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Abstract 
 

Within Requirements Engineering it is a difficult 
task to systematically increase the quality of individual 
requirements and the whole specification. 
In this position paper we present our current research 
effort on a requirement engineering process for auto-
motive software, which is an intermediate result of the 
mobilSoft project1. In order to improve the require-
ments specification we propose the integration of con-
ceptual dimensions of quality – namely concretization 
and formalization – into the Requirements Engineering 
Process (REP) and we illustrate how a process using 
these dimensions will guide and support achieving 
completeness of the specification. 
 
 
1. Introduction 
 

It is well known that the majority of faults found in 
software programs can be traced back to mistakes in 
the analysis phase. Thus, Requirements Engineering 
plays a decisive part in the software development proc-
ess. However, the tasks of the analysis phase are far 
away from being simple.  

During the development of a system, the require-
ments of various stakeholders have to be integrated. A 
typical scenario could look as follows: In the begin-
ning, the requirements engineer is confronted with a set 
of informal, incomplete, inconsistent, vaguely formu-
lated requirements. These requirements are usually 
submitted in natural language (e.g. text documents, 
memos, notes) by various stakeholders having different 
views on the system. Moreover, when it comes to em-
bedded systems, the requirements do not only refer to 

                                                           
1 This work is partially funded by the Bavarian Gov-
ernment under grant license number IuK 100/188. 

the system’s functionality, but also to technical issues 
like interfaces and communication protocols. The ana-
lyst’s task is to derive additional requirements, and to 
validate and verify the overall set. The result of this re-
quirements specification process should be a descrip-
tion of the future system that is unambiguous, complete 
and consistent.  

We are currently working on a framework support-
ing the stepwise transformation from informal and in-
complete requirements to precise specifications. In this 
paper we focus on the aspects concretization and for-
malization of requirements, present some intermediate 
results and show, how they can be used in order to im-
prove the quality of requirements descriptions. 

 The rest of this paper is structured as follows: In 
section 2 we introduce the domain of automotive em-
bedded systems by describing specific challenges of 
this domain and by giving an example. Section 3 gives 
an overview of the different dimensions of quality for a 
specification, and how our work on concretization and 
formalization can be seen as means to address those 
quality issues. The next two sections (sections 4 and 5) 
describe the concretization and formalization in detail 
and constitute the main part of this paper. In section 6 
we sketch, how the concepts of concretization and for-
malization can be synchronized and integrated into the 
REP. In the concluding sections 7, 8, and 9, we com-
pare our results with related research, give a summary 
and outlook, and list the literature we refer to.  
 
2. Automotive Embedded Systems 
 
2.1. Specific Challenges 
 

The domain of embedded automotive software sys-
tems implies specific challenges for Requirements En-
gineering, such as the need for real-time reactions, 
strict safety constraints, the need for robustness, a 
broad range of variants (product lines), and limited 



 

hardware resources [1]. In this section we describe two 
important specifics of embedded systems2. 

Embedded automotive systems usually do not have 
their own human user interface. Instead, they are oper-
ated through the user interface of the overall system. 
Hence, when describing the requirements of such an 
embedded system in terms of user interaction, the re-
quirements engineer must not restrict the requirements 
to the system to be developed, but has to consider the 
entire system. For example, the main functionality of a 
cruise control system has to be described with respect 
to the overall system (as behavior of the car). As a con-
sequence, the specification of an embedded system on 
the level of user requirements is tightly coupled with 
the specification of the whole system. On the lower 
levels of system requirements, this coupling has to be 
resolved by introducing a precise differentiation be-
tween the system and its interfaces. 

The influence of existing hardware solutions is an 
important factor in the development of embedded 
automotive systems and has to be considered in the 
REP. For example, such a requirement might be: “For 
determining the speed, the software has to run on a 
control unit XS-B.” Such requirements have to be clas-
sified into the right concretization level and have to be 
properly connected within the tracing and justification 
structure of the specification. For example, the afore-
mentioned requirement must be connected with a busi-
ness requirement “save money by reusing well proven 
hardware” and must be connected with a system re-
quirement on a higher level “the system must be able to 
react within 2ms”, and it has to be checked, whether 
the suggested control unit is compliant (can fulfill) with 
this requirement.  

