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ABSTRACT

We develop an effective model for higher-order functional-logic programming by
refining higher-order narrowing calculi. The refinements reduce the high degree
of non-determinism in narrowing calculi, utilizing properties of functional(-logic)
programs. These include convergent and left-linear rewrite rules. All refinements
can be combined to a narrowing strategy which generalizes call-by-need as in
functional programming. Furthermore, we consider conditional rewrite rules
which are often convenient for programming applications.

1. Introduction

We present a systematic development of a calculus which integrates higher-order
functional and logic programming, based on narrowing. Narrowing is a general
method for solving equations modulo a set of rewrite rules. Functional-logic languages
with a sound and complete operational semantics are mainly based on narrowing. For
a survey on the topic we refer to [9].

In our higher-order equational logic we use a rewrite relation due to Nipkow [18],
which computes on simply typed A-terms modulo the conversions of A-calculus. Higher-
order rewriting allows for highly expressive rules, e.g. symbolic differentiation. The
function diff(F, X), defined by
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computes the differential of a function F' at a point X. With these rules, we can not
only evaluate, as e.g.,

diff(\y.sin(sin(y)), X) — cos(sin(X)) * cos(X)

but also solve goals modulo these rules by narrowing. In contrast to rewriting, nar-
rowing uses unification rules to instantiate free variables in order to find solutions
to equational goals. We use directed equational goals of the form s —* ¢, where a
substitution @ is a solution if §s — ¢. Intuitively, the computation in such goals
proceeds from left to right.
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Figure 1: Dependencies of Lazy Narrowing Refinements

Since the naive versions of narrowing calculi are highly non-deterministic, many
refinements have been developed. For an overview of first-order calculi we refer to [9].
The goal of this paper is to develop efficient higher-order calculi by refinement. This
includes restricting some rules or imposing evaluation strategies, while still preserving
completeness. As some of these refinements for lazy narrowing build upon others, we
show their dependencies in Figure 1. Notice that all refinements can be combined in
a straightforward way. It is one of our main contributions here to disassemble the
many refinements used in the literature for optimizing narrowing calculi.

In the first, very general version of lazy narrowing in Section 3, we show the
main ideas of lazy narrowing. The further refinements exploit well-examined and
typical properties of rewrite systems and in particular programs: convergence and
left-linearity, i.e. no variable occurs repeatedly in a left-hand side of a rule.

In Section 4.1, we focus on narrowing with a convergent rewrite system R. Unlike
left-linearity, this setting permits powerful equational reasoning, as shown in Sec-
tion 8.3. Like in the first-order case, this allows to restrict the most unconstrained
case of narrowing: narrowing at variable positions. Further refinements include sim-
plification via rewriting, as discussed in Section 4.2. This is desirable, as simplification
is a deterministic operation. Another optimization, deterministic eager variable elim-
ination, is examined in Section 4.3.

In Section 5, we focus on refinements of lazy narrowing for functional-logic pro-
gramming, where the restriction to left-linear rules is both common and useful. We
show that a certain class of equational goals, called Simple Systems, suffices. Fur-
thermore, solved forms are much easier to detect than in the general case.

Combining the results for convergent systems with the properties of Simple Sys-
tems in Section 4.3 leads to an effective narrowing strategy, named Call-by-Need
Narrowing. The basis for this strategy is a classification of the variables occurring in
Simple Systems in Section 5.1. This allows to recognize and to delay intermediate
goals, which are only solved when needed.

For both of the above settings, i.e. convergent and left-linear rules, we incorpo-



rated conditional rules. This common extension of term rewriting is useful in many
applications. In Section 7 we introduce a class of conditional rules, called normal
conditional rules. In a higher-order setting this class is sufficiently expressive for
programming, although we do not permit extra variables on the right-hand sides of
conditions, as discussed in Section 7.1.

This paper combines and summarizes several earlier papers [27, 29, 28]; more
details and proofs can be found in [30].

2. Preliminaries

We briefly introduce simply typed A-calculus (see e.g. [12]). We assume the fol-
lowing variable conventions:

e F.G,H,X,Y denote free variables,
e a,b,c, f,g (function) constants, and
e 1,y,2 bound variables.

