
Formal Verification of a Java Compiler in
Isabelle ?

Martin Strecker

Fakultät für Informatik, Technische Universität München
http://www.in.tum.de/~streckem

Abstract. This paper reports on the formal proof of correctness of a
compiler from a substantial subset of Java source language to Java byte-
code in the proof environment Isabelle. This work is based on extensive
previous formalizations of Java, which comprise all relevant features of
object-orientation. We place particular emphasis on describing the effects
of design decisions in these formalizations on the compiler correctness
proof.

1 Introduction

The compiler correctness proof presented in this paper is part of a more com-
prehensive research effort aiming at formalizing and verifying key aspects of a
substantial subset of the Java programming language, in particular:

– the type system and operational semantics of Java, with a proof of type
soundness [Ohe01a]

– an axiomatic semantics, with a proof of its equivalence to the operational
semantics [Ohe01b]

– an abstract dataflow analyzer [Nip01], instantiated for Java bytecode, with
a proof of correctness of Java bytecode verification [KN02].

All these formalizations and proofs have been carried out in the Isabelle system.
They will be briefly reviewed in Section 2, as far as relevant for our purpose.

The present work links the existing Java source and bytecode formalizations,

– by defining an executable compiler from source to bytecode (Section 3), and
– by stating and proving a compiler correctness theorem with Isabelle (Sec-

tion 4).

To date, there have been numerous machine-supported compiler correctness
proofs and several pen-and-paper formalizations of aspects of Java (cf. Section 5).
The current effort distinguishes itself from previous ones by being the first (to the
best of our knowledge) to formally establish such a result for a realistic object-
oriented language: our description of Java, even though incomplete in several
respects, comprises all essential features of object-orientation. In addition, the
? This research is funded by the EU project VerifiCard

source language model includes a notion of exceptions (which are, however, so
far not taken into account in the correctness proof). To achieve a succinct pre-
sentation of the operational semantics, a few fundamental design decisions have
been made. A recurring theme of this paper will be to analyse their consequences
for compiler verification.

This paper can only give a survey of the overall effort – for details, consult
the Isabelle sources at http://isabelle.in.tum.de/verificard/.

2 Language Formalizations

In this section, we give an overview of Isabelle and describe the existing for-
malizations of Java in Isabelle: the source language, µJava, and the Java virtual
machine language, µJVM. This “micro” edition of Java (see [NOP00] for a gentle
introduction) accommodates essential aspects of Java, like classes, subtyping, ob-
ject creation, inheritance, dynamic binding and exceptions, but abstracts away
from the wealth of arithmetic data types, interfaces, arrays, access modifiers,
and multi-threading. It is a good approximation of the JavaCard dialect of Java,
targeted at smart cards.

2.1 Isabelle Preliminaries

Isabelle is a generic framework for encoding different object logics. In this paper,
we will only be concerned with the incarnation Isabelle/HOL [NPW02], which
comprises a higher-order logic and facilities for defining datatypes as well as
primitive and terminating general recursive functions.

Isabelle’s syntax is reminiscent of ML, so we will only mention a few peculiar-
ities: Consing an element x to a list xs is written as x#xs. Infix @ is the append
operator, xs ! n selects the n-th element from list xs at position n.

We have the usual type constructors T1 × T2 for product and T1 ⇒ T2 for
function space. The long arrow =⇒ is Isabelle’s meta-implication, in the follow-
ing mostly used in conjunction with rules of the form [[P1; . . .; Pn]] =⇒ C to
express that C follows from the premises P1 . . . Pn. Apart from that, there is the
implication −→ of the HOL object logic, along with the standard connectives
and quantifiers.

The polymorphic option type
datatype ’a option = None | Some ’a

is frequently used to simulate partiality in a logic of total functions: Here, None
stands for an undefined value, Some x for a defined value x. Lifted to function
types, we obtain the type of “partial” functions T1 ; T2, which just abbreviates
T1 ⇒ (T2 option).

The constructor Some has a left inverse, the function the :: ’a option ⇒
’a, defined by the sole equation the (Some x) = x. This function is total in the
sense that also the None is a legal, but indefinite value.

2.2 µJava Source Language

We will now sketch the formalization of the µJava source language in Isabelle in
the following stages:

– We will describe the structure of a µJava program, building on a formaliza-
tion of its constituents, i.e. raw terms and types. Obviously, this is prereq-
uisite to defining a translation from Java to Java bytecode (Section 3).

