
Higher�Order Functional�Logic Programming�

A Systematic Development

Christian Prehofer

Institut f�ur Informatik� Technische Universit�at M�unchen

����� M�unchen� Germany

E�mail� prehofer�informatik�tu�muenchen�de

ABSTRACT

We develop an e�ective model for higher�order functional�logic programming by
re�ning higher�order narrowing calculi� The re�nements reduce the high degree
of non�determinism in narrowing calculi� utilizing properties of functional��logic�
programs� These include convergent and left�linear rewrite rules� All re�nements
can be combined to a narrowing strategy which generalizes call�by�need as in
functional programming� Furthermore� we consider conditional rewrite rules
which are often convenient for programming applications�

�� Introduction

We present a systematic development of a calculus which integrates higher�order
functional and logic programming� based on narrowing� Narrowing is a general
method for solving equations modulo a set of rewrite rules� Functional�logic languages
with a sound and complete operational semantics are mainly based on narrowing� For
a survey on the topic we refer to ����
In our higher�order equational logic we use a rewrite relation due to Nipkow �����

which computes on simply typed ��terms modulo the conversions of ��calculus� Higher�

order rewriting allows for highly expressive rules� e�g� symbolic di�erentiation� The
function di�	F�X
� de�ned by

di�	�y�F�X
 � �

di�	�y�y�X
 � �

di�	�y�sin	F 	y

� X
 � cos	F 	X

 � di�	�y�F 	y
� X


di�	�y�ln	F 	y

� X
 � di�	�y�F 	y
� X
�F 	X
�

computes the di�erential of a function F at a point X� With these rules� we can not
only evaluate� as e�g��

di�	�y�sin	sin	y

� X

�
�� cos	sin	X

 � cos	X


but also solve goals modulo these rules by narrowing� In contrast to rewriting� nar�
rowing uses uni�cation rules to instantiate free variables in order to �nd solutions
to equational goals� We use directed equational goals of the form s �� t� where a
substitution � is a solution if �s

�
�� t� Intuitively� the computation in such goals

proceeds from left to right�

�



Lazy Narrowing

Simple Systems�
left�linear HRS 	



Solved Forms 	
��


Call�by�Need
Narrowing 	�


Avoiding Narrowing at
Variables 	���


Deterministic Variable
Elimination 	���


Normalization 	���


Figure �� Dependencies of Lazy Narrowing Re�nements

Since the naive versions of narrowing calculi are highly non�deterministic� many
re�nements have been developed� For an overview of �rst�order calculi we refer to ����
The goal of this paper is to develop e�cient higher�order calculi by re�nement� This
includes restricting some rules or imposing evaluation strategies� while still preserving
completeness� As some of these re�nements for lazy narrowing build upon others� we
show their dependencies in Figure �� Notice that all re�nements can be combined in
a straightforward way� It is one of our main contributions here to disassemble the
many re�nements used in the literature for optimizing narrowing calculi�
In the �rst� very general version of lazy narrowing in Section �� we show the

main ideas of lazy narrowing� The further re�nements exploit well�examined and
typical properties of rewrite systems and in particular programs� convergence and
left�linearity� i�e� no variable occurs repeatedly in a left�hand side of a rule�
In Section ���� we focus on narrowing with a convergent rewrite system R� Unlike

left�linearity� this setting permits powerful equational reasoning� as shown in Sec�
tion ���� Like in the �rst�order case� this allows to restrict the most unconstrained
case of narrowing� narrowing at variable positions� Further re�nements include sim�
pli�cation via rewriting� as discussed in Section ���� This is desirable� as simpli�cation
is a deterministic operation� Another optimization� deterministic eager variable elim�
ination� is examined in Section ����
In Section 
� we focus on re�nements of lazy narrowing for functional�logic pro�

gramming� where the restriction to left�linear rules is both common and useful� We
show that a certain class of equational goals� called Simple Systems� su�ces� Fur�
thermore� solved forms are much easier to detect than in the general case�
Combining the results for convergent systems with the properties of Simple Sys�

tems in Section ��� leads to an e�ective narrowing strategy� named Call�by�Need
Narrowing� The basis for this strategy is a classi�cation of the variables occurring in

Simple Systems in Section 
��� This allows to recognize and to delay intermediate
goals� which are only solved when needed�
For both of the above settings� i�e� convergent and left�linear rules� we incorpo�

�



rated conditional rules� This common extension of term rewriting is useful in many
applications� In Section � we introduce a class of conditional rules� called normal
conditional rules� In a higher�order setting this class is su�ciently expressive for
programming� although we do not permit extra variables on the right�hand sides of
conditions� as discussed in Section ����
This paper combines and summarizes several earlier papers ���� ��� ���� more

details and proofs can be found in �����

�� Preliminaries

We brie�y introduce simply typed ��calculus 	see e�g� ����
� We assume the fol�
lowing variable conventions�

� F�G�H�X� Y denote free variables�
� a� b� c� f� g 	function
 constants� and
� x� y� z bound variables�

Type judgments are written as t � � � Further� we often use s and t for terms and
u� v� w for constants or bound variables� The set of types for the simply typed ��terms
is generated by a set of base types 	e�g� int� bool
 and the function type constructor
�� The syntax for ��terms is given by

t � F j x j c j �x�t j 	t� t�


A list of syntactic objects s�� � � � � sn where n � � is abbreviated by sn� For instance�
n�fold abstraction and application are written as �xn�s � �x� � � � �xn�s and a	sn
 �
		� � � 	a s�
 � � �
 sn
� respectively� Free and bound variables of a term t will be denoted
as FV	t
 and BV	t
� respectively� Let fx �� sgt denote the result of replacing every
free occurrence of x in t by s� Besides ��conversion� i�e� the consistent renaming of
bound variables� the conversions in ��calculus are de�ned as�

� ��conversion� 	�x�s
t �� fx �� tgs� and
� ��conversion� if x �� FV	t
� then �x�	tx
 �� t�

The long ���normal form of a term t� denoted by tl��� is the ��expanded form of
the ���normal form of t� It is well known ���� that s ���� t i� sl�� �� tl��� As long
���normal forms exist for typed ��terms� we will in general assume that terms are in
long ���normal form� For brevity� we may write variables in ��normal form� e�g� X
instead of �xn�X	xn
� We assume that the transformation into long ���normal form
is an implicit operation� e�g� when applying a substitution to a term�
A substitution � is in long ���normal form if all terms in the image of � are

in long ���normal form� The convention that ��equivalent terms are identi�ed and
that free and bound variables are kept disjoint 	see also ���
 is used in the following�
Furthermore� we assume that bound variables with di�erent binders have di�erent

�



names� De�ne Dom	�
 � fX j �X �� Xg and Rng	�
 �
S
X�Dom��� FV	�X
� Two

substitutions are equal on a set of variables W � written as � �W ��� if �� � ���
for all � � W � A substitution � is idempotent i� � � ��� We will in general assume
that substitutions are idempotent� A substitution �� is more general than �� written
as �� 	 �� if � � 	�� for some substitution 	�
We describe positions in ��terms by sequences over natural numbers� The subterm

at a position p in a ��term t is denoted by tjp� A term t with the subterm at position
p replaced by s is written as t�s�p�
A term t in ��normal form is called a 	higher�order
 pattern if every free occur�

rence of a variable F is in a subterm F 	un
 of t such that the un are ��equivalent to a
list of distinct bound variables� Uni�cation of patterns is decidable and a most general
uni�er exists if they are uni�able ����� Also� the uni�cation of a linear pattern with a
second�order term is decidable and �nitary� if they are variable�disjoint ����� Exam�
ples of higher�order patterns are �x� y�F 	x� y
 and �x�f	G	�z�x	z


� where the latter
is at least third�order� Non�patterns are for instance �x� y�F 	a� y
 and �x�G	H	x

�
A rewrite rule ���� ��� is a pair l � r such that l is a pattern but not a free

variable� l and r are long ���normal forms of the same base type� and FV	l
 
 FV	r
�
Assuming a rule l� r and a position p in a term s in long ���normal form� a rewrite
step from s to t is de�ned as

s ��l�r
p�� t � sjp � �l � t � s��r�p�

For a rewrite step we often omit some of the parameters l � r� p and �� We as�
sume that constant symbols are divided into free constructor symbols and de�ned
symbols� A symbol f is called a de�ned symbol� if a rule f	� � �
 �� t exists� Con�
structor symbols are denoted by c and d� A term is in R�normal form for a set of
rewrite rules R if no rule from R applies and a substitution � is R�normalized if
all terms in the image of � are in R�normal form� For other standard de�nitions of

rewrite systems we refer to ��� ����
Notice that a subterm sjp may contain free variables which used to be bound in

s� For rewriting it is possible to ignore this� as only matching of a left�hand side of
a rewrite rule is needed� For narrowing� we need uni�cation and hence we use the
following construction to lift a rule into a binding context in order to facilitate the
technical treatment�
An xk�lifter of a term t away from W is a substitution 	 � fF �� 	
F 
	xk
 j

F � FV	t
g where 
 is a renaming such that Dom	

 � FV	t
� Rng	

 
W � fg
and 
F � �� � � � � � �k � � if x� � ��� � � � � xk � �k and F � � � A term t 	rewrite
rule l � r
 is xk�lifted if an xk�lifter has been applied to t 	l and r
� For example�
fX �� X �	x
g is an x�lifter of g	X
 away from any W not containing X ��

�� Lazy Narrowing

�



In this section� we introduce the central narrowing calculus which is used for
functional�logic programming� Our setting for goal�directed lazy narrowing is as
follows� We start with a goal s�� t� where a substitution � is a solution if �s

�
��R t�

This goal may be simpli�ed to smaller goals by the narrowing rules� which include
the rules of higher�order uni�cation�
For the rules of System LN� shown in Figure �� we need some notation� Let

s
�
� t stand for one of s �� t and t �� s� For goals of the form s

�
� t� the rules

are intended to preserve the orientation of
�
�� We extend the transformation rules

on goals to sets of goals in the canonical way� fs�� tg � S �� fsn �� tng � �S
if s �� t �� fsn �� tng� For a sequence ��� � � � ��n of LN steps� we write

