

Concretization and Formalization of Requirements
for Automotive Embedded Software Systems Development

A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, S. Rittmann, D. Wild
Technische Universität München, Fakultät für Informatik

Boltzmannstraße 3, D-85748 Garching bei München, Germany
{fleischa, hartmanj, pfaller, rappl, rittmann, wildd}@in.tum.de

Abstract

Within Requirements Engineering it is a difficult
task to systematically increase the quality of individual
requirements and the whole specification.
In this position paper we present our current research
effort on a requirement engineering process for auto-
motive software, which is an intermediate result of the
mobilSoft project1. In order to improve the require-
ments specification we propose the integration of con-
ceptual dimensions of quality – namely concretization
and formalization – into the Requirements Engineering
Process (REP) and we illustrate how a process using
these dimensions will guide and support achieving
completeness of the specification.

1. Introduction

It is well known that the majority of faults found in
software programs can be traced back to mistakes in
the analysis phase. Thus, Requirements Engineering
plays a decisive part in the software development proc-
ess. However, the tasks of the analysis phase are far
away from being simple.

During the development of a system, the require-
ments of various stakeholders have to be integrated. A
typical scenario could look as follows: In the begin-
ning, the requirements engineer is confronted with a set
of informal, incomplete, inconsistent, vaguely formu-
lated requirements. These requirements are usually
submitted in natural language (e.g. text documents,
memos, notes) by various stakeholders having different
views on the system. Moreover, when it comes to em-
bedded systems, the requirements do not only refer to

1 This work is partially funded by the Bavarian Gov-
ernment under grant license number IuK 100/188.

the system’s functionality, but also to technical issues
like interfaces and communication protocols. The ana-
lyst’s task is to derive additional requirements, and to
validate and verify the overall set. The result of this re-
quirements specification process should be a descrip-
tion of the future system that is unambiguous, complete
and consistent.

We are currently working on a framework support-
ing the stepwise transformation from informal and in-
complete requirements to precise specifications. In this
paper we focus on the aspects concretization and for-
malization of requirements, present some intermediate
results and show, how they can be used in order to im-
prove the quality of requirements descriptions.

 The rest of this paper is structured as follows: In
section 2 we introduce the domain of automotive em-
bedded systems by describing specific challenges of
this domain and by giving an example. Section 3 gives
an overview of the different dimensions of quality for a
specification, and how our work on concretization and
formalization can be seen as means to address those
quality issues. The next two sections (sections 4 and 5)
describe the concretization and formalization in detail
and constitute the main part of this paper. In section 6
we sketch, how the concepts of concretization and for-
malization can be synchronized and integrated into the
REP. In the concluding sections 7, 8, and 9, we com-
pare our results with related research, give a summary
and outlook, and list the literature we refer to.

2. Automotive Embedded Systems

2.1. Specific Challenges

The domain of embedded automotive software sys-
tems implies specific challenges for Requirements En-
gineering, such as the need for real-time reactions,
strict safety constraints, the need for robustness, a
broad range of variants (product lines), and limited

hardware resources [1]. In this section we describe two
important specifics of embedded systems2.

Embedded automotive systems usually do not have
their own human user interface. Instead, they are oper-
ated through the user interface of the overall system.
Hence, when describing the requirements of such an
embedded system in terms of user interaction, the re-
quirements engineer must not restrict the requirements
to the system to be developed, but has to consider the
entire system. For example, the main functionality of a
cruise control system has to be described with respect
to the overall system (as behavior of the car). As a con-
sequence, the specification of an embedded system on
the level of user requirements is tightly coupled with
the specification of the whole system. On the lower
levels of system requirements, this coupling has to be
resolved by introducing a precise differentiation be-
tween the system and its interfaces.

The influence of existing hardware solutions is an
important factor in the development of embedded
automotive systems and has to be considered in the
REP. For example, such a requirement might be: “For
determining the speed, the software has to run on a
control unit XS-B.” Such requirements have to be clas-
sified into the right concretization level and have to be
properly connected within the tracing and justification
structure of the specification. For example, the afore-
mentioned requirement must be connected with a busi-
ness requirement “save money by reusing well proven
hardware” and must be connected with a system re-
quirement on a higher level “the system must be able to
react within 2ms”, and it has to be checked, whether
the suggested control unit is compliant (can fulfill) with
this requirement.