– Using a notion of well-typedness, it is possible to single out “legal” expres-
sions, statements and (in extenso) programs. Only these will be considered
for compiler correctness, see Section 4.1.

– The behaviour of µJava programs is defined by an operational semantics
in the form of an evaluation relation. The semantics is essential for the
statement of compiler correctness, and it determines the structure of the
proof (Section 4.2), which is by induction on the evaluation relation.

– The correctness proof requires still another proviso, namely that during ex-
ecution, program states conform to expected types. As it turns out, this
precondition is purely technical and does not impose a genuine restriction.
It is satisfied for well-typed programs anyway, due to the type-safety of µJava.

The Structure of Programs The µJava language is embedded deeply in
Isabelle, i.e. by an explicit representation of the Java term structure as Isabelle
datatypes. We make the traditional distinction between expressions expr and
statements stmt. The latter are standard, except maybe for Expr, which turns
an arbitrary expression into a statement (this is a slight generalization of Java).
For some constructs, more readable mixfix syntax is defined, enclosed in brackets
and quotes.

datatype expr

= NewC cname | Cast cname expr

| Lit val | BinOp binop expr expr

| LAcc vname | LAss vname expr ("_::=_")

| FAcc cname expr vname | FAss cname expr vname

| Call cname expr mname (ty list) (expr list) ("{_}_.._({_}_)")

datatype stmt = Skip | Expr expr

| Comp stmt stmt ("_;; _")

| Cond expr stmt stmt ("If (_) _ Else _")

| Loop expr stmt ("While (_) _")

The µJava expressions form a representative subset of Java: NewC permits to
create a new instance, given a class name cname ; Cast performs a type cast; Lit
embeds values val (see below) into expressions. µJava only knows a few binary
operations binop : test for equality and integer addition. There is access to local
variables with LAcc, given a variable name vname ; assignment to local variables
LAss ; and similarly field access, field assignment and method call. The type
annotations contained in braces { } are not part of the original Java syntax; they

have been introduced to facilitate type checking. This concludes the description
of µJava terms.

The type val of values is defined by

datatype val = Unit | Null | Bool bool | Intg int | Addr loc

Unit is a (dummy) result value of void methods, Null a null reference. Bool
and Intg are injections from the predefined Isabelle/HOL types bool and int

into val, similarly Addr from an uninterpreted type loc of locations.
Let us briefly sketch the µJava type level, even though its deep structure

is not modified by the compiler (which is reflected by some of the preservation
lemmas of Section 4.2).

datatype prim ty = Void | Boolean | Integer

datatype ref ty = NullT | ClassT cname

datatype ty = PrimT prim ty | RefT ref ty

µJava types ty are either primitive types or reference types. Void is the result
type of void methods; note that Boolean and Integer are not Isabelle types, but
simply constructors of prim ty. Reference types are the null pointer type NullT

or class types.
On this basis, it is possible to define what is a field declaration fdecl and

a method signature sig (method name and list of parameter types). A method
declaration mdecl consists of a method signature, the method return type and
the method body, whose type is left abstract. The method body type ’c re-
mains a type parameter of all the structures built on top of mdecl, in particular
class (superclass name, list of fields and list of methods), class declaration cdecl

(holding in addition the class name) and program prog (list of class declarations).

types fdecl = vname × ty

sig = mname × ty list

’c mdecl = sig × ty × ’c

’c class = cname × fdecl list × ’c mdecl list

’c cdecl = cname × ’c class

’c prog = ’c cdecl list

By instantiating the method body type appropriately, we can use these struc-
tures both on the Java source and on the bytecode level. For the source level,
we take java mb prog, where java mb consists of a list of parameter names, list of
local variables (i.e. names and types), and a statement block, terminated with a
single result expression (this again is a deviation from original Java).

types java_mb = vname list × (vname × ty) list × stmt × expr

java prog = java mb prog

Typing Typing judgements come in essentially two flavours:

– E ` e :: T means that expression e has type T in environment E. We write
wtpd expr E e for ∃ T. E ` e :: T.

– E ` c
√

means that statement c is well-typed in environment E.

The environment E used here is java mb env, a pair consisting of a Java program
java mb prog and a local environment lenv.