Type judgments are written as ¢ : 7. Further, we often use s and ¢ for terms and
u, v, w for constants or bound variables. The set of types for the simply typed A-terms
is generated by a set of base types (e.g. int, bool) and the function type constructor
—. The syntax for \-terms is given by

t = F | x| c| dxt | (t1t)

A list of syntactic objects si,...,s, where n > 0 is abbreviated by s,. For instance,
n-fold abstraction and application are written as A\T,.s = Az ... \x,.s and a(s,) =
((---(a s1)---) sn), respectively. Free and bound variables of a term ¢ will be denoted
as FV(t) and BY(t), respectively. Let {z — s}t denote the result of replacing every
free occurrence of x in ¢ by s. Besides a-conversion, i.e. the consistent renaming of
bound variables, the conversions in A-calculus are defined as:

e [-conversion: (Az.s)t =4 {x — t}s, and
e 7-conversion: if z ¢ FV(t), then \z.(tx) =, .

The long #n-normal form of a term ¢, denoted by tig, is the n-expanded form of
the An-normal form of ¢. It is well known [12] that s =g, ¢ iff s} =4 t]}. As long
fn-normal forms exist for typed A-terms, we will in general assume that terms are in
long Bn-normal form. For brevity, we may write variables in np-normal form, e.g. X
instead of A\7,,.X (7,;). We assume that the transformation into long fn-normal form
is an implicit operation, e.g. when applying a substitution to a term.

A substitution 6 is in long (Bn-normal form if all terms in the image of 6 are
in long #n-normal form. The convention that a-equivalent terms are identified and
that free and bound variables are kept disjoint (see also [3]) is used in the following.
Furthermore, we assume that bound variables with different binders have different



names. Define Dom(f) = {X | 6X # X} and Rng(0) = Uxepom) FV(0X). Two
substitutions are equal on a set of variables W, written as # =y ¢, if o = 0'«x
for all @« € W. A substitution € is idempotent iff § = 0. We will in general assume
that substitutions are idempotent. A substitution 6’ is more general than 6, written
as 0 <0, if 8 = o’ for some substitution o.

We describe positions in A-terms by sequences over natural numbers. The subterm
at a position p in a A-term ¢ is denoted by ¢|,. A term ¢ with the subterm at position
p replaced by s is written as t[s],.

A term ¢ in G-normal form is called a (higher-order) pattern if every free occur-
rence of a variable F' is in a subterm F(w@,) of t such that the @, are n-equivalent to a
list of distinct bound variables. Unification of patterns is decidable and a most general
unifier exists if they are unifiable [20]. Also, the unification of a linear pattern with a
second-order term is decidable and finitary, if they are variable-disjoint [26]. Exam-
ples of higher-order patterns are Az, y.F'(z,y) and Az.f(G(\z.2(2))), where the latter
is at least third-order. Non-patterns are for instance \x,y.F(a,y) and A\z.G(H(x)).

A rewrite rule [23, 18] is a pair [ — r such that [ is a pattern but not a free
variable, [ and r are long #n-normal forms of the same base type, and FV(I) D FV(r).
Assuming a rule [ — r and a position p in a term s in long #n-normal form, a rewrite
step from s to ¢ is defined as

s—>§),_5’"t & s, =00 A t=s[fr],.

For a rewrite step we often omit some of the parameters [ — r,p and . We as-
sume that constant symbols are divided into free constructor symbols and defined
symbols. A symbol f is called a defined symbol, if a rule f(...) — ¢ exists. Con-
structor symbols are denoted by ¢ and d. A term is in R-normal form for a set of
rewrite rules R if no rule from R applies and a substitution # is R-normalized if
all terms in the image of § are in R-normal form. For other standard definitions of
rewrite systems we refer to [4, 18].

Notice that a subterm s|, may contain free variables which used to be bound in
s. For rewriting it is possible to ignore this, as only matching of a left-hand side of
a rewrite rule is needed. For narrowing, we need unification and hence we use the
following construction to lift a rule into a binding context in order to facilitate the
technical treatment.

An Tg-lifter of a term ¢ away from W is a substitution 0 = {F +— (pF)(T%) |
F € FV(t)} where p is a renaming such that Dom(p) = FV(t), Rng(p) "W = {}
and pF' :1qp — -+ > 1 > 71ifxy i1, ..., 2 2 T, and F o 7. A term ¢ (rewrite
rule [ — r) is Tg-lifted if an Tx-lifter has been applied to ¢ (I and r). For example,
{X = X'(z)} is an a-lifter of g(X) away from any W not containing X'.

