSD(c) for a component ¢, ¢ can be replaced by an attacker not
knowing the secrets of ¢ (e.g., the attacker tries to simulate the behaviour of ¢ without
having access to it)

— If node € secattrSSD(c) for a component ¢, then c is an encapsulated component, to
whose internals an attacker has no access.

Fig. 1 (a),(b) shows an SSD with security attributes and the corresponding threat sce-
nario automatically generated by AuTOFocus. Note that the behaviour of the Intruder

(/* node ¥ (7* critical public)*/ (/*_node ?

As oD TN Ao

/* critical publicl*

Bt oA: TMessage

| 0g: TMessage

©)

(a)

Atol:TMessage

Q)
ItoA:TMessage
O

IltoB:TMessage

Q)
log:TMessage
5 Btol:TMessage 9 g O

(b)
Fig. 1. SSD with Security Attributes and Threat Scenario

component must also be specified, by an AUTOFocUs State Transition Diagram or a con-
straint logic program modelling its possible actions (e.g., forwarding, storing, inhibiting and
faking messages).

Data Types and Cryptography AuTOFocCUs offers hierarchical data types that are
defined using the functional language Quest [PS99], which is similar to Haskell [Tho99]. For
models of security-critical transactions, data types for keys, messages and cryptographic
operations are provided, as follows:

data TKey = EmptyKey | K1 | K2 | ... | Kn;
data TMessage = Empty | Msgi(...) | ... | Msgn(...)
| Encr(getEncKey:TKey, getEncMsg:TMessage)
| Mac(getMacKey:TKey,getMacMsg: TMessage)
| Hash(getHashMsg:TMessage) | Key(TKey) ;
fun verifyMac(k,Mac(kl,msg),msgl) = ((k == k1) && (msg == msgl))
| verifyMac(x,y,z) = False;

{K1,....Kn} in the definition of type TKey is the set of key names, and the Msgl, ..., Msgn
stand for possible messages types used in the protocol (for example, Init (getInitM: Int) for
an initialization message m taking one integer parameter (the amount) that can be accessed
via the expression getInitM(m). Encr, Mac and Hash represent encryption, computation of a
message authentication code (MAC) and cryptographic hashing, and verifyMac is a function
definition representing MAC verification.

For each component ¢ it is specified by knows(c) which set of keys ¢ currently “knows”
(initially, this is determined by the threat scenario) and by access(c) which set of keys it
is allowed to know. If one denotes by uses(c) the set of keys syntactically contained in the
behavioural specification of ¢, then uses(c) C knows(c) C access(c) is a necessary consistency
condition for a secure system specification that can be checked automatically by AuTo-
Focus. Key ownership and access is tied to the components because in the AuToFocuUs
SSDs (e.g. in the CEPS model) they represent the concrete instances of the system entities.
In dynamic models, this mapping can be realized using a role concept.

Behavioural Specification - State Transition Diagrams Traditionally, techniques sim-
ilar to message sequence charts are used to specify security protocols. However, to specify
complex security-critical transaction systems with many possible interactions, such as CEPS,
we consider automata more suitable, as (1) their semantics is better understood, so the be-
haviour can be modelled more precisely, and (2) the complete behaviour of a participant
of the protocol can be specified — explicitely including security checks on the incoming
messages and failure behaviour, which would otherwise lead to a multitude of possible com-
munication scenarios.

Automata are represented in AUTOFoCUS by State Transition Diagrams (STDs), which
are similar to a simplified fragment of Harel’s statecharts. Formally, an STD is a pair
(States, Transitions). Additionally, we fix a set iVar of transition-local input variables and
denote with Exp the set of expressions in the Quest functional language, which can in
particular contain the input and component variables.

Each transition ¢ € Transitions is associated with

— source and target state source(t),target(t) € States,

— pre(t) € Exp, where ¢ is a boolean expression, the precondition for firing ¢,

— inp(t), a finite sequence of pairs (p,x), the input expressions, where p € Ports and
z €iVar !,

— outp(t), a finite sequence of pairs (p, d), the output expressions, where p € Ports is a port
and d € Exp an expression output to p when ¢ is fired, and

— post(t), a finite sequence of pairs (v,d) where v € IVar and d € Exp, the postcondition
that assigns d to v when ¢ is fired.

We assume that for each component C' in an SSD, there is an STD D that de-
fines its behaviour. In the concrete syntax of STDs, the transitions are annotated with
“pre(t):inp(t) :outp(t): post(t)”, where inp(t) is denoted as “inp;?x1;inp2?x2;...”, outp(t) as
“outq'termsy; outslterms;...” and post(t) as “lvar; = termy;lvarey = terms;...”.