A program G is well-formed (wf_java_prog G) if the bodies of all its methods
are well-typed and in addition some structural properties are satisfied – mainly
that all class names are distinct and the superclass relation is well-founded.

Operational Semantics The operational semantics, in the style of a big-step
(natural) semantics, describes how the evaluation of expressions and statements
affects the program state, and, in the case of an expression, what is the result
value. The semantics is defined as inductive relation, again in two variants:

– for expressions, G ` s -e�v-> s’ means that for program G, evaluation of e
in state s yields a value v and a new state s’ (note that the evaluation of
expressions may have side-effects).

– for statements, G ` s -c-> s’ means that for program G, execution of c in
state s yields a new state s’.

The state (of type xstate) is a triple, consisting of an optional exception com-
ponent that indicates whether an exception is active, a heap aheap which maps
locations loc to objects, and a local variable environment locals mapping vari-
able names to values.
types aheap = loc ; obj

locals = vname ; val

state = aheap × locals

xstate = xcpt option × state

The semantics has been designed to be non-blocking even in the presence
of certain errors such as type errors. For example, dynamic method binding is
achieved via a method lookup function method that selects the method to be
invoked, given the dynamic type dynT of expression e (whereas C is the static
type) and the method signature (i.e. method name mn and parameter types pTs).
Again, the method m thus obtained is indefinite if either dynT does not denote a
valid class type or the method signature is not defined for dynT.

Call: [[... m = the (method (G,dynT) (mn,pTs)); ...]]
=⇒ G`Norm s0 -{C}e..mn({pTs}ps) � v -> s’

The evaluation rules could be formulated differently so as to exclude indefi-
nite values, at the expense of making the rules unwieldy, or they could block in
the case of type errors, which would make a type correctness statement impossi-
ble (see [Ohe01a] for a discussion). Fortunately, the type safety results provided
in the following show that this kind of values does not arise anyway. Unfortu-
nately, the rules force us to carry along this type safety argument in the compiler
correctness proof – see Section 4.2.

Conformance and Type-Safety The type-safety statement requires as aux-
iliary concept the notion of conformance, which is defined in several steps:

– Conformance of a value v with type T (relative to program G and heap h),
written G, h`v::�T, means that the dynamic type of v under h is a subtype
of T.

– Conformance of an object means that all of its fields conform to their declared
types.

– Finally, a state s conforms to an environment E, written as s::� E, if all
“reachable” objects of the heap of s conform and all local variables of E

conform to their declared types.

The type safety theorem says that if evaluation of an expression e well-typed
in environment E starts from a conforming state s, then the resulting state
is again conforming; in addition, if no exception is raised, the result value v

conforms to the static type T of e. An analogous statement holds for evaluation
of statements.

2.3 Java Bytecode

For the Isabelle formalization of the Java Virtual Machine, µJVM, we have in
principle to go through the same steps as for µJava, in particular definition
of the language structure and operational semantics. There are however quite
different mechanisms for dealing with typing issues; they are only skimmed in
the following.

The µJava bytecode instructions manipulate data of type val, as introduced
in Section 2.2. The instruction set is a simplification of the original Java bytecode
in that the Load and Store instructions are polymorphic, i.e. operate on any type
of value. In µJVM, there are so far only system exceptions; exceptions cannot
be thrown explicitly and cannot be handled.1
datatype

instr = Load nat | Store nat

| LitPush val | New cname

| Getfield vname cname | Putfield vname cname

| Checkcast cname | Invoke cname mname (ty list)

| Return | Pop

| Dup | Dup_x1

| Dup_x2 | Swap

| IAdd | Goto int

| Ifcmpeq int

As mentioned in Section 2.2, much of the program structure is shared between
source and bytecode level. Simply by exchanging the method body type, we can
define the type of Java virtual machine programs:
types bytecode = instr list

jvm_prog = (nat × nat × bytecode) prog

1 This situation is currently being remedied.

Apart from the bytecode, the method body contains two numbers (maximum
stack size and length of local variable array) which are required by the bytecode
verifier but need not concern us here.

The type jvm prog reflects the structure of a Java class file rather directly
up to minor differences, such as version numbers, redundant administrative in-
formation (e.g. methods count), and data related to interfaces, which are not
handled in µJava and can thus be assumed to be void.