3. Lazy Narrowing



In this section, we introduce the central narrowing calculus which is used for
functional-logic programming. Our setting for goal-directed lazy narrowing is as
follows. We start with a goal s —" ¢, where a substitution 6 is a solution if fs —— £ ¢.
This goal may be simplified to smaller goals by the narrowing rules, which include
the rules of higher-order unification.

For the rules of System LN, shown in Figure 2, we need some notation. Let
s ¢» t stand for one of s =’ ¢ and t —7 5. For goals of the form s & t, the rules
are intended to preserve the orientation of <. We extend the transformation rules
on goals to sets of goals in the canonical way: {s ="t} US =Y {s, =" t,} UOS
if s =7t =% {s, ="t,}. For a sequence =% ... =% of LN steps, we write =,
where § = 6,,...0,. Goals of the form \7;.F(...) & AT.G(. . .), called flex-flex, are
guaranteed to have some solution and are usually delayed in higher-order unification.

System LN for lazy higher-order narrowing essentially consists of the rules for
higher-order unification [34] plus the Lazy Narrowing rule. Observe that the first five
rules in Figure 2 apply symmetrically as well, in contrast to the narrowing rules. For
a first impression of lazy narrowing, we start with a few examples. Assuming the

rules
map(F,[X|Y]) — [F(X)lmap(F,Y)
map(F,[]) =

father(mary) — john
father(john) — art

we solve the goal R(mary) —7 art by

R(mary) —" art =y Narrowing at Variable,

R — Az.father(Ry(x))
Ri(mary) —7 john,art —" art =~y Deletion or Decomposition
Ri(mary) =" john =~ Narrowing at Variable,

Ry — Az.father(Rs(x))
Ry(mary) —" mary, john —* john =5 Projection
mary —' mary, john —° john =~ Solved by Deletion

Thus we get the solution R — Ax.father(father(x)) by composing the partial bind-
ings. Notice that the trivial solution R +— Az.art is also possible here, but it is easy
to avoid by further constraints as e.g. in the following example.

Another, slightly more involved example is the following. We use functional eval-



uation in this example for brevity.

map(F, [mary, john]) =" [john,art] =,y Evaluation,
Decomposition

F(mary) —* john, F(john) =" art =LV

Narrowing at Variable,
F — X\z.father(H (x))
H(mary) —" mary, john —* john,

father(H (john)) =" art =y Projection, H — \zv.x
mary —' mary, john —* john,

father(john) —" art

The last goals are easily solved by evaluation and Deletion. This yields the solution
F +— Az.father(xz). Observe how in the last examples Lazy Narrowing at Variable
is used to compute solutions for functional variables. Although this rule is very
powerful, it also has a high degree of non-determinism and will be restricted in later
refinements.

There are two sources of non-determinism for such systems of transformations:
which rules to apply and how to select the equations. Completeness fortunately does
not depend on the goal selection, as each subgoal is independently solvable.

Definition 3.1 A (higher-order) narrowing calculus N is complete for some HRS R
if the following holds: If s —7 ¢ has solution 6, i.e. s — F 0t, then {s ="t} =4 F
such that ¢ is more general, modulo the newly added variables, than 6 and F'is a set
of flex-flex goals.

Theorem 3.2 System LN is complete.

4. Refinements Using the Determinism of Functional Languages

This section develops several refinements which exploit the determinism of conver-
gent systems. For convergent systems it is sufficient to consider normalized solutions
and particular reductions in the proofs, which allows to remove redundancies in the
solutions.

4.1. Avoiding Lazy Narrowing at Variables

An essential refinement is to avoid narrowing at a variable occurring in a term
of the form X () for a R-normalized substitution § with an HRS R. For a pattern
X (T,), reducibility of a term 0.X (T,) implies that € is not R-normalized, hence violat-
ing the assumption on 6. This result generalizes the first-order case, as for first-order
terms narrowing at variable position is not needed. It is an important optimization,
as narrowing at variable positions is highly unrestricted and thus creates large search
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\Tp(t,) =7 Moo (t)
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N7y F () < \Tx.o(t],)

Lazy Narrowing with Decomposition

Moi.f(t,) =" ATpt = {\Tptn =7 ATr.ly, A\Tp.r —' \Tr.t}

Lazy Narrowing at Variable

NTp H (t,) =" Aot =0 {\T5.H, (0t,) =" \Tg.lpm, \Tr.r —" \T5.0t)

