Compositional Refinement of Interactive Systems*

Manfred Broy
Institut fir Informatik
Technische Universitat Munchen
Posttach 20 24 20, 8 Minchen 2, Germany

on leave at

Digital Equipment Corporation
Systems Research Center

130 Lytton Avenue, Palo Alto, Ca 94301, U.S.A.
April 26, 1995

Abstract

We describe systems and their components by functional specification
techniques. We define notions of interface and interaction refinement for
interactive systems and their components. These notions of refinement
allow one to change both the syntactic (the number of channels and sorts
of messages at the channels) and the semantic interface (causality flow
between messages and interaction granularity) of an interactive system
component. We prove that these notions of refinement are compositional
with respect to sequential and parallel composition of system components,
communication feedback and recursive declarations of system components.
According to these proofs refinements of networks can be accomplished in
a modular way by refining their components. We generalize the notions of
refinement to refining contexts. Finally full abstraction for specifications
is defined and compositionality with respect to this abstraction is shown,
too.

*This work was partially sponsored by the German Sonderforschungsbereich 342 “Werk-
zeuge fir die Nutzung paralleler Architekturen”

CONTENTS

Contents
1 Introduction
2 Specification

3 Composition
3.1 Composition of Functions
3.2 Composition of Specifications

4 Refinement, Representation, Abstraction
4.1 Property Refinement
4.2 Interaction Refinement

5 Compositionality of Interaction Refinement
5.1 Sequential and Parallel Composition

5.2 Feedback

6 Recursively defined Specifications
6.1 Semantics of Recursively Defined Specifications
6.2 Refinement of Recursively Specified Components

7 Predicate Transformers as Refinements
8 Conclusion

A Appendix: Full Abstraction

14
14
15

23
23
24

30
30
32

35

42

44

1 INTRODUCTION 3

1 Introduction

A distributed interactive system consists of a family of interacting components.
For reducing the complexity of the development of distributed interactive sys-
tems they are developed by a number of successive development steps. By each
step the system is described in more detail and closer to an implementation
level. We speak of levels of abstraction and of stepwise refinement in system
development.

When describing the behavior of system components by logical specification
techniques a simple concept of stepwise refinement is logical implication. Then
a system component specification is a refinement of a component specification,
if 1t exhibits all specified properties and possibly more. In fact, then refinement
allows the replacement of system specifications by more refined ones exhibiting
more specific properties.

More sophisticated notions of refinement allow to refine a system component
to one exhibiting quite different properties than the original one. In this case,
however, we need a concept relating the behaviors of the refined system compo-
nent to behaviors of the original one such that behaviors of the refined system
component can be understood to represent behaviors of the original one. The
behavior of interactive system components is basically given by their interac-
tion with their environment. Therefore the refinement of system components
basically has to deal with the refinement of their interaction. Such a notion of
interaction refinement is introduced in the following.

Concepts of refinement for software systems have been investigated since
the early 1970s. One of the origins of refinement concepts i1s data structure
refinement as treated in Hoare’s pioneering paper [Hoare 72]. The ideas of
data structure refinement given there were further explored and developed (see,
for instance, [Jones 86], [Broy et al. 86], [Sannella 88], see [Coenen et al. 91]
for a survey). Also the idea of refining interacting systems has been treated
in numerous papers (see, for instance, [Lamport 83], [Abadi, Lamport 90], and
[Back 90]).

Typically distributed interactive systems are composed of a number of com-
ponents that interact for instance by exchanging messages or by updating shared
memory. Forms of composition allow to compose systems from smaller ones.
Basic forms of composition for systems are parallel and sequential composition,
communication feedback and recursion.

For a set of forms of composition a method for specifying system components
is called compositional (sometimes also the word modular is used), if the speci-
fication of composed systems can be derived from the specifications of the con-
stituent components. We call a refinement concept compositional, if refinements
of a composed system are obtained by giving refinements for the components.
Traditionally, compositional notions of specification and refinement for concur-
rent systems are considered hard to obtain. For instance, the elegant approach
of [Chandy, Misra 88] is not compositional with respect to liveness properties

1 INTRODUCTION 4

and does not provide a compositional notion of refinement. Note, it makes only
sense to talk about compositionality with respect to a set of forms of composi-
tion. Forms of composition of system components define an algebra of systems,
also called a process algebra. Not all approaches to system specifications empha-
sise forms of composition for systems. For instance, in state machine oriented
system specifications systems are modelled by state transitions. No particular
forms of composition of system components are used. As a consequence compo-
sitionality is rated less significant there. Approaches being in favor of describing
systems using forms of composition are called “algebraic”. A discussion of the
advantages and disadvantages of algebraic versus nonalgebraic approaches can
be found, for instance, in [Janssen et al. 91].

Finding compositional specification methods and compositional interaction
refinement concepts is considered a difficult issue. Compositional refinement
seems especially difficult to achieve for programming languages with tightly
coupled parallelism as it is the case in a “rendezvous” concept (like in CCS
and CSP). In tightly coupled parallelism the actions are directly used for the
synchronization of parallel activities. Therefore the granularity of the actions
cannot be refined, in general, without changing the synchronization structure
(see, for instance, [Aceto, Hennessy 91] and [Vogler 91]).

The presentation of a compositional notion of refinement where the gran-
ularity of interaction can be refined is the overall objective of the following
sections. We use functional, purely descriptive, “nonoperational” specification
techniques. The behavior of distributed systems interacting by communica-
tion over channels is represented by functions processing streams of messages.
Streams of messages represent communication histories on channels. System
component specifications are predicates characterizing sets of stream processing
functions. System components described that way can be composed and de-
composed using the above mentioned forms of composition such as sequential
and parallel composition as well as communication feedback. With these forms
of composition all kinds of finite data processing nets can be described. Allow-
ing in addition recursive declarations even infinite data processing nets can be
described.

In the following concepts of refinement for interactive system components
are defined that allow one to change both the number of channels of a com-
ponent as well as the granularity of the messages sent by it. In particular,
basic theorems are proved that show that the introduced notion of refinement is
compositional for the basic compositional forms as well as for recursive declara-
tions. Accordingly for an arbitrary net of interacting components a refinement
is schematically obtained by giving refinements for its components. The correct-
ness of such a refinement follows according to the proved theorems schematically
from the correctness proofs for the refinements of the components.

We give examples for illustrating the compositionality of refinement. We
deliberately have chosen very simple examples to keep their specifications small
such that we can concentrate on the refinement aspects. The simplicity of these

2 SPECIFICATION 5

examples does not mean that much more complex examples cannot be treated.

Finally we generalize our notion of refinement to refining contexts. Refining
contexts allow refinements of components where the refined presentation of the
input history may depend on the output history. This allows in particular
to understand unreliable components as refinements of reliable components as
long as the refining context takes care of the unreliability. Refining contexts are
represented by predicate transformers with special properties. We give examples
for refining contexts.

In an appendix full abstraction of functional specifications for the considered
composing forms is treated.

2 Specification

In this section we introduce the basic notions for functional system models and
functional system specifications. In the following we study system components
that exchange messages asynchronously via channels. A stream represents a
communication history for a channel. A stream of messages over a given message
set M is a finite or infinite sequence of messages. We define

MY =df M* UM
We briefly repeat the basic concepts from the theory of streams that we shall
use later. More comprehensive explanations can be found in [Broy 90].

e By 27y we denote the result of concatenating two streams « and y. We
assume that 7y = x, if x 1s infinite.

e By () we denote the empty stream.

e If a stream x is a prefiz of a stream y, we write # C y. The relation C 1s
called prefiz order. 1t is formally specified by

tCy=g zeMY 27 z=y

e By (M“)" we denote tuples of n streams. The prefix ordering on streams
as well as the concatenation of streams is extended to tuples of streams
by elementwise application.

A tuple of finite streams represents a partial communication history for a tuple
of channels. A tuple of infinite streams represents a total communication history
for a tuple of channels.

The behavior of deterministic interactive systems with n input channels and
m output channels is modeled by (n, m)-ary stream processing functions

[(ME) — (M)

A stream processing function determines the output history for a given commu-
nication history for the input channels in terms of tuples of streams.