 
2.2. A Running Example 
 

In this section we introduce a small example, which 
will be used in the remainder of this paper to demon-
strate problems when doing Requirements Engineering 
for embedded automotive systems and our approaches 
for their solutions.  

Consider a cruise control system for a car [2] with 
the following functionality: The cruise control is acti-
vated by pressing a button. When activated, it com-
fortably (for example, not fitfully) accelerates or slows 
down until the vehicle’s speed is at a value which has 
been specified by the driver (target speed). The vehicle 

                                                           
2 Please note that in the following we will make use of 
a relative notion of the term “system”. I.e., depending 
to the scope, system may refer to the whole system or 
to subsystems.  

then autonomously maintains this speed until the cruise 
control is deactivated; this is done by either braking or 
manually accelerating.  

Three typical requirements for this speed control 
might be: (1) “The system must not accelerate with 
more than 0.2g.”(2) “After pressing the brake, the 
cruise control must be deactivated within 2ms.”  
(3) “The driver must be able to easily change the target 
speed while driving.” 
 
3. Requirements Engineering Dimensions 
 

Requirements Engineering aims at systematically 
increasing the quality of a specification (by using as 
few resources as possible). The quality of a specifica-
tion can be defined and measured along many different 
criteria (dimensions of quality), such as structure, com-
pleteness, concretization, consistency, agreement, for-
malization and correctness (validation by stakeholder). 

A REP that targets the highest quality of a specifica-
tion has to take all these dimensions into account and 
integrates them as the foundation into its activity model 
and product model. In this paper, we focus on two of 
these dimensions, namely concretization and formaliza-
tion; we describe each of them in detail (section 4 and 
5), and we sketch, how they can be integrated into the 
REP (section 6).  

The goal of concretization is to partition the set of 
requirements according to the abstraction levels they 
refer to and to build up a concretization hierarchy be-
tween the requirements. In such a concretization hier-
archy, abstract requirements are described in more de-
tail (and thus more clearly) with help of the concrete 
requirements they are linked with. The benefits of such 
a concretization are the ability to examine the logical 
refinement of requirements, to detect gaps in the justi-
fication of requirements and to complete the require-
ments set.  

The goal of formalization is to formulate the de-
scription of a requirement (and maybe other attributes 
of a requirement, too) in mathematically defined se-
mantics (e.g. sets, relations, state machines), so that the 
description is precise and can be automatically rea-
soned about. The benefits of formalization are: auto-
matic checks for consistency, bridging the gap between 
requirements and design, better structuring of require-
ments and the specification, automatic test case genera-
tion and much more. 

In the next two sections, we will examine these two 
dimensions in more detail.  
 



 

4. Concretization Layers 
 

In this section, we first give an overview of the five 
concretization layers and then we present each layers in 
detail. 

It is important to note that our concretization layers 
are not meant as process steps (as others do, see section 
7, and as we do with formalization, see section 5), but 
are meant as a sorting structure only.  
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Figure 1. Concretization Layers 

 
Figure 1 shows the five concretization levels (busi-

ness requirements, user requirements, system require-
ments, realization requirements, and process require-
ments) and the most important information types on 
each layer. Each concretization layer has its individual 
characteristics. These are: 

Business Requirements: In the business require-
ments layer, everything is about how the company 
might profit from the product to be developed; this 
profit might not be restricted to money, but can also re-
fer to establishing a market, better the image or visibil-
ity of the company, and more.  

On this layer, business goals are formulated, that the 
product shall achieve (for example, “The product must 
be the door-opener for the Asian market”). Also, basic 
conditions and restrictions are formulated, that shall 
ensure that the product will achieve the goals (for ex-
ample, “The projects budget is 600.000$”, or “The 
product must not cost more than 150$”). Also, on this 
level a first scoping takes place that coarsely defines 
the functionality of the product (for example, “The 
product must better the driving comfort while driving 
long distances on a highway”). Moreover, a target 

group, which is a set of users (such as driver, co-driver, 
and service personal at a garage), has to be defined.  