{

{\Tg.t, =" \Tp.t! }

(Vif F ¢ FV(t) and 0 = {F v t}

{\Tx.Hy (0t,) <> 750, }
where 0 = {F +— \T,.f(H,,(T,))}
with fresh variables H,,

{(\TF0t:(H,(t,.)) <> ATr.0(0%,)}
where 0 = {F +— \T,,.2;(H,(72)) }
H,:7m,and z; : 7, = T

with fresh variables H,

where f(I,,) — r is an Tp-lifted rule

where f(I,,) — r is an Tp-lifted rule,
and 0 = {H — \z,.f(H.(T2))}
with fresh variables H,,

Figure 2: System LN for Lazy Narrowing

spaces. We conjecture that in practice, as in higher-order logic programming [19],
most terms are patterns and hence narrowing at variables is not needed very often.



To establish this result we need innermost reductions, which evaluate terms at
inner redices first. For any solution there exists an innermost reduction, if R is
convergent.

Definition 4.1 System LINN is defined as the restriction of system LN where Lazy
Narrowing at Variable is not applied to goals of the form A\z,,.X (Tm) —7 ¢ if \70,. X (U,)
is a higher-order pattern.

Theorem 4.2 System LNN is complete for convergent R wrt R-normalized solutions.

4.2. Simplification via Functional Evaluation

Simplification by normalization of goals is one of the earliest and one of the most
important optimizations [8]. Its motivation is to prefer deterministic reduction over
search within narrowing.

Observe that normalization coincides with deterministic evaluation in functional
languages. Also, as shown below, deterministic operations are possible as soon as
the left-hand side of a goal has been simplified to a term with a constructor at its
root. For instance, with the rule f(1) — 1, we can simplify a goal f(1) —* g(Y) by
{f(1) =" g(Y),...} = {1 =" ¢g(Y),...} and deterministically detect a failure.

For oriented goals, normalization is only complete for goals s —° ¢, where 6t is
in R-normal form for a solution #. For instance, it suffices if ¢ is a ground term in
R-normal form. For most applications, this is no real restriction and corresponds to
the intuitive understanding of directed goals.

Definition 4.3 Normalizing Lazy Narrowing is defined as the rules of LNN plus
arbitrary simplification steps on the left-hand sides of goals.

Theorem 4.4 Normalizing Lazy Narrowing is complete for convergent R wrt R-
normalized solutions.

4.3. Deterministic Fager Variable Elimination

Eager variable elimination is a particular strategy which has been examined for
general equational unification. The idea is to apply the Elimination rule as a deter-
ministic operation whenever possible. That is, when elimination applies to a goal, all
other rule applications are not considered.

Eager variable elimination is of great practical value. Consider for instance the
following example using the rules of Section 1:

Dz diff \y.1 % In(F(y)),x) =" Az.cos(x)/sin(x)} = Evaluation for x, diff
. diff \y.F(y),x)/F(z) =" Av.cos(x)/sin(z)} = Decomposition
{\z.diff \y.F(y), ) =" \v.cos(z),

\.F(x) =" \z.sin(x)} = Elimination



At this point, we have to chose which goal to solve first. Since on the second Elimi-
nation applies, we prefer this and consider no further rules. It remains the goal

{\z.diff \y.sin(y), r) =" A\v.cos(z)}

Unfortunately, it is an open problem of general (first-order) equational unification
if eager variable elimination is still complete [33]. In our case, with oriented goals,
we obtain more precise results by differentiating the orientation of the goal to be
eliminated. As we consider oriented equations, we can distinguish two cases of variable
elimination. For goals X —” ¢, elimination is deterministic as we can show that for a
solution @, At is in R-normal form.

Theorem 4.5 Lazy Narrowing with eager variable elimination on goals X —° t
where X ¢ FV(t) is complete for convergent HRS R

Interestingly, in [10] the elimination is purposely avoided in a programming lan-
guage context, as it may copy terms whose evaluation can be expensive. This applies
here as well to the remaining case t —7 X, as shown later.

4.4. Failure Rules for Constructors

It is useful to add some refinements for constructors. First, decomposition on
constructors, e.g. on ¢(...) =7 ¢(...) is deterministic. Correspondingly, goals of the
form ¢(...) =" v(...), where v is not a variable and v # ¢ are unsolvable, since
evaluation proceeds from left to right.

