2nd workshop Rule-Based Constraint Reasoning and Programming, Singapore, 9/00
Testing Concurrent Reactive Systems with
Constraint Logic Programming*

Heiko Lotzbeyer and Alexander Pretschner
Institut fur Informatik, Technische Universitat Minchen
Arcisstrale 21, 80290 Miinchen, Germany
wwwé.in.tum.de/~{loetzbey,pretschn}

Abstract

In the domain of reactive systems, work on validation has mainly focused
on verifying specifications. A complementary problem consists of validating
an implementation w.r.t. its specification (testing). We propose a way to
compute test sequences on the basis of system as well as test case specifications
that is based on Constraint Logic Programming. Furthermore, we provide a
clear terminology for concepts within the testing context.

Keywords. Debugging, Validation, Testing, Automatic Test Case Genera-
tion, Simulation, CASE, Constraint Handling Rules, Message Sequence Charts

1 Introduction

Considerable effort has been devoted to the specification and verification of reactive
systems. While in terms of specification, results are already used in practice (CASE
tools), there are still severe shortcomings of verification techniques. To mention a
few, these include problems with state space explosion, usually restriction to finite
state spaces, not intuitive and hence impractical formalisms, and they mostly aim at
verifying properties of a system specification. However, the latter point may resolve
just one part of the overall problem since if the specification is assumed to be
“correct” or “consistent”, this does not necessarily mean the actual implementation
also is.

Model checking enables one to prove usually highly general properties or invari-
ants. Because of the properties’ generality, there is not much information available,
and model checking is usually done in two steps: After generating the model, spec-
ified properties are checked. If, on the other hand, properties are more specialized,
it is possible to interleave the model’s generation with the verification of these prop-
erties. This is the case when one wants to test an implementation; the properties in
question then describe, for instance, traces or transition sequences: Such properties
may constrain possible system traces in a significant way, and if these properties
are sufficiently specific, they can be used in building a model of manageable size.
Furthermore, testing usually — and also in this paper — focuses on finite (or even
short) system traces. (Possibly bounded) Model checking and testing are hence
different techniques with different purposes, and it is natural to implement these
different techniques by different means.

*This work was in part supported with funds of the Deutsche Forschungsgemeinschaft under
reference number Be-1055/7-2 within the priority program KONDISK.

In this paper, we lay the foundations for testing executable system specifications
(system models) as well as implementations w.r.t. their specification. In our view,
this turns out to be a generalization of the simulation of reactive systems. We sketch
earlier work on how system models formulated within the CASE tool AuToFoCUS
can naturally be translated into Constraint Logic Programming (CLP) languages.
This translation scheme can be fully automated and is fully compositional with an
interleaving model of concurrency. With our approach, one may use the same basis
for test case generation and test execution. This paper shows how test cases (i.e.,
I/0 traces) can be computed efficiently.

We consider the heart of the testing process of reactive systems to consist of
test case specifications, i.e., formal descriptions of specific test purposes. Examples
include “some specific output will be written by the implementation” which amounts
to black box testing of the implementation, or “some transition sequence will be
executed” which amounts to white box testing of the specification (system model).
Test cases are artifacts that satisfy a given test case specification, and they may
be possibly partial traces, constraints over traces, transition sequences, etc. (e.g.,
remaining delayed constraints from the constraint store). Test cases can then either
directly be fed into a simulation, or by using techniques such as interval/limit
analyses or other selection hypotheses [11], be refined into actual test sequences for
the implementation. This is done in order to decrease the usually enormous amount
of test cases, a yet unsolved problem. We believe that CLP with its mechanisms of
a priori pruning the search tree is particularly suited for effectively and efficiently
solving it. Test case specifications can be formulated by means of Message Sequence
Charts (MSCs [19]), and when implemented in CLP, they considerably reduce the
search tree’s dimensions, thus alleviating the problems of state space explosion.

Overview. The remainder of this paper is organized as follows. Section 2 presents
the CASE tool AuTOFOCUS into which we integrated our CLP based system for
simulation and test case generation. It is then sketched in section 3 how system
models in AuTOFOCUS can automatically be translated into CLP by maintaining
compositionality. This is the basis for our approach to the generation of test cases.
Section 4 then demonstrates our approach with a simple timer example. The exam-
ple is taken from [22]. In section 5 we first give a few definitions of terms related to
testing and show how the example of section 4 can be tested. The use of Sequence
Charts within the testing context is treated in section 6. Finally, in section 7 we
draw some conclusions, discuss advantages and shortcomings of our approach, and
we present, current as well as future work.

Related work Code Generation from and validation of reactive systems on the
basis of CLP has been discussed recently. Delzanno and Podelski [8] focus on
general Labeled Transition Systems. The motivation for their translation is model
checking. Ciarlini and Frithwirth [4] focus on Hybrid Automata [1] that allow for
continuous activities within discrete states. So does Urbina [29]; his work aims at
verification techniques on the basis of CLP. In principle, hybrid automata could
also be used for modeling purely discrete systems: Gupta and Pontelli [14], for
instance, provide a translation of timed automata into CLP. Timed automata form
a proper subset of hybrid automata. One of the major drawbacks of both types
of automata is, however, that they are not well suited for modular design [24].
Fribourg and Veloso-Peixoto [10] give another approach to the generation of CLP
code from concurrent automata similar to Labeled Transition Systems with explicit
constraints. All approaches share the commonality of synchronizing components via
variables rather than explicit channels (modularity), and of not being supported by
tools. Fribourg [9] reviews previous work on the relationship between CLP and

Model Checking.

[30] present a different approach to generating test sequences on the basis of
propositional logics. Systems and properties (test cases) are translated into propo-
sitional logics and checked for satisfiability; the results are translated back into
traces. In terms of its intention, this approach is similar to the one presented in
this paper. However, it inherently is restricted to finite system.

Finally, there is a wealth of literature on test case generation; [30, 23] contain
some relevant references.

