
Defect Classification and Defect Types Revisited

Stefan Wagner
Technische Universität München

Boltzmannstr. 3
85748 Garching b. München, Germany

wagnerst@in.tum.de

ABSTRACT
There have been various attempts to establish common de-
fect classification systems in standards, academia and indus-
try. The resulted classifications are partly similar but also
contain variations and none of which is accepted as a basic
tool in software projects. This position paper summarises
the work on defect classifications so far, proposes a set of
challenges and the direction to a solution.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software qua-
lity assurance (SQA); D.2.5 [Software Engineering]: Tes-
ting and Debugging

General Terms
Documentation, Measurement

Keywords
Bugs, Faults, Defects, Defect Types, Defect Classification,
Defect Taxonomy

1. INTRODUCTION
There is an obvious drive of humans to classify every-

thing around them in order to cope with the world more
easily. This also holds for defects in software systems. Va-
rious classifications and typings have been developed over
the last decades for different reasons such as improving de-
fect detection or educating developers. Although there are
several often cited classifications and even an IEEE standard
[7], none of which have become a truly and broadly applied
practice. In practice, we often see only a classification of im-
pact or severity. This helps in project management to decide
which defects to correct first or at all. However, many of the
other anticipated benefits of such classifications cannot be
realised. We summarise the state of the art in defect classifi-
cation and defect types, pose the current challenges in that
area and conclude with some ideas for the way ahead.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08, July 20, 2008, Seattle, Washington, USA
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

2. STATE OF THE ART
The large variety of research on the differences of defects

and their nature cannot be covered completely here but we
concentrate on some prominent examples. We can roughly
divide them in three categories: (1) defect taxonomies, (2)
root cause analysis, and (3) defect classification. Defect ta-
xonomies are categorisations of faults, mostly in code, that
are based on the details of the implementation solution, e.g.,
wrong type declaration, wrong variable scope, or wrong in-
terrupt handling. A well-known example of this kind is the
taxonomy of Beizer [1]. An even more detailed approach is
root cause analysis where not only the faults themselves are
analysed but also their cause, i.e., the mistakes made by
the development team. The goal is to identify these root
causes and eliminate them to prevent faults in the future.
Root cause analysis has, for example, been used at IBM [9].
In general, root cause analysis is perceived as rather ela-
borate and the cost/benefit relation is not clear. Therefore,
defect classifications aim at reducing the costs but sustain
the benefits at the same time. The categorisation uses mo-
re coarse-grained defect types that typically have multiple
dimensions.

An IEEE standard [7] defines several dimensions of de-
fects that should be collected. This starts from the process
activity and phase the defect was detected, over the suspec-
ted cause, to the so-called type that is similar to a taxono-
my. Interestingly, also the source in terms of the document
or artefact is proposed as a dimension of the classification.
However, applications of this standard classification are not
frequently reported.

The mainly used defect classification approaches have be-
en proposed by companies: IBM and HP. The IBM approach
is called Orthogonal Defect Classification (ODC) [2]. A de-
fect is classified across the dimensions (1) defect type, (2)
source, (3) impact, (4) trigger, (5) phase found, and (6) se-
verity. The defect type is here one of eight possibilities that
allow an easy and quick classification of defects and are suf-
ficient for analysing trends in the defect detection. Triggers
are the defect-detection techniques that detect the defects
and hence it is possible to establish a relationship between
defect types and triggers. Kan [8] criticises that the associa-
tion between defect type and project phases is still an open
question and that the distribution of defect types depends
also on the processes and maturity of the company.

Similar to ODC is the HP approach called Defect Orig-
ins, Types, and Modes [6]. The name already gives the three
dimensions a defect is classified in. The origin is the sour-
ce of the defect – as in the IEEE standard –, the types are

also a coarse-grained categorisation of what is wrong, and
the mode can be one of missing, unclear, or wrong. Again
the type of artefact – the origin – is documented as oppo-
sed to the activity. In contrast to ODC we can analyse the
relationships between defects and document types but the
defect-detection techniques – the triggers in ODC – are not
directly documented.

However, it has been found in different case studies [4, 13,
5] that general defect type classifications are difficult to use
in practice and need to be refined or adapted to the specific
domain and project environment. In [5, 10] it is shown how
specific adaptions and domain-specific defect types can be
found and defined. Yet, we are not aware of a larger use of
these approaches.

3. CHALLENGES
Having discussed the current state-of-the-art, the questi-

on is what does hamper the full-blown adoption of defect
classification in practice? What do we have to achieve first?