User Requirements: In the user requirements layer, 
everything is about how a user should perceive and 
benefit from the product. In this layer, the externally 
visible functionality and properties of the product are 
formulated. Since the user mostly does not perceive an 
embedded system itself, the description of the prod-
uct’s functionality is embedded in the description of the 
overall system’s behavior.  

On this level, scenarios are formulated, that describe 
the functionality of the desired product in the context 
of the entire system and on the perspective of a user 
(for example, “The user enters a high-way, he then de-
fines a speed of 60mph, he then activates the cruise 
control”). Those scenarios can later be used to generate 
test cases. The scenarios lead to basic features (such as 
“it must be possible for the driver to set the target 
speed”) and quality-of-service-properties (for example 
“The usage of the systems must be possible with both 
hands on the steering wheel”).  

System Requirements: In the system requirements 
layer, the focus switches from the user’s perspective (a 
set of perceived features and properties) to the system’s 
perspective; it is dealt with the question, how the em-
bedded system can perform those features in interaction 
with its environment. Hence, in this layer, the system 
and its interfaces to the environment are described. The 
requirements within this layer may be further structured 
in various sublevels corresponding to subsystems. 

On this layer, the information flow and interfaces 
between the system and its environment are described 
(for example, “The system must know the current speed 
of the car”, “The system gets the current speed of the 
car by the sensor SSB via the CAN bus”, “The speed is 
coded as 8bit integer”), the behavior of the system is 
described (such as “The system must calculate the dif-
ference of the actual speed an the target speed with a 
maximum tolerance of 1mph”), and the architectural 
structure of the system is described (for example, “The 
system shall consist of a scenario manager and a speed 
calculator component”).  

Realization Requirements: Here, requirements are 
sorted in, which restrict the software implementation or 
the hardware deployment of a system. 

On this layer, implementation constraints such as 
“the component X must be programmed in C” or “in 
component Y, the certified code of program Z has to be 
reused” and deployment constraints (for example “the 
scenario manager and the speed calculator have to 
share one ECU”) are formulated.  

 



 

There is also a process requirements layer, which 
is orthogonal to the other layers. It contains require-
ments that restrict only the way how the system is to be 
developed, but not directly the product (for example, 
“The development process shall be conforming to the 
rational unified process”).  

 
5. Formalization Steps 
 

In this section, we describe the steps that have to be 
performed in order to transform informal requirements 
into formal ones. These four steps are: Identification 
(section 5.1), Normalization (section 5.2), Structuring 
(section 5.3), and Formalization (section 5.4).  

As starting point, we expect informal textual infor-
mation, such as structured or unstructured text, catch-
word lists, drawings, tables, and mind maps. Hence, we 
do not deal with the actual acquisition of requirements 
(e.g. in interviews, workshops) in this paper, and focus 
on the formalization of information instead.  
 
5.1. Identification (Step 1) 
 

Input: Informal textual information, such as struc-
tured or unstructured text, catchword lists, drawings, or 
tables. 

Tasks: In a first step, requirements have to be ex-
tracted from the input documents. They have to be 
identified (and attached with an unique identifier) and 
separated into atomic requirements; they have to be put 
into a defined form and attributed (by using a template 
that might contain fields such as “id”, “name”, “de-
scription”, “source”, “date”, and much more); often, 
they have to be written out in full, because the input in-
formation might just be a catchword or a short frag-
ment of a sentence.  

Output: A set of atomic requirements, written out 
and attached with attributes (as defined in a template).   

Example: For example, a catchword list entry “ac-
celerate and slowing down” might become two elabo-
rated requirements. 

 
5.2. Normalization (Step 2) 
 

Input: In the first step, we separated and formatted 
individual requirements; each requirement is not yet 
aligned with the set of the other requirements. 

Tasks: The requirements have to be walked 
through, and by analyzing the descriptions, a glossary 
has to be built. In this glossary, synonyms have to be 
resolved and a unified usage of terms has to be estab-
lished.  

Output: A set of requirements that uses the same 
terms for the same meanings, respectively; a glossary 
that defines the used terms and connects them with 
their synonyms and antonyms.  

