From Inheritance to Feature Interaction
Christian Prehofer*

— FExtended Abstract —

1 An Approach to Modular Feature Composition

In this paper we introduce a new model for composing objects from individual features
in a fully flexible and modular way. Its main advantage is that different objects can be
created just be selecting the desired features. In addition, there may be dependencies or
interactions between features, i.e. some feature must behave differently in the presence
of another one. We present a modular solution to such feature interactions by lifting
functions of one feature to the context of the other. This extends the idea of overwriting
methods in inheritance, but is modular.

We will introduce the model by comparing it to inheritance, although it is not our
goal to extend inheritance with all its ingredients from object-oriented programming
languages. Instead, we view inheritance as a mechanism to derive new modules from
old ones.

First we need to clarify the basic concept: a feature (or component)

e adds functionality to any object which provides
e some required other features and

e may add local state to the object (or extend the used domains, e.g. by error
cases)

Clearly, for providing the new functionality, the new feature can only use the func-
tionality of the required ones and the newly added state. Furthermore, lifting of other
features is needed, as shown below.

Compared to inheritance, new objects can be constructed just by telling which
features to use. Although inheritance can be used to solve such feature combinations,
all needed combinations have to be programmed explicitly. With additional feature
interactions, matters get even more involved.

*Fakultat fur Informatik, Technische Universitat Munchen, 80290 Minchen, Germany,
prehofer@informatik.tu-muenchen.de

In the following, we show this by a small example modeling stacks with the following
features:

(Basic) Stack, providing for push and pop operations on an internal stack imple-
mented by a list.

Counter, which adds a local variable counting the number of elements in the stack.

Undo, adding an undo function, which restores the state before the last access to the
object.

Clearly, these features have dependencies. For instance, when adding the counter,
the functions push and pop must, in addition, increment or decrement the counter.
With classical inheritance, this is achieved by overwriting of methods and by possibly
calling the method of the superclass (e.g. via super). In our setting, such dependencies
are described by a lifting from one feature to a new context. Thus, liftings depend on
two features. To compose several features, lifting have to be more general: For any
object having feature A, we can add feature B and lift the functions of A to the new
context. Then we have an object which provides both features.

Environment
e N
Undo
undo
SRR <
Counter: size, inc, dec
S :
Stack: push, pop
_ Y,

Figure 1: Composing Stack Features (Arrows denote lifting of functions)

In Figure 1, we show the structure of feature composition and liftings. To the basic
stack, we first add the counter. For this new object to support the stack feature, we
have to lift the functions push and pop, indicated by arrows. This gives a new object
with two features, consisting of the lower two boxes. Since there are interactions, we
must provide individual lifters for push and pop. Otherwise, one can use the default
ones for composing orthogonal, independent features.

With the undo component, we proceed similarly. Observe that the functions push
and pop are lifted again. There are few more subtle issues, as discussed in the following

section. For instance, the inc and dec functions are not lifted, which corresponds to
hiding.

The main advantage in our setting is that features can be configured (almost)
arbitrarily. For instance, we can omit the counter or provide an alternative counter with
different implementation or additional functionality. Also for the undo-component,
different versions are available: one with a one-step undo, one with many-step undo.
In addition to the ones shown above, there is also an error handling feature for stack
underflow, based on a different class of monads.

There is another interesting interaction between Undo and Counter. If a size request
is followed by undo, shall the state before size or the one before the last push/pop
request be restored? Such choices motivate a modular design, where not only the
components are decoupled, but also their interaction. Furthermore, if the Counter
is not used, we do not want to bother with this complication. In traditional object-
oriented programming, one could either build separate versions of Undo (e.g. one with
Counter and one without), or a monolithic one considering all interactions. With
respect to flexibility and reusability, both alternatives are not satisfactory.

On the technical side, we implement our concepts by monads, inspired by techniques
developed in [7]. In our model (functional) objects correspond to monads, which can
be viewed as particular abstract data types. The interesting point is that monads
compose nicely and we can build monad transformers, which transform an abstract
data type to another. This is used to add features to objects. For instance, the mainly
used monad transformers add (local) state (and extra functionality), from which we
draw the analogy to inheritance. For the used classes of monads, generic introduction
of new components and composition concepts are provided.