Ensuring type correctness of bytecode is the responsibility of the bytecode
verifier. In analogy to the type safety result for the source level, it can be shown
that if bytecode passes a correct bytecode verifier, it can be executed “safely” –
see [KN02] for details.

The JVM operational semantics defines the effect of executing instructions
on the jvm state, which is a triple consisting of an optional component indicating
the presence of an exception, a heap and a frame stack.

types opstack = val list

locvars = val list

frame = opstack × locvars × cname × sig × nat

jvm_state = xcpt option × aheap × frame list

Each frame holds an operand stack opstack, a list of local variables locvars,
the class name and signature identifying the currently executing method, and the
program counter. xcpt, aheap and sig are the same as on the source level. The
only genuine data refinement is for the representation of local variables: In µJava,
the method-local variables locals are a mapping from names to values. In µJVM,
locvars is a list this, p1, . . . , pn, l1, . . . , lm containing a reference this to the
current class and the parameters p1, . . . , pn and local variable values l1, . . . , lm
of the current method. This refinement is achieved by function locvars_locals,
still needed further below.

The function exec instr takes an instruction and the constituents of a state
and computes the follow-up state. The Load instruction, for example, produces
no exception (None), leaves the heap hp unmodified, and changes the topmost
frame by pushing the contents of the local variable with index idx on the operand
stack stk and incrementing the program counter pc.

exec_instr (Load idx) G hp stk vars C S pc frs =

(None, hp, ((vars ! idx) # stk, vars, C, S, pc+1)#frs)

Function exec carries out a single step of computation: It looks up the cur-
rent method, given µJVM program G, class name C and signature S, selects the
instruction indicated by the program counter and executes it.

The relation G ` s -jvm-> t, defined by means of the transitive closure of
exec, expresses that state t can be reached from state s by a sequence of suc-
cessful execution steps:

exec_all :: [jvm_prog,jvm_state,jvm_state] => bool ("_ ` _ -jvm-> _")

G ` s -jvm-> t == (s,t) ∈ {(s,t). exec(G,s) = Some t}^*

3 Compiler Definition

Compilation is straightforwardly defined with the aid of a few directly exe-
cutable functions. To begin with, mkExpr :: java mb => expr => instr list and
mkStat :: java mb => stmt => instr list, defined in Figures 1 and 2, translate
expressions resp. statements. The function index computes the index of variable
name vn in method body jmb by looking up its position in a list of the form
this, p1, . . . , pn, l1, . . . , lm.

mkExpr jmb (NewC c) = [New c]

mkExpr jmb (Cast c e) = mkExpr jmb e @ [Checkcast c]

mkExpr jmb (Lit val) = [LitPush val]

mkExpr jmb (BinOp bo e1 e2) = mkExpr jmb e1 @ mkExpr jmb e2 @

(case bo of

Eq => [Ifcmpeq 3,LitPush(Bool False),Goto 2,LitPush(Bool True)]

| Add => [IAdd])

mkExpr jmb (LAcc vn) = [Load (index jmb vn)]

mkExpr jmb (vn::=e) = mkExpr jmb e @ [Dup , Store (index jmb vn)]

mkExpr jmb (cne..fn) = mkExpr jmb e @ [Getfield fn cn]

mkExpr jmb (FAss cn e1 fn e2) =

mkExpr jmb e1 @ mkExpr jmb e2 @ [Dup x1 , Putfield fn cn]

mkExpr jmb (Call cn e1 mn X ps) =

mkExpr jmb e1 @ mkExprs jmb ps @ [Invoke cn mn X]

mkExprs jmb [] = []

mkExprs jmb (e#es) = mkExpr jmb e @ mkExprs jmb es

Fig. 1. Compilation of expressions

On this basis, compilation is extended to more complex structures, first
method bodies, then classes and finally entire programs. mkMethod translates
method bodies, essentially by appending code for the method body block blk

and the result expression res and adding a Return instruction:
mkMethod :: java_mb => (nat * nat * bytecode)

mkMethod jmb == let (pn,lv,blk,res) = jmb

in (0, 0,

(concat (map (mkInit jmb) lv)) @

(mkStat jmb blk) @ (mkExpr jmb res) @ [Return])