2 Modeling with AutoFocus

AvutoFocus [16, 17] is a tool for graphically specifying embedded systems. It
supports different views on the system model: structure, behavior, interaction, and
data type view. Each view concentrates on a fixed part of the specified model.

Structural view: SSDs. In AuToFocus, a distributed system is a network
of components, possibly connected one to the other, and communicating via so-
called channels. The partners of all interactions are always components which are
specified in System Structure Diagrams (SSD). Figure 1 (a) shows a typical SSD.
The corresponding system is discussed in section 4. In this static view of the system
and its environment, rectangles represent components and directed lines visualize
channels between them. Both of them are named with a label. Channels are typed
and directed, and they are connected to components at special entry and exit points,
so called ports. Ports are visualized by filled and empty circles drawn on the outline
(the interface) of a component. As SSDs can be hierarchically refined, ports may
be connected to the inside of a component. Accordingly, ports which are not related
to a component are meant to be part of unspecified components which define the
outside world and thus the component’s interface to its environment.

Behavioral view: STDs. The behavior of an AUTOFOCUS component is de-
scribed by a State Transition Diagram (STD). Figure 1 (b) through (d) show typi-
cal STDs. Initial states are marked with a black dot. An STD consists of a set of
control states, transitions and local variables. The set of local variables builds the
automaton’s data state. Hence, the internal state of a component consists of the
automaton’s control as well as its data state. A transition can be complemented
with several annotations: a label, a precondition, input statements, output state-
ments and a postcondition. The precondition is a boolean expression that can refer
to local variables and transition variables. Transition variables are bound by input
statements, and their life-cycle is restricted to one execution of the transition. Input
statements consist of a channel name followed by a question mark and a pattern.
An output statement is a channel name and an expression separated by an exclama-
tion mark. The expression on the output statement can refer to both local variables
as well as transition variables. A transition can fire if the precondition holds and
the pattern on the input statements match the values read from the input. After
execution of the transition the values in the output statements are copied to the
appropriate ports and the local variables are set according to the postcondition.
Actually the postcondition consists of a set of actions that assign new values to the
local variables, i.e. the assignments set the automaton’s new data state.

Communication semantics. AUTOFOCUS components have a common global
clock, i.e., they all perform their computations simultaneously. The cycle of a
composed system consists of two steps: First each component reads the values
on the input ports and computes new values for local variables and output ports.

After the time tick, the new values are copied to the output ports where they can
be accessed immediately via the input ports of connected components and the cycle
is repeated. This results in a time synchronous communication scheme with buffer
size 1.

Interaction view: MSCs. Message Sequence Charts (MSCs) are used to de-
scribe the interaction of components. In contrast to Message Sequence Charts as
defined in [19], AuTOF0CUS MSCs refer to time-synchronous systems. The progress
of time is explicitly modeled by ticks which are represented by dashed lines. All
actions between two successive ticks are considered to occur simultaneously, i.e.,
the order of these actions is meaningless. An action in an MSC describes a message
that is sent via a channel from one component to another. This is denoted by a
horizontal arrow from the source to the destination component. Internal messages
between two components are annotated with the channel and the contents of the
message separated by a dot. Annotations on external messages do not refer to chan-
nels but rather to external ports of the component. To illustrate this fact, the port
name and the message value are delimited by ! (send) or ? (receive) in analogy to
transition annotations in STDs.

Note that it does not take any time to transfer messages, but time is consumed
on the ticks, when the computations of all components are performed synchronously.
As a consequence, the output values cannot depend on the input values of the same
time slice and each component always needs a tick for the computation of new
output values.

Additional information about the internal state of one or more components
can be given by means of conditions. Conditions are written in hexagons on the
related components’ axes and can refer to both the control and the data state of the
component. Furthermore, MSCs can be structured with boxes. A box can contain
one or several sub-MSCs, or indicate that a no further described actions can occur.
Figures 4 and 5 show typical examples of exemplary system runs. The conditions
in Figure 4 refer to the control state of the blinker component.

Datatype view: DTDs. For the specification of user defined data types and
functions AUTOF0CUS provides DTDs. The definitions in DTDs are written in a
Gofer-like syntax.

Even though different views are mainly orthogonal, there is a natural portion of
overlapping that may result in inconsistent specifications. For detecting inconsis-
tencies between different views, the tool has some built-in user-definable consistency
checks that work on a syntactical basis [18].

3 Translation into CLP

This section shortly sketches how CLP code can be generated automatically from
AuToFocus models. With the exception of the doStep predicate that actually
performs steps in the system, the translation is the same as the translation described
in detail in [22].

We first focus on the translation of a single component. Basically, transitions are
encoded as predicates. For each component we define a predicate step_component
which simulates a single step of the component. Two of its arguments hence serve
as source and destination states. Furthermore, we associate two arguments with
each local variable: they contain its values before and after the transition has fired.
Whether or not a transition fires depends on the preconditions that are associated
with each transition. Preconditions can easily be translated into constraints for
they actually are constraints. Postconditions in AuToFocus, on the other hand,

generally just assign new values to local variables and write new values on channels.
Channels connected to a component, or its ports, respectively, are the last missing
piece: we associate one variable with each input and one variable with each output
port. Variables for input ports contain the values of input channels before the
transition fires (if it does), and variables for output ports contain new values on the
output channels after the transition has fired.

Function definitions and types. AuTOFocCUs allows for user-defined possibly
recursive functions that can be used as transition code. Since the language is a
functional one with an eager semantics (lazy if included), our current system trans-
lates these function definitions into CLP by flattening. It turned out, however, that
for the determination of test sequences this is not enough; we thus currently assess
the benefits of implementing the language lazily on the basis of another operational
semantics, namely Narrowing as used in the functional logic language Curry [15].
Curry also integrates constraint solvers which makes it a particularly promising
candidate.