2 SPECIFICATION 6

Example 1 Stream processing function

Let a set D of data elements be given and let the set of messages M be specified
by:
M=DuU{?}

Here the symbol 7 is a signal representing a request. For data elements d € D
a stream processing function

(c.d): MY — MY
is specified by

Yee€ D,x € M : (c.d)(?) =d7 7 (e.d) ()
e (c.e)(w)
The function (e.d) describes the behavior of a simple storage cell that can store

exactly one data element. Initially d is stored. The behavior of the component
modeled by (¢.d) can be illustrated by an example input

>
~~
2
~—
—~

(3]
)

&
~—

(l

(Cd)(7A7Adlﬁ7 AdQAV Ad3Ad4A? Ad5A$) =
dﬁdﬁdlﬁdlﬁdzﬁdzﬁd:«;ﬁd4ﬁd4ﬁd5ﬁ(c.d5).l‘

The function (c.d) is a simple example of a stream processing function where
every input message triggers exactly one output message.

End of example

In the following we use some notions from domain and fixed point theory that
are briefly listed:

e A stream processing function is called prefiz monotonic, if for all tuples of
streams z,y € (M*)" we have

rCy=fzCfy
We denote the function application f(z) by f.z to avoid brackets.
e By US we denote a least upper bound of a set S, if it exists.

o A set S is called directed, if for any pair of elements z and y in S there
exists an upper bound of z and y in S.

e A partially ordered set is called complete, if every directed subset has a
least upper bound.

e A stream processing function f is called prefiz continuous, if f is prefix
monotonic and for every directed set S C M*“ we have:

fuS=w{fe:zes}

2 SPECIFICATION 7

The set of streams as well as the set of tuples of streams are complete. For
every directed set of streams there exists a least upper bound.

We model the behavior of interactive system components by sets of contin-
uous (and therefore by definition also monotonic) stream processing functions.
Monotonicity models causality between input and output. Continuity models
the fact that for every behavior the system’s reaction to infinite input can be
predicted from the component’s reactions to all finite prefixes of this input!.
Monotonicity takes care of the fact that in an interactive system output already
produced cannot be changed when further input arrives. The empty stream is to
be seen as representing the information “further communication unspecified”.
Note, in the example above by the preimposed monotonicity of the function
(c.d) we conclude (c.d)({)) = (); otherwise, we could construct a contradiction.

A specification describes a set of stream processing functions that represent
the behaviors of the specified systems. If this set is empty, the specification is
called inconsistent, otherwise it 1s called consistent. If the set contains exactly
one element, then the specification is called determined. If this set has more
then one element, then the specification is called underdetermined and we also
speak of underspecification. As we shall see, an underdetermined specification
may be refined into a determined one. An underdetermined specification can
also be used to describe hardware or software units that are nondeterministic.
An executable system is called nondeterministic, if it is underdetermined. Then
the underspecification in the description of the behaviors of a nondeterministic
system allows nondeterministic choices carried out during the execution of the
system. In the descriptive modeling of interactive systems there is no difference
in principle between underspecification und the operational notion of nondeter-
minism. In particular, 1t does not make any difference in such a framework,
whether these nondeterministic choices are taken before the execution starts or
step by step during the execution.

The set of all (n,m)-ary prefix continuous stream processing functions is
denoted by

SPFy

The number and sorts of input channels as well as output channels of a specifi-
cation are called the component’s syntactic interface. The behavior, represented
by the set of functions that fulfill a specification, is called the component’s se-
mantic interface. The semantic interface includes in particular the granularity
of the interaction and the causality between input and output. For simplicity
we do not consider specific sort information for the individual channels of com-
ponents in the following and just assume M to be a set of messages. However,
all our results carry over straightforwardly to stream processing functions where
more specific sorts are attached to the individual channels.

1This does not exclude the specification of more elaborate liveness properties including
fairness. Note, fairness is, in general, a property that has to do with “fair” choices between
an infinite number of behaviors.

2 SPECIFICATION 8

— —
n Q m
— —

Figure 1: Graphical representation of a component ¢

A specification of a possibly underdetermined interactive system component
with n input channels and m output channels is modeled by a predicate

Q:SPF} — Bool

characterizing prefix continuous stream processing functions.) is called an
(n, m)-ary system‘s specification. A graphical representation of an (n,m)-ary
system component @) i1s given in Figure 1. The set of specifications of this form
is denoted by

SPECT,

Example 2 Specification

A component called C' (for storage Cell) with just one input channel and one
output channel is specified by the predicate C'. The component C' can be seen
as a simple store that can store exactly one data element. ' specifies functions
f of the functionality:

f: MY — M¥

Let the sets D and M be specified as in example 1. If C' receives a data element
it sends a copy on its output channels. If it receives a request represented by
the signal 7, 1t repeats its last data output followed by the signal 7 to indicate
that this is repeated output. The signal 7 is this way used for indicating a “read
storage content request”. The signal 7 triggers the read operation. A data
element in the input stream changes the content of the store. The message d
triggers the write operation. Initially the cell carries an arbitrary data element.
This behavior is formalized by the following specification for C"

Cf=3deD:f=(cd)

where the auxiliary function (e.d) is specified as in example 1. Notice that the
data element stored initially is not specified and thus component C' is underde-
termined.

End of example

3 COMPOSITION 9

For a deterministic specification @@ where for exactly one function ¢ the predicate
(1s fulfilled, in other words where we have

QI=f=q4

we often write (by misuse of notation) simply ¢ instead of @. This way we
identify determined specifications and their behaviors.
By I, € SPI]} we denote the identity function; that is we assume

Vee (M) i Ipxe=x

We shall drop the index m for I,,, whenever it can be avoided without confusion.
By @ € SPF} we denote the function that produces for every input just
the empty stream as output on all its output channels; that is we define

Ve e (M) . Q) = (™"

Similarly we write ™ for the unique function in SPF§*; in other words the
function with m input channels, but with no output channels.

By L}, € SPEC?, we denote the logically weakest specification, which is the
specification that is fulfilled by all stream processing functions. It is defined by

Vf e SPF" LM f

By “Tf we denote the function that produces two copies of its input. We have
n
Ye SPF}, and

Ve e (MY)" :“Tf x=(z,)

By n)?E SPFT?IHT we denote the function that permutes its input streams as

follows (let @ € (M“)",y € (M“)™):

nm

X (z,y) = (y,z)

n
Again we shall drop the index n as well as m in Q7 L 1" and YT whenever it
can be avoided without confusion.

3 Composition

In this section we introduce the basic forms of composition namely sequential
composition, parallel composition and feedback. These compositional forms are
introduced for functions first and then extended to component specifications.

3 COMPOSITION 10

3.1 Composition of Functions

Given functions
f € SPF} g€ SPF),

we write
fig
for the sequential composition of the functions f and ¢ which yields a function
in SPF], where
(f19).0 = g(f(x))

Given functions
feSPF)y, g€ SPF,;
we write

fllg

for the parallel composition of the functions f and g which yields a function in
SPFH%‘JI'_ZEZ where (let € (M“)"! y € (M¥)"?):

(fllg)-(z,y) = (f-x,9.y)

We assume that “;” has higher priority than “||”. Given a function
fesppntm
we write
nf

for the feedback of the output streams of function f to its input channels which
yields a function in SPF]} where

(uf).e = fixdy: f(x,y)

Here fiz denotes the fixed point operator associating with any monotonic func-
tion f its least fixed point fiz.f. Thus y = (uf).# means that y is with respect
the prefix ordering the least solution of the equation y = f(z,y). We assume
that “4” has higher priority than the binary operators “;” and “||”. A graphical
representation for feedback is given in Figure 2.

We obtain a number of useful rules by the fixed point definition of uf. As a

simple consequence of the fixed point characterization, we get the unfold rules:
pf="TUnf); f
wf =05 u((11F):)

A graphical representation of the unfold rules for feedback is given in Figure 3.

11

3 COMPOSITION

Figure 2: Graphical representation of feedback

Figure 3: Graphical representation of the unfold rules for feedback

3 COMPOSITION 12

$I y:
: J 9>:

it
f g Y

Figure 4: Graphical representation of semiunfold

A useful rule for feedback 1s semiunfold that allows one to move components
outside or inside the feedback loop (let g € SPF):

n(f;9) = pn((llg); ;g

A graphical representation for semiunfold is given in Figure 4.
For reasoning about feedback loops and fixed points the following special
case of semiunfold is often useful:

fizdy:m™ f(z,y) =m™ fix. Xy : f(z,m"y)

The rule 1s an instance of semiunfold with ¢ = A y : m™ y. The correctness of
this rule can also be seen by the following argument: if y is the least fixed point

of
Ay:m”™ f(z,y)
and ¥ is the least fixed point of
Ay f(x,y)
then ¥ = m™y and thus
y=m"Ay: flz,m"y)

Semiunfold is a powerful rule when reasoning about results of feedback loops.