�
� ��

where � � �n � � � ��� Goals of the form �xk�F 	� � �

�
� �xk�G	� � �
� called �ex��ex� are

guaranteed to have some solution and are usually delayed in higher�order uni�cation�
System LN for lazy higher�order narrowing essentially consists of the rules for

higher�order uni�cation ���� plus the Lazy Narrowing rule� Observe that the �rst �ve
rules in Figure � apply symmetrically as well� in contrast to the narrowing rules� For
a �rst impression of lazy narrowing� we start with a few examples� Assuming the
rules

map	F� �XjY �
 � �F 	X
jmap	F� Y 
�
map	F� ��
 � ��

father	mary
 � john
father	john
 � art

we solve the goal R	mary
�� art by

R	mary
�� art �LN Narrowing at Variable�
R �� �x�father	R�	x



R�	mary
�� john� art�� art �LN Deletion or Decomposition
R�	mary
�� john �LN Narrowing at Variable�

R� �� �x�father	R�	x


R�	mary
�� mary� john�� john �LN Projection

mary �� mary� john�� john
�
�LN Solved by Deletion

Thus we get the solution R �� �x�father	father	x

 by composing the partial bind�
ings� Notice that the trivial solution R �� �x�art is also possible here� but it is easy
to avoid by further constraints as e�g� in the following example�
Another� slightly more involved example is the following� We use functional eval�






uation in this example for brevity�

map	F� �mary� john�
�� �john� art�
�
�LN Evaluation�

Decomposition

F 	mary
�� john� F 	john
�� art
�
�LN Narrowing at Variable�

F �� �x�father	H	x


H	mary
�� mary� john�� john�
father	H	john

�� art �LN Projection�H �� �x�x

mary �� mary� john�� john�
father	john
�� art

The last goals are easily solved by evaluation and Deletion� This yields the solution
F �� �x�father	x
� Observe how in the last examples Lazy Narrowing at Variable
is used to compute solutions for functional variables� Although this rule is very
powerful� it also has a high degree of non�determinism and will be restricted in later
re�nements�
There are two sources of non�determinism for such systems of transformations�

which rules to apply and how to select the equations� Completeness fortunately does
not depend on the goal selection� as each subgoal is independently solvable�

De�nition ��� A 	higher�order
 narrowing calculus N is complete for some HRS R
if the following holds� If s�� t has solution �� i�e� �s

�
��R �t� then fs�� tg

�
� �

N F
such that � is more general� modulo the newly added variables� than � and F is a set
of �ex��ex goals�

Theorem ��� System LN is complete�

	� Re�nements Using the Determinism of Functional Languages

This section develops several re�nements which exploit the determinism of conver�
gent systems� For convergent systems it is su�cient to consider normalized solutions
and particular reductions in the proofs� which allows to remove redundancies in the
solutions�

���� Avoiding Lazy Narrowing at Variables

An essential re�nement is to avoid narrowing at a variable occurring in a term
of the form X	xn
 for a R�normalized substitution � with an HRS R� For a pattern
X	xn
� reducibility of a term �X	xn
 implies that � is not R�normalized� hence violat�
ing the assumption on �� This result generalizes the �rst�order case� as for �rst�order
terms narrowing at variable position is not needed� It is an important optimization�
as narrowing at variable positions is highly unrestricted and thus creates large search

�



Deletion
t�� t � fg

Decomposition

�xk�v	tn
�� �xk�v	t�n
 � f�xk�tn �� �xk�t�ng

Elimination

F
�
� t �� fg if F �� FV	t
 and � � fF �� tg

Imitation

�xk�F 	tn

�
� �xk�f	t�m
 �� f�xk�Hm	�tn


�
� �xk��t�mg

where � � fF �� �xn�f	Hm	xn

g
with fresh variables Hm

Projection

�xk�F 	tn

�
� �xk�v	t�m
 �� f�xk��ti	Hp	tn



�
� �xk�v	�t�m
g

where � � fF �� �xn�xi	Hp	xn

g�
Hp � �p� and xi � �p � �
with fresh variables Hp

Lazy Narrowing with Decomposition

�xk�f	tn
�
� �xk�t � f�xk�tn �� �xk�ln� �xk�r �

� �xk�tg
where f	ln
� r is an xk�lifted rule

Lazy Narrowing at Variable

�xk�H	tn
�� �xk�t �� f�xk�Hm	�tn
�� �xk�lm� �xk�r �� �xk��tg
where f	lm
� r is an xk�lifted rule�

and � � fH �� �xn�f	Hm	xn

g
with fresh variables Hm

Figure �� System LN for Lazy Narrowing

spaces� We conjecture that in practice� as in higher�order logic programming �����
most terms are patterns and hence narrowing at variables is not needed very often�

�



To establish this result we need innermost reductions� which evaluate terms at
inner redices �rst� For any solution there exists an innermost reduction� if R is
convergent�

De�nition 	�� System LNN is de�ned as the restriction of system LN where Lazy
Narrowing at Variable is not applied to goals of the form �xn�X	ym
�� t if �xn�X	ym

is a higher�order pattern�

Theorem 	�� System LNN is complete for convergent R wrt R�normalized solutions�

���� Simpli�cation via Functional Evaluation

Simpli�cation by normalization of goals is one of the earliest and one of the most
important optimizations ���� Its motivation is to prefer deterministic reduction over
search within narrowing�
Observe that normalization coincides with deterministic evaluation in functional

languages� Also� as shown below� deterministic operations are possible as soon as
the left�hand side of a goal has been simpli�ed to a term with a constructor at its

root� For instance� with the rule f	�
 � �� we can simplify a goal f	�
 �� g	Y 
 by
ff	�
�� g	Y 
� � � �g � f��� g	Y 
� � � �g and deterministically detect a failure�
For oriented goals� normalization is only complete for goals s �� t� where �t is

in R�normal form for a solution �� For instance� it su�ces if t is a ground term in
R�normal form� For most applications� this is no real restriction and corresponds to
the intuitive understanding of directed goals�

De�nition 	�� Normalizing Lazy Narrowing is de�ned as the rules of LNN plus
arbitrary simpli�cation steps on the left�hand sides of goals�

Theorem 	�	 Normalizing Lazy Narrowing is complete for convergent R wrt R�
normalized solutions�

���� Deterministic Eager Variable Elimination

Eager variable elimination is a particular strategy which has been examined for
general equational uni�cation� The idea is to apply the Elimination rule as a deter�
ministic operation whenever possible� That is� when elimination applies to a goal� all
other rule applications are not considered�
Eager variable elimination is of great practical value� Consider for instance the

following example using the rules of Section ��

f�x�di�	�y�� � ln	F 	y

� x
�� �x�cos	x
�sin	x
g
�
� Evaluation for �� di�

f�x�di�	�y�F 	y
� x
�F 	x
�� �x�cos	x
�sin	x
g
�
� Decomposition

f�x�di�	�y�F 	y
� x
�� �x�cos	x
�

�x�F 	x
�� �x�sin	x
g
�
� Elimination

�



At this point� we have to chose which goal to solve �rst� Since on the second Elimi�
nation applies� we prefer this and consider no further rules� It remains the goal

f�x�di�	�y�sin	y
� x
�� �x�cos	x
g

Unfortunately� it is an open problem of general 	�rst�order
 equational uni�cation
if eager variable elimination is still complete ����� In our case� with oriented goals�
we obtain more precise results by di�erentiating the orientation of the goal to be
eliminated� As we consider oriented equations� we can distinguish two cases of variable
elimination� For goals X �� t� elimination is deterministic as we can show that for a
solution �� �t is in R�normal form�

Theorem 	�
 Lazy Narrowing with eager variable elimination on goals X �� t
where X �� FV	t
 is complete for convergent HRS R

Interestingly� in ���� the elimination is purposely avoided in a programming lan�
guage context� as it may copy terms whose evaluation can be expensive� This applies
here as well to the remaining case t�� X� as shown later�

���� Failure Rules for Constructors

It is useful to add some re�nements for constructors� First� decomposition on
constructors� e�g� on c	� � �
 �� c	� � �
 is deterministic� Correspondingly� goals of the
form c	� � �
 �� v	� � �
� where v is not a variable and v �� c are unsolvable� since
evaluation proceeds from left to right�


� Left�Linear Programs and Simple Systems

In this section we examine a particular class of goal systems� Simple Systems �����
which su�ce for programming and have several interesting properties� We assume in
the following an HRS with left�linear rules� A rule l� r � ln � rn is left�linear� if
no free variable occurs repeatedly in l�

De�nition 
�� We write s�� s� � t�� t�� if FV	s�
 
 FV	t
 �� fg�

This order links goals by the variables occurring� e�g� t�� f	X
� X �� s� Now we
are ready to de�ne Simple Systems�

De�nition 
�� A system of goals Gn � sn �� tn is a Simple System if

� all right�hand sides tn are patterns�
� Gn is cycle free� i�e� the transitive closure of � is a strict partial ordering on
Gn and
� every variable occurs at most once in the right�hand sides tn�

�



This class is closed under the rules of LN�

Theorem 
�� Assume a left�linear HRS R� If Gn is a Simple System� then applying
LN with R preserves this property�

The following results on solved forms from ���� will be crucial later�

Theorem 
�	 A Simple System S � fX�
�
� t�� � � � � Xn

�
� tng has a solution if all

Xn are distinct�

The following corollary is needed for the narrowing strategy developed later�

Corollary 
�
 A Simple System of the form ftn �� Xng is solvable�

In the second�order case uni�cation never leads to divergence ����� extending results
in ���� on uni�cation with linear patterns�

Theorem 
�� Solving a second�order Simple System by the uni�cation rules of LN�
i�e� without the narrowing rules� terminates�

	��� Variables of Interest

In the following� we classify variables in Simple Systems into variables of interest
and intermediate variables� This prepares the narrowing strategy presented in the
next section�
We consider initial goals of the form s �� t� and assume that only the values

for the free variables in s are of interest� neither the variables in t nor intermediate
variables computed by LN� For instance� assume the rule f	a�X
� g	b
 and the goal
f	Y� t
�� g	b
� which is transformed to

Y �� a� t�� X� g	b
�� g	b


by Lazy Narrowing� Clearly� only the value of Y is of interest for solving the initial
goal� but not the value of X�
The invariant we will show is that variables of interest only occur on the left� but

never on the right�hand side of a goal� We �rst need to de�ne the notion of variables
of interest� Consider an execution of LN� We start with a goal s�� t where initially
the variables of interest are in s� This has to be updated for each LN step� If X is
a variable of interest� and an LN step computes �� then the free variables in �X are
the new variables of interest� With this idea in mind we de�ne the following�

De�nition 
�� Assume a sequence of transformations fs �� tg
�
� �

LN fsn �� tng�
A variable X is called a variable of interest if X � FV	�s
 and intermediate
otherwise�

��



Now we can show the following result�

Corollary 
�
 Assume a left�linear HRS R and assume solving a Simple System
s �� t with system LN� Then variables of interest only occur on the left� but never
on the right�hand side of a goal�

�� Call�By�Need Narrowing

We show that for Simple Systems a strategy for variable elimination leads to a new
narrowing strategy� coined call�by�need narrowing� In essence� we show that certain
goals can safely be delayed� which means that computations are only performed when
needed�
As we consider oriented equations� we can distinguish two cases of variable elimi�

nation and we will handle variable elimination appropriately in each case� In the �rst
case� X �� t� the variable X is a variable of interest� Thus the elimination of X is
desirable for computational reasons and is deterministic� Notice that elimination is
always possible on such goals� as X �� FV	t
 in Simple Systems�
In the other case of variable elimination� i�e�

t�� X�

elimination may not be deterministic� Hence such goals will be delayed� This simple
strategy has some interesting properties� which we will examine in the following�
First view this idea in the context of a programming language� Let us for instance

model the evaluation 	or normalization
 f	t�� t�
�R � t by narrowing� assuming the
rule f	X� Y 
� g	X�X
�

ff	t�� t�
�
� tg �LN ft� �

� X� t� �
� Y� g	X�X
�� tg

Now we can model the following evaluation strategies�

Eager evaluation 	or call�by�value
 is obtained by performing normalization on the
goals t� and t�� followed by eager variable elimination on t��R �� X and
t��R �� Y � The disadvantage is that eager evaluation may perform unnec�
essary evaluation steps�

Call�by�name is obtained by immediate eager variable elimination on t� �� X and
on t� �� Y � It has the disadvantage that terms are copied� e�g� t� here as

X occurs twice in g	X�X
� Thus� expensive evaluation may have to be done
repeatedly�

Needed evaluation 	or call�by�need
 is an evaluation strategy that can be obtained
by delaying the goals t� �� X and t� �� Y � thus avoiding copying� Then t�
and t� are only evaluated when X or Y are needed for further computation�

��



In the sequel� we model equationally lazy evaluation with sharing copies of identical
subterms� i�e� the delayed equations may be viewed as shared subterms� The notion of
need considered here is similar to the notion of call�by�need in ���� but not to optimal
or needed reduction �����
Let us now come back from evaluation to the context of narrowing� Consider for

instance the narrowing step with the above rule

ff	t�� t�
�
� g	a� Z
g �LN ft� �

� X� t� �
� Y� g	X�X
�� g	a� Z
g

In contrast to evaluation as in functional languages� solving the goals t� �� X� t� ��

Y may have many solutions� Whereas in functional languages� eager evaluation can
be faster� this is unclear for functional�logic programming� Thus we suggest to adopt
the following �call�by�need� approach�

De�nition ��� Call�By�Need Narrowing is de�ned as Lazy Narrowing with Sys�
tem LN where goals of the form t�� X are delayed�

For instance� in the above example� decomposition on g	X�X
�� g	a� Z
 yields the
goals X �� a�X �� Z� Deterministic elimination on X �� a instantiates X� thus
the goal t� �� a has to be solved� i�e� a value for t� is needed� In contrast� t� �� Y
is delayed�
This new notion of narrowing for Simple Systems and left�linear HRS is supported

by the following arguments� Call�By�Need Narrowing

is complete� or safe� in the sense that when only goals of the form tn �� Xn remain�
they are solvable by Corollary 
�
� Since the strategy is to delay such goals�
this result is essential� 	This may con�ict with �ex��ex pairs in some special
cases� as discussed below�


delays intermediate variables only� As shown in the last section� we can identify
the variables to be delayed� a variable X in a goal t�� X cannot be a variable
of interest�

avoids copying� as shown above� variable elimination on intermediate variables pos�
sibly copies unevaluated terms and duplicates work� Thus intermediate goals
of the form t �� X are only considered if X is instantiated� i�e� if a value is
needed�

The important aspect of this strategy is that the higher�order rules are only needed
if higher�order free variables occur� goals with a �rst�order variable on one side are
either solved by elimination� as the occurs check is immaterial� or simply delayed�
Completeness seems to follow easily from the results in last sections� but there is a

technical problem with �ex��ex pairs� Solved forms as in Corollary 
�
 do not extend
to �ex��ex pairs� as discussed in ����� This seems however to occur rarely� and there

��



Conditional Narrowing with Decomposition

�xk�f	tn
�� �xk�t � f�xk�tn �� �xk�ln� �xk�l�p �
� �xk�r�p�

�xk�r �� �xk�tg
where f	ln
� r� l�p � r�p is an xk�lifted rule

Conditional Narrowing at Variable

�xk�H	tn
�� �xk�t �� f�xk�Hm	�tn
�� �xk�lm� �xk�l�p �
� �xk�r�p�

�xk�r �� �xk�tg
if �xk�H	tn
 is not a pattern�
f	lm
� r� l�p � r�p is an xk�lifted rule�

and � � fH �� �xn�f	Hm	xn

g
with fresh variables Hm

Figure �� Rule for System CLN for Conditional Lazy Narrowing

even exist classes of rewrite rules� which include functional programs� for which this
problem does not occur�

�� Conditional Lazy Narrowing

In this section� we propose a class of conditional higher�order rewrite rules which
is tailored for functional�logic programming languages� Then we introduce a system
of transformations for this class of rules�

De�nition ��� A normal conditional HRS �NCHRS� R is a set of conditional
rewrite rules of the form l � r � ln � rn� where l � r is a rewrite rule and rn are

ground R�normal forms� A conditional rewrite step is de�ned as s ��l�r�ln�rn
p�� t

i� s ��l�r
p�� and �ln

�
��R rn�

Notice that rewrite rules are restricted to base type� but the conditions may be

higher�order� Also� oriented goals su�ce for proving the conditions as �ln
�

�� �rn
is equivalent with �ln

�
�� rn� The rules of System CLN for conditional narrowing�

which di�er from System LN� are shown in Figure ��
The main ingredient for completeness of conditional narrowing is to assure that

solutions for fresh variables in the conditions are normalized� This is possible for
extra variables on the left if the system is convergent or at least con�uent and weakly
normalizing 	which means that normal forms exist
 as above� This is the reason for
disallowing extra variables on the right�

��



Theorem ��� Conditional narrowing with CLN is complete for con
uent and weakly
normalizing NCHRS R�

It is shown in ���� that all the results for unconditional rules can be extended for this
class of conditional rules� assuming termination criteria�

���� Conditional Rules and Extra Variables

We argue that in the higher�order case extra variables in right side of the conditions
are not needed for programming purposes� Whereas in 	functional�
logic program�
ming such extra variables are often used as local variables� we prefer the more suitable
constructs of functional programming here� Consider for instance the function unzip�
splitting a list of pairs into a pair of lists� which we write in a functional way�

unzip	�	x� y
jR�
� let 	xs� ys
 � unzip	R
 in 	�xjxs�� �yjys�


This is usually written as unzip	�	x� y
jR�
� 	�xjxs�� �yjys�
� unzip	R
� 	xs� ys

in �rst�order languages� which requires extra variables on the right� The above tuned
notation for a let�construct is de�ned via

let 	xs� ys
 � X in F 	xs� ys
 �def let X in �xs� ys�F 	xs� ys


where the right side can be de�ned by a higher�order rewrite rule

let 	Xs� Y s
 in �xs� ys�F 	xs� ys
� F 	Xs� Y s
�

On the other hand� we use existential logic variables in conditions for relational pro�
gramming� e�g� a grandmother predicate�

grand mother	X� Y 
� mother	X�Z
� mother	Z� Y 



� Examples

This section presents examples for higher�order functional�logic programming�
more example can be found in ����� Many examples use strict equality on �rst�
order data types� which is also common in functional	�logic
 programming languages�
With strict equality �s two terms are equal� if they can be evaluated to the same
	constructor
 term� It is interesting to see how strict equality can be encoded in our
setting� For instance� the rules

s	X
 �s s	Y 
 � X �s Y

� �s � � true

��



su�ce for the constructors s and �� With strict equality� we can avoid full equality
on higher�order terms� similar to current functional	�logic
 languages� For some ap�
plications full equality is useful and can be encoded via a rule X � X � true� as
used in Section ����

���� Symbolic Di�erentiation

Using the rules for di�erentiation of Section �� we can solve the following goal by
call�by�need narrowing�

f�x�di�	�y�ln	F 	y

� x
�� �x�cos	x
�sin	x
g
�
�Evaluation for di�

f�x�di�	�y�F 	y
� x
�F 	x
�� �x�cos	x
�sin	x
g
�
�Decomposition

f�x�di�	�y�F 	y
� x
�� �x�cos	x
�

�x�F 	x
�� �x�sin	x
g
�
�Elimination

f�x�di�	�y�sin	y
� x
�� �x�cos	x
g
�
�Evaluation

f�x�cos	x
 � di�	�y�y� x
�� �x�cos	x
g
�
�Evaluation

f�x�cos	x
�� �x�cos	x
g
�
�Decomposition

fg

Due to the call�by�need strategy� there is no search necessary to �nd the solution
F �� �x�sin	x
�

���� A Functional�Logic Parser

Top�down parsers belong to the classical examples for logic programming� The
support for non�determinism in logic programming is the main ingredient for this
application� On the other hand� functional parsers 	see e�g� ����
 have other bene�
�ts� such as abstraction over parsing functions� We will integrate the best of both
approaches in this example�
We model the following tiny grammar� which is similar to ����� A grammar is

described by the following terms� In addition to terminal symbols� e�g� a� b� c� we
have the constructs and	T� T �
� or	T� T �
� and rep	T 
� Their meaning is shown in the

following table� For example� and	t	a
� or	t	b
� t	c

 recognizes �a� b� and �a� c��

Construct recognizes
t	a
 a� where a is a terminal symbol
and	T� T �
 wv if T recognizes w and T � recognizes v�
or	T� T �
 v if T or T � recognizes v�
rep	T 
 v� � � � vn if T recognizes each vi�

In our setting� each of these constructs is represented as a parsing function 	of
the same name
� The main issue of this example is to show how to model non�
deterministic constructs such as the parsing function for or with con�uent rewrite