Example: In one requirement’s description, there 
could be talked about “the car’s speed” and in another 
requirement “the speed of the vehicle”. These might be 
two terms for the same meaning (“car”, “vehicle”), so 
it has to be resolved, if they indeed mean the same, and 
it has to be decided, which term will be used in the 
specification. In the glossary, the term will be defined, 
and its synonyms will be listed.  
 
5.3. Structuring (Step 3) 
 

Input: In the second step, we normalized the re-
quirements, so that they use a set of uniform terms, 
which are defined in a glossary. Those requirements are 
written in a generic template and are not yet semanti-
cally captured. 

Tasks: The normalized requirements now are struc-
tured by its contents in a taxonomy. That means that 
requirements can be grouped according to different as-
pects,. After that, those groups of requirements can be 
specifically dealt with, for example, by developing or 
reusing specific templates. 

Output: A structure of requirements, which groups 
requirements that belong together within specific tem-
plates. 

Example: Requirements that deal with the measure-
ment of the vehicle’s speed might be grouped together. 
There might be no specific template for measuring 
speed yet, but there might be a template for general 
measurements (containing slots for minimum value, 
maximum value, increment size, reaction times, toler-
ance, and so on), which can be reused and adapted to 
the measurement of speed. The slots in this specific 
template can be seen as both a checklist and a formal 
sorting of requirements to semantic issues.  
 
5.4. Formalization (Step 4) 
 

Input: In the third step, we produced a set of re-
quirements, which are semantically captured by traces 
and by specific templates. However, the descriptions of 
those requirements are still informal. 

Tasks: In this step, the informal description of the 
requirements will be transformed into a formal specifi-
cation. Therefore, there exist several possibilities for 
formalization: 

• Formalizing structure: We use AUTOFOCUS sys-
tem structure diagrams [4] to formalize struc-
ture, so this target language consists of compo-



 

nents, channels, ports, types, names. Other 
techniques for formalizing structure could be, 
for example, UML or Z [7]. 

• Formalizing behavior: We use AUTOFOCUS 
state transition diagrams [4] to capture behav-
ior in a formal way. Hence the target language 
consists of states, transitions, events, pre- and 
post conditions. Any other state machine [e.g. 
5, 6] could also be used. 

• Formalizing interaction: We use AUTOFOCUS 
extended event traces [4] to formalize behavior, 
so this target language consists of components 
and interaction patterns. Other techniques for 
formalizing interactions could be UML se-
quence diagrams or message sequence charts 
(MSC). 

• Formalizing data: We make use of AUTOFOCUS 
data definition types [4] to formalize data, so 
the target language consists of data types and 
operators.  

Output: Fragments of models that contain the for-
malized information of the requirements descriptions; 
since some requirements might not be able to be for-
malized, those requirements stay informal. 

Example: The requirement “When the break is 
used, the cruise control is deactivated” could be trans-
formed into a fragment of a state machine with a state 
“active”, another state “not active”, and  a transition 
from “active” to “not active” with the triggering condi-
tion “break is used”.  
 
6. Integrating Formalization and Concreti-
zation into the REP 
 

In section 3 we listed a couple of important goals of 
Requirements Engineering, such as agreement (the re-
quirements must reflect the opinions of all stake-
holders), completeness (there must not be any vague-
ness abut the system to be build), preciseness (the re-
quirements must not be misunderstood), and economy 
(the REP must use as few resources – such as money, 
time, people, skills – as possible).  

In this section we show with the example goal 
“achieving completeness”, how formalization and con-
cretization layers together can be a powerful concept to 
guide and support the REP.  

The goal “completeness” can be divided into two 
sub goals: the structural completeness of one require-
ment (for example, every requirement must be priori-
tized, every requirement must have an author) and the 
completeness of the whole requirements set (that is, 
that all information must be captured that is needed to 

build the right product). We show how concretization 
and formalization can help achieving these goals. 

Structural completeness of individual require-
ments: The first formalization step, identification (see 
section 5.1), enforces a uniform representation of re-
quirements by using a template. Hereby the structural 
completeness of requirements can be easily achieved 
because the template structure serves as a checklist for 
the requirements attributes. Additional verbalization 
templates (for example, that a requirement must be 
formulated in the form “if … then … must … “) can 
support formulating sound requirements.  