3 COMPOSITION 13

3.2 Composition of Specifications

We want to compose specifications of components to networks. The forms of
composition introduced for functions can be extended to component specifica-
tions in a straightforward way. Given component specifications

Q€ SPEC? Re SPECF

we write
@R
for the predicate in SPEC], where
(@Q;R).f<3q,r: QeqARrANf=qr

Trivially we have for all specifications @ € SPECT, the following equations:

Q;1=0Q
LQ=qQ
Q" =1"

Given specifications

Q € SPEC!,, R€ SPEC™,

ml
we write

QIR
for the predicate in SPEC%%‘:_%Z where

QIR).feIqr:QqARrAf=q|r

Given specification

Q e SPEC™ ™

we write

0o
for the predicate in SPEC], where

(nQ).f < 3q:Qq N f=pg
For feedback over underdetermined specifications we get the following rules?:

pQ = 1;(I|pQ); Q

2For determined system specifications Q we get the stronger rules uQ = T;(I||uQ);Q
and 4Q = T;u((]|Q); Q) which do not hold for underdetermined systems, in general. The
erroneous assumption that these rules are valid also for underdetermined systems is the source
for the merge anomaly (see [Brock, Ackermann 81]).

4 REFINEMENT, REPRESENTATION, ABSTRACTION 14

pQ = 1; u((1Q); Q)

A useful rule for feedback 1s fusion that allows one to move components that are
not affected by the feedback outside or inside the feedback operator application.
Let R € SPECE:

R p@Q = p((R||1); Q)
p((Q[F™); (1R) = p(Q); (I||1R)

With the help of the basic functions and the forms of composition introduced
so far we can represent all kinds of finite networks of systems (data flow nets)3.
The introduced composing forms lead to an algebra of system descriptions.

4 Refinement, Representation, Abstraction

In this section we introduce concepts of refinement for system components both
with respect to the properties of their behaviors as well as with respect to their
syntactic interface and granularity of interaction.

We start by defining a straightforward notion of property refinement for
system component specifications. Then we introduce a notion of refinement
for communication histories. Based on this notion we define the concept of
interaction refinement for interactive components. This notion allows to refine
a component by changing the number of input and output channels as well as
the granularity of the exchanged messages.

4.1 Property Refinement

Specifications are predicates characterizing functions. This leads to a simple
notion of refinement of component specifications by adding logical properties.
Given specifications

Q,Q € SPEC™,

@ is called a (property) refinement of @
if forall f € SPF}:

Qf=Qf
Then we write
Q=Q
If @ i1s a property refinement for @, then~© has all the properties () has and
may be some more. Every behavior that () shows is also a possible behavior of

Q.

30f course, the introduced combinatorial style for defining networks is not always very
useful, in practice, since the combinatorial formulas are hard to read. However, we prefer
throughout this report to work with these combinatorial formulas, since this puts emphasis
on the compositional forms and the structure of composition. For practical purposes a notation
with named channels is often more adequate.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 15

All considered composing forms are monotonic for the refinement relation as
indicated by the following theorem.

Theorem 1 (Compositionality of Refinement)
(@1= QA (Q2= Q2) = (Q1;Q2 = Q13 Q)
(@12 Q) A Q2= Q2) = (Q1l|Q2 = Qu[1Q2)

(Q=Q) = (nQ = pnQ)
Proof: Straightforward, since all operators for specifications are defined point-
wise on the sets of functions that are specified. O

A simple example of a property refinement is obtained for the component C' as
described in Example 2 on page 8 if we add properties about the data element
initially stored in the cell. A property refinement does not allow one to change
the syntactic interface of a component, however.

4.2 Interaction Refinement

Recall from section 2 that streams model communication histories on channels.
In more sophisticated development steps for a component the number of chan-
nels and the sorts of messages on channels are changed. Such steps do not
represent property refinements. Therefore we introduce a more general notion
of refinement. To be able to do this we study concepts of representation of
communication histories on n channels modeled by a tuple of n streams by
communication histories on m channels modeled by a tuple of m streams.

Tuples of streams y € (M“)™ can be seen as representations of tuples of
streams » € (MY)", if we introduce a mapping p € SPF” that associates
with every z its representation. p is called a representation function. If p is
injective then 1t 1s called a definite representation function. Note, a mapping p
is injective, if and only if:

Ve, T:pr=pT=>c=1T

If a specification R € SPFECY, is used for the specification of a set of represen-
tation functions, R is called a representation specification.

Example 3 Representation Specification

We specify a representation specification R allowingthe representation of streams
of data elements and requests by two separate streams, one of which carries the
requests and the other of which carries the data elements. The representation
functions are mappings p of the following functionality:

piM¥ — {2, x (DU{V/}*

4 REFINEMENT, REPRESENTATION, ABSTRACTION 16

Here / is used as a separator signal. It can be understood as a time tick that
separates messages. Given streams @ and y let [z, y] denote a pair of streams and
[2,y]"[Z, Y] the elementwise concatenation of pairs of streams, in other words:

[e, 9] [2, y] = [+ 2,y 0]

Let Ticks be defined by the set of pairs of streams of ticks that have equal
length:
Ticks = {[V*,\/*] 1 k € N}

We specify the representation specification R explicitly as follows:

[0 pe
A[\/, dAV]Ap.x

Rp=vV¥de D,xe MY : 3t € Ticks : p(?7"x)

=1
A FETicks :p(d™x) =t

Note, by the monotonicity of the specified functions:
Rp=FeTicks : p) =t

The computation of a representation is illustrated by the following example:

[777 Vo Ve AV
VT ATV dy Y] p(e)
The example demonstrates how the time ticks are used to indicate in the streams

p(x) the order of the requests relatively to the data messages in the original
stream z.

End of example

The elements in the images of the functions p with R.p are called representations.

Definition 1 (Definite representation specification) A representation
specification R is called definite, of

Ve, Z,p,p: RpANRPApr=pT=>2=7

In other words R 1s definite, if different streams x are always differently repre-
sented.

Obviously, if R is a definite representation specification, then all functions p
with R.p are definite. For definite representation specifications for elements z
and T with # # T the sets of representation elements {p.z : R.p} and {p.T : R.p}
are disjoint. Note, the representation specification given in the example above
is definite.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 17

For every injective function, and thus for every definite representation func-
tion p, there exists a function o € SPI]" such that:

pra=1

The function « is an inverse to p on the image of p. The function « is called
an abstraction for p. Notice that « is not uniquely determined as long as p is
not surjective. In other words, as long as not all elements in (M%“)™ are used
as representations of elements in (M“)" there may be several functions « with
Aa.

The concept of abstractions for definite representation functions can be ex-
tended to definite representation specifications.

Definition 2 (Abstraction function) Let R € SPEC], be a definite repre-
sentation specification; a function « € SPF} wilh

Ria=1
15 called an abstraction function for R.

The existence of abstractions follows from the definition of definite representa-
tion specification. Again for definite representation specifications the abstrac-
tion functions « are uniquely determined only on the image of R, that is on the
union of the images of functions p with R.p.

Definition 3 (Abstraction for a definite representation specification)
Let A € SPECT? be the specification with

Aae Ria=1
Then A 1s called the abstraction for R.

For consistent definite representation specifications R with abstraction A we
have

RA=1T

If p; A =1 = R.pthen R contains all possible choices of representation functions
for the abstraction A.

Example 4 Abstraction

For the representation specification R described in example 3 the abstraction
functions « are mappings of the functionality:

a {7,/ x (DU{/}HY — M~
The specification of A reads as follows.

Aa=vVde D,z e {?,/}*,ye (DU{V/H":

4 REFINEMENT, REPRESENTATION, ABSTRACTION 18

a(?Txy) =7 alz,y)
A a(\/ﬁx,\/ﬁ Y)
A a(VTrd™ V) =d7aley)

|
2
—~
\.H
<
=

It is a straightforward rewriting proof that indeed:
RA=1T

The specification A shows a considerable amount of underspecification, since
not all pairs of streams in {7,/}¥ x (D U{\/})¥ are used as representations.

End of example

Parallel and sequential composition of definite representations leads to definite
representations again.

Theorem 2 Let R; € SPEC,. be definite representation specifications for i =
1,2; then
Ry||R2

Ry R

(assuming my = na in the second formula) are definite representation specifica-
tions.