As for the SSDs, we associate security attributes to the states and transitions of an STD

by defining a mapping secattrSTD : States U Transitions — P(SecAttr):

— If critical € secattrSTD(tr), where tr € Transitions, ¢r is considered security-critical. A
faulty implementation of ¢r can lead to violations of security properties, making such
transitions the focus of test sequence generation.

— If critical € secattrSTD(s), where s € States, then computations where state s is reached
are considered security-critical.

The other security attributes have no meaning for states and transitions. In particular,
we do not mark states or transitions with public, assuming that an intruder can either
manipulate the complete behaviour of a component or not manipulate it at all.

Extended Event Traces Extended Event Traces (EETs) in AUTOFOCUS represent system
runs, similarly to message sequence charts [ITU96]. We will use EETSs to represent test
sequences showing the communication behaviour for a test scenario.

! In general, input expressions can also use pattern matching, defined as an abbreviation for an
extended precondition and a substitution for the pattern variables.

Security Requirements In addition to the threat scenario, the security requirements
have to be stated. Security requirements will be formulated as first order predicates over
execution sequences. Alternatively, formulas in temporal logic can be used, as they can be
converted to such predicates. Formally, an execution sequence ¢ is a valuation of the ports,
local variables and components for each execution step: o : (PortsUlVarUComp) xN — Exp.
For a component ¢, o(c,t) evaluates to its current control state. With o(z), we denote the
restriction of o to the sequence of valuations of z. Along the lines of [WLPS00], the semantics
of an AuTOFOCUS system model can be given as a predicate ¥, such that ¥(o) = true if
and only if o is a valid execution sequence of the system.

Security requirements are often defined on complex messages making use of encryption.
Similarly to [Pau98], we define parts : Exp — P(Exp) to be set of all subexpressions that
can be obtained by decomposing an expression into its parts; synth : P(Exp) — P(Exp) to
map a set M of messages to the set of messages given by arbitrarily combining the messages
in M; and analz : Exp x Comp — P(Exp), such that analz(e, ¢) is the subset of parts(e) that
can be obtained (possibly using decryption) with knowledge of the keys in knows(c). Then,
for example, Vo : ¥(0) = &1 (o), where
&1 (o) := -3k : k ¢ access(Intruder) A k € U;analz(o(A.out, i), Intruder),
specifies that the intruder should not be able to obtain a key k& he must not have access to
via A’s output port A.out.

There are different types of security requirements having a similar structure (e.g. re-
quirements on key secrecy or secure logging). AUTOFOCUS supports specification patterns,
which can be used for this purpose. Building a library of security requirement patterns on
different levels of abstraction is subject of current work. Note that for the test generation, we
assume that (as in our example) sufficiently detailed information is given so that the secu-
rity requirements, which on an abstract level are often non-functional, can be formulated as
functional requirements in the model. Obtaining and relating security requirements between
different abstraction levels (where new vulnerabilities can be introduced) is an important
issue, but out of scope of this paper. Preservation of security properties by refinement has,
for example, been considered in [Jiir01].

3 Generating Test Sequences for Vulnerabilities

In specification-based testing (see e.g. [DBGO1] as a more recent example of the many
approaches documented in the literature), test sequences are generated from a specification
and used to verify the implementation. To test an implementation for vulnerabilities, we
compute test sequences from the security model covering possible violations of the security
requirements.

In terms of the above specification framework, a test sequence is a projection of an
execution sequence o to the ports, thus describing the input/output behaviour. Test scenarios
are given by test case specifications, formulated as predicates @;(o). Test sequences for &;
then are valid executions fulfilling the @; and thus can be computed as solutions to ¥ A &;.
In AuToFocus, a constraint solver is used for this purpose [LP00]. To ensure termination
of the search (provided the expressions on the transitions terminate), o must be limited by
a maximum length.

e € Exp le(e) |

a of type Bool €(a) U —a U true, if a of type Bool missing or wrongly
implemented condition
a=="b {(a ==y)ly € e(b)} U {(z == b|z € e(a)}U|faulty check,e.g. for an
true identity of a party
aAbd (analogous to a == b, possibly also boolean operator
(aVy),(xVDd) (A replaced by V),...) replacement
(similarly for other boolean operators)
Encr(k, a) {Encr(k’, a)|k" € knows(c)}U key confusion

{Encr(k, z)|z € €(a)}
Mac(k, a), Hash(a)|(analogous to Encr(k,a))