Completeness of the whole specification: Sorting 
requirements into concretization layers is an important 
means to get at (and to attest) the completeness of a 
specification: The built hierarchy immediately indi-
cates, whether high level requirements (such as busi-
ness goals) have been broken down to concrete re-
quirements or not; it also shows, when requirements on 
the lower levels (for example, system requirements) 
have no connection (and thus, no explicit justification) 
to a high level requirement.  

The third formalization step, structuring (see section 
5.3), groups requirements that belong together. Such 
groups can be, for example, “requirements that deal 
with controlling the acceleration”, “requirements that 
describe the modes of the system”, or “requirements 
that describe the system’s behavior in case of errors”. 
By grouping requirements under certain specific as-
pects, these groups, which should be kept small, can be 
better analyzed with regard to completeness. 

The fourth formalization step, formalization (see 
section 5.4), is a further step towards the automatic de-
tection of incompleteness. Here, requirements are 
translated into model fragments. When using state ma-
chines, for examples, it can be detected, whether there 
are missing transitions: this is an indicator that there are 
requirements missing that would specify the behavior 
of the system in case of an event. 

In the beginning of this section we listed several 
goals of Requirements Engineering. Some of them are 
not addressed by the formalization and concretization 
layers at all - such as agreement or economy; here, 
other dimensions (for example, an agreement dimen-
sion) must be integrated into the process model. Others, 
such as preciseness, can be easily mapped to the for-
malization and are thus almost already covered. 
 
7. Related Studies 
 

The distinction of requirements into business, user, 
and system requirements is not new [9]. But in contrast 
to these approaches, our work is more detailed and 



 

more specific, since we do not provide a generic 
model, but focus on embedded automotive domain. 

Pohl [3] introduced three dimensions of require-
ments engineering: “Agreement”, “Specification”, and 
“Representation”. These three dimensions are process 
oriented. The dimensions, we focused on in this paper, 
differ from Pohl’s dimensions. They can somewhat be 
seen as a detailed view on Specification (our concreti-
zation as an important aspect and technique to accom-
plish high specification values) and Representation (our 
formalization can be seen as a more elaborated and 
more specific approach in representing a specification). 

The goal-oriented requirements approach KAOS [6] 
shows several similarities to our work (each require-
ment must be judged by a goal, the requirements are 
formalized, etc.). Due to different types of goals and 
the formalization of requirements, the KAOS approach 
wants to reduce the chaos arising of many informal, 
contradictory requirements. In our work, this is 
achieved by abstraction layers justifying the specifics 
characteristics of requirements for embedded systems. 
Additionally, KAOS uses a formal specification via 
(real time) temporal logic. Instead, we make use of 
more intuitive models like sequence diagrams and 
automata.  

Over the last years various specification techniques 
like state charts [5], Z [7], and SDL [8] have been de-
veloped. All have in common that they describe a lan-
guage which can be used to specify the system, but they 
do not focus on the process, i.e. how to get a formal 
model out of a collection of heterogeneous, inconsis-
tent and incomplete requirements as described in this 
paper. 
 
8. Summary and Outlook 
 

In this paper, we introduced and explained two di-
mensions of quality for requirements engineering: con-
cretization and formalization. We showed four formal-
ization steps, which transform informal text into a par-
tial formal specification; we explained concretization 
layers which are specific for embedded automotive sys-
tems. Additionally we showed how we plan to integrate 
these two dimensions into a REP.  

In future work, we will elaborate both the dimen-
sions and their integration into the REP. We also will 
introduce, explain and integrate more dimensions, such 
as the agreement dimension, and we will show, how all 
these dimensions together, as underlying concepts for a 
process, guide achieving all requirements engineering 
goals as mentioned in section 6. It will be the basis for 
developing an appropriate activity model and product 

model for a REP for the domain of embedded automo-
tive systems.  

Furthermore, we will investigate how high-quality 
requirements (like safety, reliability, maintainability) 
can be treated in our framework. This includes how 
they can be broken down to functional requirements, 
how functional requirements can be derived from them, 
and to what extend they can be formalized. Traceability 
between requirements on and within the abstraction 
layers is also in the scope of future work. 
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