Proof: Sequential and parallel composition of injective functions leads to in-
jective functions. O

Trivially we can obtain the abstractions of the composed representations by
composing the abstractions.

For many applications, representation specifications are neither required to
be determined nor even definite. For an indefinite representation specification
sets of representation elements for different elements are not necessarily disjoint.
Certain representation elements y do occur in several sets of representations for
elements. They ambiguously stand for (“represent”) different elements. Such
an element may represent the streams x as well as z, if p.x = p.Z for functions
p and p with R.p and R.p. For indefinite representation specifications the rep-
resented elements are not uniquely determined by the representation elements.
A representation element y stands for the set

{e:Jp:RpApa=y}

For a definite representation specification R this set contains exactly one element
while for an indefinite representation specification R this set may contain more
than one element. In the latter case, of course, abstraction functions « with
R;a =1 do not exist.

However, even for certain indefinite representations we can introduce the
concept of an abstraction.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 19

Definition 4 (Uniform representation specifications) A consislent speci-
fication R € SPEC;,, is called a uniform representation specification, if there
exists a specification A € SPECT! such that for all p:

Rp= R;Ap=p
The specification A s called again the abstraction for R.

The formula expresses that (R; A) is a left-neutral element for every represen-
tation function in R. Essentially the existence of an abstraction expresses the
following property of R: if for different elements and T the same representa-
tions are possible, then every representation function maps these elements onto
equal representations. More formally stated, if there exist functions p and p
with R.p and R.p such that

pr=pT
then for all functions p with R.p:

p.xr = p.x

Thus if elements are identified by some representation functions, this identifica-
tion is present in all representation functions. The same amount of information
i1s “forgotten” by all the representations. The representation functions then are
indefinite in a uniform way. Definite representations are always uniform.

A function is injective, if for all # and T we have:

pr=pr=>cv=7T

A function that is not injective p defines a nontrivial partition on its domain.
A representation specification is uniform if and only if all functions p with R.p
define the same partition.

For a uniform representation specification R with abstraction A the product
(R; A) reflects the underspecification in the choices of the representations pro-
vided by R. If for a function v with (R; A).y we have # = ., then z and T
have the same representations.

Definition 5 (Adequate representation) A uniform representation specifi-
cation R with abstraction A 1s called adequate for a specification Q, if:
QR A=Q

Adequacy means that the underspecification in (R; A) does not introduce more
underspecification into @; R; A than already present in). Note, definite repre-
sentations are adequate for all specifications Q.

Definition 6 (Interaction refinement) Given representations R € SPECE,
R € SPEC and specifications Q € SPECY,, Q € SPEC?, we say that Q 1s an
interaction refinement of Q) for the representation specifications R and R, if

R Q= QR

4 REFINEMENT, REPRESENTATION, ABSTRACTION 20

n Q m
_—
R R
—
Y n Q m Y
— ——

Figure 5: Commuting diagram of interaction refinement

This definition indicates that we can replace via an interaction refinement a
system of the form @Q; R by a refined system of the form R; (). We may think
about the relationship between @ and) as follows: the specification @) specifies
a component on a more abstract level while @' gives a specification for the
component at a more concrete level. Instead of computing at the abstract level
with @ and then translating the output via R onto the output representation
level, we may translate the input by R onto the input representation level and
compute with (). We obtain one of these famous commuting diagrams as shown
in Figure 5.

Definition 7 (Adequate interaction refinement) The interaction refine-
ment of Q) for the representation specifications R and R is called adequate for
a specification Q, if R is adequate for Q).

For adequate interaction refinements using uniform representation specifications
R with abstraction A € SPECT®, we obtain

R QA= Q
since from the interaction refinement property we get
R QA= QRA
and by the adequacy of R for Q
QRA=Q

which shows that R; @; A is a (property) refinement of (). A graphical illustra-
tion of adequate interaction refinement is shown in Figure 6.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 21

n Q m
_—
4
R A
—
pon Q m
— ——

Figure 6: Commuting diagram of interaction refinement

The following table summarizes the most important definitions introduced
so far.

| Table of definitions

@ property refinement of) @f =>Q.f

R consistent, definite with abstr. A RA=1T

R uniform with abstraction A Rp=R;Ap=p

R adequate for) with abs. A QR A= Q

Inter. refinement @ of Q for R, R R; @ = QR
Adequate inter. refinement R uniform and adequate for Q

The notion of interaction refinement allows one to change both the syntactic
and the semantic interface. The syntactic interface is determined by the number
and sorts of channels; the semantic interface 1s determined by the behavior of
the component represented by the causality between input and output and by
the granularity of the interaction.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 22

Example 5 Interaction Refinement

We refine the component C' as given in Example 2 into a component C that has
instead of one input and one output channel two input and two output channels.
The refinement C' uses one of its channels carrying the signal 7 as a read channel
and one of its channels carrying data as a write channel. Let R and A be given
as specified in the examples above R R

We specify the interaction refinement C' of C' explicitly. C specifies functions
of functionality:

FAnLVE x(DUVDY = A7V < (DU{V®

We specify: R
C.f=3deD:f=hd

where the auxiliary function A is specified by:
h:D— {7,V < (DU{VD* = {7V} x (DU{V})Y)
Vd,e e Dz € {7,/ y € (DU{/}H¥:

(hd)(?"2,y) = [Y=2,dV]" (hd)(z.p)
A hd(ey = VY] (hd)(a,y)
A (he)(Vme d V7 y) = [V,d V)" (hd)(a,y)

It is a straightforward proof to show:
R; C= C;R

Assume p with R.p and h such that there exist f and d with éf and f = h.d;
we prove by induction on the length of the stream x that there exist g with R.p
and c.d as specified in example 1 such that:

(hd).p.x =p.cd).x
For = () we obtain: there exists ¢ € Ticks such that:

(h.d).t =
t =

=

=
pled).x
Now assume the hypothesis holds for x; there exists t € Tlicks:

(h.d).p(?"x) =
(hd)(t™[2, ()] px) =
[V, d V) (hd)pr =
A (ed).x) =
ple.d)(?™x)

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 23

There exists ¢ € T'icks:

This concludes the proof for finite streams . By the continuity of & and p the
proof is extended to infinite x.

End of example

Continuing with the system development after an adequate interaction refine-
ment of a component we may decide to leave R and A unchanged and carry on
by just further refining .

5 Compositionality of Interaction Refinement

Large nets of interacting components can be constructed by the introduced
forms of composition. When refining such large nets it is decisive for keeping
the work manageable that interaction refinements of the components lead to
interaction refinements of the composed system.

In the following we prove that interaction refinement is indeed compositional
for the introduced composing forms that is sequential and parallel composition,
and communication feedback.

5.1 Sequential and Parallel Composition

For systems composed by sequential compositions, refinements can be con-
structed by refining their components.

Theorem 3 (Compositionality of refinement, seq. composition) As-
sume @Z 1s an interaction refinement of Q); for the representations R;_y and R;
fori =1,2, then @1;652 15 an interaction refinement of Q1; Qo for the repre-
sentations Ry and Rs.

Proof: A straightforward derivation shows the theorem:

Ry; @1; @2 = {monotonicity of ", @1 interaction refinement of Q1 }
Q1;R1;Q2 = {monotonicity of “;” (- interaction refinement of @2}

Q1;Q2; o

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 24

Example 6 Compositionality of Refinement for Sequential Composition

Let C and C be specified as in the example above. Of course, we may compose
C as well as C sequentially. We define the components C'C' and cC by:

cC =df C; C
65 =df é; é
Note, C'C'is a cell that repeats its last input twice on a signal 7. It is a straight-

forvvard application of our theorem of the compositionality of refinement that

CC is a refinement of CC' :
R; OC = CC; R
Of course, since R; A = I we also have that R; 65’; A is a property refinement
of C'C.
End of example

Refinement 1s compositional for parallel composition, too.

Theorem 4 (Compositionality of refinement for parallel composition)
Assume QZ is an interaction refinement of Q); for the representations R; and R;

fori=1,2 then Q1||Q2 is an interaction refinement of Q1]|Q2 for the represen-
tations R1||R2 and Ry||R>.

Proof: A straightforward derivation shows the theorem:

(R ||R2), (@ ||@2) = {rule for sequential and parallel composition}
(Ry; Q1)||(R2; @2) = {@Z interaction refinement for @;}

(Q1; R1)|(Q2; R2) = {rule for sequential and parallel composition}
(Q1]1Q2); (Ru|R-)

O

For sequential and parallel composition compositionality of refinement is quite
straightforward. This can be seen from the simplicity of the proofs.