Key (k) {Key(k")|k" € knows(c)}
verifyMac(a) {verifyMac(z)|z € e(a)} U true faulty MAC verification
Msgl(ai,...,an) |{Msgl(zi,asz,...,...;an)|z1 € €(a1)}U... |corrupted message
U{Msgl(ai,asz,...,...,xn)|zn € €(an)}
UEmpty
is_-Msg1(a) {is_-M sgl(z)|z € €(a)} U true missing type check

Fig. 2. Possible mutations
3.1 Vulnerability Coverage Using Mutations

As is is not feasible to exhaustively test every behaviour of a security-critical system, first
appropriate test case specifications have to be selected. For security testing, the aim is to
cover a large number of possible vulnerabilities.

One can use structural coverage criteria such as state or transition coverage on the models
[OXL99] and restrict them to those that are marked “critical”, but this has the drawback
that it does not take into account the security requirements.

The difficulty with defining coverage criteria related to the security requirements is that
they are mostly universal properties. Therefore, a security requirement ®@; can only be used
to verify the model, not the implementation. If a trace fulfilling —®; is found, the model
violates the security requirement and must be corrected. Otherwise, ®@; by itself cannot be
used to select relevant traces, as all traces satisfy &;.

In this case, mutation testing resp. fault injection techniques [Off95,VM98] prove to be
promising approaches. In mutation testing, errors are introduced into a program (leading to
a set of mutants), and the quality of a test suite is measured by its ability to distinguish the
mutants from the original program (to “kill” the mutants). Fault injection works in a similar
way, but is often also used for reliability evaluation (determining if a program tolerates a
perturbation of the code or data states).

We introduce errors into the specification of the security-related behaviour, generate
the threat scenarios and determine if and how the introduced errors can lead to security
violations. The introduced errors can correspond to errors in the implementation or to
attacks leading to such errors, e.g. subjecting a smart-card to environmental stress.

In our formal framework, mutations are generated by selecting a transition ¢ of the STD
of a component to be tested and applying a mutation function € : Exp — P(Exp) either to
the precondition pre(t), or to one of the output expressions or postconditions. This leads to
a set of mutated transitions ¢’.

The mutation function € can be based on general possible mutations for expressions
and operands (e.g. operator or operand replacement) proposed for Ada by Offutt [OVJ96].

For security testing, € should be based on common programming errors likely to lead to
vulnerabilities, such as missing plausibility checks or wrong use of identities [AKS96]. In
addition, in our model cryptography must be taken into account, leading to mutations
corresponding to confusion of keys or secrets or missing or wrongly implemented verification
of authentication codes.

Figure 2 shows such mutations, based on the AUTOF0ocUSs model described in Section 2.
The actual mutation function € to be applied depends on the available time and computing
power. Only a part of the mutations shown in the table can be selected (e.g. only replacement
of boolean (sub-)expressions by true corresponding to missing checks), or other mutations
(e.g. from [OVJ96]) can be added.

Now, we proceed as follows. For the component ¢ to be tested, we determine the set of
mutated STDs (derived by replacing a transition ¢ with). The transitions ¢ are chosen from
the transitions marked critical. We now generate the threat scenarios, but take the mutated
version of ¢ instead of the original one. This way, we obtain a mutated system model ¥'. For
each security requirement @;, we then try to compute a system run satisfying ¥’ A —=®; using
the test sequence generator. If this is successful, it indicates that the mutation of ¢ to t;-
introduces a vulnerability with respect to &; and the trace o shows how it can be exploited.

The input data to ¢ from all traces o determined this way gives us a test suite for
¢, covering possible vulnerabilities with respect to the security properties and the attack
scenario. To determine the expected outputs, we use the original specification of ¢ as an
oracle.

3.2 Concretization of Abstract Tests

The abstract test sequences computed from the formal security specification still have to be
translated to concrete test data (i.e., byte sequences) that can be used to test the actual
implementation.

In many cases, concretization can be achieved using straightforward mappings between
abstract and concrete test data [DBGO1], and executing the test using a test driver that
passes the inputs to the component to be tested and verifies if the outputs are as expected.
However, testing security critical systems involves additional complications, mainly because
of non-determinism, for example arising from randomly generating keys and nonces, and the
use of cryptographic primitives:

— In formal specifications, cryptographic primitives are usually modelled symbolically,
rather than as sequences of bytes, to make verification feasible (see [AJ01] for a justifi-
cation of this general approach). The test driver has to map these symbols to sequences
of bytes in a consistent way. Conversely, sequences of bytes created and output by the
tested component (for example random values such as nonces or session keys) must be
stored by the test-driver and used in place of the relevant symbols in the test-values of
the remainder of the execution.