5. Left-Linear Programs and Simple Systems

In this section we examine a particular class of goal systems, Simple Systems [27],
which suffice for programming and have several interesting properties. We assume in
the following an HRS with left-linear rules. A rule | — r < [,, — r, is left-linear, if
no free variable occurs repeatedly in [.

Definition 5.1 We write s =7 s’ <t =" ¢, if FV(s') N FV(t) # {}.

This order links goals by the variables occurring, e.g. t = f(X) < X —" 5. Now we
are ready to define Simple Systems:

Definition 5.2 A system of goals G,, = s, —' t, is a Simple System if
e all right-hand sides #,, are patterns,
e G, is cycle free, i.e. the transitive closure of < is a strict partial ordering on

G, and
e every variable occurs at most once in the right-hand sides ¢,,.



This class is closed under the rules of LN.

Theorem 5.3 Assume a left-linear HRS R. If G,, is a Simple System, then applying
LN with R preserves this property.

The following results on solved forms from [27] will be crucial later.

Theorem 5.4 A Simple System S = {X; & ti,..., X, & tn} has a solution if all
X,, are distinct.

The following corollary is needed for the narrowing strategy developed later.
Corollary 5.5 A Simple System of the form {t, =" X, } is solvable.

In the second-order case unification never leads to divergence [27], extending results
in [26] on unification with linear patterns:

Theorem 5.6 Solving a second-order Simple System by the unification rules of LN,
i.e. without the narrowing rules, terminates.

5.1. Variables of Interest

In the following, we classify variables in Simple Systems into variables of interest
and intermediate variables. This prepares the narrowing strategy presented in the
next section.

We consider initial goals of the form s —’ ¢, and assume that only the values
for the free variables in s are of interest, neither the variables in ¢ nor intermediate
variables computed by LN. For instance, assume the rule f(a, X) — ¢(b) and the goal
f(Y,t) =7 g(b), which is transformed to

Y =" a,t =" X, g(b) =" g(b)

by Lazy Narrowing. Clearly, only the value of Y is of interest for solving the initial
goal, but not the value of X.

The invariant we will show is that variables of interest only occur on the left, but
never on the right-hand side of a goal. We first need to define the notion of variables
of interest. Consider an execution of LN. We start with a goal s —’ ¢ where initially
the variables of interest are in s. This has to be updated for each LN step. If X is
a variable of interest, and an LN step computes d, then the free variables in §.X are
the new variables of interest. With this idea in mind we define the following:

Definition 5.7 Assume a sequence of transformations {s =% t} =9, {s, =" ta}.
A variable X is called a variable of interest if X € FV(ds) and intermediate
otherwise.

10



Now we can show the following result:

Corollary 5.8 Assume a left-linear HRS R and assume solving a Simple System
s = t with system LN. Then variables of interest only occur on the left, but never
on the right-hand side of a goal.

6. Call-By-Need Narrowing

We show that for Simple Systems a strategy for variable elimination leads to a new
narrowing strategy, coined call-by-need narrowing. In essence, we show that certain
goals can safely be delayed, which means that computations are only performed when
needed.

As we consider oriented equations, we can distinguish two cases of variable elimi-
nation and we will handle variable elimination appropriately in each case. In the first
case, X —° t, the variable X is a variable of interest. Thus the elimination of X is
desirable for computational reasons and is deterministic. Notice that elimination is
always possible on such goals, as X ¢ FV(t) in Simple Systems.

In the other case of variable elimination, i.e.

t =X,

elimination may not be deterministic. Hence such goals will be delayed. This simple
strategy has some interesting properties, which we will examine in the following.

First view this idea in the context of a programming language. Let us for instance
model the evaluation (or normalization) f(¢1,%2)}r = t by narrowing, assuming the
rule f(X,Y) — g(X, X):

{f(tl,tQ) —>? t} :>LN {tl _>? X7 t2 _>? Yag(X7X) _>? t}
Now we can model the following evaluation strategies:

Eager evaluation (or call-by-value) is obtained by performing normalization on the
goals t; and t,, followed by eager variable elimination on ¢}, —’ X and
tolp —° Y. The disadvantage is that eager evaluation may perform unnec-
essary evaluation steps.