2 A Glimpse of the Implementation

To give a rough idea of the implementation (done in the functional language Gofer [5]),
we show the main code fragments.! Since this is just a first prototype encoding of the
ideas, our concepts are provided by Gofer functions and type constructions. Further-
more, we use explicit state transformers in contrast to implicit state in imperative
languages. Although this is a bit clumsy in our first implementation without any
syntactic sugar, it is essential for the desired flexibility and modularity.

Composing features is done by the type system of Gofer [6] with type constructors
and type classes [8]. Adding features is done by type constructors. Observe that type
classes do not correspond to classes in object-oriented programming, but determine if
a type has some feature. Thus a type can be in several type classes, somewhat similar
to multiple inheritance. (Note that we often do not distinguish between objects and
their type.)

A type is in a type class (e.g. StackClass, CountClass) if it provides the corre-
sponding functions. Furthermore, we use the type constructors StackT, CounterT to

1Slightly shortened and polished. The full code is available by the author.

add features to a type. If m is the type of an object, (StackT m) adds the feature Stack
to it. In the following code, the first type declaration for StackT declares that StackT
adds a local state, which is a polymorphic list over a type a. The second statement de-
clares that (StackT m) is in class StackClass and provides implementations for push
and pop.

type StackT = StateTransformer (List a)

instance StackClass (StackT m) where
update (\stack -> (a:stack,a))
update (\stack -> (tail stack, head a))

push a
pop

In the implementation, the added state can be modified via the function update, which
applies its functional parameter to the internal state. (It thus constructs a state trans-
former.) For instance, to implement push, we use the function \stack -> (a:stack,a),
where \x -> denotes functional abstraction over x and a:stack appends the list stack
to the new element a. Note that the function must return a pair, here (a:stack,a),
where the first element is the new state and the second the returned value (here the
return value of push). For instance, pop returns the head of the list and removes the
first element from the stack by assigning tail stack to the local stack.

Next we show the Counter feature, whose functions are also implemented via state
transformers using the update function. Note that size leaves the counter 1 unchanged
and returns its value.

type CountT = StateTransformer Int

instance CountClass (CountT m) where
size = update (\i -> (i,1))

i update (\i -> (i+1,1))

update (\i -> (i-1,1))

inc

dec

It remains to lift the the functionality of Stack to the context of a counter. The
following code states that if m has feature Stack, i.e. StackClass m, then (CountT m)
also has the Stack feature.

instance StackClass m => StackClass (CountT m) where
push a = inc ‘bind‘ 1lift (push a)
pop = dec ‘bind‘ 1lift pop

In the code, we use a particular infix operator bind, which composes state transformers
and roughly corresponds to the semicolon in imperative languages. The code for push
first calls the increment function of the Counter and then via 1ift (push a) the push
function of the inner object (“super class”) m. Roughly speaking, 1ift corresponds to
the function super as e.g. in Smalltalk and is, like update, provided in the system.

4

Alternatively, if there is no interaction, one would just write pop = 1ift pop,
which could also be made a default (as implicit in object-oriented programming). With
the above code, an object of type CountT (StackT m) provides both features and
behaves as expected.

The implementation of the Undo feature is not shown here for lack of space. The
idea is is to save the local state of the object each time a function of the other features
is applied (e.g. push, pop). The Undo feature involves several interesting new issues:

o The lifting of the functions of the other used features is schematic: Always save
the state first and then call the function. In contrast to object-oriented program-
ming, this can be done once and for all by a particular lift function:

lift_undo f = save_state ‘bind‘ (1ift f)

lifts any function £ to the Undo feature.

e Undo depends essentially on all “inner” features, since it has to know the internal
state of the composed object. Since we work in a typed environment, the type
of the state to be saved has to be known. This problem is solved by extra
functionality of state transformers, which allows to read and write the local state.

o As shown in Figure 1, some functions of Counter are not lifted, corresponding to

hiding.

In the current implementation, we have six components. All can be added modu-
larly in many combinations and their interactions are decoupled and easy to maintain.

3 Feature Interaction in Telecommunications

In the telecommunications and multimedia development, feature interaction problems
have led to a new research branch [10] focusing on such interaction problems, which
hinder the rapid creation of new services. The problem in feature interaction stems
from the abundance of features telephones (will) have. This was in fact the original
motivation for this work. For instance, consider the following conflict occurring in
telephone connections: B forwards calls to his phone to C. C screens calls from A
(ICS, incoming call screening). Should a call from A to B be connected to C? In this
example, there is a clear interaction between the components for Forwarding (FD) and
for ICS, which can be resolved in several ways. For many other examples we refer
to [3].

