
Feature�Oriented Programming�

A Fresh Look at Objects

Christian Prehofer

Institut f�ur Informatik� Technische Universit�at M�unchen�
����� M�unchen� Germany� prehofer�informatik�tu�muenchen�de

Abstract� We propose a new model for �exible composition of objects
from a set of features� Features are similar to �abstract	 subclasses� but
only provide the core functionality of a �sub	class� Overwriting other
methods is viewed as resolving feature interactions and is speci
ed sep�
arately for two features at a time� This programming model allows to
compose features �almost	 freely in a way which generalizes inheritance
and aggregation� For a set of n features� an exponential number of dif�
ferent feature combinations is possible� assuming a quadratic number of
interaction resolutions� We present the feature model as an extension
of Java and give two translations to Java� one via inheritance and the
other via aggregation� We further discuss parameterized features� which
work nicely with our feature model and can be translated into Pizza� an
extension of Java�

� Introduction

A major contribution of object�oriented programming is reuse by inheritance or
subclassing� Its success and its extensive use have led to several approaches to
increase �exibility �mix�ins ���� �	� around�messages in Lisp ��	� class refactoring
methods ���	
 and to approaches using di�erent composition techniques� such as
aggregation and �abstract
 subclasses�

In this paper we propose a new model for object�oriented programming which
nicely generalizes inheritance and includes the above mentioned extensions and
new concepts� Instead of a rigid class structure� we propose writing features
which are composed appropriately when creating objects� Features are similar
to abstract subclasses or mixins ��	� The main di�erence is that we separate
the core functionality of a subclass from overwriting methods of the superclass�
We view overwriting more generally as a mechanism to resolve dependencies or
interactions between features� i�e� some feature must behave di�erently in the
presence of another one�

We resolve feature interactions by lifting functions of one feature to the con�
text of the other� Similar to inheritance� this is accomplished by method over�
writing� but lifters depend on two features and are separate entities used for
composition� In contrast� inheritance just overwrites methods of the superclass�

Our new model allows to compose objects from individual features �or ab�
stract subclasses
 in a fully �exible and modular way� Its main advantage is that



� add methods
� add instance variables

� overwrite methods
� add methods
� add instance variables

� overwrite methods

� add methods
� add instance variables

� overwrite methods

� add methods
� add instance variables

� overwrite methods

Class B

Class A

Class C

Class D

Fig� �� Typical Class Hierarchies

objects with individual services can be created just by selecting the desired fea�
tures� unlike object�oriented programming� Hence feature�oriented programming
is particularly useful in applications where a large variety of similar objects is
needed� The main novelty of this approach is a modular architecture for com�
posing features with the required interaction handling� yielding a full object�

Consider for instance an example modeling stacks with the following features�

Stack� providing push and pop operations on a stack�
Counter� which adds a local counter �used for the size of the stack
�
Lock� adding a switch to allow
disallow modi�cations of an object �here used

for the stack
�
Bound� which implements a range check� used for the stack elements�
Undo� adding an undo function� which restores the state as it was before the

last access to the object�

In an object�oriented language� one would extend a class of stacks by a counter
and similarly with the other features� Usually� a concrete class is added onto
another concrete class� We generalize this to independent features which can
be added to any object� For instance� we can run a counter object with or
without lock� Furthermore� it is easy to imagine variations of the features� for
instance di�erent counters or a lock which not even permits read access� With
our approach� we show that it is easy to provide such a set of features with
interaction handling for simple reuse�

With feature�oriented programming� a feature repository replaces the rigid
structure of conventional class hierarchies� Both are illustrated in Figures �
and �� The composition of features in Figure � uses an architecture for adding
interaction resolution code �via overwriting
 which is similar to constructing a
concrete class hierarchy� To construct an object� features are added one after an�
other in a particular order� �As we only compose objects� there is no real notion



F �

F �

F �F �

F �

F �

F �

F �

F � F � F � F �

F ��F � F ��F � F ��F �F ��F � F ��F �

Feature Repository

Objects�Classes composed from Features � Interactions

Lifters for Feature Interactions �Method Overwriting	

Fig� �� Composing Objects in the Feature Model

of a class� which is hence often confused with the �type of
 objects�
 If a feature is
added to a combination of n features� we have to apply n lifters in order to adapt
the inner features� As we consider interactions of two features at a time� there

is only a quadratic number
�
n
�

�
� n��n

� of lifters� but an exponential number�
n
k

�
� k � �� � � � � n of di�erent feature combinations can be created� For instance�

in the above example� we have � features with �� interactions and about ��
sensible feature combinations� This number grows if di�erent implementations
or variations of features are considered �e�g� single� or multi�step undo
� The
observation that most� but not all� interactions can be handled for two features
at a time is a major premise of this approach�

We show that feature�oriented programming generalizes object�oriented tech�
niques and gives a new conceptual model of objects and object composition� To
support this� we will show how to create Java ��	 code for concrete feature se�
lections� �rst using inheritance and then using aggregation and delegation� This
shows the relations with known techniques and compares both techniques� In
fact� we will show two cases where aggregation is more expressive than inheri�
tance� re�ning earlier results ���	�

To summarize� feature�oriented programming is advantageous for the follow�
ing reasons�

� It yields more �exibility� as objects with individual services can be composed
from a set of features� This is clearly desirable� if many di�erent variations
of one software component are needed or if new functionality has to be
incorporated frequently�

� As the core functionality is separated from interaction handling� it provides
more structure and clari�es dependencies between features� Hence it encour�
ages to write independent� reusable code� as in many cases subclasses should
be an independent entity� and not a subclass� This also makes class refac�



toring ���	 much easier and sometimes unnecessary� The idea is similar to
abstract classes� but we also cover dependencies between features�

� We show that parameterized features �similar to templates
 work nicely with
interactions and liftings �which replace inheritance
� As we will see� there
can also occur type dependencies between two features� which can be clearly
speci�ed in our setting�

� As we consider only liftings or interactions between two features at a time�
the model is as simple as possible� In case of dependencies between several
features� liftings between two features can still su�ce� if we consider auxiliary
features �see Sec� ���
�

The technical contributions and results in this paper are as follows�

� Translations of a feature�based language extension of Java into Java� one via
inheritance and one via aggregation and delegation�

� An analysis of parameterized features and type dependencies between fea�
tures� followed by a translation into Pizza ���	� an extension of Java�

� The translations lead to a detailed comparison of aggregation and inheri�
tance� This unveils two cases where aggregation is more powerful than in�
heritance due to typing problems�

The origin of this idea of features in fact goes back to applications of monad
theory in functional programming� as discussed in ���� ��	� In this earlier pa�
per� composition of state monads was compared to inheritance and extended
to other monads in functional programming� The motivation for this work was
the recent development in telecommunication and multimedia software� where
feature interactions have recently attracted great attention ���� �	� Examples for
feature�oriented programming in this area are discussed in ���� ��	�

In the following section� we discuss the �rst three features of the stack exam�
ple� We de�ne the feature�oriented extension of Java via translations in Section ��
followed by an extension to parameterized features in Section �� This section also
discusses the remaining two features� undo and bound� Examples in Section �
and discussions of the approach in Section � and Section � conclude the paper�

� A First Example for Feature�Oriented Programming

In this section� we introduce feature�oriented programming with the above ex�
ample modeling variations of stacks� �The undo and bound features are shown
later in Section ��
 For this purpose� we present an extension of Java in the
following�

Note that we only treat stacks over characters� parametric stacks will be
considered later� We �rst de�ne interfaces for features� Although not strictly
needed for our ideas� they are useful if there are several implementations for one
interface� Furthermore� they ease translation into Java� as a class can implement
several interfaces in Java�



interface Stack �

void empty���

void push�char a��

void push��char a��

void pop���

char top���

�

interface Counter �

void reset���

void inc���

void dec���

int size���

�

interface Lock �

void lock���

void unlock���

�

The code below provides base implementations of the individual features� The
notation feature SF de�nes a new feature named SF� which implements stacks�
Similar to class names in Java� SF is used as a new constructor� Using the other
two feature implementations� CF and LF�

new LF �CF �SF��

creates an object with all three features� For interaction handling� it is important
that features are composed in a particular order� e�g� the above �rst adds CF to
SF and then adds LF�

feature SF implements Stack �

String s � new String���

void empty�� �s � ��� � �� Use Java Strings 			

void push�char a� �s � String	valueOf�a�	concat�s�� ��

void pop�� �s � s	substring�
�� � �

char top�� � return �s	charAt��� �� � �

void push��char a� �this	push�a� � this	push�a�� ��

�

feature CF implements Counter �

int i � ��

void reset�� �i � �� ��

void inc�� �i � i�
� ��

void dec�� �i � i

� ��

int size�� �return i� ��

�

feature LF implements Lock �

boolean l � true�

void lock�� �l � false���



void unlock�� �l � true���

boolean is�unlocked�� �return l���

�

In addition to the base implementations� we need to provide lifters� which replace
method overwriting in subclasses� Such lifters are separate entities and always
handle two features at a time� In the following code� features �via interfaces

are lifted over concrete feature implementations� For instance� the code below
feature CF lifts Stack adapts the functions of Stack to the context of CF�
i�e� the counter has to be updated accordingly� When composing features� this
lifter is used if CF is added to an object �type
 with a feature with interface
Stack� and not just directly to a stack implementation� This is important for
�exible composition� as shown below�

feature CF lifts Stack �

void empty�� �this	reset��� super	empty�� ���

void push�char a� �this	inc��� super	push�a� ���

void pop�� � this	dec��� super	pop�� ���

�

feature LF lifts Stack �

void empty�� �if �this	is�unlocked��� �super	empty������

void push�char a� �if �this	is�unlocked��� �super	push�a�����

void pop�� � if �this	is�unlocked��� �super	pop������

�

feature LF lifts Counter �

void reset�� �if �this	is�unlocked��� �super	reset������

void inc�� �if �this	is�unlocked��� �super	inc������

void dec�� �if �this	is�unlocked��� �super	dec������

�

Methods which are una�ected by interactions are not explicitly lifted� e�g� top
and size� Note that the lifting to the lock feature is schematic� Hence it is
tempting to allow default lifters� as discussed in Section ��

The modular speci�cation of the three features� separated from their inter�
actions� allows the following object compositions�

� Stack with counter
� Stack with lock
� Stack with counter and lock
� Counter with lock

For all these combinations� the three lifters shown above adapt the features
to the combinations� The resulting objects behave as desired� In addition� we
can of course use each feature individually �even lock
� With the remaining two
features� bound and undo �shown later
� many more combinations are possible
in the same way�

The composition of lifters and features is shown in Figure � for an example
with three features� To compose stack� counter� and lock� we �rst add the counter



Environment

Stack: 