Prepended to this are instructions initializing the local variables lv to their
default values – a complication which could be avoided if variables were known
to be assigned to before being read. Such a check, as embodied in Java’s “definite
assignment” principle, is however not part of our current well-formedness condi-
tion of µJava programs. As mentioned in Section 2.3, the first two components
of the result of mkMethod are only relevant for bytecode verification. Indeed, it
can be shown that the compiler only produces bytecode which is type correct in
the sense that it passes bytecode verification [Str02]. Since there is no space to
discuss this issue here, we set these components to zero.

mkStmt jmb Skip = []

mkStmt jmb (Expr e) = (mkExpr jmb e) @ [Pop]

mkStmt jmb (c1;; c2) = (mkStmt jmb c1) @ (mkStmt jmb c2)

mkStmt jmb (If(e) c1 Else c2) =

(let cnstf = LitPush (Bool False);

cnd = mkExpr jmb e;

thn = mkStmt jmb c1;

els = mkStmt jmb c2;

test = Ifcmpeq (int(length thn +2));

thnex = Goto (int(length els +1))

in [cnstf] @ cnd @ [test] @ thn @ [thnex] @ els)

mkStmt jmb (While(e) c) =

(let cnstf = LitPush (Bool False);

cnd = mkExpr jmb e;

bdy = mkStmt jmb c;

test = Ifcmpeq (int(length bdy +2));

loop = Goto (-(int((length bdy) + (length cnd) +2)))

in [cnstf] @ cnd @ [test] @ bdy @ [loop])

Fig. 2. Compilation of statements

Classes are translated by generating code for the method bodies and leav-
ing the remaining structure untouched – recall that µJava and µJVM classes
essentially differ in their method bodies.

mkClass :: java_mb cdecl => (nat * nat * bytecode) cdecl

mkClass == λ(cn,cno,fdl,jmdl). (cn,cno,fdl,

map (λ(s,t,mb). (s,t, mkMethod mb)) jmdl)

comp :: java_mb prog => jvm_prog

comp jp == map mkClass jp

As mentioned in Section 2.3, the structure of jvm prog is essentially the Java
class file format. Even though the compiler only produces a symbolic class file and
not an executable binary, this last step is relatively straightforward: It is possible
to generate ML code from the Isabelle definition, using the code extraction
facility described in [BN00], and then supply the print functions in ML.

4 Compiler Verification

4.1 Compiler Correctness Statement

In a rough sketch, the compiler correctness statement takes the form of the tra-
ditional “commuting diagram” argument: Suppose execution of a statement c
transforms a µJava state s into a state s′. Then, for any µJVM state t corre-
sponding to s, executing the bytecode resulting from a translation of c yields a
state t′ corresponding to s′.

This sketch has to be refined in that the notion of correspondence has to
be made precise, both for expressions and for statements. Besides, compiler
correctness depends on a few assumptions that will be spelled out here and
further motivated in Section 4.2.

We first need a notion describing the effects of completely evaluating an ex-
pression or executing a statement on a µJVM state, in analogy to the evaluation
and execution relations on the µJava level. We note the following:

– Apart from the exception indicator and the heap, only the topmost frame is
affected, but not the remaining frame stack.

– When executing an instruction sequence instrs, the program counter ad-
vances by length instrs, provided instrs is part of the bytecode of a method
body (which in particular implies that the start and end positions of the pro-
gram counter are well-defined).

Of course, these observations do not hold for intermediate steps of a computation,
e.g. when frames are pushed on the frame stack during a method call or when
jumping back to the start of a while loop, but only after completion, when the
frames have been popped off again or the whole while loop has finished.

This suggests a relation progression, defined as:

progression :: jvm_prog ⇒ cname ⇒ sig ⇒
aheap ⇒ opstack ⇒ locvars ⇒
bytecode ⇒
aheap ⇒ opstack ⇒ locvars ⇒
bool

("{_,_,_} ` {_, _, _} >- _ → {_, _, _}")

{G,C,S} ` {hp0, os0, lvars0} >- instrs → {hp1, os1, lvars1} ==

∀ pre post frs.