We have implemented a set of features for this domain of connecting calls:
e ICS (incoming call screening)

e OCS (outgoing call screening)

e Forwarding of calls
e Error handling

In this application, there are similar feature interactions as in the last section. Already
with four features and several resolutions to the interactions, there are more than a
dozen different configurations.

This application area also seems more suitable for this approach: Different con-
figurations and the addition of novel features must be handled. Furthermore, the
interactions mostly stem from extending the environment or from resource conflicts.

4 Related Work

In the above, we already compared our approach with inheritance. In object-oriented
programming, there are several other concepts not addressed here. Some of them, such
as virtual methods with late binding, are also possible here, but others, like subtyping
and dynamic binding are not yet considered.

Other type theoretic approaches, e.g. [2, 1, 9], aim at modeling object-oriented
phenomena, but not at features. The essential difference is that we design in such a
way that we add a feature to any object which supports the required other features
and if lifters are provided.

Another motivation for this work is the current trend in commercial software, com-
ponentware, which is driven by the idea to compose small, reusable software compo-
nents to larger ones. In industrial applications, componentware is largely successful by
standardizing component platforms, architecture and interfaces, as e.g. demonstrated
by CORBA and SOM. Although the idea of simple plug-and-play with software compo-
nents is tempting, it is a bit simplistic. Even when syntactic interfaces are compatible,
a typical problem is that interaction or conflicts occur between individual components,
as shown here.

5 Conclusions

The main goal of component-based or feature-based programming is to specify and
implement features of components and their interactions separately. Towards this
goal, have shown that feature composition can be fully modular, also with respect to
interactions. Clearly, the interactions are not deep algorithmic dependencies, but cover
many practical problems.

Not mentioned are the extra new capabilities of our model. For instance, we can
also used different monads, called ErrorMonads, which add error cases (or any other
special cases) to objects. For instance, it is possible to lift functions over undefined
values and to provide (modular) error handling. Functions, such as raising errors, can
be lifted through features.

6 Relation to the Workshop

We have presented a first approach to a new, general concept of features, which goes
beyond inheritance. The modular structure of this approach allows to disassemble
and to pinpoint the problems of classical inheritance with overwriting of methods. For
instance, in each of the two case studies, we have implemented only four to six features,
but there is already an abundance of possible configurations and interactions. Only
with such a modular design, we can hope for flexible and reusable software. Thus this
approach addresses two main problems with inheritance:

o Inheritance breaks modularity by overwriting methods.

e Inheritance is too rigid and inflexible, since individual (sub)classes cannot be
(re)used without a detailed understanding of the class hierarchy.

Another, somewhat orthogonal, approach to the last problem is the idea of design
patterns [4], aiming at standardized class structures. This does however not address
the composition problems solved here.

References

[1] Martin Abadi and Luca Cardelli. A theory of primitive objects: Second-order
systems. In Furopean Symposium on Programming (ESOP), Edinburgh, Scotland,
1994.

[2] Martin Abadi and Luca Cardelli. A theory of primitive objects: Untyped and
first-order systems. In Theoretical Aspects of Computer Software (TACS), Sendat,
Japan, 1994.

[3] E.J. Cameron, N. Griffeth, Y.-J. Linand M.E. Nilson, W.K. Schnure, and
H. Velthuijsen. A feature interaction benchmark for in and beyond. In L. G.
Bouma and Hugo Velthuijsen, editors, Feature Interactions in Telecommunica-
tions Systems, pages 1-23, Amsterdam, 1994. TOS Press.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Micro-
Architectures for Reusable Object-Oriented Design. Addison Wesley, Reading, MA,
1994.

[5] Mark P. Jones. Introduction to gofer 2.20. Technical report, Yale University,
September 1991.

[6] Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of Functional Programming, 5(1), January 1995.

7]

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In 22nd ACM Symposium on Principles of Programming Languages, San Fran-
cisco, California, 1995.

Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes. J.
Functional Programming, 5(2):201-224, 1995. Short version appeared in POPL
'93.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming, 4(2):207-247,
April 1994. A preliminary version appeared in Principles of Programming Lan-
guages, 1993, and as University of Edinburgh technical report ECS-LFCS-92-225,
under the title “Object-Oriented Programming Without Recursive Types”.

P. Zave. Feature interactions and formal specifications in telecommunications.

IEEE Computer, XXVI(8), August 1993.