2.2. A Running Example

In this section we introduce a small example, which
will be used in the remainder of this paper to demon-
strate problems when doing Requirements Engineering
for embedded automotive systems and our approaches
for their solutions.

Consider a cruise control system for a car [2] with
the following functionality: The cruise control is acti-
vated by pressing a button. When activated, it com-
fortably (for example, not fitfully) accelerates or slows
down until the vehicle’s speed is at a value which has
been specified by the driver (target speed). The vehicle

2 Please note that in the following we will make use of
a relative notion of the term “system”. I.e., depending
to the scope, system may refer to the whole system or
to subsystems.

then autonomously maintains this speed until the cruise
control is deactivated; this is done by either braking or
manually accelerating.

Three typical requirements for this speed control
might be: (1) “The system must not accelerate with
more than 0.2g.”(2) “After pressing the brake, the
cruise control must be deactivated within 2ms.”
(3) “The driver must be able to easily change the target
speed while driving.”

3. Requirements Engineering Dimensions

Requirements Engineering aims at systematically
increasing the quality of a specification (by using as
few resources as possible). The quality of a specifica-
tion can be defined and measured along many different
criteria (dimensions of quality), such as structure, com-
pleteness, concretization, consistency, agreement, for-
malization and correctness (validation by stakeholder).

A REP that targets the highest quality of a specifica-
tion has to take all these dimensions into account and
integrates them as the foundation into its activity model
and product model. In this paper, we focus on two of
these dimensions, namely concretization and formaliza-
tion; we describe each of them in detail (section 4 and
5), and we sketch, how they can be integrated into the
REP (section 6).

The goal of concretization is to partition the set of
requirements according to the abstraction levels they
refer to and to build up a concretization hierarchy be-
tween the requirements. In such a concretization hier-
archy, abstract requirements are described in more de-
tail (and thus more clearly) with help of the concrete
requirements they are linked with. The benefits of such
a concretization are the ability to examine the logical
refinement of requirements, to detect gaps in the justi-
fication of requirements and to complete the require-
ments set.

The goal of formalization is to formulate the de-
scription of a requirement (and maybe other attributes
of a requirement, too) in mathematically defined se-
mantics (e.g. sets, relations, state machines), so that the
description is precise and can be automatically rea-
soned about. The benefits of formalization are: auto-
matic checks for consistency, bridging the gap between
requirements and design, better structuring of require-
ments and the specification, automatic test case genera-
tion and much more.

In the next two sections, we will examine these two
dimensions in more detail.

4. Concretization Layers

In this section, we first give an overview of the five
concretization layers and then we present each layers in
detail.

It is important to note that our concretization layers
are not meant as process steps (as others do, see section
7, and as we do with formalization, see section 5), but
are meant as a sorting structure only.

Requirements

Business Requirements

Pro
cess R

eq
uirem

ents

Goals Scopes Basic
Conditions,
Restrictions

User Requirements

Features Quality of
Service -
Property

Scenarios

System Requirements

Input /
Output

Algorithms Architec-
ture,
Structure

Realization Requirements

Implementation Deployment

Figure 1. Concretization Layers

Figure 1 shows the five concretization levels (busi-

ness requirements, user requirements, system require-
ments, realization requirements, and process require-
ments) and the most important information types on
each layer. Each concretization layer has its individual
characteristics. These are:

Business Requirements: In the business require-
ments layer, everything is about how the company
might profit from the product to be developed; this
profit might not be restricted to money, but can also re-
fer to establishing a market, better the image or visibil-
ity of the company, and more.

On this layer, business goals are formulated, that the
product shall achieve (for example, “The product must
be the door-opener for the Asian market”). Also, basic
conditions and restrictions are formulated, that shall
ensure that the product will achieve the goals (for ex-
ample, “The projects budget is 600.000$”, or “The
product must not cost more than 150$”). Also, on this
level a first scoping takes place that coarsely defines
the functionality of the product (for example, “The
product must better the driving comfort while driving
long distances on a highway”). Moreover, a target

group, which is a set of users (such as driver, co-driver,
and service personal at a garage), has to be defined.

User Requirements: In the user requirements layer,
everything is about how a user should perceive and
benefit from the product. In this layer, the externally
visible functionality and properties of the product are
formulated. Since the user mostly does not perceive an
embedded system itself, the description of the prod-
uct’s functionality is embedded in the description of the
overall system’s behavior.