Call-by-name is obtained by immediate eager variable elimination on ¢; —* X and
on ty —° Y. It has the disadvantage that terms are copied, e.g. t; here as
X occurs twice in ¢g(X, X). Thus, expensive evaluation may have to be done
repeatedly.

Needed evaluation (or call-by-need) is an evaluation strategy that can be obtained
by delaying the goals t; = X and ¢, =" Y, thus avoiding copying. Then t,
and t, are only evaluated when X or Y are needed for further computation.

11



In the sequel, we model equationally lazy evaluation with sharing copies of identical
subterms, i.e. the delayed equations may be viewed as shared subterms. The notion of
need considered here is similar to the notion of call-by-need in [1], but not to optimal
or needed reduction [14].

Let us now come back from evaluation to the context of narrowing. Consider for
instance the narrowing step with the above rule

{f(tit2) =" 9(a, 2)} = n {th =" X ts =7 Y, 9(X, X) =7 g(a, 2)}

In contrast to evaluation as in functional languages, solving the goals t; —* X, t, —’
Y may have many solutions. Whereas in functional languages, eager evaluation can
be faster, this is unclear for functional-logic programming. Thus we suggest to adopt
the following “call-by-need” approach:

Definition 6.1 Call-By-Need Narrowing is defined as Lazy Narrowing with Sys-
tem LN where goals of the form t —7 X are delayed.

For instance, in the above example, decomposition on g(X, X) =% g(a, Z) yields the
goals X =7 a, X —" Z. Deterministic elimination on X —’ @ instantiates X, thus
the goal t; —" @ has to be solved, i.e. a value for ¢, is needed. In contrast, t, =Y
is delayed.

This new notion of narrowing for Simple Systems and left-linear HRS is supported
by the following arguments: Call-By-Need Narrowing

is complete, or safe, in the sense that when only goals of the form ¢, —7 X,, remain,
they are solvable by Corollary 5.5. Since the strategy is to delay such goals,
this result is essential. (This may conflict with flex-flex pairs in some special
cases, as discussed below.)

delays intermediate variables only. As shown in the last section, we can identify
the variables to be delayed: a variable X in a goal ¢ —° X cannot be a variable
of interest.

avoids copying, asshown above, variable elimination on intermediate variables pos-
sibly copies unevaluated terms and duplicates work. Thus intermediate goals
of the form t —7 X are only considered if X is instantiated, i.e. if a value is
needed.

The important aspect of this strategy is that the higher-order rules are only needed
if higher-order free variables occur; goals with a first-order variable on one side are
either solved by elimination, as the occurs check is immaterial, or simply delayed.
Completeness seems to follow easily from the results in last sections, but there is a
technical problem with flex-flex pairs. Solved forms as in Corollary 5.5 do not extend
to flex-flex pairs, as discussed in [30]. This seems however to occur rarely, and there

12



Conditional Narrowing with Decomposition

M. f(tn) =" ATt = {AThty =7 ATiln, ATEL —7 ATp.1,
T —7 ATt}
where f(I,) = r < I, = r] is an T-lifted rule

Conditional Narrowing at Variable

ATp H(tn) = At =0 {AT5.H(0t,) =7 XT b, ATEL =7 ATE1),
\Tp.r —7 ATt}
if A\Ty.H(t,) is not a pattern,
f(lm) = r <1 — 7] is an Ty-lifted rule,
and 0 = {H +— ATy f (Hu(T0)) }

with fresh variables H,,

Figure 3: Rule for System CLN for Conditional Lazy Narrowing

even exist classes of rewrite rules, which include functional programs, for which this
problem does not occur.

7. Conditional Lazy Narrowing

In this section, we propose a class of conditional higher-order rewrite rules which
is tailored for functional-logic programming languages. Then we introduce a system
of transformations for this class of rules.

Definition 7.1 A normal conditional HRS (NCHRS) R is a set of conditional

rewrite rules of the form [ — r < [,, — r,, where [ — r is a rewrite rule and 7,, are
l—r<ly,—ry t
p,0

ground R-normal forms. A conditional rewrite step is defined as s —

iff s —%37’ and 01, — R r,.

Notice that rewrite rules are restricted to base type, but the conditions may be
higher-order. Also, oriented goals suffice for proving the conditions as 81, +— 0r,
is equivalent with 6, — r,. The rules of System CLN for conditional narrowing,
which differ from System LN, are shown in Figure 3.