There is room for discussion on how much functionality should be put in transi-
tion code (and thus, how intricate defined functions should be). For smaller systems,
it seems to be a good idea to encode almost all functionality within the state space
structure of the system whereas for larger ones, one should not refrain from putting
quite some functionality into the transitions - simply because the system would
become even larger without this encoding. A similar question is concerned with
the decision of encoding a state by a variable or an actual state (a circle in the
AvuTtoFocus behavioral view).

Concerning types, a general translation on the basis of Constraint Handling
Rules has been proposed in [22].

Parallel composition. The parallel composition of components turns out to be
particularly simple. This is due to the time-synchronicity inherent to the semantics
of AuToFocus. The idea is to encode the channel between two ports of two different
components by a new local variable - a local variable of the composed system. This
simple scheme (see [22] for details) also applies to the composition of more than two
automata and defines a step predicate for the composed system. Note that a step
predicate for a composed system has the same structure as a step predicate for a
single component. Parallel composition is thus fully compositional.

Execution. The step predicate of any component (both single components and
composed components) relates one configuration of the system (i.e. actual values
of local variables, control state and channels) to the succeeding configuration after
performing a single step. For a whole system run, the step predicates for the
components in the composed system must be called subsequently. This is done by
the doStep predicate (Fig. 1). The doStep predicate takes a list for each local
variable and channel as well as a list to store the fired transitions and the control
state. The heads of the lists which contain the values of the local variables, input
channels and the control state, build up the actual configuration of the system. The
second element is supposed to be the next configuration. The actual parameters
are always open lists of the form [E|_]; the tail will be unified with another list of
the form [F|_] (the formal parameter) if computation proceeds, or with [stop] if
the computation stops. This implementation allows one to implement constraints
on a list that grows during execution - without changing its name that is inherently
tied to the constraint.

The lists for output channels and the fired transitions are not used for guiding
the unconstrained simulation but rather included for observing the simulation. By

calling the step predicate, the next configuration will be computed and the fired
transition with its output values determined. Hereafter, the doStep predicate will
be called with the tails of all lists. When the simulation stops, all lists are terminated
with a special “stop” item which denotes the end of the simulation.

The simulation is started by calling the doStep predicate with a set of open lists
(i.e. lists with unspecified tails) that are only constrained by some initial values
(initial values for local variables, first input values and the initial control state).
We call these lists the “history lists”. Then the doStep predicate calls the step
predicates and further constraints the history lists. This can be repeated any times
until a special rule of the doStep predicate inserts the stop item, terminates all
lists and stops the simulation.

Constrained simulation. In order to obtain system runs with certain properties
the simulation has to be restricted in some way. We can do this by explicitly
specifying additional constraints over the initially unconstrained history lists on
which the simulation runs. At first it is not possible to determine whether the
constraints hold or not as no element of the history list is instantiated and the
constraints are pushed into the constraint store. In order to start the simulation,
the initial values have to be put in the lists. This is done by instantiating the first
elements of the lists for local variables, input channels and the control state. By
instantiating any element in a list on which a delayed goal exists (i.e. a goal which
was pushed into the constraint store), the delayed goal will be woken and thus the
CLP-system tries to resolve the delayed constraint. Therefore the assignment of
the initial values of the system can already force some constraints to fail so that no
conforming system trace is possible. If no constraint fails, simulation can start. In
each step of the simulation more variables in the history lists are instantiated, the
corresponding delayed goals woken, and, if the goal fails, the system must backtrack.

Constraints. We have defined some example constraints on lists via CHR. Prob-
ably the most important and simple constraint is the membership relation. We
define

cmem(X,L) <=> nbMember (X,L) |true.
cmem(X,L) <=> nbMember(stop,L)| fail. % this rule will only be taken
% when first rule fails

where nbMember is a member predicate that does not bind any variables. As
soon as one element in list L is instantiated with the searched element, the goal
succeeds and the constraint is eliminated. The occurrence of the stop item in the
list denotes the termination of the simulation and the constraint fails as the desired
element has not been found yet. In this case the system is forced to backtrack and
instantiate the history lists’ variables with other values. Otherwise, nothing can be
derived, and the goals remain in the constraint store.

Efficient constraint solving. The above definition of the cmem constraint has
one major drawback. Each time the constraint is woken, all instantiated items of
the list are checked against the searched item. Therefore, if the system performs
n steps, the checking of the constraint requires O(n?) comparisons. This can be
done more efficiently. The elements of each history list get instantiated from the
head of the list towards the end. Variables which are instantiated once will never
be changed in the future except when backtracking. Therefore we can check the
instantiated prefix of the list and reduce the constraint to the uninstantiated rest.
For the cmem predicate we define

fail_cmem @ cmem(X, [H|T]) <=> nonvar(X), nonvar(H), H=stop| fail.
transform_cmem @ cmem(X, [H|T]) <=> nonvar(H), nonvar(X), H \= X|cmem(X,T).
succeed_cmem @ cmem(X,[H|T]) <=> nonvar(X), nonvar(H), X = H|true.

If the head of the constrained list is instantiated and not equal to the searched
element, Rule (transform cmem) transforms the cmem constraint on the whole list
to a constraint on the tail of the given list. Rule (succeed_cmem) eliminates the
constraint whenever the searched element is found and Rule (fail_cmem) lets the
constraint fail when the stop item is reached. In general we can classify the rules in
three categories: rules for the failure of a constraint (e.g. fail_cmem), rules for the
transformation of a constraint (e.g. transform_cmem), and rules for the elimination
of a constraint (e.g. succeed_cmem). Another example is the xBeforeY constraint.
xBeforeY requires the list to contain an element Y which requires the precedence of
an element X. The definition of an efficient constraint solver is as follows:

xBeforeY(X,Y,[H|T]) <=> nonvar(X), nonvar(Y), nonvar(H), H=X| cmem(Y,T).
xBeforeY(X,Y,[H|T]) <=> nonvar(X), nonvar(Y), nonvar(H), H=Y| fail.
xBeforeY(X,Y,[H|T]) <=> nonvar(X), nonvar(Y), nonvar(H), H=stop| fail.
xBeforeY(X,Y,[H|T]) <=> nonvar(X), nonvar(Y), nonvar (H) | xBeforeY(X,Y,T).