On this level, scenarios are formulated, that describe
the functionality of the desired product in the context
of the entire system and on the perspective of a user
(for example, “The user enters a high-way, he then de-
fines a speed of 60mph, he then activates the cruise
control”). Those scenarios can later be used to generate
test cases. The scenarios lead to basic features (such as
“it must be possible for the driver to set the target
speed”) and quality-of-service-properties (for example
“The usage of the systems must be possible with both
hands on the steering wheel”).

System Requirements: In the system requirements
layer, the focus switches from the user’s perspective (a
set of perceived features and properties) to the system’s
perspective; it is dealt with the question, how the em-
bedded system can perform those features in interaction
with its environment. Hence, in this layer, the system
and its interfaces to the environment are described. The
requirements within this layer may be further structured
in various sublevels corresponding to subsystems.

On this layer, the information flow and interfaces
between the system and its environment are described
(for example, “The system must know the current speed
of the car”, “The system gets the current speed of the
car by the sensor SSB via the CAN bus”, “The speed is
coded as 8bit integer”), the behavior of the system is
described (such as “The system must calculate the dif-
ference of the actual speed an the target speed with a
maximum tolerance of 1mph”), and the architectural
structure of the system is described (for example, “The
system shall consist of a scenario manager and a speed
calculator component”).

Realization Requirements: Here, requirements are
sorted in, which restrict the software implementation or
the hardware deployment of a system.

On this layer, implementation constraints such as
“the component X must be programmed in C” or “in
component Y, the certified code of program Z has to be
reused” and deployment constraints (for example “the
scenario manager and the speed calculator have to
share one ECU”) are formulated.

There is also a process requirements layer, which
is orthogonal to the other layers. It contains require-
ments that restrict only the way how the system is to be
developed, but not directly the product (for example,
“The development process shall be conforming to the
rational unified process”).

5. Formalization Steps

In this section, we describe the steps that have to be
performed in order to transform informal requirements
into formal ones. These four steps are: Identification
(section 5.1), Normalization (section 5.2), Structuring
(section 5.3), and Formalization (section 5.4).

As starting point, we expect informal textual infor-
mation, such as structured or unstructured text, catch-
word lists, drawings, tables, and mind maps. Hence, we
do not deal with the actual acquisition of requirements
(e.g. in interviews, workshops) in this paper, and focus
on the formalization of information instead.

5.1. Identification (Step 1)

Input: Informal textual information, such as struc-
tured or unstructured text, catchword lists, drawings, or
tables.

Tasks: In a first step, requirements have to be ex-
tracted from the input documents. They have to be
identified (and attached with an unique identifier) and
separated into atomic requirements; they have to be put
into a defined form and attributed (by using a template
that might contain fields such as “id”, “name”, “de-
scription”, “source”, “date”, and much more); often,
they have to be written out in full, because the input in-
formation might just be a catchword or a short frag-
ment of a sentence.

Output: A set of atomic requirements, written out
and attached with attributes (as defined in a template).

Example: For example, a catchword list entry “ac-
celerate and slowing down” might become two elabo-
rated requirements.

5.2. Normalization (Step 2)

Input: In the first step, we separated and formatted
individual requirements; each requirement is not yet
aligned with the set of the other requirements.

Tasks: The requirements have to be walked
through, and by analyzing the descriptions, a glossary
has to be built. In this glossary, synonyms have to be
resolved and a unified usage of terms has to be estab-
lished.

Output: A set of requirements that uses the same
terms for the same meanings, respectively; a glossary
that defines the used terms and connects them with
their synonyms and antonyms.

Example: In one requirement’s description, there
could be talked about “the car’s speed” and in another
requirement “the speed of the vehicle”. These might be
two terms for the same meaning (“car”, “vehicle”), so
it has to be resolved, if they indeed mean the same, and
it has to be decided, which term will be used in the
specification. In the glossary, the term will be defined,
and its synonyms will be listed.

5.3. Structuring (Step 3)

Input: In the second step, we normalized the re-
quirements, so that they use a set of uniform terms,
which are defined in a glossary. Those requirements are
written in a generic template and are not yet semanti-
cally captured.

Tasks: The normalized requirements now are struc-
tured by its contents in a taxonomy. That means that
requirements can be grouped according to different as-
pects,. After that, those groups of requirements can be
specifically dealt with, for example, by developing or
reusing specific templates.

Output: A structure of requirements, which groups
requirements that belong together within specific tem-
plates.