5.2 Feedback

For the feedback operator, refinement is not immediately compositional. We
do not obtain, in general, that ;@) is an interaction refinement of u() for the
representations R and R provided @ is an interaction refinement of @ for the
representations R||R and R. This is true, however, if I = (A; R) (see below).
The reason is as follows. In the feedback loops of /1@ we cannot be sure that
only representations of streams (i.e. streams in the images of some of the func-
tions characterized by R) occur. Therefore, we have to give a slightly more
complicated scheme of refinement for feedback.

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 25

Theorem 5 (Compositionality of refinement, feedback) Assume @ s an
interaction refinement of @ for the representation specifications R||R and R
where R is uniform; then u((I||A; R); Q) is an interaction refinement of u@) for

the representations R and R.

Proof: We prove:
(R (1A R); Q)).f = (Q); R).f

From
(R p((II| A R); Q)).f

we conclude that there exist functions p, ¢, p, and @ such that R.p, @qA, R.p,
and A.@ and furthermore

f=pi (| 7);9)

Since @ is an interaction refinement of @ for the representations R||R and R
for functions p with R.p and 5 with R.p and ¢ with @.¢ there exist functions ¢
and p such that @).¢ and R.p hold and furthermore

(pllp)ia=a;p
Given z, because of the continuity of p, ¢, p, and @, we may define u((I||&;p); ¢).p.x
by Uy; where
Bo= ()"
Yi+r = q(p.x, pOLY;)
Moreover, because of the continuity of ¢, we may define p.(1g).2 by p.Uy; where
yo=("

Yivr = q(x, yi)
We prove:
p-Uyi = Uy;
by computational induction. We prove by induction on ¢ the following proposi-
tion:
Yi Cp.yi Elin

If ¢ = 0, we have:

o C {Yo is the least element}
pyo C {yo is the least element}
g, yo) = {refinement property }
q(p.x,pyo) C {yo is the least element}
q(p.x,payy) = {definition of ¥ }

Y1

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 26

Assume now the proposition holds for ¢; then we obtain:

Yit1 = {definition of Z;11}
qpx,pay) C {induction hypothesis}
q(p.x,p.a.p.y;) = {uniformity of R}

Qpx,py;) = {refinement property }
gz, y) = {definition of y; 41 }
p-Yit1

Furthermore we get:

pYir1 = {definition of y;41 }
(e, y) = {refinement property }
qdpx,py) = {uniformity of R }

q(p.x,papy) C {induction hypothesis}
q(p.x, payiy1) = {definition of yiy2}
Yit2
i, From this we conclude by the continuity of p that:
Uy; = p- Uy

and thus
(u((Il[e;2);9))-p-v = pop(q) 2

and finally .
(1(Q); R).(p; u((Il|&;)5 9))

O

Assuming an adequate refinement allows us to obtain immediately the following
corollary.

Theorem 6 (Compositionality of adequate refinement, feedback) As-
sume) s an adequate interaction refinement of Q) for the representations R||E

and R with abstraction A then_u(Q;Z; E) 1s an interaction refinement of p@)
for the representations R and R.

Proof: Let all the definitions be as in the proof of the previous theorem. Since
the interaction refinement is assumed to be adequate there exists a function ¢
with @.q such that
GPGP=0p
Carrying out the proof of the previous theorem with ¢ instead of ¢ and p instead
of p we get:
p((Il[@;7);0) = (na); P

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 27

By straightforward computational induction we may prove

o~

(g @;p) = p((I|a; p);)

This concludes the proof. 0

Assuming that A; R contains the identity as a refinement we can simplify the
refinement of feedback loops.

Theorem 7 Assume @ is an interaction refinement of Q) for the representa-
tions R||R and R with abstraction A and assume furthermore

I=AR
then /1@ is an interaction refinement of uQ for the representations R and R.
Proof: Straightforward deduction shows:

&@?__A
R u((I|4; R); Q) =

pQ; R

O

Note, even if I is not a refinement of A; R, in other words even if I = A; R
does not hold, other refinements of A; R may be used to simplify and refine the
term A; R in u((I||A; R); Q). By the fusion rule for feedback as introduced in
section 3 we obtain:

o~

R p(Q; A3 R) = p((R||1); Qs 45 R)
This may allow further refinements for @; A R.
Example 7 Compositionality of Refinement for Feedback

Let us introduce the component F' with two input channels and one output
channel. It specifies functions of the following functionality:

MY x MY — M*
I is specified as follows:
F.f=Ye,ye M¥ :3d e D: f(x,y) = g(x,d"y)
where the auxiliary function g is specified by

g: MY x MY — M¥

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 28

where Vd,e € D,m € M,z y € M¥ :

g(x,d=7"y) = g(z,d"y)

A g dTy) =dTTg(x,y)

N ogldmzeTy) =dg(x,y)
It is a straightforward proof that for the specification C as defined in Example
1:

uF=C

We carry out this proof by induction on the length of the input streams z. We
show that pf fulfills the defining equations for functions c.d in the definition
of C' in Example 2. Let f be a function with F.f and ¢ be a function as
specified above in the definition of F'. We have to consider just two cases: by
the definition of f there exists ¢ as defined above such that: there exists d:

p(f).(7") =

fizdy: g7 2, d7y) =
fiz Xy :d™77g(x,d7y) =
A= fie Ay gle,d™77y) =
A= fiz Ay g, d™y)

p(f)(e"w) =

fix Ay glex,d7y) =
fizdy:e"gle,y) =
e" fizdy:g(e, e y)

Induction on the length of and the continuity of the function g conclude the
proof. R

The refinement F' of F' according to the representation specification R from
example 3 specifies functions of the functionality:

FAL VI < (DULVDY < A7V < (DU{VHY = A7, V1 x (DU{VE)
It reads as follows:
ﬁf =Ve,z,y,y:3deD: flx,Z,y,9) = ﬁ(x,fi‘,\/ﬁ Y, dﬁ\/ﬁfgj)
where the auxiliary function ¢ is specified by
g7V (DULVHY x {7,V x (DULVEHY = A7 VY x (DU{VE)®
Vd,e e Dyz,ye {7, /1Y, 2,5 € (DU{/}¥ :

9z, 7,77y, 7)) =§(x, TV y,7)
N v B i e
A ﬁ(\/ﬁl‘,dﬁ\/ﬁf’\/ﬁ Y, eA\/A@ = [\/’] (l‘ 7 y’“)

A gV eV E YY) =YY 0, Ty, T)
A g, TV y Vo) =g(2,%,,7)

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 29

We have (again, this can be proved by a straightforward rewrite proof):
(R|R); F = F; R
Moreover, we have according to Theorem 5:
Ryp((1|A; R); F) = (nF'); R
and therefore R
Ryp((|A; R); F) = C5 R
Note, the refinement is definite and therefore adequate for F'. Therefore we may
replace p((1]|A; R); ') by p(F; A; R).

The component u(F; A; R) can be further refined by refining A; R. Let us,
therefore, look for a simplification for A; R. We do not have

I= AR
since by the monotonicity of all & with A.«c we have:

a((),d™ () = ()

(otherwise we obtain a contradiction, since by monotonicity the first elements
of a(x,d™y) have to coincide for all # and y). Therefore for all p with R.p:

t e ticks : p.a((),d™() = t7[(), (]

This indicates that there are no functions p and o with R.p and A.« such that
p.a.x = z is valid for all z. We therefore cannot simply refine A; R into 7.

‘We continue the refinement by refining p. We take into account properties
of F'. A simple rewriting proof shows:

(RIID); F = (RIID); F; A R
Summarizing our refinements we obtain:
R; uﬁ =
p((R|ID); F)) =
p((RIT); F; A R)) =
R p(F; A R)) =
R; p((I]]A; R); F)

This concludes our example of refinement for feedback.
End of example

Recall that every finite network can be represented by an expression that is
built by the introduced forms of composition. The theorems show that a network
can be refined by defining representation specifications for the channels and by
refining all its components. This provides a modular method of refinement for
networks.

6 RECURSIVELY DEFINED SPECIFICATIONS 30

6 Recursively defined Specifications

Often the behavior of interactive components is specified by recursion. Given a
function

7:SPEC], — SPEC],

a recursive declaration of a component specification @) 1s given by a declaration
based on T:

letrec Q.f = 7[Q].f

Recursive specifications are restricted in the following to functions 7 that exhibit
certain properties.