— Sometimes, values (such as transaction numbers or time stamps) are abstracted away in
formal specifications to simplify verification (and because they are seen to be independent
from a security property at hand). These have to be included in the concrete test-data
in a consistent way.

— If encryption is used, the test driver must know the corresponding keys and encryption
algorithms to be able to compute the encrypted input data and verify encrypted output
data.

— Hash values or message authentication codes contained in the output data can only be
verified when the complete data that was hashed is available to the test driver.

We fix a set of transaction variables TransV and define a concretization of abstract
messages by mapping each message type M in the data type definitions (see Section 2, e.g.
Init) to a sequence

concrete(M) : dM,d}, ..., dM of concrete data elements d € Z U TransVUExp. Thus,

dM can be

k3
— an integer value (corresponding to a constant sequence of bytes)

— a transaction variable (used to represent transaction data such as timestamps to be
stored by the test driver)

an AUTOFoOCUS expression, in which message M can be referenced by “this”

In the last case, the expression is evaluated and the result is again concretized. The
transaction variables v € TransV are associated with a set values(v) C Z of possible values.
In addition, each data element has to be assigned a field length, which we omit here for
simplification. Keys k are mapped directly to a transaction variable concrete(k) : d¥ €
TransV. The actual concretization, i.e. the values for the dM and values(v) must be provided
by the developer. See Section 4 for an example from the CEPS study.

An algorithm for the corresponding test driver is given in Fig. 4. It uses the algorithms
gen_sequence and verify_sequence (see Fig. 3) to generate concrete test data from ab-
stract output messages, resp. to compare abstract input messages to the test data received.
In verify_sequence, first(s) denotes the prefix of s corresponding to dM, removefirst(s)
denotes the remaining part of s.

The idea of the algorithms is as follows. Constants in concrete(M) are passed directly to
the implementation or compared with the received data. If a transition variable v appears
in concrete(M) for an output message, either a new concrete value is chosen for v, or an
already chosen value is added to the store store of the test driver. When data is received
corresponding to v, it is either compared to the value already chosen, or the received value
is added to the store. Encrypted messages, hashes and message authentication codes can be
computed using the data available on sending. On reception, it is possible that a key or a
part of the data to be hashed is unknown to the test driver, so gen_sequence would choose
its own (most likely, wrong) concrete values thus changing the store. In this case, instead a
condition is added to conditions. At each later step of the sequence, the test driver checks
if those conditions become evaluatable and if they can fail. The processing of messages by
the test driver is repeated for each step of the test sequence (sending or receiving a message
M apstr to/from port p of the component under test). Note that if more than one transaction
is to be tested using a single test sequence, the store must be reset between the transactions.
In addition, in some cases a fixed prolog to the test sequences may have to be generated by
the test driver.

4 The CEPS Case Study

As an example case study, we examined a part of the Common Electronic Purse Specifica-
tions (CEPS). CEPS define requirements for a globally interoperable electronic purse scheme
providing accountability and auditability. The specifications outline overall system security,
certification and migration. For more detail on CEPS cf. [CEPO01].

VAR store : P(TransV x Z) = 0, conditions : P(Exp) = 0;

algorithm gen_sequence(Mgpstr)
{compute concrete data from abstract message Mgpsir }
S< €
if Mypstr = Encr(k,) or Mapstr = Mac(k,x) or Mgpstr = Hash(x):
concr_msg < gen_sequence(r)
if Mypstr = Encr(k, z) or Mypstr = Mac(k, x): concer_key < gen_sequence(k)
apply encryption, mac generation or hashing to concr_msg; append to s
else determine message type M of Mapser; (d1,...,d};) < concrete(M)
forie{l...M,}:
if dM € Z: append dM to s
elseif dM € TransV:
if dx : (dlM,x) € store: append x to s
else choose z € values(d); append = to s, store « store U (d, x)
elseif d € Exp: append gen_sequence(evaluate(d} [this < M abstr])) to s
return s

algorithm verify_sequence(Mgpstr,)
{verify concrete data s w.r.t. abstract message Mpsir }
if Mopstr = Encr(k, x):
if 3k : (k,v) € store: s' < decrypt(v,first(s)); verify_sequence(z,s'); s < removefirst(s)
else conditions < conditions U (d = s)
elseif Mypsir = Mac(k,) or Mapser = Hash(x):
if gen_sequence(z) computable without changing store
and 3k : (k,xz) € store (for Mypser = Mac(k, x)):
s’ « gen_sequence(x); compare hash(s') resp. Mac(v,s') to first(s)
$ < removefirst(s)
else conditions < conditions U (dM = s); s « removefirst(s)
else determine message type M of Mupsir; (di, ... ,d%n) < concrete(M)
forie{l1...M,}:
if dM € Z: compare(first(s),dM); s < removefirst(s)
elseif dM € TransV:
if 3z : (dM, x) € store: compare(s,); s < removefirst(s)
else store < store U (d2, first(s)); s < removefirst(s)
elseif dM € Exp: verify sequence(evaluate(d [this < M _abstr]), s)
return false if any comparison failed