(gis (gmb G C S) = pre @ instrs @ post) −→
G ` (None,hp0,(os0,lvars0,C,S,length pre)#frs) -jvm->

(None,hp1,(os1,lvars1,C,S,(length pre) + (length instrs))#frs)

Here, {G, C, S} ` {hp0, os0, lvars0} >- instrs → {hp1, os1, lvars1} ex-
presses that execution of instructions instrs transforms heap hp0, operand stack
os0 and local variables lvars0 into hp1, os1 and lvars1. Since exceptions are ex-
cluded from consideration here, the exception indicator of the states is invariantly
None.

The instructions instrs are a subsequence of the instructions (selected by
gis) of the method body (selected by gmb) of signature S in class C of program
G. During execution, the program counter advances from the first position of
instrs (at length pre) to the position right behind instrs (at length pre +

length instrs). This indirect coding of the program counter movement not only
makes the correctness statement more concise. It is also helpful in the proof,
as it removes the need for engaging in complex “program counter arithmetic”
– abstract properties like transitivity of progression are sufficient most of the
time.

We are now prepared to clarify the notion of correspondence between µJava
and µJVM states and present the correctness theorem for evaluation of expres-
sions (the one for execution of statements is analogous).

Suppose that evaluation of expression ex in µJava state (None, hp, loc)

yields result val and state (None, hp’, loc’), and some other conditions ex-
plained in a moment are met. We assume that ex is part of the method which
can be identified by program G, class C and signature S. When running the byte-
code mkExpr (gmb G C S) ex generated for ex in a µJVM state having the same
heap hp, an (arbitrary) operand stack os and local variables as in loc, we obtain
heap hp’, the operand stack with val on top of it and local variables as in loc’

(recall from Section 2.3 that the representation of local variables is refined by
function locvars_locals).

theorem compiler_correctness_eval:

[[G ` (None,hp,loc) -ex �val->(None,hp’,loc’);
wf_java_prog G;

class_sig_defined G C S;

wtpd_expr (env_of_jmb G C S) ex;

(hp,loc) ::� (env_of_jmb G C S)]] =⇒
{(comp G), C, S} `
{hp, os, (locvars_locals G C S loc)}

>- (mkExpr (gmb G C S) ex) →
{hp’, val#os, (locvars_locals G C S loc’)}

The theorem is displayed diagramatically below – note the simplification
regarding local variables on the bytecode level.

(None,hp,loc) -ex // val -> (None,hp’,loc’)

hp, os, loc >- mkExpr E ex // hp’, val#os, loc’

Let us now take a look at the preconditions:

– The source program has to be well-formed as described in Section 2.2.
– The class signature has to be defined in the sense that C is a valid class in G

and method lookup with S gives a defined result:
class_sig_defined G C S ==

is_class G C ∧ (∃ m. (method (G, C) S = Some m)

– Expression ex is well-typed in the environment of the method body. This
environment (env_of_jmb G C S) is essentially generated by the types of the
local variables and the method parameters.

– Finally, the start state of the computation, (hp, loc), conforms (Section 2.2)
to this environment.

These requirements are not very restrictive: the well-formedness and well-typing
conditions are standard for compilers; the conformance condition is satisfied
when a program is started with an empty heap and the local variables are ini-
tialized to their default values.

4.2 Compiler Correctness Proof

The correctness proof is by mutual induction on the evaluation relation G `
_ -_ �_->_ resp. execution relation _ ` _ -_-> _. Apart from the rules that
pass on exceptions, which are dealt with trivially under our assumptions, we
essentially obtain a case distinction on the constructs of the source language.
These are handled uniformly and, except for pathological cases such as method
call, without difficulty:

– First, we establish preconditions so as to be able to use the induction hy-
potheses for subcomputations.

– After that, we apply the induction hypotheses, mostly exploiting transitivity
of the relation progression, and then symbolically evaluate the bytecode with
Isabelle’s simplifier.

The reasoning for obtaining preconditions is as follows:

– class_sig_defined is obvious for most cases, when remaining within the
same method body. An exception is the case “method call”, where the preser-
vation lemmas mentioned below are applied.

– Establishing wtpd_expr mostly requires showing that it holds for subexpres-
sions (such as wtpd_expr E e1) when it is known to hold for a compound
expression (such as wtpd_expr E (BinOp op e1 e2)), which is achieved by
inversion of the typing rules. Again, method call is more intricate.

– Showing that conformance is still satisfied in the state reached after perform-
ing a number of subcomputations (e.g. after evaluating G ` s0 -e1� v1->

s1 and before evaluating G ` s1 -e2� v2-> s2) requires repeated applica-
tion of the type-soundness theorem.