4 Example

Figure 1 shows the structure as well as the behavior of a simple timer example: a

bul bPul se?b: Bul bSi gnal ! b: bul b = b
bul bPul se?: Bul bSi gnal ! bul b;

(c) driver behavior

ojut : Bool

O
bul bPul se: Bool Bul bSi gnal : Bool
o interval 7i:set!i; bul bPulse!trueival =

(a) Systemstructure @
_—
o
t

== O::timeout!truer

interval:int

(b) timer behavior (d) blinker behavior

Figure 1: The timer-blinker example

system consisting of three components, a timer, a blinker, and a driver. Figure 1 (a)
describes the system structure. It shows how the following channels are connected:
The set and timeout channels of the timer and the blinker, and the driver’s as well as
the blinker’s bulbPulse channels. Part (b) of the figure shows the timer’s behavior:
If the component receives a value on the set channel, it sets its internal variable ¢
to this value, and decrements it until zero is reached. The timer then waits for the
next value on the set channel. Part (c) shows the driver’s behavior. At every tick,
the driver outputs the last value received on its input channel. Finally, part (d) is a
description of the blinker’s behavior. Once it receives a value on its input channel
Interval, the internal variable ival is set to this value, and the very same value is
written to the timer. Whenever the timer decrements this value to zero, the bulb’s
status is toggled, and the timer is reset.

In the composed system, the timer is hence initialized with the value at channel
Interval. The timer then ticks until it reaches a timeout, and whenever the timeout

step®(init®, (L;, L), (T, TLi),), (T, true), (T,TLi)), start®, on®) <

L;# =TLi.
Li# = L.

step®(of £, (Li, L), (-, (T, true)), (T, true), (T, L;)), switchOn®, onb) <
L'# = Li.

% plus idle transitions ...
step® (wait?, (Lt, L}), (T,TLn), (L,), set’ (T Ln), run’) < Li# = TLn.
step'(run®, (L, L), _, (T, true), timeout®, wait’) < Li# = 0, Li# = L.
step® (run®, (L, L}), -, (L,), tick?, runt) <= L4 > 0, Li# = Ly — 1.
% plus idle transitions and code for the driver (step?)...
stepStructure((S1, S2, S3), ((Li, Li), (Lt, Lt), (L, Ly), (Cypy Cop),
(Cs_eta Cset), (Ct_’ Ct))a Ciy CbSa (Tla T2: T3)7 (Dli D2a D3)) <~
Stepb(slv (Li7 L;')v (Clv Ct_)7 (Cbpa Cset)7 T17 Dl)a
stept (Sz, (Lt, Li), (Cs_et)7 Ct, TQ, DQ)7
step?(S3, (Ly, L), (Cy,), Cos, T3, D3).
% stop
doStepStructure([S, stop], ([K L, stop], [K Lz, stop), [K Ly, stop], [K Ly, stop],
[K Lget, stop], [K Lto, stop]), [stop], [stop], Clock, Clockmaz) <=
Clock# < Clockmaz-
Y%go
doStepStructure([S, §'|Ss], ([Li, Li|Lsi], [Lv, L4|Lsi], [Lo, Ly|Lso], [Lop, Ty | Loy,
[Lsety L{get|Lsset]7 [Ltm Lgo|Lsto])y [CIZ|11]5 [Cobs |Obs]7 [Tran3|H3ttrans]7
Clock + 1, Clockmaz) <
Clock# < Clockmaz,
StepSt'rUCture(Sa ((Lia L:;): (Lt7 LQ); (Lb7 L;:): (LbP7 L;Jp)z (Lset, L{set); (Ltoa L;o))a
CI;,COps, Trans, S'),
doStepStructure([S'|Ss], ([Li|Lsi], [Ly|Lst], [Ly|Lsy], [Liy | Lsop); [Liet | Lsset],
[Li|Lst]), Ii, Ovsy Hstirans, Clock, Clockmaxz)-

Figure 2: Timer/blinker code. L is no-msg, T is msg.

is reached, the timer is reset, and a signal is sent to the driver. Within each time
period, the driver copies its last input value to its output channel.

Figure 2 shows the automatically created CLP code for this example (which
has been modified for this presentation). The first argument (tuple) of all pred-
icates denotes the source state, the second argument (tuple) local variables and
their updated values, the third the input, the fourth the output channel, the fifth
the transition’s name, and the sixth the destination state. Note that we need to
distinguish between presence and absence of a value on a channel. This is why the
variables that are associated with channels are tagged with T (message present),
or L (message absent), respectively. We chose to add the driver to our example in
order to emphasize the compositionality of our approach. A driver component can
be specified and tested separately from the rest of the system.

5 Testing

There is confusion on how to use terms such as “test case”, “test sequence”, or “test
case specifications” (see, e.g., [2, 12, 20]). We first define these and related terms,
show how our CLP based approach to test case generation fits into this terminology,
and explain why simulation can be viewed as a special case of test case generation.
We then relate the definitions to the timer example of section 4 and give a few

examples of test case generation.

Definitions. Figure 3 shows how some of the following terms are related, and,
more particularly, gives an overview over the structure of the test case generation
technique we propose.

1.

10.

Validation is the process of determining conformance of a specification with
informal requirements.

Verification is the process of establishing a relation between two objects, where
the relation as well as the objects are formalized. The desired results of
verification need neither be effectively nor efficiently computable.

A system specification is, in its most abstract form, a relation between (possi-
bly infinite) input- and output histories. Z [27] or Focus [3] are examples for
languages to formulate specifications. System specifications are considered to
be validated, and they need not necessarily be executable.