Different Artefacts. Over the life-cycle of a software
system a variety of artefacts are created and for many of
them we are actually interested in the types of defects they
contain. However, can we use similar defect classifications
for all of these artefacts? If not, how can we describe the
interconnections of the defects (e.g. defect propagation)?

Dimensions. All the existing classifications available use
partly different dimensions. However, it is unclear what di-
mensions are necessary. What is the basic set that allows the
different scenarios of usage of these classification? What can
be expected to be documented by the quality engineers? A
large amount of empirical studies are necessary to analyse
the important factors influencing defects and the effort for
collecting them.

Defect Type Distributions. For some classifications,
mainly the ODC, there is data published about typical dis-
tributions of defects but in general the empirical knowledge
is rather sparse [11]. However, for using defect types for goals
like optimisation of defect detection [12] far more knowled-
ge is necessary. Is it possible to find reasonable but general
distributions of defect types? If not, on what factors does
it depend? For example, can we have domain-specific defect
type distributions?

Connection to Quality Models. In the end, what we
want to achieve with defect prevention and detection is qua-
lity. However, the work on defect classifications does only
partially relate the classifications to quality models. There
are sometimes security defects, for example, but this is not
consequently related to quality models such as the ISO 9126.
Hence, this connections must be clearly established in order
to have a clear quality improvement when a certain defect
type is prevented or corrected. Actually, modern quality mo-
dels [3] define rather low-level quality attributes that could
be seen as kind of defect types.

4. CONCLUSIONS
The ideal for quality assurance would be first to have

means to make a well-founded estimate of the defect types
in the important artefacts developed during the software
life-cycle. Second, good, general guidelines for which defect-
detection techniques are well-suited to detect which defect
types are needed. Then we would be able to optimise the
quality assurance by using those techniques that best find

“our” defects. For this, we need to analyse in more detail the
factors that influence defect introduction and reflect those
findings in defect classifications. Therefore, we propose to
invest more effort in developing applicable but standardised
defect classifications in order to aid the collection of empiri-
cal knowledge.

5. REFERENCES
[1] B. Beizer. Software Testing Techniques. Thomson

Learning, 2nd edition, 1990.

[2] R. Chillarege. Orthogonal Defect Classification. In
M. R. Lyu, editor, Handbook of Software Reliability
Engineering, chapter 9. IEEE Computer Society Press
and McGraw-Hill, 1996.

[3] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J.-F. Girard. An activity-based quality model for
maintainability. In Proc. 23rd International
Conference on Software Maintenance (ICSM ’07).
IEEE Computer Society Press, 2007.

[4] J. Durães and H. Madeira. Definition of Software
Fault Emulation Operators: A Field Data Study. In
Proc. 2003 International Conference on Dependable
Systems and Networks (DSN ’03), pages 105–114.
IEEE Computer Society, 2003.

[5] B. Freimut, C. Denger, and M. Ketterer. An Industrial
Case Study of Implementing and Validating Defect
Classification for Process Improvement and Quality
Management. In Proc. 11th IEEE International
Software Metrics Symposium (METRICS ’05). IEEE
Computer Society, 2005.

[6] R. B. Grady. Practical Software Metrics for Project
Management and Process Improvement. Prentice-Hall,
1992.

[7] IEEE Std 1044-1993. IEEE Standard Classification for
Software Anomalies, 1993.

[8] S. H. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, 2nd edition, 2002.

[9] R. G. Mays, C. L. Jones, G. J. Holloway, and D. P.
Studinski. Experiences with Defect Prevention. IBM
Systems Journal, 29(1):4–32, 1990.

[10] T. Nakamura, L. Hochstein, and V. R. Basili.
Identifying domain-specific defect classes using
inspections and change history. In Proc. 2006
ACM/IEEE International Symposium on Empirical
Software Engineering (ISESE ’06), pages 346–355.
ACM Press, 2006.

[11] S. Wagner. A Literature Survey of the Quality
Economics of Defect-Detection Techniques. In Proc.
5th ACM-IEEE International Symposium on
Empirical Software Engineering (ISESE ’06). ACM
Press, 2006.

[12] S. Wagner. A Model and Sensitivity Analysis of the
Quality Economics of Defect-Detection Techniques. In
Proc. International Symposium on Software Testing
and Analysis (ISSTA ’06), pages 73–83. ACM Press,
2006.

[13] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.
Comparing Bug Finding Tools with Reviews and
Tests. In Proc. 17th International Conference on
Testing of Communicating Systems (TestCom’05),
volume 3502 of LNCS, pages 40–55. Springer, 2005.