Example: Requirements that deal with the measure-
ment of the vehicle’s speed might be grouped together.
There might be no specific template for measuring
speed yet, but there might be a template for general
measurements (containing slots for minimum value,
maximum value, increment size, reaction times, toler-
ance, and so on), which can be reused and adapted to
the measurement of speed. The slots in this specific
template can be seen as both a checklist and a formal
sorting of requirements to semantic issues.

5.4. Formalization (Step 4)

Input: In the third step, we produced a set of re-
quirements, which are semantically captured by traces
and by specific templates. However, the descriptions of
those requirements are still informal.

Tasks: In this step, the informal description of the
requirements will be transformed into a formal specifi-
cation. Therefore, there exist several possibilities for
formalization:

• Formalizing structure: We use AUTOFOCUS sys-
tem structure diagrams [4] to formalize struc-
ture, so this target language consists of compo-

nents, channels, ports, types, names. Other
techniques for formalizing structure could be,
for example, UML or Z [7].

• Formalizing behavior: We use AUTOFOCUS
state transition diagrams [4] to capture behav-
ior in a formal way. Hence the target language
consists of states, transitions, events, pre- and
post conditions. Any other state machine [e.g.
5, 6] could also be used.

• Formalizing interaction: We use AUTOFOCUS
extended event traces [4] to formalize behavior,
so this target language consists of components
and interaction patterns. Other techniques for
formalizing interactions could be UML se-
quence diagrams or message sequence charts
(MSC).

• Formalizing data: We make use of AUTOFOCUS
data definition types [4] to formalize data, so
the target language consists of data types and
operators.

Output: Fragments of models that contain the for-
malized information of the requirements descriptions;
since some requirements might not be able to be for-
malized, those requirements stay informal.

Example: The requirement “When the break is
used, the cruise control is deactivated” could be trans-
formed into a fragment of a state machine with a state
“active”, another state “not active”, and a transition
from “active” to “not active” with the triggering condi-
tion “break is used”.

6. Integrating Formalization and Concreti-
zation into the REP

In section 3 we listed a couple of important goals of
Requirements Engineering, such as agreement (the re-
quirements must reflect the opinions of all stake-
holders), completeness (there must not be any vague-
ness abut the system to be build), preciseness (the re-
quirements must not be misunderstood), and economy
(the REP must use as few resources – such as money,
time, people, skills – as possible).

In this section we show with the example goal
“achieving completeness”, how formalization and con-
cretization layers together can be a powerful concept to
guide and support the REP.

The goal “completeness” can be divided into two
sub goals: the structural completeness of one require-
ment (for example, every requirement must be priori-
tized, every requirement must have an author) and the
completeness of the whole requirements set (that is,
that all information must be captured that is needed to

build the right product). We show how concretization
and formalization can help achieving these goals.

Structural completeness of individual require-
ments: The first formalization step, identification (see
section 5.1), enforces a uniform representation of re-
quirements by using a template. Hereby the structural
completeness of requirements can be easily achieved
because the template structure serves as a checklist for
the requirements attributes. Additional verbalization
templates (for example, that a requirement must be
formulated in the form “if … then … must … “) can
support formulating sound requirements.

Completeness of the whole specification: Sorting
requirements into concretization layers is an important
means to get at (and to attest) the completeness of a
specification: The built hierarchy immediately indi-
cates, whether high level requirements (such as busi-
ness goals) have been broken down to concrete re-
quirements or not; it also shows, when requirements on
the lower levels (for example, system requirements)
have no connection (and thus, no explicit justification)
to a high level requirement.

The third formalization step, structuring (see section
5.3), groups requirements that belong together. Such
groups can be, for example, “requirements that deal
with controlling the acceleration”, “requirements that
describe the modes of the system”, or “requirements
that describe the system’s behavior in case of errors”.
By grouping requirements under certain specific as-
pects, these groups, which should be kept small, can be
better analyzed with regard to completeness.

The fourth formalization step, formalization (see
section 5.4), is a further step towards the automatic de-
tection of incompleteness. Here, requirements are
translated into model fragments. When using state ma-
chines, for examples, it can be detected, whether there
are missing transitions: this is an indicator that there are
requirements missing that would specify the behavior
of the system in case of an event.

In the beginning of this section we listed several
goals of Requirements Engineering. Some of them are
not addressed by the formalization and concretization
layers at all - such as agreement or economy; here,
other dimensions (for example, an agreement dimen-
sion) must be integrated into the process model. Others,
such as preciseness, can be easily mapped to the for-
malization and are thus almost already covered.