. The system model is a somewhat more concrete formulation of the system

specification. In AuTOFocCUs, for instance, system models consist, among
other things, of extended finite state machines and diagrams that describe
the system’s architecture. If implementations are to be tested, the system
model is supposed to be consistent with the system specification.

Implementations are executable system models that are usually regarded from
a black box point of view (programs in C or Prolog, or hardware). Implemen-
tations can and tend to be incorrect w.r.t. their specifications. Testing an
implementation w.r.t. its specification is also called conformance testing. For
a formal relationship between specification and implementation, see [26, 28].

Traces are concrete pairs of possibly infinite input- and output histories. For
test purposes, we will restrict ourselves to finite traces. Traces are one means
of specifying a system as well as test cases (see below).

The test object is either the implementation (black box) or the system model
(white box). It is the entity one wants to deduce information about.

A test purpose is the possibly informal formulation of properties of the test
object that, later on, will be verified. This verification process needs neither be
effective nor complete. Examples of test purposes include “there exists some
transition sequence satisfying some property”, or “there is a trace satisfying
some property”, or “there is an output history satisfying some property”, or
combinations hereof.

A test case specification is a formal description of a test purpose (e.g., a
message sequence chart). The test case specification can be black box (details
of the implementation are unknown, and we use information about the system
model to derive “tests”) or white box (if the system model is to be tested,
which, actually, boils down to (incomplete) verification).

Test cases are artifacts that satisfy a test case specification, and they cannot
exist without their test case specification. Examples include actual input
histories, transition tours, traces, or constraints over them. The latter point
implies that they need not be executable. Test cases also are the root for
further analyses, e.g., interval/limit analysis. The results of these analyses
can then be used to generate a set of actual test sequences.

11. Test sequences, on the other hand, are necessarily executable, i.e., can be
fed into some implementation or executable system model. We distinguish
between test cases and test sequences because usually, it is hard work to
determine actual sequences from a set of constraints (as formulated by a set
of message sequence charts, or some other constraints directly formulated in
CLP!). Test sequences are rather operational whereas test cases are rather
denotational, and test cases as well as test sequences are to be deduced from
the test case specification (which, in general, is given by a human). This is
why we do not call a “test case” the union of test case specifications and
test sequences. [11] points out that the mere existence of a specification does
not necessarily imply the possibility of interpreting the outcome of a test.
This is due to the fact that specifications tend to be more abstract than
implementations and may be formulated in inherently different formalisms;
there is a need for observational equivalence.

12. A test method then consists of determining the test object, the system model
and possibly the implementation, a set of test purposes, test case specifications
and methods for the determination of test cases or test sequences.

13. Finally, testing comprises the activities of determining a test method and feed-
ing the test cases into the implementation or executable system model. The
result are transition tours or I/O histories that, w.r.t. a given test case, are
consistent or not consistent, which allows for the formulation of (14) verdicts.

Remarks. (1) Testing is usually understood as an inherently incomplete process.
Incompleteness is a result of incomplete computation processes for test cases or test
sequences, respectively, as well as of incomplete test case specifications. (2) Within
this terminology, simulation can be seen as a special case of test case generation. If
simulation is seen as simply executing a system model with given input traces, then
the test case specification consists of stating exactly these input traces. If, on the
other hand, simulation is considered to comprise the modeling of the environment,
then the environment’s as well as the system’s behavior can be computed with
a test case specification merely stating that traces are not to exceed some finite
length. The system will then find one or many or all system traces, according to
the technique used for test case generation.

Methodology. Our approach leads hence to two different testing strategies (Fig. 3).
System models can be tested in a white box manner: Test cases are derived from
test case specifications and the system model by executing the model within our
CLP simulation. All this is done by constraining the set of possible traces w.r.t.
the test case specification. The resulting traces can now (but need not necessarily)
be refined in order to generate test sequences, and these sequences can then be fed
into the CLP simulation. This includes interval analyses or a partitioning of the
possible input traces by hand or by using delayed constraints from the constraint
store. Implementations, on the other hand, can be tested in a black box manner:
Test cases are computed and refined in exactly the same way they are computed
for the system model’s white box test. The remaining step consists of translating
the input traces and the expected output traces for the system model into input
(output) traces for the implementation. By means of suitable driver components,
tests of the implementation can then be executed, and the actual output traces be
compared with the expected ones.

INote that in CLP, a constraint based formulation of a test case may be executable, in fact one
of the reasons why we chose CLP for our purposes.

10

actua 1/0,
verdicts
system model,
executable for implementation
white box A
| white box
|
test
. test purpose, black box test
7 test case
| specification
CLP based I
determination |
of test cases |
|
-
CLP based test cases
Simulator
concretization
interval/limit analysis
test sequences input traces

Figure 3: Testing: Overview

In terms of testing, we thus advocate the following development process: (1)
build the specification, (2) build the system model, (3) specify test cases (black box
and/or white box), (4) in addition to other verification techniques, test the model,
(5) implement the system, and (6) test the implementation.

Example. The CLP simulation offers several possibilities for the generation of
meaningful test cases. In this context, the CLP simulation has two main advantages
over conventional simulation: backtracking (LP) and decision delaying (CLP). On
one hand, Prolog’s backtracking ability allows the simulation to go backward step
by step and look for solutions in other paths of the search tree without restarting.
On the other hand, some decisions can be delayed by the use of CLP system.
This reduces the search tree significantly and results in an efficient test sequence
generation. By now, test sequence generation within CLP is done by querying
the Prolog system. The current status of our system offers a fully automatic test
sequence generation for the following common kinds of test case specifications:

Arbitrary simulation. The simulation can be fed with any desired input se-
quence. As the length of the actual simulation is restricted by the maximal number
of clock ticks, ClockMax, it terminates in any case and produces a test sequence
with no more than ClockMax steps — as far as one exists. Example: Our blinker
system has one input channel of type integer. A possible test purpose “The im-
plementation should be tested with different interval values” can be expressed in
a test case specification. This requires partitioning of the interval length in some
equivalence classes and at least one test for each class. A given partition of the
interval’s length (possibly derived via the classification tree method, or by interval
analysis on the delayed constraints in the store) yields one test case per equivalence
class. We assume the equivalence classes -1, 0, 1, 2-10, and >10. An appropri-
ate test sequence can now be found by querying the CLP system and additionally
constraining the input sequence with the desired equivalence class. In the nega-
tive case, the resulting traces contain only the same negative timer value 7" with
no timeouts. This is due to a somewhat incomplete specification; the calculation
of the idle transitions correctly negates the cases T# = 0 and T# > 0, yielding

11

T# < 0 for the idle transition. In case of interval=0 or interval=1 the results are
straightforward, i.e. the simulation produces test sequence of varying length but
with equal input/output traces. The other two equivalence classes produce several
different test sequences, some of them with concrete input data and others referring
to certain intervals.

Transition sequences. A more sophisticated way of producing test sequences
is to propose a desired transition sequence, e.g., by means of MSCs, and compute
a matching sequence of input/output values. The proposed sequence need not be
complete, i.e. specifying a subsequence is also allowed. Example: We want to test
the transition from state 0ff to state On in the blinker component. For simplicity
we call this transition 0ff0n. A corresponding test purpose could be “the transition
0ff0n should fire and its correct execution, i.e., the fulfillment of certain postcon-
ditions, be tested”. Figure 4 illustrates the test case specification. By querying
the CLP simulation we can find a test sequence that drives the implementation of
the blinker component in the 0ff state and then executes the transition. This is
done by restricting the last transition of the blinker’s transition history to 0ff0n.
One of the computed test cases is shown in Figure 5.2 Note this test sequence does
not fulfill the requirements of the given test purpose as the correct execution of
the Dff0n transition is not tested (i.e., we did not specify the postconditions). We
would hence need to combine this sequence with one or more other sequences that
test the correctness of the execution. Currently, we are working on the integration
of MSCs into the process of specifying transition sequences.

blinker driver

’ timer

| |

preamble

Off

_ timeout.true

bulbPulse.true

¢ on)
check postcondition

{ { {

Figure 4: Test case specification

State combinations. A common task in test sequence generation is the deter-
mination of an I/O sequence that drives an implementation in a certain state. This
can be done by determining the final state in which the simulation should stop. Ex-
ample: Drive the blinker component into the state 0ff. This is done by restricting
the blinker component’s final state in the CLP simulation to 0ff. The simulation
produces several test sequences starting with an interval of 0 and 5 clock ticks. An
additional restriction of the produced test sequences to a certain length leads to a
more specific test sequence generation. By constraining the length of the desired
test sequence to 7, the CLP simulation produces exactly 9 sequences with intervals

2 Actually, the system calculated a test sequence; we chose the graphical representation (test
case) for this paper.

12

driver

blinker

interval?0
—_—
set.0 BulbSignal'true
- -
bulbPulse.true .
BulbSignal'true
timeout.true BulbSignal'true
-t
set.0 BulbSignal'true
bulbPulse.false -
BulbSignal'false
BulbSignal'false
preamble g
|__timeout.true
set.0 bulbSignallfalse
- —
bulbPulse.true -

Figure 5: Computed test sequence

ranging from 0 to 3. A longer interval is not possible as the implementation will
then need at least 8 clock ticks to get into the state 0ff.

Output sequences. Sometimes an implementation should be tested w.r.t. the
ability to produce certain outputs. The determination of appropriate input val-
ues that produce the desired output sequence can be a thorny task as functions
are usually not reversible. The CLP system is able to reverse some of the func-
tions by the use of constraint handling rules. Otherwise input data can be found
with the help of Prolog’s backtracking ability and successively instantiating un-
known input values. Example: For our blinker example we want a test sequence
where the length of the output interval is exactly § ticks long. Therefore we re-
quire the output sequence to be ..., (msg,true), (msg,false), (msg,false),
(msg,false), (msg,false), (msg,false), (msg,true), We can express
this requirement by additionally constraining the output sequence to include the
desired subsequence (e.g., again via MSCs). The Prolog system produces test se-
quences of various length beginning from 13 clock ticks and a constant input interval
of 2. Note that an input interval of 2 yields an output interval length of 5 because
of internal signal delays.

Coverages. The quality of test cases is often measured by coverage analysis.
There exists several metrics for the coverage measurement like statement coverage,
branch coverage, or decision coverages. In terms of our models this corresponds to
state coverage (i.e. all states have to be visited) or even stronger transition coverage
(i.e. all transitions have to be fired at least once). A test case with such a property
can easily be obtained with by querying the CLP simulation, as long as one exists.
In order to get transition coverage, the history list for the fired transitions has to be
constrained in such a way that it contains all specified transitions. For the blinker
example the corresponding constraint to obtain transition coverage is

13

cmem((start,_,_),T), cmem((switchOff,_,_),T), cmem((switchOn,_,_),T),
cmem((_,set,_),T), cmem((_,timeout,_),T), cmem((_,tick,_),T),
cmem((_,_,receive),T) ,cmem((_,_,transf),T)

After querying the CLP system we get the following I/O trace of the system
with a maximum clock value of 10:

I=[(msg, 1), _, _, —s —s -5 —» —» -, stop]

0=[(msg, true), (msg, true), (msg, true), (msg, true), (msg, true),
(msg, false),(msg, false),(msg, false), (msg, false), stop]

T=[(start, idle, transf), (idle, set, receive), (idle, tick, transf),
(idle, timeout, transf), (switchOff, idle, transf), (idle, set, receive),
(idle, tick, transf), (idle, timeout, transf), (switchOn, idle, transf),
stop]

Note that the interval value has to be set to a minimum value of one in order to
get the timer’s tick transition fired.