6.1 Semantics of Recursively Defined Specifications
A function T where '
T:SPF} — SPF}

1s monotonic with respect to implication, if:

(@=Q) = (] = 7[Q)
A set {Q; : 1 € IN} of specifications is called a chain, if for all i € IN and for all
functions f € SPF}:
Qit1(f) = Qi(f)

A function 7 is continuous with respect to implication, if for every chain {@Q); :
i € IN} and all for functions f € SPF:

T[Ql.f=Yie IN : 7[Q].f where Q.f=Vie N :Qi(f)
Note, the set of all specifications forms a complete lattice.

Definition 8 (Predicate transformer) A predicate transformer is a func-
tion '
T : SPEC], — SPECY,

that is monotonic and continuous with respect to implication (refinement).

Note, if 7 is defined by 7[X] = Net(X) where Net(X) is a finite network com-
posed of basic component specifications by the introduced forms of composition,
then 7 is a predicate transformer.

A recursive declaration of a component specification) is given by a defining
equation (often called the fixed point equation) based on a predicate transformer
T

letrec @ = 7[Q)]
A predicate @) is called a fized point of 7 if:

Q=r[d]

6 RECURSIVELY DEFINED SPECIFICATIONS 31

In general, for a function 7 there exist several predicates Q that are fixed points
of 7 . In fixed point theory a partial order on the domain of 7 is established
such that every monotonic function 7 has a least fixed point. This fixed point 1s
associated with the identifier f by a recursive declaration of the form f = 7.f.
For defining the semantics of programming languages the choice of the ordering,
which determines the notion of the least fixed point, has to take into account
operational considerations. There the ordering used in the fixed point construc-
tion has to reflect the stepwise approximation of a result by the execution. For
specifications such operational constraints are less significant.

Therefore we choose a very liberal interpretation for recursive declarations
of specifications in the following. For doing so we define the concept of an upper
closure of a specification. The upper closure 1s again a predicate transformer:

=:SPEC, — SPEC]
It is defined by the following equation:

ElQlf=39:QgngC f

Notice that = is a classical closure operator, since it has the following charac-
teristic properties:

A predicate @ is called wpward closed, if @) = Z[Q]. Note, by = the least
element 2 is mapped onto the specification L that is fulfilled by every function,
that is Z[Q2] = L. From a methodological point of view it is sufficient to restrict
our attention to specifications that are upward closed*. This methodological
consideration and the considerable simplification of the formal interpretation
of recursive declarations are the reasons for considering only upward closed
solutions of recursive equations.

A predicate transformer 7 is called upward closed, if for all predicates) we
have:

By the recursive declaration

letrec Q = 7[Q)]

4Taking the upper closure for a specification may change its safety properties. However,

only safety properties for those behaviors may be changed where the further output, indepen-
dent of further input, is empty. A system with such a behavior does not produce a specific
message on an output channel, even, if we increase the streams of the messages on the input
channels. Then what output is produced on that channel obviously is not relevant at all.

6 RECURSIVELY DEFINED SPECIFICATIONS 32

we associate with @Q the predicate that fulfills the following equation:
Qf=VeelN:Q;.f
where the predicates @); are specified by:
Qo =1L
Qir1 = E[7[Qi]]

According to this definition we associate with a recursive declaration the logi-
cally weakest® predicate Q such that

= E[r[Q]]
The predicate @) is then denoted by fix.7.

6.2 Refinement of Recursively Specified Components

A uniform representation specification R with abstraction A is called adequate
for the predicate transformer 7, if for all predicates X:

(XsR A= X) = (X, Ry A= r[X)

Adequacy implies that specifications for which R is adequate are mapped by 7
onto specifications by for which R is adequate again.

Uniform interaction refinement is compositional for recursive definitions based
on predicate transformers for which the refinement is adequate. Again definite
representations are always adequate.

Theorem 8 (Compositionality of refinement for recursion) Let repre-
sentation specifications R and R be given, where R is uniform with abstraction
A and adequate for the predicate transformer

7 :SPEC;, — SPEC?,
For a predicate transformer
7:SPECL — SPECY
where .
RiLi=14;R
and for all predicates X, X:
(R; X = X;R) = (R;7[X] = 7[X]; R)

we have

R; fix. A X : 7[X; A; R] = fiz.T; R

5True is considered weaker than false.

6 RECURSIVELY DEFINED SPECIFICATIONS 33

Proof: Without loss of generality assume that the predicate transformers 7 and
7 are upward closed. Define

Qo =1L
Qit1 = T[Q:]
Qo=1L

We prove: L
Qi By A= Q;
This proposition is obtained by a straightforward induction proof oni. For: =0
we have to show:
;R A= L
which is trivially true, since L holds for all functions. The induction step reads
as follows: from

Qi Ry A= Qi
we conclude by the adequacy of 7:
Qiv1; R; A= {definition of Q;;1}
7[Q:]; R; A = {adequacy of 7 and induction hypothesis}
7[Qi] = {definition of Q; 41}
Qi1
We prove by induction on i:
R;Qi= QiR
For i = 0, we have to prove: o
RL=1LR

This is part of our premises. Now assume the induction hypothesis holds for i;

trivially

Therefore, with X = R; CA)Z'; Aand X = @i; A; R by our premise we have:
Ri7(Qi A R] = 7[R Qi AL R

By the induction hypothesis and by the fact Q;: R; A = Q; we obtain R; @i; A=
(); as can be seen by the derivation

R;Q; A
Qi R; A
Qi

=
=

6 RECURSIVELY DEFINED SPECIFICATIONS 34

We obtain:

R;Qip1 = {definition of Q;41}

R; ?[@Z»;Z; R] = {premise for 7, 7 with X = R; CA)Z';Z, X = @Z»;Z;R }
T[R; @i; Al; R = {uniformity of R, see above}

7[Qil; R = {definition of Q;;1}

Qiy1; R

Note, for definite representations R the premise
R;L=1L;R

is always valid as the following straightforward derivation shows:

RL= {definition of L}
R;A;L; R= {since R;A=1}
L;E

We immediately obtain the following theorem as corollary. It can be useful for
simplifying the refinement of recursion.

Theorem 9 Given the premisses of the theorem above and in addition
I=AR

we have

R; fix. 7 = fiz.7; R

Proof: The theorem is proved by a straightforward deduction:

R; fiz.T = {premise}
R; fizx. A X : 7[X; A; R] = {theorem 8}
fiz.T; R

O

Note, even if I is not a refinement of A; R, that is even if I = A; R does not
hold, other refinements of A; R may be used to simplify the term A; R in the
specification.

fiz. A X : 7[X; A; R]

7 PREDICATE TRANSFORMERS AS REFINEMENTS 35

Example 8 Compositionality of Refinement for Recursion

Of course, instead of giving a feedback loop as in example 7 above we may also
define an infinite network recursively by®:

letrec @ = 7[Q)]
where
TIX] =T (1| X); F

Again we obtain (as a straightforward proof along the lines of the proof above
for pF' = C shows):
Q=c

It is also a straightforward proof to show that

~

(R; X = X;R) = (R;7[X] = 7[X]; R)
where R R R
TIX] =T ([|(X5 4, R)); F
Therefore we have
R;Q=0Q;R
where

letrec Q = 7[Q)]

by our compositionality results. Again A; R can be replaced by its refinement
as shown above.

End of example

Using recursion we may define even infinite nets. The theorem above shows
that a refinement of an infinite net that is described by a recursive equation is
obtained by refinement of the components of the net.

7 Predicate Transformers as Refinements

So far we have considered the refinement of components by refining on one hand
their tuples of input and on the other hand their tuples of output streams. A
more general notion of refinement is obtained by considering predicate trans-
formers themselves as refinements.

Definition 9 (Refining context) A predicate transformer

R : SPEC", — SPEC!

8The predicate transformer 7 is obtained by the unfold rule for feedback

7 PREDICATE TRANSFORMERS AS REFINEMENTS 36

15 called a refining context, «f there exists a mapping
A : SPECY — SPECT,
called abstracting context such that for all predicates X we have:
ARX = X

Refining contexts can be used to define a quite general notion of refinement.

Definition 10 (Refinement by refining contexts) Lelt R be a refining con-
teaxt with abstracting context A. A specification Q is then called a refinement for
the abstracting context .4 of the specification Q, if:

AQ=Q
Note, R.Q is a refinement of the specification @) for the abstracting context A.