Even though the proof is fairly straightforward, it has a few rough edges,
some of which can be directly traced back to object-oriented concepts such as
subclassing and dynamic method lookup: In the method Call rule of the op-
erational semantics, we use a lookup function method which gives an indefinite
result under certain conditions (cf. Section 2.2), for example when being ap-
plied to a class that is not defined in the current program G. It is the purpose
of the preconditions of the correctness theorem, in particular the conformance
requirement, to exclude this situation.

The same method function is also used by the Invoke bytecode instruction in
the translated program comp G. To make sure that definedness of method lookup
in the source program carries over to the bytecode program, we have established
a series of preservation lemmas which incidentally formalize the claim that com-
pilation leaves most of the structure of programs unmodified (cf. Section 3). The

preservation lemmas for the direct subclass relation subcls1 and for method
lookup are:

lemma comp_subcls1: subcls1 G = subcls1 (comp G)

lemma comp_method : [[wf_prog wf_mb G; is_class G C]] =⇒
(method (G, C) S) = Some (D, rT, mb) −→
(method (comp G, C) S) = Some (D, rT, mkMethod mb)

Method lookup for a program, a class C and signature S returns the defining
class D, the return type rT and the source method body mb resp. the translated
method body mkMethod mb.

In view of the above remarks, it may be surprising that the preconditions
of the correctness theorem are not exclusively motivated by object-oriented fea-
tures, but are rather a consequence of the particular style of semantics definition
and resulting minor differences between µJava and µJVM semantics. They would
– in a similar form – also be required for a much simpler language presented in
the same fashion.

We illustrate this point with the translation of conditionals. Our limited
µJVM instruction set forces us to translate the If statement to the Ifcmpeq

operator, which compares the result of evaluating the condition with the constant
Bool False. If evaluation of the condition did not leave behind a boolean value on
top of the stack (which we know it does), Ifcmpeq would not be perturbed by the
type-inconsistency, but would deterministically select the “else” branch. This is
an example of an “offensive” JVM behaviour, close to an actual implementation,
that does not bother to care for situations that cannot happen. In contrast, the
behaviour of µJava is not determined in this case, so the source and bytecode
level behave differently unless we assume that type inconsistencies cannot arise.

5 Conclusions

After a review of the existing Isabelle/HOL formalizations of Java, this paper has
described the formalization and correctness proof of another key component, a
compiler from source to bytecode. Because the compiler had to fit into an existing
framework, the definitions of source and target language could not be “tuned”
so as to suit the needs of compiler verification. Under these circumstances, the
overall effort invested (4-5 months of work for a novice Isabelle user) can be
considered moderate. This seems to indicate that

– proof assistant technology has progressed enough to allow for an analysis of
realistic, complex languages.

– the existing formalizations are sufficiently mature to serve as a basis for
further investigations.

On a technical level, this work has given insight into the interaction of lan-
guage formalization and compiler correctness proofs:

– The big-step semantics leads to a concise, intuitive correctness theorem be-
cause only states at the end of a computation are compared. In contrast, a
small-step (structural operational) semantics, such as the ASM formaliza-
tion in [SSB01], requires juxtaposition of intermediate states, leading to a
complex equivalence relation involving the contents of entire frame stacks.

– However, it is a (general) drawback of a big-step semantics that it only per-
mits to talk about terminating computations and cannot express concurrency
and related concepts.

– Object-orientation made the reasoning slightly more involved than it would
have been for a plain imperative language, but had no decisive influence.

– A few places of the µJava operational semantics have a non-constructive
flavour due to indefinite values resulting from functions like the. These make
the evaluation rules more elegant, but buy us nothing in the compiler cor-
rectness proof – undefined situations have to be excluded a priori by precon-
ditions of the theorem. Thus, we are confident that our proof could be easily
recast in a constructive logic.

– Apart from that, the formalization uses few Isabelle specifics, as witnessed
by the definitions and theorems presented in this paper. A transfer to other
proof environments offering notions such as a higher-order logic, primitive
recursion and inductive definitions should be possible without great effort.

There is a long history of mechanized compiler verification, conducted with
different provers and for diverse language paradigms (imperative, functional)
[MW72,Cur93,Bou95]. Gradually, the field is evolving away from a demonstra-
tion of feasibility to an analysis of complex artifacts: A “stack” of system com-
ponents, ranging from a high-level language down to a microprocessor, has been
examined in the ACL2 system [MBHY89]. Here, the emphasis is on a verified
chain of refinements; the techniques employed in the individual phases [You89]
are not substantially different from ours. Another direction, pursued in the Ver-
ifix project [DV01], is to refine the compiler program itself from an abstract
“compiling specification” down to an executable version. Our work has still an-
other focus: it aims at an in-depth investigation of aspects of the Java language.

Traditionally, languages have been studied semi-formally, with proofs in the
form of pen-and-paper arguments. A very comprehensive account of this kind is
given in [SSB01] for Java. This description covers far more language constructs
and Java-specific concepts (multi-threading; class loading) than ours. The con-
sequences of a purely technical difference, namely the use of the ASM formalism,
akin to a small-step semantics, have already been discussed. Even though ASMs
have previously been used in a fully formal verification [Sch99], it may be difficult
to cope with the sheer amount of detail in Java.

Future work on our µJava compiler will add missing features, notably excep-
tions, however without trying to be complete in a literal sense. Also, it may be
worth while to look at some compiler optimizations, for example mapping dif-
ferent source variables having different life times to a single bytecode variable.
However, many optimizations that can sensibly be performed on the bytecode
are already applicable on the source level.

Acknowledgements

The compiler presented in Section 3 has originally been written by Cornelia
Pusch and Giampaolo Bella and only been slightly modified for the correctness
proof. Johannes Pfeifroth has given a first version of the compiler correctness
statement of Section 4.1. I am grateful to Axel Dold, Gerwin Klein, Marko Luther
and Norbert Schirmer for comments on a draft version of this paper.

References

[BN00] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In Proc.
TYPES Working Group Annual Meeting 2000, LNCS, 2000. Available from
http://www4.in.tum.de/~berghofe/papers/TYPES2000.pdf.

[Bou95] Samuel Boutin. Preuve de correction de la compilation de Mini-ML en code
CAM dans le système d’aide à la démonstration COQ. Technical Report
2536, INRIA Rocquencourt, April 1995.

[Cur93] Paul Curzon. A verified Vista implementation. Technical Report 311, Uni-
versity of Cambridge, Computer Laboratory, September 1993. Available
from http://www.cl.cam.ac.uk/Research/HVG/vista/.

[DV01] A. Dold and V. Vialard. A mechanically verified compiling specification for
a Lisp compiler. In Proc. FSTTCS 2001, December 2001.

[KN02] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theoretical
Computer Science, 2002. to appear.

[MBHY89] J.S. Moore, W.R. Bevier, W. A. Hunt, and W. D. Young. System verifica-
tion. Special issue of J. of Automated Reasoning, 5(4), 1989.

[MW72] R. Milner and R. Weyhrauch. Proving compiler correctness in a mechanized
logic. Machine Intelligence, 7:51–70, 1972.

[Nip01] Tobias Nipkow. Verified bytecode verifiers. In M. Miculan F. Honsell, editor,
Foundations of Software Science and Computation Structures (FOSSACS
2001), volume 2030 of Lecture Notes in Computer Science, 2001.

[NOP00] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava: Embed-
ding a programming language in a theorem prover. In F.L. Bauer and
R. Steinbrüggen, editors, Foundations of Secure Computation. Proc. Int.
Summer School Marktoberdorf 1999, pages 117–144. IOS Press, 2000.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL. A
Proof Assistant for Higher-Order Logic. LNCS 2283. Springer, 2002.

[Ohe01a] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type
Safety and Hoare Logic. PhD thesis, Technische Universität München, 2001.
http://www4.in.tum.de/~oheimb/diss/.

[Ohe01b] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency:
Practice and Experience, 13(13), 2001.

[Sch99] G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis,
Universität Ulm, 1999.

[SSB01] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine -
Definition, Verification, Validation. Springer Verlag, 2001.

[Str02] Martin Strecker. Compilation and bytecode verification in µJava. Forth-
comming, preprint available from http://www4.in.tum.de/~streckem/

Publications/compbcv02.html, 2002.
[You89] William D. Young. A mechanically verified code generator. J. of Automated

Reasoning, 5(4):493–518, 1989.