The main ingredient for completeness of conditional narrowing is to assure that
solutions for fresh variables in the conditions are normalized. This is possible for
extra variables on the left if the system is convergent or at least confluent and weakly
normalizing (which means that normal forms exist) as above. This is the reason for
disallowing extra variables on the right.

13



Theorem 7.2 Conditional narrowing with CLN is complete for confluent and weakly
normalizing NCHRS R.

It is shown in [30] that all the results for unconditional rules can be extended for this
class of conditional rules, assuming termination criteria.

7.1. Conditional Rules and Extra Variables

We argue that in the higher-order case extra variables in right side of the conditions
are not needed for programming purposes. Whereas in (functional-)logic program-
ming such extra variables are often used as local variables, we prefer the more suitable
constructs of functional programming here. Consider for instance the function unzip,
splitting a list of pairs into a pair of lists, which we write in a functional way:

unzip([(z, y)|R]) — let (x5, ys) = unzip(R) in ([z]s], [ylys])

This is usually written as unzip([(x,y)|R]) — ([z|zs], [y|ys]) < unzip(R) — (zs,ys)
in first-order languages, which requires extra variables on the right. The above tuned
notation for a let-construct is defined via

let (25,ys) = X in F(xs,ys) =% let X in \xs,ys.F(xs,ys)
where the right side can be defined by a higher-order rewrite rule
let (Xs,Ys) in Axs,ys.F(zs,ys) — F(Xs,Ys).

On the other hand, we use existential logic variables in conditions for relational pro-
gramming, e.g. a grandmother predicate:

grand_mother(X,Y') <= mother(X, Z), mother(Z,Y)

8. Examples

This section presents examples for higher-order functional-logic programming;
more example can be found in [30]. Many examples use strict equality on first-
order data types, which is also common in functional(-logic) programming languages.
With strict equality =4 two terms are equal, if they can be evaluated to the same
(constructor) term. It is interesting to see how strict equality can be encoded in our
setting. For instance, the rules

s(X)=ssY) - X=Y
0=,0 — true
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suffice for the constructors s and 0. With strict equality, we can avoid full equality
on higher-order terms, similar to current functional(-logic) languages. For some ap-
plications full equality is useful and can be encoded via a rule X = X — true, as
used in Section 8.3.

8.1. Symbolic Differentiation

Using the rules for differentiation of Section 1, we can solve the following goal by
call-by-need narrowing.

{z.diff \y.In(F (y)), z) —° Ax.cos(z)/sin(x)} = Evaluation for diff
{\z.diff \y.F (y), )/ F(x) =" \v.cos(x)/sin(z)} = Decomposition
{\z.diff(\y. F( ), z) =" \z.cos(x),

Ao F(z) =7 Az.sin(x)} = Elimination
{\z.diff M\y.sin(y), x) —=° \x.cos(z)} = Evaluation
{Az.cos(x) * dz[f()\y y, 1) =" \v.cos(z)} = Evaluation
{\z.cos(z) =" \z.cos(z)} = Decomposition

{

Due to the call-by-need strategy, there is no search necessary to find the solution
F — Az.sin(x).

8.2. A Functional-Logic Parser

Top-down parsers belong to the classical examples for logic programming. The
support for non-determinism in logic programming is the main ingredient for this
application. On the other hand, functional parsers (see e.g. [24]) have other bene-
fits, such as abstraction over parsing functions. We will integrate the best of both
approaches in this example.

We model the following tiny grammar, which is similar to [24]: A grammar is
described by the following terms. In addition to terminal symbols, e.g. a,b,c, we
have the constructs and(T,T"), or(T,T"), and rep(T'). Their meaning is shown in the
following table. For example, and(t(a), or(t(b),t(c)) recognizes [a,b] and [a, c|.

Construct recognizes

t(a) a, where a is a terminal symbol
and(T,T') wuv if T recognizes w and T" recognizes v.
or(T,T") v if T or T recognizes v,

rep(T) v1 ...y, if T recognizes each v;.

In our setting, each of these constructs is represented as a parsing function (of
the same name). The main issue of this example is to show how to model non-
deterministic constructs such as the parsing function for or with confluent rewrite
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rules. The solution is to add an extra argument, called prophecy, to or, which de-
termines the choice. When invoking or with a free variable as prophecy, the desired
effect is archived and in addition, the prophecies tell us which choice was made at
each or construct.

In the following rules, T',T" represent parsing expressions and L is the input list of
terminals. For uniformity we use prophecies for all parsing constructs, and not only
for or. The constant symbols pand, pl, p2, pt are used as prophecies. The function
t(z) is used to parse the terminal x.

t(X,pt, [Y|L]) — L =X =Y
and(T,T',pand(P1, P2),L) — let T(P1,L) in Nl.T"(P2,1)

or(T,T', por1(P), L) — T(P,L)

or(T,T', por2(P), L) — T'(P,L)

rep(T, pemp, L) — L

rep(T, prep(P, P1), L) — let T(P,L) in Nl.T"(P2,1)

The following example illustrates how parsing is performed:
and(t(a), or(t(b),t(c)), P, a,b]) =" ]

succeeds with
P +— pand(pt, por1(pt)).

This solution for the prophecy can be seen as a parsing script showing how the word
was parsed. Here, the first choice in the or construct was chosen.
As another example consider the goal

rep(or(t(b), t(c)), P, [b, ¢, 0]) =" ]
whose parsing function accepts words of b’s and ¢’s. The goal succeeds here with

P — prep(porl(t), prep(por2(t), prep(porl(t), pemp))).

In purely functional versions of this parser, the needed mechanism for non-determinism
and search has to be coded by some means. Compared to first-order logic program-
ming, we archive a higher level of abstraction and flexibility. For instance, the rep
construct can be used with any parsing function (of the right type). In a first-order
version, the constructs and, or etc would be represented as a data structure, and a
function/predicate has to be written to interpret such constructs. Thus, when passing
such a data structure, representing a parser, to some other function, this function has
to know how to interpret the structure.
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8.3. Program Transformation

The utility of higher-order unification for program transformations has been shown
nicely by Huet and Lang [13] and has been developed further in [25, 7]. This example,
taken from [5], applies unfold/fold program transformation and requires full instead
of strict equality. We assume the following standard rules for lists

map(F,[X|R]) — [F(X)|map(F, R)]
Foldl(G,[X|R])) — G(X, foldl(G,R))

Now assume writing a function ¢g(F, L) by
g(F, L) —  foldl(Ax,y.plus(x,y), map(F, L))

that first maps F' onto a list and then adds the elements via the function plus. This
simple implementation for g is inefficient, since the list must be traversed twice. The
goal is now to find an equivalent function definition that is more efficient. We can
specify this with higher-order terms in a syntactic fashion by one simple equation:

Vf, @, lg(f, [xll]) = B(f(x),9(f,1))

The variable B represents the body of the function to be computed and the first
argument of B allows to use f(x) in the body. The scheme on the right only allows
recursing on [ for g.

To solve this equation, we add a rule X = X — true and then apply narrowing,
which yields the solution § = {B — Afz,rec.plus(fz,rec)} where

g9(f,[x[l]) = 0B(f(x),g(f,1)) = plus(f(x),g(f,1)).

This shows the more efficient definition of g. In this example, simplification can
reduce the search space for narrowing drastically: it suffices to simplify the goal to

M, x, Lplus(f(x), foldl(plus, map(f,1))) = \f,x, l.B(f(x), foldl(plus, map(f,1))),

where narrowing with the newly added rule X = X — true yields the two goals

M,z Lplus(f(z), foldl(plus, map(f,1))) —* A,z 1.X(f z,1),
A, 2, LB(f(), foldi(plus, map(f,1)) — Af,2,LX(f,2,0).

These can be solved by pure higher-order unification.

9. Conclusions and Related Work

We have presented an effective model for the integration of functional and logic
programming. We have shown that the restrictions in our setting, motivated by
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functional programming, lead to operational benefits and to a call-by-need narrowing
strategy.

In contrast to many other approaches to higher-order functional-logic program-
ming [6, 17, 32, 15, 16], we cover the full higher-order case and give completeness re-
sults. Similarly, other works on higher-order narrowing either examine more restricted
cases [31, 2] or use an applicative first-order setting [22]. Compared to higher-order
logic programming [21], higher-order programming as in functional languages is pos-
sible directly here.

A further interesting refinement for higher-order narrowing has been presented
in [11]. To achieve optimality results, some further restrictions on rewrite rules are
needed. Most of the examples we show however fit into this framework. It remains for
further work to investigate the potential of this higher-order setting and in particular
to work towards efficient implementations.
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