Refining contexts may be defined by the compositional forms introduced in the
previous sections.

Example 9 Refining Contexts

For component specifications Y with one input channel and two output channels
we define a predicate transformer

A:SPECY — SPECH

by the equation:
AY = p((PII1);Y); (1)

where the component P specifies functions
pi D x {2, f — D
A graphical representation of A.Y is given in Figure 7. Let P be specified by:

Pp=VYze D¥ yec{?/}¥: p(m™ e, ?77y) =mTp(mTa,y)
A plmme Y7 y) =p(x,y)

For a component specification X with one input channel and one output
channel we define a predicate transformer:

R :SPECI — SPEC!

where

R.X =Q; (1|1 X)
where the component () specifies functions

q: DY = {7, /}¥ x D¥

7 PREDICATE TRANSFORMERS AS REFINEMENTS 37

Ay :

z, Z |
R

e Py v e

Figure 7: Graphical representation of A.Y

Let () be specified by:
Qq=VeeD¥ ke lN:YielN:i<k=
g(m?) =[P+ ()]
A g((mP)T = [(PF) Y m) T g

Let m* stand for the finite stream of length k containing just copies of the
message m. To show that A and R define a refining context we show that:

ARX =X
which is equivalent to showing that for all specifications X:
p((PI1); @; (L[1X)); (1) = X
This is equivalent to:

p((PlI1); Q); (1) = 1

which is equivalent to the formula:

Vp, ¢, 2 PpAQ.q =z = (u((Il|1);p;0); (1))

which can be shown by a proof based on the specifications of P and (. Let
/~ stand for (I3|]t) and \, stand for the function ({||I1). For functions p and ¢
with P.p and @).q there exists £ € IV such that Vi € IV with ¢ < k:

N fiz Ay, zq.p. /S (m™ e, (") "y, z) =
Nfiw Ay, zq((m') " p(m™) =

N\ fiw Ay, 2o [0 0" qp(m ™z, y) =
N\ fir Xy, zqp / (mT e (T Ty, 2)

This can be shown by a straightforward proof of induction on :. By this we
obtain for i = k + 1:

NSt Ay, zqp. / (mT ey, 2) =
N\ fie Ay, ziqp. S (mTe (M) Ty)

7 PREDICATE TRANSFORMERS AS REFINEMENTS 38

Furthermore:
N fizdy,ziqp/ (mTe () Ty 2) =
N\ Cfizdy, 2 q(mEH) T p(mTx,y)) =
N fir Xy, z (P TV om T gp(m T e, y) =
N Jie Xy, z g p(mTa, (7k+1)ﬁ\/ﬁy) =
N fiz Ay, 2 (PP m) T gp(m Tz, y) =
m™ N\, .fir Xy, 2 1 q.p(m™e,y) =
m™ N\ . fix Ay, z:qp. /S (mTa,y, z)

We obtain

(n(/ 3P0 \)(m7x) =
N SJie Xy, zqp. /S (mT ey, 2) =
m”™ N\ .fix Xy, z:qp. / (m™a,y, z)

By induction on the length on z and the continuity of the involved functions
the proposition above 1s proved.

End of example

Context refinement is indeed a generalization of interaction refinement. Given
two pairs of definite representation and abstraction specifications R, A and R, A
by

AY =R)Y; A

RX=A4X;R
a refining context and an abstracting context is defined, since
ARX =
A(A; X5 R) =
Ry (A X;R); A=
X

Refining contexts lead to a more general notion of refinement than interaction
refinement. There are specifications () and () such that there do not exist
consistent specifications R and A where

R;Q; A= Q
but there may exist refining contexts R and A such that
AQ=Q

Refining contexts may support the usage of sophisticated feedback loops between
the refined system and the refining context. This way a dependency between
the representation of the input history and the output history can be achieved.

7 PREDICATE TRANSFORMERS AS REFINEMENTS 39

e ——
i P
- C B}

Figure 8: Graphical representation of the master/slave system

A very general form of a refining context is obtained by a special operator
for forming networks called master/slave systems. For notational convenience
we introduce a special notation for master/slave systems. A graphical represen-
tation of master/slave systems is given in Figure 8. A master/slave system is
denoted by @|H]. Tt consists of two components @ and H called the master
Q € SPEC';"_I'_Z@ and the slave H € SPECT. Then Q|H]| € SPEC,. All the

input of the slave is comes via the master and all the output of the slave goes
to the master. The master/slave system is defined as follows:

km

QLA = p((QIF*): (TullH); X) (1™[11x)
or in a more readable notation:
(QLHT)-f =3¢, h:QqANH.LAf=q|h]
where Yz, y, z;
(¢[h]).x = = where (z,y) = fiz. X 2,y : q(x, h.y)

We can define a refining context and an abstracting context based on the mas-
ter/slave system concept: we look for predicate transformers

R :SPEC" — SPEC!
with abstracting context
A:SPEC, — SPEC”,

and for specifications V' & SPEC',@"_I'_Z1 and W € SPEC;‘:_]; where the refining

context and the abstracting context are specified as follows:

R.X = V|X]

7 PREDICATE TRANSFORMERS AS REFINEMENTS 40

i) i
2| K
v @ i
= U@ K

Figure 9: Graphical representation of the cooperator

AY =W|Y]
and the following requirement is fulfilled:
WIVIX]] = X
We give an analysis of this requirement based on further form of composition

called a cooperator. The cooperator is denoted by T where m,n € IN. For
specifications @) € SPEC’;‘:_%,@ € SPECIFE the cooperator is defined as

m+tk
follows: ~
é ra) n—+n
(R Q)€ SPECm+m
QT Q) f=307:QqAQINf=(¢T 7
where

(q % 7)-(x, %) = (2,7) where (2,7,9,%) = fiz.A 2,7,4,7 : (q(v,9),7(¥, 7))

A graphical presentation of the cooperator is given in Figure 9.
A straightforward rewriting shows that the cooperator is indeed a general-
ization of the master/slave. For H € SPECY:

Q=1 = QL

In particular we obtain:

WIVIXT =W S (V= X) = (W5 V)X

7 PREDICATE TRANSFORMERS AS REFINEMENTS 41

and therefore the condition:
WIVIX]] = X

reads as follows:
WS VX=X

The following theorem gives an analysis for the component W = V.

Theorem 10 The implication

WS WVX] =X
implies
N nm
(Wi V)=x
Recall, X just swaps ils input streams.
Proof: By the definition of cooperation we may conclude that for every function

¢ and every function v such that W.¢ and V.v and for every f where X.f there
exists a function f where X.f such that:

IZ: (2, =T v)(e, fE) 2= f.x
Since this formula is true for all specifications X and therefore also for definite

specifications, the formula holds for all functions f where in addition f = f.
We obtain for the constant function f with z = f.z for all and for all z:

EIE:(Z,E):(C%V)(x,z)@z:z

The equation above therefore simplifies to

T (fn) = (=), fD) e fr=fu

Now we prove that from this formula we can conclude:

(F70)= (T v)(£3)

We do the proof by contradiction. Assume there exists & such that:

(77 = (€7) £7)

8 CONCLUSION 42

and x # Z. Then we can choose a function f such that f.z # f.Z. This concludes

the proof of the theorem. 0

By the concept of refining contexts we then may consider the refined system
QIWILVLHT

The refinement of this refined network can then be continued by refining V| H
and leaving its environment QW |...]] as it is.

There is a remarkable relationship between master/slave systems and the
system structures studied in rely/guarantee specification techniques as advo-
cated among others in [Abadi, Lamport 90]. The master can be seen as the
environment and the slave as the system. This indicates that the master/slave
situation models a very general form of composition. Every net with a subnet
H can be understood as a master/slave system Q|H] where @) denotes the sur-
rounding net, the environment, of H. This form of networks is generalized by
the cooperator as a composing form, where in contrast to master/slave systems
the situation is fully symmetric.

k

The cooperating components @ and Q in Q 5 @ can be seen as their
mutual environments. The concept of cooperation is the most general notion of
a composing form for components. All composing forms considered so far are
Just special cases of cooperation; for Q € SPEC] P € SPEC'}; we obtain:

Q;P:Q?P fm=1
QP=Q7 P

pQ= (NI ifnzm

Let a net N be given with the set I' of components. Every partition of I' into
two disjoint sets of components leads to a partition of the net into two disjoint

k
subnets say @ and @Q such that the net is equal to @ T @ where k denotes
the number of channels in N leading from Q to @ and k denotes the number
of channels leading from @ to . Then both subnets can be further refined
independently.