Fig. 3. gen_sequence and verify_sequence

algorithm do_test
for each step (p,Musstr) in test sequence
if output message: send gen_sequence(Mgpstr) to p
else wait for input s on p (fail on timeout)
if verify_sequence(Mpstr,s) = false: fail
if 3 ¢ € conditions: ¢ evaluatable and evaluate(c) = false: fail

Fig. 4. Test Driver Algorithm

10

We consider a central part of CEPS, the (unlinked, cash-based) load transaction, which
allows the cardholder to load electronic value onto a card in exchange for cash at a load
device belonging to the load acquirer. The participants involved in the transaction protocol
are the customer’s card, the load device and the card issuer. The load device contains a Load
Security Application Module (LSAM) that is used to store and process data. We concentrate
on vulnerabilities arising from possible failures during one protocol execution. Therefore, to
increase readability, protocol details that aim to prevent replay attacks (such as transaction
date and time, transaction numbers and identifiers) were abstracted away.

4.1 CEPS Security Model

Figure 5 shows the corresponding AUTOFOCUS system structure diagram, containing the
security attributes that describe the considered threat scenario. The public tags indicate the
channels that can be attacked (all channels between the components, but not the channels
used to write log information). The components themselves are assumed to be protected
from manipulation, denoted by the security tag node. In the implementation, Card is a
tamper-resistant smart card, LSAM a security module, and the Issuer system is out of reach
of an intruder.

@)
| Log: & b /* critical publig*/ (/* node)
LSAM | /* critical public
init n U - ord
CtoL: TMessage
/* critical pulic]*/
' cLog: TMessage
Ltol : TMessage
(0]

(7= critical publig */

Ltal: Thessage
* node| ¥/

|ssuer & 1Log: TMessage o

Fig. 5. System structure diagram for Load transaction

Let us concentrate on generating test sequences for the Card component, whose be-
havioural specification is shown in Fig. 6. Fig. 6 also includes the security annotations,
indicating which of the states and transitions were labelled critical. The focus of the model
is on the security-related behaviour, so most of the states and transitions correspond to
receiving, verifying or creating cryptographic messages or writing secure logs. On the other
hand, the part of the STD where the InquireCardInfo message is processed (state Inquiry, to
obtain the current balance of the card) is not regarded as security-critical. It is just provided
for information purposes and not protected from manipulation.

The CEPS load protocol works roughly as follows: the LSAM sends an initialization
message Init(m) to the card with the amount to be loaded. The card’s response to the

11

LSAM contains a message authentication code (MAC) S1, which is forwarded to the issuer
together with data protecting its integrity and securing the issuer’s decisions. On successful
verification of this data, the issuer sends a MAC S2 to the LSAM, indicating his decision
to allow the load transation. The LSAM forwards S2 to the card (Credit message), which
verifies it, adjusts the balance and replies with a MAC S3. S3 is forwarded to the issuer
informing him about the result of the transaction. At the end of a transaction, all parties
write entries to their log files and stop in the LoadSucc state, resp. in the LoadFail state if
an error was detected.

/* critical
U toLiCardinfo(tr_bal):

SfronL?init(m:ist_sl = Mac(Ku‘si/Dat(tr,bM
|
/" critical }/

:tdL! Respl (tr_bal, st_s1, Hash(H Dat (RC_CARD)))
(7% crftical }/
Respl
/* critical f/
(verifyMac(KO, s2, S2Dat (tr_bal , sf_s1, HASk(H Dat (rl)))) && not((rl == EnptyKey))):froni?Credit(s2,rl)::st_s2 = s2
(7 crjtical }/
(

((r1 == EnptyKey) || not(verifyMac(Kd [s2, S2Dat(tr_b H)))))):fronL2Credit(s2,rl):
toL! RespC(Mac(KCl, S3Dat (tr_bal , 0)), RC_GARD) ;

/* critical f/

°
o
5
a
e
1
2
o

RC_CARD); clog! CLog(0, tr_bal,st_s2)

1 toL! RespC(Mac(KCl, S3Dat (tr_bal,st_m), EnpfyKey); cLog!ClLog(st_mtr_bal,st_s2):tr_bal ba @/

tical)/ LoadFai |

Fig. 6. STD for card, with security annotations

The main security objective of CEPS is resistance to fraud between the participating
parties. For instance, if an amount of money is credited to the card in the unlinked load
transaction, the load acquirer must owe this amount to the issuer. In case of a failed trans-
action (e.g. because of a communication problem or attack), funds can only be returned if
proof of the failure has been obtained.