Lock: lock, unlock

empty, push, pop

Counter: size, inc, dec

Fig� �� Composing features �rounded boxes	 by lifters �boxes with arrows	

to the stack and lift the stack to the counter� Then the lock feature is added
and the inner two are lifted to lock� Hence the methods of the stack are adapted
again� using the lifter from stack to lock�

The composed object provides the functionality of all selected features to the
outside� but for composition we need an additional ordering� In particular� the
outermost feature is not lifted� similar to the lowest class in a class hierarchy�
whose functions are not overwritten�

Although inheritance can be used for such feature combinations� all needed
combinations� including feature interactions� have to be assembled manually�
In contrast� we can �re
use features by simply selecting the desired ones when
creating an object�

In the above example� each feature can be run independently� In other ex�
amples it is often needed to write a feature assuming that some other feature is
available� For this� a feature declaration may require other features� e�g� in the
following example�

feature DisplayAdapter assumes AsciiPrintable �

void show�window�			� � 			 �

			 �

Consequently� an implementation may use the operations provided by the feature
AsciiPrintable in order to produce output on a window system�

In general� the base functionality of a new feature can rely on the functionality
of the required ones� This idea of assuming other features is a further di�erence to
usual abstract subclass concepts� �Note that the extended object can obviously
have more than just the required features�


� Translation to Java

To provide a precise de�nition of our Java extension� we show two translations
into Java� The �rst translation uses inheritance� while the second uses aggrega�



tion with delegation� Hence this also serves to compare the feature model with
both of these approaches and will highlight two cases where both di�er�

We assume the following abstract program with

� Ii feature interfaces
� Ii�tki methods declared for interface Ii
� Fi corresponding features
� Fi�vardecls declaration of instance variables
� Fi�fki code for methods Ii�tki
� Fi�j lifter for Fj to Ii
� Fi�j�fkj

code for lifting Ij �tkj

interface I� f
I��t�� �� method declarations
���
I��tk� �

g
���

interface Im f
Im�t��
���
Im�tkm �

g

feature F� implements I� assumes I l�� � � � � � I ln� f
F��vardecls �� variable declarations

I��t� F��f�� �� method implementations
���
I��tk� F��fk� �

g
���
�� lifters

feature Fi lifts Ij f
Ij �t� Fi�j �f�� �� function redefinitions
���
Ij �tkj Fi�j �fkj �

g

For this schematic program� concrete object creations can be translated into Java
in two ways� re�ecting two object�oriented programming techniques� aggregation
and inheritance� For both translations� the feature interfaces are preserved� while
the feature code is merged into concrete classes� as shown below�

For sake of presentation� the translation is simpli�ed in order to make the
obtained code as explicit as possible� Therefore� we assume the following�



�� The names of �instance
 variables as well as method names are distinct for
all features�

�� Assume that method calls to this are explicit� i�e� always this�fct�� � �
 instead
of fct�� � �
�

�� Variable declarations have no initializations�

��� Translation via Inheritance

For this translation� we create a concrete set of classes� one extending the other�
for each used feature combination F��F��F��� � � �Fn
 � � �


� First a new class
F� F� F� � � � is introduced� which extends F� F� � � �� followed by a class F� � � ��
The class F� F� F� � � � adds the functionality for interface I� and lifters for all
others�

Formally� an object creation

new F��F� � � � �Fn
 � � �


translates to

new F� F� � � � Fn

Furthermore� we need the following Java classes for i � �� � � � � n�

class Fi Fi�� � � � Fn extends Fi�� � � � Fn�� implements Ii� � � � � In f
�� Feature i implementation

Fi�vardecls �� variable declarations

Ii�t� Fi�f�� �� function implementations
���
Ii�tki Fi�fki �

�� Lift Feature i�
 to i

Ii���t� Fi�i���f�� �� function redefinitions
���
Ii���tki�� Fi�i���fki�� �
��� �� Lift Feature n to i

In�t� Fi�n�f�� �� function redefinitions
���
In�tkn Fi�n�fkn �

g

Observe that n � i lifters are needed� which may call methods of the super
class� The translation assumes that the features required for Fi via assumes

are present in the extended class� Otherwise� undeclared identi�es occur in the
translated code� which would only be allowed in a dynamically typed language�
This assumption is not needed for aggregation� which accounts for a small dif�
ference between the two translations� Another di�erence will be examined in the
following section on parameterized features�



For instance� our three features from the introduction translate into the fol�
lowing class hierarchy� if an object of type LF �CF �SF�� is used�

class SF implements Stack �

String s � new String���

void empty�� � s � ����

void push� char a� �s � String	valueOf�a�	concat�s����

void pop�� �s � s	substring�
�� � �

char top�� � return �s	charAt��� �� � �

void push�� char a� �this	push�a� � this	push�a�� ��

�

class CF�on�SF extends SF implements Counter� Stack �

int i � ��

void reset�� �i � �� ��

void inc�� �i � i�
� ��

void dec�� �i � i

� ��

�� lift SF to CF

void empty�� �this	reset��� super	empty�� ���

void push� char a� �this	inc��� super	push�a� ���

void pop�� � this	dec��� super	pop�� ���

�

class LF�on�CF�on�SF extends CF�on�SF

implements Lock� Counter� Stack �

boolean l � true�

void lock�� �l � false���

void unlock�� �l � true���

boolean is�unlocked�� �return l ���

�� lift CF to LF

void reset�� �if �this	is�unlocked��� � super	reset��� ���

void inc�� �if �this	is�unlocked��� � super	inc��� ���

void dec�� �if �this	is�unlocked��� � super	dec��� ���

�� lift SF to LF

void empty�� �if �this	is�unlocked��� �super	empty��� ���

void push� char a� �if �this	is�unlocked��� �super	push�a����

void pop�� � if �this	is�unlocked��� �super	pop������

�

In this example� the above code provides for most sensible combinations� except
for stack with lock only or counter with lock� In general� this translation intro�
duces intermediate classes� which may be reused for other feature combinations�

��� Translation via Aggregation

Aggregation is a common technique for composing objects from di�erent classes
to a larger object� It is used in some object�based systems as a replacement for
inheritance�



This translation requires a set of base implementations and one new class for
each feature combination� The idea of the translation is to create a class� where�
for each selected feature� one instance variable of this type is used to delegate
the services� similar to ��	� We have to be careful with delegation and calls to
this� which should not be sent to the local object� Hence we have to supply the
delegate object with the right pointer to the enclosing object� which �replaces�
this� For this purpose� we create a base class for each feature implementation
with an extra variable which will point to the composed object� This construction
enables us to check the assumes clauses globally� i�e� wrt the newly created set
of features� With the inheritance translation we had to check these assumptions
for each newly added class wrt its superclass�

Unlike the �rst translation� we need a few further technical assumptions� For
all lifters� all methods are lifted explicitly� e�g�

int size�� � return super	size��� ��

is assumed to be present� Furthermore� we need to assume that instance variables
which are used in lifters are declared public�� Also� the name self may not be
used�

The main task of this translation is to compose the lifters� i�e� all lifters
for one method have to be merged at once here� This can lead to more dense
code� as all needed lifters are composed in one class� contrary to the inheritance
translation�

An object creation

new F��F� � � � �Fn
 � � �


translates to

new F� F� � � � Fn

For this� we �rst need the following base classes for each feature implementa�
tion Fi� i � � � � � n� For the type of self in the code below� we use the class
F� F� � � � Fn� If no assumes statements are used� then just Ii is su�cient and
the class can be reused for other object creations� Alternatively� one can intro�
duce an intermediate class with just the needed interfaces Ii� I

�
i � � � I lii �

class Fi implements Ii f
�F� F� � � � Fn
 self � �� reference for delegation

Fi �F� F� � � � Fn s
 f self � s� g � �� constructor for this class

Fi�vardecls

Ii�t� �F��f�� �� function implementations
���
Ii�tki �F��fki �

g

� Note that public declarations are omitted throughout this presentation�



For delegation to work in the above� we need to apply a substitution � which
renames this to self�

� � �this �� self	

With the above base implementations we construct the class F� F� � � � Fn via
aggregation�

class F� F� � � � Fn implements I�� I�� � � � � In f
F� b� � new F��this
� �� delegate objects
���
Fn bn � new Fn�this
�

�� now need to nest lifters

I��t� ��F����f�� �� lift feature � to 

���
I��tk� ��F����fk� �

I��t� ������F����f�� �� lift feature � to 

���
I��tk� ������F����fk� �
���

In�t� �n�n���n�n���n � � � ���nF��n�f�� �� lift feature n to 

���
In�tkn �n�n���n�n���n � � � ���nF��n�fkn �

g

For simplicity� we only indicate the applications of nested lifters via unfolding
operators �i� where �i�j unfolds the lifter from j to i� sketched as

�i�j � �super�f� �� Fi�j �f�� � � � � super�fki �� Fi�j �fkj 	�

and also passes the actual parameters� Unlike in the examples below� unfolding
is in general more involved for functions� as we cannot have local blocks with
return statements� Hence we also assume for simplicity that methods return
void��

Furthermore� we have to delegate calls to super to the delegate objects� For
this purpose� �i shall rename the instance variables and method calls of methods
in Ii to super correctly to the corresponding bi� For instance� super	pop�� is
translated to sf	pop��� where sf is the name of the instance variable in the
following example� We show the translation for the combination of the three
introductory features� First� new base classes are introduced �with su�x �ag
�

� This is no restriction� as in Java objects of primitive type can be �wrapped
 into an
object in order to be passed as variable parameters�



class SF�ag implements Stack �

Stack self�

String s � new String���

SF�ag�Stack s� �self � s���

void empty�� � s � ����

void push� char a� �s � String	valueOf�a�	concat�s����

�� self replaces this for proper delegation��

void push�� char a� � self	push�a�� self	push�a����

void pop�� �s � s	substring�
�� ��

char top�� � return �s	charAt����� ��

�

class CF�ag implements Counter �

Counter self�

CF�ag �Counter s� �self � s���

int i � ��

void reset�� �i � �� ��

void inc�� �i � i�
� ��

void dec�� �i � i

� ��

int size�� �return i� ��

�

class LF�ag implements Lock �

Lock self�

LF�ag �Lock s� �self � s���

boolean l � true�

void lock�� �l � false���

void unlock�� �l � true���

boolean is�unlocked�� �return l���

�

A class for a composed object is shown below�

class LF�CF�SF implements Lock� Counter� Stack �

�� delegate objects

SF�ag sf � new SF�ag�this��

CF�ag cf � new CF�ag�this��

LF�ag lf � new LF�ag�this��

�� delegate to lock

void lock�� �lf	lock�����

void unlock�� �lf	unlock�����

boolean is�unlocked�� �return lf	is�unlocked�����

�� delegate to lock

void reset�� �if �this	is�unlocked��� �cf	reset������

void inc�� �if �this	is�unlocked��� �cf	inc������

void dec�� �if �this	is�unlocked��� �cf	dec������

int size�� �return cf	size�����

�� delegate to stack

void empty��



�if �this	is�unlocked��� �this	reset��� sf	empty������

void push� char a�

�if �this	is�unlocked��� �this	inc��� sf	push�a�����

void push�� char a� �sf	push��a����

void pop�� �if �this	is�unlocked��� �this	dec��� sf	pop������

char top�� �return sf	top�����

�

Compared to the �rst translation� we need fewer classes here� as the base classes
can be reused� On the other hand� aggregation introduces another level of indi�
rection� which may a�ect e�ciency�

� Parametric Features

In order to write reusable code� it is often desirable to parameterize a class by
a type� In this section� we introduce parametric features� which are very similar
to parametric classes� Due to the �exible composition concepts for features� we
also need expressive type concepts for composition� For Java� parametric classes
have just recently been proposed and implemented in the language Pizza ���	�
which will be the target language for our translations� Apart from other nice
extensions� which are also used in some examples here� Pizza introduces a rather
powerful extension for type safe parameterization� The notation for type pa�
rameters is similar to C�� templates ���	� A typical example is a stack feature
parameterized by a type A as follows�

interface Stack�A� �

void empty���

void push� A a��

void push�� A a��

void pop���

A top���

�

feature SF�A� implements Stack�A� �

List�A� s � List	Nil� �� Use Pizza�s List data type

void empty�� � s � List	Nil���

void push�A a� �s � List	Cons�a�s����

void push��A a� � this	push�a� � this	push�a����

void pop�� �s � s	tail�����

A top�� � return s	head�����

�

Stacks over type char with a counter are then created via

new CF �SF�char���

Note that it is sometimes useful to make assumptions on the parameter for
providing operations� e�g�



interface Matrix�A implements Number� �

void multiply�matrix� 			��

			

�

Such an assumption is di�erent from assumptions via assumes� as it refers to a
parameter and not to the inner feature combination� The di�erence is that this
kind of parameterization is not subject to liftings�

For translating parameterization into Java we refer to ���	� We here only aim
at translating into Pizza� As we mostly use basic concepts� it is not necessary to
go into the details of the Pizza type system�

��� Type Dependencies

For parameterized features new and interesting speci�cation problems occur
when combining features� Not only can features depend on each other� but the
parameter types can also depend on each other� This gets even more complicated
if more than two features are involved� as shown below� For instance� we may
want to combine Stack�A� with a feature which only allows elements within
a certain range� Its implementation maintains two variables of type A used for
�ltering� This feature Bound is parameterized by a numeric type�

interface Bound�A� � boolean check�bounds�A el�� �

feature BF�A implements Number� implements Bound�A� �

A min� max�

BF�A mi� A ma� � min � mi� max � ma���

boolean check�bounds�A el� �			��

�

Clearly� we can only combine the two features when both are supplied with the
same type� This can be expressed by liftings�

feature BF�A� lifts Stack�A� � 			 �

Another example for such a dependency will be shown in Section �� Note that in
feature implementations� assumes conditions can also express type dependencies
in the same way�

��� Multi�Feature Interactions and Type Interactions

In the following� we discuss multi�feature interactions and type interactions using
the undo example� This will lead to a new aspect of lifting features� i�e� that
lifting may change the type parameter�

The implementation of the undo feature is simple� save the local state of
the object each time a function of the other features is applied �e�g� push� pop
�
Undo depends essentially on all �inner� features� since it has to know the internal



state of the composed object� As we work in a typed environment� the type of
the state to be saved has to be known� This multi�feature interaction is solved by
an extra feature� called Store� which allows to read and write the local state of
a composed object� �The motivation for store is similar to the Memento pattern
in ��	�


We introduce the following interface for Store�

interface Store�A� �

void put�s� A a��

A get�s���

�

Note that the parameter type depends on the types of all instance variables
of the used features� Consider for instance adding this feature to a stack with
counter� Then for both features the local variables have to be accessed�

With the Store feature� we reduce the multi�feature interaction to a type
interaction problem� This means that the parameter type of a feature has to
change when a feature is lifted� The following solution makes these type depen�
dencies explicit� We use the Pizza class Pair�A� B�� providing for polymorphic
pairs� for type composition� In the following lifter� we state that the inner fea�
ture combination supports feature Store�A� for some type A� For this� we need
a new syntactic construct� namely assumes inner� As feature stack ST adds
an instance variable of type List�B�� we can support the store feature with
parameter Pair�List�B��A��

feature ST�B� lifts Store�Pair�List�B��A��

assumes inner Store�A� �

Pair�List�B��A� get�s��

� return Pair	Pair� s� �� local state

super	get�s���� � �� inner state

void get�s�Pair�List�B��A� s� � 			 �

�

The assumes inner however has some constraints� The lifted feature may not
have instance variables or calls to self where the changed type parameter type
is used� �This can be allowed if the type change is a specialization� which this is
not the case in this example�


This inner condition is implicit in other lifters and is only needed if the type
parameters change� The lifting

feature F lifts F
�A� � 			 �

can be seen as an abbreviation for

feature F lifts F
�A�

assumes inner F
�A� � 			 �

We show below how this change of parameters a�ects the two translations
schemes of Section �� Continuing with the example� we express that the counter
CF adds an integer and LF a boolean variable with the following lifters�



feature CF lifts Store�Pair�A� int��

assumes inner Store�A� �

			