8 Conclusion

The notion of compositional refinement depends on the operators, the composing
forms, considered for composing a system. Compositionality is not a goal per
se. It is helpful for performing global refinements by local refinements. Refining
contexts, master slave systems and the cooperator are of additional help for
structuring and restructuring a system for allowing local refinements.

8 CONCLUSION 43

The previous sections have demonstrated that using functional techniques a
compositional notion of interaction refinement is achieved. The refinement of
the components of a large net can be mechanically transformed into a refinement
of the entire net.

Throughout this paper only notions of refinement have been treated that can
be expressed by continuous representation and abstraction functions. This 1s
very much along the lines of [CTP 84] and [Broy et al. 86] where it is considered
as an important methodological simplification, if the abstraction and represen-
tation functions can be used at the level of specified functions. There are inter-
esting examples of refinement, however, where the representation functions are
not monotonic (see the representation functions obtained by the introduction
of time in [Broy 90]). A compositional treatment of the refinement of feedback
loops in these cases remains as an open problem.

Acknowledgement: This work has been carried out during my stay at DIGI-
TAL Equipment Corporation Systems Research Center. The excellent working
environment and stimulating discussions with the colleagues at SRC, in particu-
lar Jim Horning, Leslie Lamport, and Martin Abadi are gratefully acknowledged.
I thank Claus Dendorfer, Leslie Lamport, and Cynthia Hibbard for their careful
reading of a version of the manuscript and their most useful comments.

A APPENDIX: FULL ABSTRACTION 44

A Appendix: Full Abstraction

Looking at functional specifications one may realize that sometimes they specify
more properties than one might be interested in and that one may observe
under the considered compositional forms. Basically we are interested in two
observations for a given specification @ for a function f with @.f and input
streams . The first one is straightforward: we are interested in the output
streams y where

y=fzx

But, in addition, for controlling the behavior of components especially within
feedback loops we are interested in causality. Given just a finite prefix. of the
considered input streams x, causality of input with respect to output determines
how much output (which by monotonicity of f is a prefix of y) is guaranteed by
f

More technically, we may represent the behavior of a system component by
all observations about the system represented by pairs of chains of input and
corresponding output streams.

A set {z; € (M¥)" : i € IN} is called a chain, if for all ¢ € IN we have
z; C ziy1. Given a specification @ € SPECY,, a pair of chains

({wi € (M*)" i€ N} {ys € (M¥)™ -i € IN})

is called an observation about @, if there exists a function f with @Q.f such that
for all ¢ € IV:

vi C fx;

and
Wy :ie N} =U{fa; ;i€ N}

The behavior of a system component specified by @ then can be represented
by all observations about). Unfortunately, there exist functional specifications
which show the same set of observations, but, nevertheless, characterize different
sets of functions. For an example we refer to [Broy 90].

Fortunately such functional specifications can be mapped easily onto func-
tional specifications where the set of specified functions is exactly the one char-
acterized by its set of observations. For this reason we introduce a predicate
transformer

A:SPEC" — SPEC™

that maps a specification on its abstract counterpart. This predicate transformer
basically constructs for a given predicate @ a predicate A.Q that is fulfilled
exactly for those continuous functions that can be obtained by a combination
of the graphs of functions from the set of functions specified by). We define

(AQ).f=Vae 3 QFAfCTo A= fu

A APPENDIX: FULL ABSTRACTION 45

where R R
FCrf=(NVz:zCae= fzC f.2)

By this definition we obtain immediately the monotonicity and the closure pro-
perty of the predicate transformer A.

Theorem 11 (Closure property of the predicate transformer A)
Q=0Q) = (AQ=>AQ)

@ = AQ
AQ=AAQ

Proof: Straightforward, since @.f occurs positively in the definition of A.Q,
fEs [and

Vo :3f (AQ)JAFCo fAfz=fa=(AQ).f

A specification @ is called fully abstract, if
RQ=AQ

We may redefine our compositional forms such that the operators deliver always
fully abstract specifications:

QP = AQ: P)
QlP=A@Q|P)
FQ=AQ)

All the results obtained so far carry over to the abstract view by the monotoni-
city of A, and by the fact that we have

A(Q;P)= A(A.Q;A.P)
AQ|P) = AAQ|A.P)
AHQ) = A AQ)

Furthermore, given an upward closed predicate transformer 7 we have: if Q is
the least solution of

Q= 7[Q]
then @ = A.Q is the least solution of
Q=A1[Q]
The proofis straightforward. Note, by this concept of abstraction we may obtain

1= AR

A APPENDIX: FULL ABSTRACTION 46

in cases where I = A; R does not hold. This allows additional simplifications
of network refinements.

Note, full abstraction is a relative notion. It i1s determined by the basic
concept of observability and the composing forms. In the presence of refinement
it 1s unclear whether full abstraction as defined above is appropriate. We have:

Q=Q) = (AQ=AQ)

However, if a component () is used twice in a network 7[@], then we do not have,
in general, that for (determined) refinements @ of A.Q there exist (determined)
refinements) of) such that:

~ -~

([Q] = 7[Q])

Therefore, when using more sophisticated forms of refinement the introduced
notion of full abstraction might not always be adequate.

REFERENCES

References

[Aceto, Hennessy 91]

[Abadi, Lamport 90]

[Back 90]

[Back 90]

[deBakker et al. 90]

[Brock, Ackermann 81]

[Broy et al. 86]

[Broy 90]

[CIP 84]

[Chandy, Misra 88]

[Coenen et al. 91]

47

L. Aceto, M. Hennessy: Adding Action Refinement to
a Finite Process Algebra. Proc. ICALP 91, Lecture
Notes in Computer Science 510, (1991), 506-519

M. Abadi, L. Lamport: Composing Specifications.
Digital Systems Research Center, Report 66, October
1990

R.J.R. Back: Refinement Calculus, Part I: Sequen-
tial Nondeterministic Programs. REX Workshop. In:
[deBakker et al. 90], 42-66

R.J.R. Back: Refinement Calculus, Part II: Par-
allel and Reactive Programs. REX Workshop. In:
[deBakker et al. 90], 67-93

J. W. de Bakker, W.-P. de Roever, G. Rozenberg (eds):
Stepwise Refinement of Distributed Systems. Lecture
Notes in Computer Science 430, Springer 1990

J.D. Brock, W.B. Ackermann: Scenarios: A Model
of Nondeterminate Computation. In: J. Diaz, L
Ramos (eds): Lecture Notes in Computer Science 107,

Springer 1981, 225-259

M. Broy, B. Moller, P. Pepper, M. Wirsing: Alge-
braic implementations preserve program correctness.
Science of Computer Programming 8 (1986), 1-19

M. Broy: Functional Specification of Time Sensi-
tive Communicating Systems. REX Workshop. In:
[deBakker et al. 90], 153-179

M. Broy: Algebraic methods for program construc-
tion: The project CIP. SOFSEM 82, also in: P. Pep-
per (ed.): Program Transformation and Programming
Environments. NATO ASI Series. Series F: 8. Berlin-
Heidelberg-New York-Tokyo: Springer 1984, 199-222

K.M. Chandy, J. Misra: Parallel Program Design: A
Foundation. Addison Wesley 1988

J. Coenen, W.P. deRoever, J, Zwiers: Assertional
Data Reification Proofs: Survey and Perspective.

REFERENCES

[Janssen et al. 91]

[Lamport 83]

[Hoare 72]

[Jones 86]

[Sannella 88]

[Vogler 91]

48

Christian-Albrechts-Universitat Kiel, Institrut fur In-
formatik und praktische Mathematik. Bericht Nr.
9106, February 1991

W. Janssen, M. Poel, J. Zwiers: Action Systems
and Action Refinement in the Development of Par-
allel Systems - An Algebraic Approach. Unpublished
Manuscript

L. Lamport: Specifying concurrent program modules.

ACM Toplas 5:2, April 1983, 190-222

C.A.R. Hoare: Proofs of Correctness of Data Repre-
sentations. Acta Informatica 1, 1972, 271-281

C.B. Jones: Systematic Program Development Using

VDM. Prentice Hall 1986

D. Sannella: A Survey of Formal Software Develop-
ment Methods. University of Edinburgh, Department
of Computer Science, ECS-LFCS-88-56, 1988

W. Vogler: Bisimulation and Action Refinement.
Proc. STACS 91, Lecture Notes in Computer Science
480, (1991), 309-321