Combinations. Some of the above discussed techniques for test sequence gen-
eration can be successfully combined in order to get more specific test sequences.
For example, a predetermined transition should be tested with various input values.
Therefore, we can compute one test sequence for each pair consisting of a transition
and an input value. We just have to ensure that the input value and the state
transition occur at the same time. This can be done by comparing the length of
the input sequence and the transition sequence.

The examples show that the CLP system is able to find appropriate test se-
quences as long as the desired sequence can be constrained effectively. Of course
the CLP test case generation does not enforce the use of a special test method.
Furthermore, traditional test methods are typically not able to take advantage of
all features of the CLP simulation.

6 Languages for Testing

A crucial question in the testing context is the question which specification language
should be used. Raw CLP predicates or formulas specified in temporal logics surely
are not the best choice.

In terms of representation, automata are a good choice when general proper-
ties are to be tested. However, when sequences of transitions, sequences of states or
component interactions, i.e., partial I/O traces, form the major part of the property
to be tested, they suffer from the fact that they do not contain a sequential notion
of progressing time. Particularly for the first kind of test case specifications, Se-
quence Charts seem to be more appropriate. Note that this argumentation is about
(intuitive) representation rather than expressivity. This motivates the following
discussion on specification languages for test cases.

In contrast to automata, MSCs explicitly visualize the progress of time in a se-
quential manner. They describe exemplary component interactions, and are usually
deployed to specify use cases that show a certain required behavior of the system
model or its implementation, respectively. Condition boxes in MSCs can be used
to specify system states [21, 13] - a fact that is used in work on their translation
into automata [21]. The incorporation of special symbols for transitions into MSCs
is the subject of ongoing work. Note that this does not advocate the integration of
MSCs and automata into a new kind of language for the specification of systems,
but rather for the specification of test cases. In terms of system specification, a
clear distinction between behavior and interaction view seems to be reasonable.

14

The specification of properties also necessitates a construct for negation. If
negation is to be used on levels of the property other than the outmost one (i.e.,
“the following property should not hold”), there is a need for describing “partial”
negation within MSCs which is the subject of ongoing work. In addition, for the
specification of test cases, the specification of iteration is needed within MSCs.

One problem with these extensions is the formal definition of their semantics
which, in case of negation, turns out to be far from being trivial. Another compli-
cation arises from the fact that there are different interpretations of MSCs. Two
subsequent messages (arrows) in a diagram may mean “nothing but these two mes-
sages occur within the specified time in the specified order”, or they may mean “the
partial I/O behavior in question must contain the two specified messages in their
specified order”. It seems to be reasonable to admit both interpretations [7].

Summarizing, we consider MSCs as an appropriate, intuitive means for test
case specifications in cases where I/O behavior is to be tested. This necessitates
constructs for iteration. Furthermore, for sequences of states or transitions, MSCs
seem to be a good choice, provided that constructs for states (condition boxes) or
transitions (special arrows) are supported. However, other test cases may require
other specification languages. Furthermore, the presentation of computed test cases
as MSCs or in the Combined Tree and Tabular Notation (e.g., [20]) may be a
promising approach. The determination of a set of appropriate languages as well
as its integration in our CLP system is the subject of ongoing work.

7 Conclusions and Future work

There is a strong and increasing industrial need for tool support in testing and,
more particularly, test case generation. To address this problem, we presented a
framework for simulating and testing concurrent reactive systems on the grounds
of Constraint Logic Programming and Constraint Handling Rules. W.r.t. model
checking, we see testing as a complementary technique, with other goals and other
implementations. System specifications in AUTOFOCUS were shown to be auto-
matically compilable into CLP/CHR code in a fully compositional way, taking into
account recursive functions as well as recursive data types that occur in the sys-
tem specification. We showed how a system compiled into CLP can be simulated
and demonstrated how typical tasks in the generation of test cases can be fulfilled
within our approach. Test cases may be generated on arbitrary domains, allowing
for potentially infinite ones (e.g., via interval representation). Even though we con-
centrated on testing, we believe that exactly the same techniques can be used as a
debugging aid when specifying a system. We proposed an integration of this scheme
with test case specifications based on high level languages such as MSCs that, at
present, must be compiled into CLP by hand.

Currently, we are investigating possibilities to derive actual test sequences from
test cases by scrutinizing delayed goals in the constraint store. We believe that
analyses such as interval /boundary analysis will yield a good class of test sequence
representatives for the actual process of testing the implementation. Furthermore,
we are focusing on heuristics when to use forward or backward analyses. The pre-
sented approach is a forward analysis, but by switching variables and transforming
constraints, it can be made a backward analysis. In addition, we consider the aug-
mentation of transitions with counters a promising way to reduce the risk of running
into loops (because of Prolog’s depth-first search strategy).

Interesting open problems include the problem of negating properties, in MSCs
for test case specification as well as in the calculation of idle transitions for automata
and the problem of function inversion in CLP. In addition, we are considering the
extension of our approach to mixed discrete-continuous, or hybrid, systems [25] (for

15

test case specifications, we focus on HySCs [13]). For simple differential equations
with exponential functions as solutions, it seems possible to implement a specialized
solver for this kind of constraints. This means that we do not have to counter-
intuitively insert clock ticks into continuous activities (as is, for instance, done
in [4]). This is a focus of our current work. Hybrid automata [1] are not well suited
for modular design tasks [24], so we concentrate on extended finite state machines
with continuous activities. For Hybrid systems in the context of CLP, cf., e.g., [29];
see [5] for the testing of hybrid systems. Last but not least, we are discussing the
integration of abstract interpretation techniques [6] into our framework.

Acknowledgment. We would like to thank Oscar Slotosch and Thomas Stauner
for fruitful discussions and extensive comments on this paper.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138(1):3-34, February 1995.

[2] B. Beizer. Black Bozx Testing. John Wiley and Sons, 1995. ISBN 0-471-12094-4.