�

feature LF lifts Store�Pair�A� Boolean��

assumes inner Store�A� �

			

�

With the above lifters� we can assure that the store feature works correctly
and with the correct type for any feature combination� All we need to add is
a base implementation for store� As the base implementation cannot store any�
thing useful� we introduce a Pizza type
class Void� which has just one element�
void�el�

class Void � case void�el� �

feature ST implements Store�Void� � �� base implementation

void put�s�Void a � ���

Void get�s�� �return Void	void�el� ��

�

With the store feature� we can now write the generic undo feature� which can
be plugged into any other feature combination� It is important that the store
feature �xes the type of the state of the composed object� The undo feature can
then have an instance variable of this type� Recall that this is not possible for
store� as the type parameter of store changes under liftings�

The undo feature consists of two parts� storing the state before every change
and retrieving it upon an undo call� The latter is the core functionality of undo�
whereas the former will be �xed for each function with a�ects the state via
liftings� First consider the undo feature and its implementation� which uses a
variable backup to store the old state� Since there may not be an old state� we
use the algebraic �Pizza
 type Option�A�� which contains the elements None or
Some�a� for all elements a of type A�

interface Undo�A� �

void undo���

�

class Option�A� �

case None�

case Some�A value��

�

feature UF�A� implements Undo�A� assumes Store�A� �

Option�A� backup � None�

void undo�� �

switch ��Option� backup� �

case Some�A a��



put�s� a ��

� � �

An alternative version of undo may store several or all old states� Due to our
�exible setup� we can just exchange such variations�

For each of the other features� we have to lift all functions which update the
internal state� As for lock� this lifting is canonical� e�g� for push�

void push�A a� �

backup � Option	Some� get�s����

super	push�a�� ��

Note that there is an interesting interaction between lock and undo� shall
undo reverse the locking or shall lock disable undo as well� We chose the latter
for simplicity and hence add lock after undo� Lifting undo to lock is canonical
and not shown here� As an example� we can create an integer stack with undo
and lock as follows�

new LF �UF�Pair�int�Void�� �SF�int� �ST� ��

��� Translation into Pizza

We show in the following how to translate the above extensions into Pizza� This
will reveal another di�erence between aggregation and inheritance� for inheri�
tance� we cannot cope with the change of parameters� Otherwise� the translation
to Pizza is quite simple�

For aggregation� additional inner statements just translate into types of the
instance variables of class generated for a combination� This is shown in the
following code for a class generated for a composed object with both stack and
store features� We �rst introduce a class SF�ag�A� for parametric stacks� As we
do not allow calls to self for features whose type parameter changes during lifting�
we do not use the usual delegation mechanism in the above class� Hence we use
just ST� The class SF�ST�A� exports the interface Store�Pair�List�A��Void���
but uses a delegate object with interface Store�Void��

class SF�ag�A� implements Stack�A� �

Stack�A� self �

SF�ag�Stack�A� s� �self � s���

List�A� s � List	Nil�

void empty�� 			

�

class SF�ST�A� implements Stack�A��Store�Pair�List�A��Void���

SF�ag�A� sf � new SF�ag�this��

Store�Void� st � new ST���

Pair�List�A��Void� get�s��

�return Pair	Pair�sf	s� st	get�s��� � ��

			

�



A further detail to observe is that all type variables have to be considered
for the translation� This means that for the new class introduced� all type vari�
ables which appear as parameters in the desired set of features have to appear
as parameters� For instance� for the combination F�A��G�B��� we need a class
F�G�A�B��

For inheritance� an inner statement is an assumption on the extended class� If
the parameter changes� this amounts to specialization for parameterized classes�
which is problematic in typed imperative languages� as discussed in ���	� In Pizza�
the problem in this example is that subtyping does extend through constructors
such as List� For instance� we cannot translate the above feature combination
to the following �illegal
 code�

�� illegal � Type conflict�

class ST�SF�B�A� extends ST�A�

implements Stack�B��Store�Pair�List�B��A�� �

Pair�List�B��A� get�s�� �

Pair	Pair� s� �� local state

super	get�s���� �� inner state

�

			

�

If the parameters do not change� the translation is straightforward�

� Examples

In the following� we sketch a few more typical applications for feature�based pro�
gramming� Some examples are freely taken from standard literature on design
patterns ��	� We argue that for many of these typical programming schemata�
feature�based implementations provide high �exibility and the desired reusabil�
ity� This is particularly important if several features or design patterns are com�
bined�

��� Adding a Cache

Consider implementing some functional entity� e�g� sets� where caching of the
results of operations is a viable option� In the lines of ��	� this can be viewed
as a Proxy pattern� Clearly� a cache is an independent feature� and there exist
many variations of caching� For instance� considering the data structures used
and the replacement strategy� And it furthermore may depend on appropriate
hash functions� which could also be provided via features�

When writing a reusable set of caching modules� the various cache implemen�
tations just implement the data structures and the access functions� Interaction
resolution in turn modi�es the access operations for the object to be cached and
determines the type dependencies�



Consider writing this with classical object oriented languages� for each needed
combination of a cached object� a cache� and a hashing function� a new �sub�

class has to be implemented�

A sketch of such an example is shown below� It shows how to add a cache to
the parametric features Set�A� and Dictionary�A� B�� The feature implemen�
tation CacheI�A�B� �whose interface Cache is not shown here
 caches mappings
from A to B�

interface Set�A� �

void put� A a��

boolean contains�A a��

�

interface Dictionary�A� B� �

Option�B� get�A key��

void put�A key� B value��

�

feature CacheI�A�B� implements Cache�A�B� �

			

void put�s� A a� B b� �			� �

boolean find�s�A a� �			��

B get�s�� �			��

�

feature CacheI�A�B� lifts Dictionary�A� B� �

�� adapt access functions to cache

Option�B� get�A key�

� if find�key� return Option	Some�get�s����

else return super	get��� �

			

�

�� second parameter is just boolean here

feature CacheI�A�boolean� lifts Set�A� �

			

�

Note that the lifters express the type dependencies� For instance the set is viewed
as a mapping from A to boolean�

��� Adaptor Patterns

The adaptor design pattern ��	 glues two incompatible modules together� This
design �ts nicely in our setting� as adaptors should be reusable� Typically� there
is some core adaption functionality� e�g� some data conversion� which we model as
a feature� When adding this to another feature� we can just lift the incompatible
functions with help of the core functionality�

An example is converting big endian encoding of data to little endian� For
instance� if we output data on a �low�level
 interface which needs big endian�



Feature O

Feature lock�

lock� unlock lock� unlock

Feature lock�

Fig� �� Alternative Feature Composition

but we work with little endian� such a conversion feature can just be added� The
adaptor feature provides the core functionality� here the data conversion� and
interaction resolution adapts the operations of the object�

The following features and lifters sketch the solution of pluggable adaptors
with features� The adaptor feature Big�to�little�endian adds a conversion
function� which is used in the lifter to provide the put method with big endian
data input�

feature Big�to�little�endian �

�� convert to little endian

int big�to�little�int a� �			��

�

interface low�level�IO � �� assumes little�endian

void put�int a��

�

feature Big�to�little�endian lifts low�level�IO �

void put�int a� �super	put� big�to�little�a��� ��

�

� A Note on Feature Composition

When introducing our model of features� there is one important design decision
for composing features� we assume that features are composed in a particular
order� Only from the outside interface it is possible to view an object as composed
of a set of features�

There are several reasons for this ordering� First� it is in the spirit of inher�
itance and it seems to be the simplest structure capturing the essential object�
oriented ideas like inheritance�

Secondly� there are problems when viewing features as unordered citizens�
We show in the following that� although intuitive� the idea of treating features
without order is di�cult wrt� liftings or inheritance� The problem seems to be
similar to known problems with multiple inheritance�

Consider an example of an object integrating two unordered features� both
implementing a lock� Such a con�guration with lock� and lock�� to which a fea�
ture O is added� is shown in Figure �� The interaction is that closing lock� should
also close lock� and vice versa� Hence we need liftings from the two features to



feature O� The simple lifting model is to lift the functions of each feature to
O� e�g� by applying all lifters corresponding to the other present features� The
lifter of lock� shall call lock�	lock��� and similarly the lifter for lock� calls
lock
	lock��� The problem is which version of lock should be called� the lifted
or the original of the feature� If original is called� then all other liftings are ig�
nored� e�g� if other features are involved� Or if the lifted version is called� then
the procedure diverges�

In cases where features are fully independent it is not needed to order them�
But still� there is no harm with an ordering in this case� and possibly a simple
syntactic extension may alleviate the problem�

	�� Related Work

We brie�y compare the feature model to other approaches� Apart from the de�
tailed comparison� we argue that the feature model provides maximal �exibility
�with static typing
 and is as simple as possible�

� Mixins ��	 have been proposed as a basic concept for modeling other in�
heritance concepts� The main di�erence is that we consider interactions and
separate a feature from interaction handling� If mixins are used also as lifters�
then the composition of the features and their quadratic number of lifters
has to be done manually in the appropriate order� Instead� we can just select
features here�

� Method combination with before� after and around messages in CLOS ��	
follows a similar idea as interactions� As with mixins� this does not consider
interactions between two classes
features and gives no architecture for com�
position of abstract subclasses� Such after or before messages can be viewed
as a particular class of interactions�

� Composition �lters have been proposed in ��	 to compose objects in layers�
similar to the feature order in our approach� Messages are handled from
outside in by each layer� The main di�erence is that we consider interactions
on an individual basis and separate a feature from interaction handling�

� Several other approaches allow to change class membership dynamically or
propose other compositions mechanisms ��� ��� �� ��� ��	� Note that one of
the main ingredients for feature�oriented programming� lifting to a context�
can also be found in ���	� All of these do not consider a composition archi�
tecture as done here� and address other problems� such as name con�icts�
Clearly� the idea of features can also be applied to dynamic composition� but
this remains for future work�

� Extensions

We discuss in the following a few extensions and issues which have not been
addressed so far� As we have focused on feature composition� several interesting
aspects have not been addressed�



� An aspect not yet considered is hiding� For instance� when adding the counter
to a stack� we may not want to inherit the inc and dec functions� as they
may turn the object into an inconsistent state� Such hidings can easily be
provided by adding an appropriate interface and by disabling the others�

� Generic liftings via higher�order functions are possible in Pizza� In the stacks
example it is easy to see that lifting to lock is schematic� It is natural to
express this by higher�order functions� Consider for instance the following
function for lifting lock� where ��
�void is the Pizza notation for a function
type�

void lift�to�lock� ��
�void f�

� if �this	is�unlocked�� � � f�� ����

It can be used e�g� with

void reset�� � lift�to�lock� super	reset � � ��

�� replaces

�� void reset�� �if �this	is�unlocked��� �super	reset������

This can be made to a default lifter� which is applied if no explicit lifters are
provided�

� Another extension is to consider exception handling as a feature which can be
added as needed� This is explored with �monadic
 functional programming
in ���� ��	 and with �rst examples in Java in ���	�

� Conclusions

Feature�oriented programming is an extension of the object�oriented program�
ming paradigm� Whereas object�oriented programming supports incremental de�
velopment by subclassing� feature�oriented programming enables compositional
programming� and overwriting as in inheritance is accomplished by resolving
feature interactions�

The recent interest in feature interactions� mostly stemming from multimedia
applications ���� �	� shows that there is a large demand for expressive composi�
tion concepts where objects with individual services can be created� It also shows
that our viewpoint of inheritance as interaction is a very natural concept�

Compared to classical object�oriented programming� feature�oriented pro�
gramming provides much higher modularity and �exibility� Reusability is sim�
pli�ed� since for each feature� the functional core and the interactions are sep�
arated� This di�erence encourages to write independent� reusable features and
to make the dependencies to other features clear� In contrast� inheritance with
overwriting mixes both� which often leads to highly entangled �sub�
classes�

Compared to other extensions of inheritance� the feature model contributes
the following ideas�

� The core functionality is separated from the interaction resolution�
� It allows to create objects �or classes
 freely by composing features�



� For the composition� we provide a composition architecture� which general�
izes inheritance�

Acknowledgments� The author is indebted to the ECOOP reviewers for their
helpful e�orts to improve the paper� Also� M� Broy� B� Rumpe� and C� Klein
contributed comments on earlier versions of this paper� M� Odersky made this
paper possible by providing the Pizza compiler just in time�

References

�� Lodewijk Bergmans and Mehmet Ak�sit� Composing synchronization and real�time
constraints� Journal of Parallel and Distributed Computing� ����	������� �� July
�����

�� Gilad Bracha and William Cook� Mixin�based inheritance� ACM SIGPLAN No�
tices� �����	��������� October ����� OOPSLA ECOOP ��� Proceedings� N� Mey�
rowitz �editor	�

�� K� E� Cheng and T� Ohta� editors� Feature Interactions in Telecommunications
III� IOS Press� Tokyo� Japan� Oct �����

�� H� J� Fr�ohlich� Prototype of a run�time adaptable object�oriented system� In PSI
��� �Perspectives of System Informatics�� Akademgorodok� ����� Springer�LNCS�

�� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Micro�
Architectures for Reusable Object�Oriented Design� Addison Wesley� Reading� MA�
�����

�� James Gosling� Bill Joy� and Guy Steele� The Java Language Speci�cation�
Addison�Wesley� September �����

�� R� E� Johnson and J� M� Zweig� Delegation in C��� J	 of Object�Oriented Pro�
gramming� ���	� November �����

�� Jo A� Lawless and M� Molly� Understanding CLOS� the Common LISP object
system� Digital Press� Nashua� NH� �����

�� Ole Lehrmann Madsen� Birger Moller�Pedersen� and Kristen Nygaard� Object�
Oriented Programming in the BETA Programming Language� Addison�Wesley�
Reading� �����

��� Mira Mezini� Dynamic object modi
cation without name collisions� In this volume�
�����

��� Martin Odersky and Philip Wadler� Pizza into Java� Translating theory into prac�
tice� In Proc	 
�th ACM Symposium on Principles of Programming Languages�
January �����

��� W� F� Opdyke and R� J� Johnson� Refactoring� An Aid in Designing Application
Frameworks� In Proceedings of the Symposium on Object�Oriented Programming
emphasizing Practical Applications� ACM�SIGPLAN� September �����

��� Christian Prehofer� From inheritance to feature interaction� In Max M�uhlh�auser
et al�� editor� Special Issues in Object�Oriented Programming	 ECOOP ���� Work�
shop on Composability Issues in Object�Orientation� Heidelberg� ����� dpunkt�
Verlag�

��� Christian Prehofer� From inheritance to feature interaction or composing monads�
Technical report� TU M�unchen� ����� to appear�

��� Christian Prehofer� An object�oriented approach to feature interaction� In Fourth
IEEE Workshop on Feature Interactions in Telecommunications networks and dis�
tributed systems� ����� to appear�



��� Linda M� Seiter� Jens Palsberg� and Karl J� Lieberherr� Evolution of object behav�
ior using context relations� In David Garlan� editor� Symposium on Foundations
of Software Engineering� San Francisco� ����� ACM Press�

��� Lynn A� Stein� Delegation is inheritance� ACM SIGPLAN Notices� �����	�����
���� December �����

��� Patrick Steyaert� Wim Codenie� Theo D�Hondt� Koen De Hondt� Carine Lucas�
and Marc Van Limberghen� Nested Mixin�Methods in Agora� In O� Nierstrasz�
editor� Proceedings of the ECOOP ��
 European Conference on Object�oriented
Programming� LNCS ���� Kaiserslautern� Germany� July ����� Springer�Verlag�

��� B� Stroustrup� The C�� Programming Language� Addison�Wesley� Reading� �����
�nd edition�

��� David Ungar and Randall B� Smith� Self� The power of simplicity� Lisp and
symbolic computation� ���	� �����

��� P� Zave� Feature interactions and formal speci
cations in telecommunications�
IEEE Computer� XXVI��	� August �����

This article was processed using the LATEX macro package with LLNCS style