An example for a security requirement is

Sr06(0) :=—-Im,m',x,y,t : CLog(m, z,y) € o(Card.cLog)A\

LLog(m',t) € o(LSAM.ILog) A (m # m')

meaning that the log entries of Card and LSAM must agree for successful transactions,
so that with the data of the LSAM the load acquirer can prove that m was credited to the
card.

4.2 Test Sequence Generation for CEPS

For simplicity, we demonstrate test sequence generation for the Card component in the
CEPS load protocol using a small subset of the possible mutations explained in Section 3.1:
€(a) can be true if a is a boolean (sub-)expression in a precondition of a critical transition

12

’ Card I ssuer I ntruder

[=]

i ni tLSAMD! 1

toC clnit(1)

toL!cRespl (0, cMac(cKCl, cSlDat(0,|10)), cHash(cH Dat (cRC CARD)))

tol!cLoad(0, 1, cMac(cKC, cSiiDat (0, 10)), EEnc(cKLI, cKey(cR 1)), cMac(cR 1, cMDat(1, cMac(cKCl, cSlDat(0, 10)),
cHash(cH Dat (cR_LSAM), cHash(cH Dat (cR2_LSAM))), cHash(lcH Dat (cR_LSAN)), cHash(cH Dat (cR2_LSAM))

out mai nCar df ronL! cCredit (cMac(cKCl, cS2Dat (0,| cMac(cKCl, c$lDat(0, 10)), [cEnpty)), cR_LSAM

toL! cRespC(cMac(cKCl, cS3Dat (0, 10)), cEnptyKey)

cLogO! cCLog(10, 0, cMac(dKCl, cS2Dat (0, cMac(cKO, c$iDat(0, 10)), |cEnpty)))

Fig. 7. Test Sequence for Load transaction

(first line of Figure 2). This results in altogether 9 mutations of the Card STD, 4 of which
lead to test sequences violating security requirements.

As an example, consider the transition from state Respl to LoadAtt in Fig. 6. In this
transition, the Card receives the MAC s2 and the random value rl from the LSAM. The
precondition consists of two parts: verifying s2 and checking if rl is not empty. Replacing the
MAC verification (subterm verifyMac(...)) with true results in a test sequence violating
Proag.

Fig. 7 shows the begining and end of this test sequence as an AuToFocus EET (the
actual test sequence is 28 steps long). Here, the LSAM is initialized to transfer 1 unit
of money. However, when this initialization is passed to the Card, the intruder (who has
control over all messages on the public channels) changes the amount to 10. In the model,
the intruder signals its activity by sending a cPresent message to the environment. Because
of the manipulation, in the Load message passed to the Issuer later, the amounts sent by
the issuer and by the card (via the MAC sl) differ, so the issuer aborts the transaction.
The MAC s2 passed back via the LSAM to the card should now lead to abortion of the
transaction by the card (as s2 contains an empty key instead of rl). However, as s2 is not
verified, this is not the case, and the card erroneously increases its balance by 10 units and
writes this to the log. Computation of this test sequence took about 300s.

Concretization We demonstrate how to concretise test sequences consisting of abstract mes-
sages to byte sequences at the example of the first two messages in the test sequence depicted
in Fig. 7. The relevant part of the data type definition reads as follows:

data TMessage = ... | Init(getInitM: Int)
| RespI(getRiBal:Int, getRiS1:TMessage, getRiHC:TMessage)
| SiDat(getS1Bal:Int, getSiM:Int) | HlDat(getRC: TKey) |

13

Message M [concrete(M)

Init 90, 50, 00, 00, 18, 17, DTHRLpa, CURRLD A, IDLACGQ, IDLD4, getlnitM(this), 00

Respl 21, ID;ss, IDcgp, DEXPcrp, NTcep, getRiS1(this), getRiHC(this), 00, 90, 00

S1Dat getSlBaI(this), BALMAXCEP, CURRLDA, DEXPOEP, DTHRLDA, IDCEP, ID]gs,
IDracq, IDLpA

HIDat IDracq, IDrpa, ID;ss, IDcep, NTcep, Rcep

v € TransV |values(v)

DTHRrpa|{z € Z: zis BCD coded date/time} (transaction date/time)
IDracq |e.g. {1234ABCD} (ID load acquirer)

RCcard {z € Z: z is 16 byte Integer} (random number of card)
NTcrp {x € Z: z is 4 byte Integer} (transaction identifier from card)
KCI e.g. {7T80A...B6} (16 byte key between Card and Issuer)

Fig. 8. Concretization of abstract CEPS messages

Table 8 shows the concretization mapping for the abstract messages and the values of
the transaction variables, taken from the CEPS specification. The test driver translates the
first message Init(10) to the card e.g. to the byte sequence

90 50 00 00 18 17 02 04 04 09 01 0C CC OE 12 34 AB CD 12 34 56 78 0A BC 00 00 00 0A 00

The message type is Init, so the test driver looked up concrete(Init) in Table 8. The first
bytes (90 50 .. 17) are constants, for DTHRppa € TransV (next 5 bytes) a value has been
chosen, etc. The underlined part corresponds to the transaction amount 10. As the reply
Respl(0, Mac(KCl, S1Dat(0, 10)), Hash(HIDat(RC_.CARD))), the test driver expects

21 AB CD EF 12 34 56 78 0A BC 03 04 04 NTcgp S1 h 90 00

NTcgp, the transaction identifier assigned by the card, is read from the reply and added
to the store for later use, the MAC S1 can be verified (as all data that is part of S1 and
the key is known to the test driver), and the hash h is added to the constraints and will be
checked at a later execution step.

5 Related Work

There has been extensive research into specification-based testing, including
[DF93,PS97,HNS97]; a complete overview has to be omitted. Here we used [LP00] as
it has been built into the tool AUTOFOCUS; one could also have used a different approach.

Some of that work has been applied to safety-critical systems; our focus, however, is to
adapt these concepts to the domain of security-cricital systems with its specific character-
istics as explained in Section 1 (most prominently, the use of cryptography). To the best of
our knowledge, this is the first published work using formally-generated test-sequences for
security-critical systems, apart from [JWO01b] which concerns testing of firewalls.

Dushina et al. explain concretization in their Genevieve framework [DBGO1], but do not
address the specific issues we explained in Section 3.2.

In intrusion detection (see e.g. [USO01] for a model-based approach), a running system
is monitored for attacks. Complementary to the detection of security violations in fielded
systems, we aim to generate test data to find and remove the possibility of such attacks
before system deployment. The AVA approach [VM98] is conceptually similar to the fault-
insertion explained in Section 3.1, but the focus is on identifying critical statements rather

14

than finding test sequences (for which random distributions are used), and it does not
consider cryptographic mechanisms.

6 Conclusion and Further Work

We presented work on generating test sequences for transaction systems from a formal secu-
rity model supported by the CASE tool AuToFocus. Going beyond classical specification-
based conformance testing, the test sequences are determined with respect to stated secu-
rity requirements. Using mutations of the system specification and attack scenarios, test
sequences are generated that give increased confidence that a system meets the relevant
security requirements. We gave results on concretizing abstract test sequences, to be able to
apply them to existing implementations. The problem of test-case explosion is handled in
so far as only system parts considered as security-critical are tested.

The proposed method seems suitable to be applied to the application domain of security-
critical systems, since it allows to find tests likely to detect possible vulnerabilities even in
complex execution scenarios. Consideration of domain-specific concepts such as cryptography
and random numbers is supported. Given that security aspects are playing an increasingly
important role in the development of distributed systems, having a way to do methodological
testing of security-critical systems should be a worthwhile goal.

In general, it is unfeasible to verify completely that an implementation faithfully imple-
ments its specification. So even given a specification that is proved secure, our approach of
ensuring on the implementation level that a system satisfies certain critical security require-
ments seems to be indispensable.

We explained our approach at the example of the purchase transaction protocol from
the Common Electronic Purse Specifications; it is applicable to security-critical systems in
general.

Note that our approach only aims to find vulnerabilities that can be detected at the
level of abstraction of a given specification (which may however be lowered by refining the
specification). Although we had to choose a method of generating test-sequences from formal
specifications, the general approach is independent from the specific method, and also from
the formal semantics of the used method AuToFocuUs.

In future work we plan to devise a test case specification language specialized to security-
critical systems which allows one to formulate assumptions on the underlying implementation
layer of the system and which can be compiled “intelligently” into test cases by applying
optimization depending on the test case specification in question.

References

[AJO1] M. Abadi and J. Jirjens. Formal eavesdropping and its computational interpretation. In
N. Kobayashi and B.C. Pierce, editors, Theoretical Aspects of Computer Software (4th In-
ternational Symposium, TACS ’01), volume 2215 of LNCS, pages 82-94. Springer, 2001.

[AKS96] T. Aslam, I. Krsul, and E. Spafford. Use of A Taxonomy of Security Faults. In 19th
National Information Systems Security Conference, Baltimore, 1996.

[BS01] M. Broy and K. Stolen, editors. Specification and Development of Interactive Systems.
Springer, 2001.

[CEP01] CEPSCO. Common Electronic Purse Specifications, 2001. Business Requirements vers.
7.0, Functional Requirements vers. 6.3, Technical Specification vers. 2.3, available from
http://www.cepsco.com.

15

[DBGO1] J. Dushina, M. Benjamin, and D. Geist. Semi-Formal Test Generation with Genevieve.
In DAC, 2001.

[DF93] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-
based specifications. In FMFE ’93: Industrial-Strength Formal Methods, pages 268-284, 1993.

[FBGLY4] J. Fitzgerald, T.M. Brookes, M.A. Green, and P.G. Larsen. Formal and informal spec-
ifications of a secure system component: first results in a comparative study. In Denvir,
Naftalin, and Bertran, editors, Formal Methods Europe ’94: Industrial Benefit of Formal
Methods, pages 35—44. Springer, 1994.

[GSGY99] S. Gritzalis, D. Spinellis, and P. Georgiadis. Security protocols over open networks and
distributed systems: Formal methods for their analysis, design, and verification. Computer
Communications, 22(8):695-707, 1999.

[HNS97] S. Helke, T. Neustupny, and T. Santen. Automating Test Case Generation from Z Speci-
fications with Isabelle. In J. Bowen, M. Hinchey, and D. Till, editors, Proc. ZUM ’97: The
Z Formal Specification Notation, volume 1212 of LNCS, pages 52-71. Springer, 1997.

[ITU96] ITU. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva,
1996.

[Jir01] Jan Jiirjens. Secrecy-preserving refinement. In Formal Methods Europe, LNCS. Springer,
2001.

[JWO01la] Jan Jiirjens and Guido Wimmel. Security modelling for electronic commerce: The Com-
mon Electronic Purse Specifications. In First IFIP conference on e-commerce, e-business,
and e-government (ISE). Kluwer, 2001.

[JWO01b] Jan Jirjens and Guido Wimmel. Specification-based testing of firewalls. In Andrei Er-
shov 4th International Conference ”Perspectives of System Informatics” (PSI’01), LNCS.
Springer, 2001.

[LPO0] H. Lotzbeyer and A. Pretschner. Testing concurrent reactive systems with constraint logic
programming. In 2nd Workshop on Rule-Based Constraint Reasoning and Programming,
Singapore, 2000.

[Off95] J. Offutt. Practical Mutation Testing. In 12th International Conference on Testing Com-
puter Software, 1995.

[OVJ96] J. Offutt, J. Voas, and J.Payne. Mutation Operators for Ada. Technical Report ISSE-
TR-96-09, Information and Software Systems Engineering, George Mason University, 1996.

[OXL99] J. Offutt, Y. Xiong, and S. Liu. Criteria for Generating Specification-based Tests. In st
IEEE Conference on Engineering of Complex Computer Systems, 1999.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6(1-2):85-128, 1998.

[PS97] J. Peleska and M. Siegel. Test automation of safety-critical reactive systems. South African
Computer Jounal, 19:53-77, 1997.

[PS99] J. Philipps and O. Slotosch. The Quest for Correct Systems: Model Checking of Diagrams
and Datatypes. In Asia Pacific Software Engineering Conference 1999, 1999.

[Tho99] S. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley Longman,
1999.

[US01] P. Uppuluri and R. Sekar. Experiences with Specification-based Intrusion Detection. In
Recent Advances in Intrusion Detection (RAID), 2001.

[VM98] J. Voas and G. McGraw. Software Fault Injection: Inoculating Programs Against Errors.
Wiley, 1998.

[WLPS00] G. Wimmel, H. Létzbeyer, A. Pretschner, and O. Slotosch. Specification Based Test
Sequence Generation with Propositional Logic. Journal on Software Testing Verification
and Reliability, 10, 2000.

[WWO01] G. Wimmel and A. Wifipeintner. Extended description techniques for security engineering.
In IFIP SEC, 2001.

16