[3] M. Broy, F. Dederich, C. Dendorfer, M. Fuchs, T. Gritzner, and R. Weber. The
design of distributed systems - an introduction to focus. Technical Report TUM-
19202, Technische Universitdt Miinchen, 1992.

[4] A. Ciarlini and T. Friithwirth. Using Constraint Logic Programming for Software Val-
idation. In 5th workshop on the German-Brazilian Bilateral Programme for Scientific
and Technological Cooperation, Konigswinter, Germany, March 1999.

[6] A. Ciarlini and T. Frithwirth. Automatic derivation of meaningful experiments for
hybrid systems. In Proc. ACM SIGSIM Conf. on Artificial Intelligence, Simulation,
and Planning (AIS’00), Tucson, AZ, March 2000.

[6] P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th ACM
symp. on Principles of Programming Languages (POPL’77), pages 238-252, 1977.

[7] W. Damm and D. Harel. LSC’s: Breathing Life into Message Sequence Charts. In
Proc. 3rd Intl. Conf. on Formal Methods for open object-based distributed systems
(FMOODS’99), 1999.

[8] G. Delzanno and A. Podelski. Model Checking in CLP. In Proc. Tools and Algorithms
for Construction and Analysis of Systems (TACAS’99), pages 223-239, 1999.

[9] L. Fribourg. Constraint logic programming applied to model checking. In Proc. 9th
Int. Workshop on Logic-based Program Synthesis and Transformation (LOPSTR’99),
LNCS 1817, Venice, 1999. Springer Verlag.

[10] L. Fribourg and M. Veloso-Peixoto. Automates Concurrents 4 Contraintes. Technique
et Science Informatiques, 13(6):837-866, 1994.

[11] M. Gaudel. Testing can be formal, too. In P. Mosses, M. Nielsen, and
M. Schwartzbach, editors, Proc. Intl. Conf. on Theory and Practice of Software De-
velopment (TAPSOFT’95), LNCS 915, pages 82-96, Aarhus, Denmark, May 1995.

[12] J. Grabowski. Test Case Generation and Test Case Specification with Message Se-
quence Charts. PhD thesis, Universitdt Bern, 1994.

[13] R. Grosu, I. Kriiger, and T. Stauner. Hybrid Sequence Charts. In Proc. 8rd IEEE
Intl. Symp. on Object-oriented Real-time distributed Computing (ISORC 2000). IEEE,
2000.

[14] G. Gupta and E. Pontelli. A Constraint-based Approach to Specification and Veri-
fication of Real-time Systems. In Proc. IEEE Real-time Symposium, pages 230-239,
San Francisco, December 1997.

[15] M. Hanus (ed.). Curry: An Integrated Functional Logic Language.
www.informatik.uni-kiel.de/~curry/report.html.

[16] F. Huber, S. Molterer, A. Rausch, B. Schitz, M. Sihling, and O. Slotosch. Tool sup-
ported specification and simulation of distributed systems. In B. Kramer, N. Uchihira,
P. Croll, and S. Russo, editors, Proc. Intl. Symp. on Software Engineering for Parallel
and Distributed Systems, pages 155-164. IEEE, 1998.

16

[17]

18]

[19]
[20]
[21]
[22]

23]

[24]
[25]
[26]
[27]
28]

[29]

[30]

F. Huber, S. Molterer, B. Schitz, O. Slotosch, and A. Vilbig. Traffic Lights - An Au-
toFocus Case Study. In 1998 International Conference on Application of Concurrency
to System Design, pages 282—294. IEEE Computer Society, 1998.

F. Huber, B. Schitz, and G. Einert. Consistent Graphical Specification of Distributed
Systems. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Industrial Applications and
Strengthened Foundations of Formal Methods (FME’97), LNCS 1313, pages 122-141.
Springer Verlag, 1997.

ITU. ITU-T Recommendation Z.120: Message Sequence Charts (MSC), November
1999.

K. Knightson. OSI protocol conformance testing - IS 9646 erplained. McGraw-Hill,
1993. ISBN 0-07-035134-1.

I. Kriiger. Distributed Systems Design with Message Sequence Charts. PhD thesis,
Munich University of Technology, 2000.

H. Lotzbeyer and A. Pretschner. AutoFocus on Constraint Logic Programming. In
Proc. Logic Programming and Software Engineering (LPSE’00), London, July 2000.
H. Lotzbeyer and A. Pretschner. Concurrent Reactive Systems and Constraint Logic
Programming: A framework for compositional testing and validation, 2000. Internal
report, Technische Universitat Miinchen.

O. Miiller and T. Stauner. Modelling and verification using Linear Hybrid Automata.
Mathematical Computer Modeling of Dynamical Systems, 6(1), March 2000.

A. Pretschner, O. Slotosch, and T. Stauner. Developing Correct Safety Critical,
Hybrid, Embedded Systems. In Proc. New Information Processing Techniques for
Military Systems, NATO Research, Istanbul, 2000. To appear.

S. Sadeghipour. Testing Cyclic Software Components of Reactive Systems on the
Basis of Formal Specifications. PhD thesis, TU Berlin, 1998.

J. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.
J. Tretmans and A. Belinfante. Automatic testing with formal methods. In 7th. Euro-
pean Intl. Conf. on Software Testing, Analysis & Review (EuroSTAR’99), Barcelona,
Spain, November 1999.

L. Urbina. Analysis of Hybrid Systems in CLP(R). In E. C. Freuder, editor, Proc.
2nd Intl. Conf. on Principles and Practice of Constraint Programming, LNCS 1118,
pages 451-467, Cambridge, Massachusetts, USA, 1996. Springer Verlag.

G. Wimmel, H. Létzbeyer, A. Pretschner, and O. Slotosch. Specification Based Test
Sequence Generation with Propositional Logic. J. Software Testing, Verification &
Reliability (STVR): Special Issue on Specification Based Testing, 2000. To appear.

17