7. Related Studies

The distinction of requirements into business, user,
and system requirements is not new [9]. But in contrast
to these approaches, our work is more detailed and

more specific, since we do not provide a generic
model, but focus on embedded automotive domain.

Pohl [3] introduced three dimensions of require-
ments engineering: “Agreement”, “Specification”, and
“Representation”. These three dimensions are process
oriented. The dimensions, we focused on in this paper,
differ from Pohl’s dimensions. They can somewhat be
seen as a detailed view on Specification (our concreti-
zation as an important aspect and technique to accom-
plish high specification values) and Representation (our
formalization can be seen as a more elaborated and
more specific approach in representing a specification).

The goal-oriented requirements approach KAOS [6]
shows several similarities to our work (each require-
ment must be judged by a goal, the requirements are
formalized, etc.). Due to different types of goals and
the formalization of requirements, the KAOS approach
wants to reduce the chaos arising of many informal,
contradictory requirements. In our work, this is
achieved by abstraction layers justifying the specifics
characteristics of requirements for embedded systems.
Additionally, KAOS uses a formal specification via
(real time) temporal logic. Instead, we make use of
more intuitive models like sequence diagrams and
automata.

Over the last years various specification techniques
like state charts [5], Z [7], and SDL [8] have been de-
veloped. All have in common that they describe a lan-
guage which can be used to specify the system, but they
do not focus on the process, i.e. how to get a formal
model out of a collection of heterogeneous, inconsis-
tent and incomplete requirements as described in this
paper.

8. Summary and Outlook

In this paper, we introduced and explained two di-
mensions of quality for requirements engineering: con-
cretization and formalization. We showed four formal-
ization steps, which transform informal text into a par-
tial formal specification; we explained concretization
layers which are specific for embedded automotive sys-
tems. Additionally we showed how we plan to integrate
these two dimensions into a REP.

In future work, we will elaborate both the dimen-
sions and their integration into the REP. We also will
introduce, explain and integrate more dimensions, such
as the agreement dimension, and we will show, how all
these dimensions together, as underlying concepts for a
process, guide achieving all requirements engineering
goals as mentioned in section 6. It will be the basis for
developing an appropriate activity model and product

model for a REP for the domain of embedded automo-
tive systems.

Furthermore, we will investigate how high-quality
requirements (like safety, reliability, maintainability)
can be treated in our framework. This includes how
they can be broken down to functional requirements,
how functional requirements can be derived from them,
and to what extend they can be formalized. Traceability
between requirements on and within the abstraction
layers is also in the scope of future work.

9. References

[1] A. Fleischmann, E. Geisberger, and M. Pister, Heraus-
forderungen für das Requirements Engineering eingebetteter
Systeme, Technischer Bericht der TU München, TUM-I0414.
Munich, 2004.

[2] W. B. Ribbens (ed.), Understanding Automotive
Electronics, 6th edition, Newnes Press, 2003.

[3] K. Pohl, The Three Dimensions of Requirements Engi-
neering, In: Fifth International Conference on Advanced In-
formation Systems Engineering (CAiSE'93), Springer-Verlag,
Paris, 1993, pages 275-292.

[4] F. Huber, B. Schätz, A. Schmidt, and K. Spies, AutoFO-
CUS: A Tool for Distributed Systems Specification. In: Pro-
ceedings FTRTFT'96 - Formal Techniques in Real-Time and
Fault-Tolerant Systems, LNCS 1135, Springer-Verlag, 1996,
pages 467- 470.

[5] D. Harel and M. Politi, Modeling Reactive Systems with
Statecharts: The STATEMATE Approach, McGraw-Hill,
1998.

[6] A. Lamsweerde, Goal-Oriented Requirements En-
gineering: A Guided Tour, 5th IEEE International
Symposium on Requirements Engineering, Toronto,
August, 2001

[7] ISO/IEC 13568, Information technology – Z formal
specification notation – Syntax, type system and semantics,
International Standard ISO/IEC, 2002.

[8] CCITT, Specification and description language (SDL),
CCITT Recommendation Z.100 (03/93), 1993.

[9] Richard Stevens, Peter Brook, Ken Jackson, and Stuart
Arnold, Systems Engineering, Prentice Hall Europe, ISBN 0-
13-095085-8, 1998.