�




rules� The solution is to add an extra argument� called prophecy� to or� which de�
termines the choice� When invoking or with a free variable as prophecy� the desired
e�ect is archived and in addition� the prophecies tell us which choice was made at
each or construct�
In the following rules� T� T � represent parsing expressions and L is the input list of

terminals� For uniformity we use prophecies for all parsing constructs� and not only
for or� The constant symbols pand� p�� p�� pt are used as prophecies� The function
t	x
 is used to parse the terminal x�

t	X� pt� �Y jL�
 � L � X �s Y
and	T� T �� pand	P�� P�
� L
 � let T 	P�� L
 in �l�T �	P�� l

or	T� T �� por�	P 
� L
 � T 	P� L

or	T� T �� por�	P 
� L
 � T �	P� L

rep	T� pemp� L
 � L
rep	T� prep	P� P�
� L
 � let T 	P� L
 in �l�T �	P�� l


The following example illustrates how parsing is performed�

and	t	a
� or	t	b
� t	c

� P� �a� b�
�� ��

succeeds with
P �� pand	pt� por�	pt

�

This solution for the prophecy can be seen as a parsing script showing how the word
was parsed� Here� the �rst choice in the or construct was chosen�
As another example consider the goal

rep	or	t	b
� t	c

� P� �b� c� b�
�� ��

whose parsing function accepts words of b�s and c�s� The goal succeeds here with

P �� prep	por�	t
� prep	por�	t
� prep	por�	t
� pemp


�

In purely functional versions of this parser� the needed mechanism for non�determinism
and search has to be coded by some means� Compared to �rst�order logic program�
ming� we archive a higher level of abstraction and �exibility� For instance� the rep
construct can be used with any parsing function 	of the right type
� In a �rst�order
version� the constructs and� or etc would be represented as a data structure� and a
function�predicate has to be written to interpret such constructs� Thus� when passing
such a data structure� representing a parser� to some other function� this function has
to know how to interpret the structure�

��



���� Program Transformation

The utility of higher�order uni�cation for program transformations has been shown
nicely by Huet and Lang ���� and has been developed further in ��
� ��� This example�
taken from �
�� applies unfold�fold program transformation and requires full instead
of strict equality� We assume the following standard rules for lists

map	F� �XjR�
 � �F 	X
jmap	F�R
�
foldl	G� �XjR�
 � G	X� foldl	G�R



Now assume writing a function g	F� L
 by

g	F� L
 � foldl	�x� y�plus	x� y
� map	F� L



that �rst maps F onto a list and then adds the elements via the function plus� This
simple implementation for g is ine�cient� since the list must be traversed twice� The
goal is now to �nd an equivalent function de�nition that is more e�cient� We can
specify this with higher�order terms in a syntactic fashion by one simple equation�

�f� x� l�g	f� �xjl�
 � B	f	x
� g	f� l



The variable B represents the body of the function to be computed and the �rst
argument of B allows to use f	x
 in the body� The scheme on the right only allows
recursing on l for g�
To solve this equation� we add a rule X � X � true and then apply narrowing�

which yields the solution � � fB �� �fx� rec�plus	fx� rec
g where

g	f� �xjl�
 � �B	f	x
� g	f� l

 � plus	f	x
� g	f� l

�

This shows the more e�cient de�nition of g� In this example� simpli�cation can
reduce the search space for narrowing drastically� it su�ces to simplify the goal to

�f� x� l�plus	f	x
� foldl	plus�map	f� l


 � �f� x� l�B	f	x
� foldl	plus�map	f� l


�

where narrowing with the newly added rule X � X � true yields the two goals

�f� x� l�plus	f	x
� foldl	plus�map	f� l


 �� �f� x� l�X	f� x� l
�

�f� x� l�B	f	x
� foldl	plus�map	f� l


 �� �f� x� l�X	f� x� l
�

These can be solved by pure higher�order uni�cation�

�� Conclusions and Related Work

We have presented an e�ective model for the integration of functional and logic
programming� We have shown that the restrictions in our setting� motivated by

��



functional programming� lead to operational bene�ts and to a call�by�need narrowing
strategy�
In contrast to many other approaches to higher�order functional�logic program�

ming ��� ��� ��� �
� ���� we cover the full higher�order case and give completeness re�
sults� Similarly� other works on higher�order narrowing either examine more restricted
cases ���� �� or use an applicative �rst�order setting ����� Compared to higher�order
logic programming ����� higher�order programming as in functional languages is pos�
sible directly here�
A further interesting re�nement for higher�order narrowing has been presented

in ����� To achieve optimality results� some further restrictions on rewrite rules are
needed� Most of the examples we show however �t into this framework� It remains for
further work to investigate the potential of this higher�order setting and in particular
to work towards e�cient implementations�

Acknowledgments This research was supported by the DFG under grant Br ����
Deduktive Programmentwicklung and by ESPRIT WG ����� CCL�

References

��� Zena Ariola� Matthias Felleisen� John Maraist� Martin Odersky� and Philip
Wadler� A call�by�need lambda calculus� In ��
nd ACM Symposium on Principles

of Programming Languages� San Francisco� California� ���
�

��� J� Avenhaus and C� A� Lor��a�S�aenz� Higher�order conditional rewriting and nar�
rowing� In Jean�Pierre Jouannaud� editor� �st International Conference on Con�
straints in Computational Logics� M�unchen� Germany� September ����� Springer
LNCS ��
�

��� Hendrik Pieter Barendregt� The Lambda Calculus� its Syntax and Semantics�
North Holland� �nd edition� �����

��� N� Dershowitz and J��P� Jouannaud� Rewrite systems� In Jan Van Leeuwen�
editor� Handbook of Theoretical Computer Science� Volume B� Formal Models
and Semantics� pages �������� Elsevier� �����

�
� Anthony J� Field and Peter G� Harrison� Functional Programming� Addison�
Wesley� Wokingham� �����

��� J�C� Gonz�alez�Moreno� M�T� Hortal�a�Gonz�alez� and M� Rodr��guez�Artalejo� On
the completeness of narrowing as the operational semantics of functional logic
programming� In E� B�orger� G� J�ager� H� Kleine B�uning� S� Martini� and M�M�
Richter� editors� CSL
��� Springer LNCS� San Miniato� Italy� September �����

��� John Hannan and Dale Miller� Uses of higher�order uni�cation for implementing
program transformers� In Fifth International Logic Programming Conference�
pages �����
�� Seattle� Washington� August ����� MIT Press�

��



��� M� Hanus� Improving control of logic programs by using functional logic lan�
guages� In Proc� of the �th International Symposium on Programming Language
Implementation and Logic Programming� pages ����� Springer LNCS ���� �����

��� M� Hanus� The integration of functions into logic programming� From theory to
practice� Journal of Logic Programming� �� ���
������� �����

���� M� Hanus� Lazy uni�cation with simpli�cation� In Proc� 	th European Sympo�
sium on Programming� pages �������� Springer LNCS ���� �����

���� M� Hanus and C� Prehofer� Higher�order narrowing with de�nitional trees� In
Proc� Seventh International Conference on Rewriting Techniques and Applica�
tions �RTA
���� Springer LNCS ����� �����

���� J�R� Hindley and J� P� Seldin� Introduction to Combinators and ��Calculus�
Cambridge University Press� �����

���� G�erard Huet and Bernard Lang� Proving and applying program transformations
expressed with second�order patterns� Acta Informatica� ������

� �����

���� G�erard Huet and Jean�Jacques L�evy� Computations in orthogonal rewriting
systems� I� In J��L� Lassez and G� Plotkin� editors� Computational Logic� Essays
in Honor of Alan Robinson� pages ��
����� MIT Press� Cambridge� MA� �����

��
� H� Kuchen and J� Anastasiadis� Higher Order Babel ! language and imple�
mentation� In Proceedings of Extensions of Logic Programming� Springer LNCS
��
�� �����

���� John Wylie Lloyd� Combining functional and logic programming languages� In
Proceedings of the ���� International Logic Programming Symposium� ILPS
���
�����

���� Hendrik C�R Lock� The Implementation of Functional Logic Languages� Olden�
bourg Verlag� �����

���� Richard Mayr and Tobias Nipkow� Higher�order rewrite systems and their con�
�uence� Theoretical Computer Science� To appear�

���� Spiro Michaylov and Frank Pfenning� An empirical study of the runtime behavior
of higher�order logic programs� In Dale Miller� editor� Proceedings of the Work�
shop on the Lambda Prolog Programming Language� Philadelphia� Pennsylvania�
July ����� University of Pennsylvania�

���� Dale Miller� A logic programming language with lambda�abstraction� function
variables� and simple uni�cation� J� Logic and Computation� ������
��� �����

���� Gopalan Nadathur and Dale Miller� Higher�order logic programming� In C� Hog�
ger D� Gabbay and A� Robinson� editors� Handbook of Logic in Arti�cial Intelli�
gence and Logic Programming� volume 
� Oxford University Press� To appear�

��



���� K� Nakahara� A� Middeldorp� and T� Ida� A complete narrowing calculus for
higher�order functional logic programming� In Proceedings of Seventh Interna�
tional Conference on Programming Language Implementation and Logic Pro�
gramming �	 �PLILP
�	�� Springer LNCS ���� pages ������� ���
�

���� Tobias Nipkow� Higher�order critical pairs� In Proc� �th IEEE Symp� Logic in
Computer Science� �����

���� Lawrence C� Paulson� ML for the Working Programmer� Cambridge University
Press� �����

��
� Frank Pfenning and Conal Elliott� Higher�order abstract syntax� In Proc� SIG�
PLAN 
�� Symp� Programming Language Design and Implementation� pages
�������� ACM Press� �����

���� Christian Prehofer� Decidable higher�order uni�cation problems� In Automated
Deduction � CADE���� Springer LNAI ���� �����

���� Christian Prehofer� Higher�order narrowing� In Proc� Ninth Annual IEEE Sym�
posium on Logic in Computer Science� IEEE Computer Society Press� July �����

���� Christian Prehofer� A Call�by�Need Strategy for Higher�Order Functional�Logic
Programming� In J� Lloyd� editor� Logic Programming� Proc� of the ���	 Inter�
national Symposium� pages �������� MIT Press� ���
�

���� Christian Prehofer� Higher�order narrowing with convergent systems� In �th Int�
Conf� Algebraic Methodology and Software Technology� AMAST 
�	� Springer
LNCS ���� July ���
�

���� Christian Prehofer� Solving Higher�order Equations� From Logic to Program�
ming� PhD thesis� TU M�unchen� ���
� Also appeared as Technical Report
I�
���

���� Zhenyu Qian� Higher�order equational logic programming� In Proc� ��st ACM
Symposium on Principles of Programming Languages� Portland� �����

���� Yeh�heng Sheng� HIFUNLOG� Logic programming with higher�order relational
functions� In David H�D� Warren and Peter Szeredi� editors� Logic Programming�
MIT Press� �����

���� Wayne Snyder� A Proof Theory for General Uni�cation� Birk�auser� Boston�
�����

���� Wayne Snyder and Jean Gallier� Higher�order uni�cation revisited� Complete
sets of transformations� J� Symbolic Computation� ���������� �����

��


