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Abstract. An approach is described for the generation of certain math-
ematical objects (like sets, correspondences, mappings) in terms of re-
lations using relation-algebraic descriptions of higher-order objects. From
non-constructive characterizations executable relational specifications are
obtained. We also show how to develop more efficient algorithms from
the frequently inefficient specifications within the calculus of binary re-
lations.

1 Introduction

During the last two decades, the axiomatic relational calculus of Tarski [28]
has widely been used by computer scientists who view it as a convenient for-
malism for describing fundamental concepts of programming. The development
starts with the work of de Bakker and de Roever in the early 70’s; see [12, 13]
for example. In the following decade, e.g., Hoare and He [17] related the work
of Birkhoff on residuals with Dijkstra’s weakest precondition approach to pro-
gramming, a group in Munich (see [23, 6, 32, 31]) constructed semantic domains
by relation-algebraic means and, thus, was able to treat also languages with
higher-order functions, and a group in Eindhoven (see [2]) developed a theory
of data types based on the calculus of relations. At this point also the approach
of a group in Rio should be mentioned which was motivated mainly by the
development of a relational programming calculus not bounded by lack of ex-
pressiveness; compare [29]. In program development, the relational framework
has already been used. E.g., in a series of articles a group around Desharnais
and Mili proposed a relational approach to the formal derivation of imperative
programs from its specifications. See [19, 20, 14] for example. Recently, Moller
[21] used n-ary relations between nested tuples as elements of an applicative
program development language, and also the Rio group developed various case
studies on formal program construction using relations (cf. [30]).

In order that investigations with relation algebra involved do not stay com-
pletely on the theoretical side, several aspects need special consideration. Firstly,
relational methods are not so commonly known that competent discussion with



researchers from other approaches i1s easy. So, there should be a tool at hand
to facilitate and visualize work with relations. Secondly, some tool for rapid
prototyping of program specifications expressed in a relational style should be
developed. And, finally, since relational specifications have a high degree of pre-
cision and formal structure, program development methods starting from such
relational specifications should be considered.

In this paper, we describe an approach to the generation of certain math-
ematical objects (like sets, correspondences, mappings) in terms of relations
using higher-order objects. We aim at the development of executable relational
specifications out of non-constructive problem descriptions, where some special
functionals on relations in conjunction with a relational description of domains
(including relation and function spaces, i.e., higher-order objects) play an impor-
tant role. We present only a carefully selected couple of representative examples;
for an extensive treatment of our approach, we refer to the report [8] of the same
title.

2 Relation Algebraic Preliminaries

In this section, we briefly introduce the basic concepts of the algebra of relations,
some special relations, and some relation-algebraic constructions (i.e., function-
als on relations). For more details concerning the algebraic theory of relations,

see e.g., [11, 18, 25].

2.1 Basic Operations and Relation Algebraic Laws

For two sets X and Y, a subset R of the Cartesian product X x Y is a relation
between the domain X and the range Y. We call it homogeneous if X =Y,
otherwise we call it heterogeneous. Considering the corresponding characteristic
predicates instead of the set representations, a relation R between X and Y
becomes a function R : X x Y — IB, where BB denotes the set {0,1} of truth-
values. Therefore, if X and Y are finite and of cardinality m and n, respectively,
then we may consider R as a Boolean matrix with m rows and n columns. This
matrix interpretation of relations is well-suited for a graphical representation
and, e.g., used within the RELVIEW system [1, 4]. Following the notation of the
specification language 7 [26], we write R : X «— Y if R is a relation between the
sets X and Y. Furthermore, we use matrix notation and write R, instead of
(z,y) € R.

We assume the reader to be familiar with the basic operations, viz. RT (trans-
position), R (negation), RU S (join), RN S (meet), RS (composition), R C S
(inclusion), and the special relations O (empty relation), L (universal relation),
and T (identity relation). In this paper, we only consider relations with non-
empty domain and range, and therefore O : X < Y and L : X < Y are distinct.
The set-theoretic operations , U, N, the ordering C, and the constants O, L are



related as usual. Some further well-known rules concerning relations are

(R"T =R RCS = R'csST
RTST = (SR)T R =RT

RCS = QRCQS RCS —= RQCSQ
QRNS)CRRNQS QRUS)=QRUQ@S
(RNS)Y = RTnsT (RUS)T = RTU ST |

where the last two lines also hold if binary meet and join are replaced by arbitrary
meet and join, respectively. The theoretical framework for all these rules to hold
is that of an abstract relation algebra. The axioms of this algebraic structure
are the axioms of a complete atomic Boolean algebra for |, U, N, C, O, L, the
axioms of a monoid for composition and I, the Dedekind rule

(QRNS) C(QNSRTYRNQTS) ,

and the Tarski rule
R#0 — LRL=1L .

An alternative form of the Dedekind rule are the Schroder equivalences, viz.

QRCS < Q'SCR «— SR'cQ .

2.2 Special Relations

The basic operations and constants of the last subsection are very helpful for
defining simple properties on relations in a component-free manner. In the re-
mainder of the paper we need the following special relations:

Functions: Let R : X < Y be a relation. R is said to be a partial function
or, briefly, to be functional if RY R C 1, and R is said to be total if RL = L, which
is, in turn, equivalent to I C RRT. As usual, a functional and total relation is
said to be a (total) function. A relation R is called injective if RT is functional,
and R is called surjective if RT is total. An injective and surjective relation is
said to be bijective.

Partial orderings: Let () : X < X be homogeneous. @ is reflexive if I C @,
transitive if QQ C Q, and antisymmetric if Q N QT C 1. A partial ordering is a
reflexive, antisymmetric, and transitive relation. If @) is a partial ordering, then
Q N1 denotes its irreflezive part.

Vectors: A relation v : X — Y with v = oL is called a (row-constant)
vector or a predicate. This condition means that an element x from X is either
in relation v to none of the elements of Y or to all elements of Y. Vectors may
be considered as subsets of X. This becomes obvious if we use the common set-
theoretic notation for relations, since then v equals a Cartesian product X’ x Y,
where X’ is a subset of X. As for a vector the range is without relevance, we
consider in the following only vectors v : X « 1l with a singleton set 11 = {u} as
their range and write v, instead of vy, . Then v can be considered as a Boolean
matrix with exactly one column, i.e., as a Boolean column vector, and describes
the subset {o € X :v;} of X.



2.3 Quotients and Bounds

In this subsection, we consider some special mappings from relations to relations.
To distinguish such “meta-level functions” from the relation-algebraic (or: object
level) notion of functions as presented in Subsection 2.2, they are also called
functionals. In most cases, they happen to be partial functionals, since the basic
operations on relations besides the unary ones are only partially defined.

Residuals: Residuals are the greatest solutions of certain inclusions. The
left residual of S over R (in symbols S/ R) is the greatest relation @) such that
QR C S; the right residual of S over R (in symbols R\ S) is the greatest relation
@ such that RQ C S. Both residuals may also be represented using the basic
operations: Let R: X «— 7, 8:Y < Z R : 7 < X,and S’ : Z < Y be given,
then, from the Schroder equivalences we obtain

S/R=SRT R\S=R"S .
Note also that the two residuals are linked together by the relationships
R\S=(ST/R"HT  R\S=R'/ST.

Translating the relation-algebraic expressions into component-wise formulations,
for left residual S/ R:Y <« X and right residual '\ S’ : X — Y we have the

equivalences

(S/R)ye <= N\Bo:—Sy: (R\S )y = N\R..—S, .

In particular, we have the two following correspondences for single universal
quantification:

(S/L)y = NS (R\O). = \R., .

Note that for the quantifications the domain for z may also consist of higher-
order objects. The usage of this option is characteristic to our approach.

Symmetric Quotients: In the following, we will frequently need relations
which are left and right residuals simultaneously, viz. symmetric quotients. The
symmetric quotient syq(R, S) of two relations R and S is defined as the greatest
relation @ such that RQ C Sand QST C RT. IfR:Z < X and S: Z — Y,
then we have syq(R,S): X < VY as

syq(R,S) = RTSNRTS = (R\ S) N (RY /S7) .

In component-wise notation, the symmetric quotient syq( R, S) satisfies the equiv-
alence

syq(R, S)ey < /\szHSZy )

Bounds and extremal elements: Let () : X < X be a partial order-
ing. Due to later applications, we ask for some order-theoretic concepts such



as the set of lower (resp. upper) bounds of a subset wrt. @ or the set of min-
imal (resp. maximal) elements of a subset wrt. ). We define four functionals
dependent on @ and a further relation R : X — Y as follows:

Lower bounds: mi(Q,R)=QR=Q/R"
Upper bounds: ma(Q, R) = QTR=QT /RT
Minimal elements: min(Q,R) = RN(QNDHTR
Mazimal elements: max(Q, R) = RN(QNDR

Looking at the corresponding component-wise descriptions and assuming R to
be a vector, it is easy to see that mi(Q, R) (resp. ma(@, R)) yields the subset
of lower (resp. upper) bounds of R wrt. the partial ordering @, while min(Q, R)
(resp. max(Q@, R)) computes to the subset of minimal (resp. maximal) elements of
R wrt. the partial ordering ). If R is not a vector, then the functionals compute
bounds and extremal elements column-wise.

3 Relational Domain Construction

To deal with composed and higher-order objects like tuples, sets, or functions, we
have to explain how the corresponding domain constructions can be performed
with relational algebra. Note that the constructions described in the following,
after the definitions of homomorphisms (resp. isomorphisms), may or may not
exist in an arbitrary model of relational algebra; however, this problem does not
occur at the concrete matrix model underlying this paper.

3.1 Homomorphisms, Direct Products, and Direct Sums

As first domain constructions we consider products and sums. Furthermore, we
introduce homomorphisms to show that the characterizations are monomorphic.

Homomorphisms: Let R : X «— Y and S : X/ « Y’ be two relations and
consider a pair H = (@,¥) of functions ¢ : X — X' and ¥ : Y — Y. H is called
a homomorphism from R to S if R C ®S¥T or, equivalently, R C &S holds.
If, in addition, the pair HT = (&*,¥T) is a homomorphism from S to R, then
H 1s said to be an isomorphism between R and S. Therefore, an isomorphism
T = (¢,¥) between R and S is a pair of bijective functions ¢ : X — X’ and
¥ .Y < Y’ which satisfies the condition R¥ = @S. If R and .S are homogeneous,
then @ is briefly called a homomorphism (isomorphism) if the pair (@,9) is a
homomorphism (isomorphism).

Direct products: Within the framework of abstract relation algebra it is
natural to characterize direct products by means of the natural projections, see
[25, 31]. Then one obtains the following specification: Let

P = (7Tk : PX — Xk)lgkgn



be an n-tuple of n > 0 relations. We call P an (n-ary) direct product if
(Py) i =1 (P2) j£k = w}rﬂ'k =L (Ps) ﬂ ey =1 .
k=1

It is easy to verify that the natural projections from a Cartesian product 1], X;
to the components X} are a model of (P;) through (Ps) if the placeholder PX is
replaced by II'; X;. By purely relation-algebraic reasoning, furthermore, it can
be shown that the direct product is uniquely characterized up to isomorphism:
If @ = (pr : PY < Yi)i<k<n is another model of (P;) through (Ps) and
(O, : X — Yk)lgkgn is a family of bijective functions, then we can establish an
isomorphism between 7 and pj by the pair Z = (9,¥;), where the bijective
function @ : PX — PY is defined as & = "/, mWip; .

Based on the binary direct products P = (7, p) and @ = (o, 7) we define
the following two functionals, where the generalization to n-ary direct products
(n > 2) is straightforward, but not needed in the remainder of the paper:

Tupling: [R,S]p = ReT nSpT
Parallel composition: Rpllg S =mRet npSrt .

Direct sums: The direct sum can be defined in largely the same fashion as
the direct product. Dually to the natural projections the natural injections are
used, see [31]. Then one obtains the following specification: Let

S = (Lk ZXk — SX)lSkSn

be an n-tuple of n > 0 relations. We call § an n-ary direct sum if
(51) LkL;f:I (S2) j#k = Lng:O (Ss) ULngII.
k=1

Given sets Xg, 1 <k <mn, it is easy to verify that the injections from these sets
to the direct sum X7_, X} are a model of (S1) through (S3). Again by purely
relation-algebraic reasoning it can be shown that by these laws the direct sum
1s uniquely characterized up to isomorphism and the relations i3, 1 <k <n, are
injective functions.

3.2 Powersets, Relation Spaces, and Function Spaces

Now, we present monomorphic characterizations of higher-order objects using
relation algebra. The first construction formalizing the membership relation and
uses only a small set of set-theoretic axioms. The selection of this set of ax-
ioms such that it suffices for a monomorphic characterization has been earlier
considered in category theory in connection with the notion of topos [9], which
denotes a category such that each object has a power-object. The axiomatization
presented here has been developed from the Munich group in the last decade,
aiming at a relation-algebraic characterization of the kinds of function spaces



used in denotational semantics. See [32, 7, 31]. Independently of it, an equiv-
alent development, which is rather based on the mentioned notion of topos, is
provided in the book [15] by the notion of a power-allegory.

Powersets: A relation-algebraic characterization of the powerset 2% of a
set X can conveniently be done using the “is-element-of” relation, see [32, 7].
Formally, we call € : X «— SX a powerset relation if

(PSy1) syq(e,e) C1 (PS3) /\ Lsyq(e, R) =1L .

Since every relation-algebraic equation using ¢ is translated into a formula with
higher-order quantification (over sets), in (PS2) the higher-order quantification
(over relations) does not surprise. Again it can be shown by purely relation-
algebraic reasoning that the powerset relation is uniquely characterized up to
isomorphism. Indeed, if &/ : ¥ «— SY is another powerset relation, @ : X < Y
is a bijective function, and one defines the bijective function ¥ : SX «— SY by
U = syq(e, Pe’), then T = (&,¥) is an isomorphism between ¢ and ¢’

Now, assume the concrete case of the “is-element-of” relation £ : X — 2%,
Then (PSy) corresponds to the extensionality axiom, whereas (PSs) says that
every vector (set) v : X — 1l has a corresponding point (i.e., a bijective vector)
vp(v) 1= syq(e,v) : 2% « 1 in the powerset. This shows that the usual “is-ele-
ment-of” relation is a powerset relation. The functional vp is injective and its
left-inverse on points is vp~!(p) = ep : X « 1. Hence, vp establishes some kind
of isomorphism (resp. Galois connection) between subsets of X and elements of
2X . For details, compare [7].

Based on the relation € : X « 2% the relational specification of sets merely
by equations can be established. Namely, we have:

Empty set: 2% 1 E =syq(e,0) =<\ 0
Universal set: 2% 1 U =syq(s,L) =2\ O
Singleton embedding: X = 2X S =syq(l,¢)
Complementation: (2% o 2X C =syq(, )

Meet of sets:
Jown of sets:
Inclusion of sets:

12X x 2% = 2% M =syq([¢, €]p, €)
9% 92X L 9X  J = (C p|jp C)MC
02X 2% C=c\¢

MuQnco

In the description of the binary operations meet and join we use a direct product
P = (m, p), consisting of the two projections from 2% x 2% to the first and the
second component, respectively.

Relation spaces and function spaces: We are also interested in describing
the set of all relations between two sets and some certain subsets by relation-
algebraic means. The set of all relations between X and Y is easy to handle,
since it is a powerset relation eg : X x YV < 2X*Y Hence, R = (m,p,cR) is
called a relation space if

(Ry1) (m, p)is adirect product
(R2) 7lep and pTep exist
(R3) ¢eg is a powerset relation.



The transformation of a relation R : X < Y into a point of the relation space
is described by vp(rv(R)), where rv(R) := (sRNp)L : X x Y — 1 is the vector
corresponding to R; the opposite direction uses vp~! and the left-inverse of rv
which is v=1(v) = 7Y (pNol) : X Y.

The set Y of all functions from X to Y may be characterized in two different
ways. On one hand, it can be described by a vector f: 2%X*Y — 1 such that

Fo= ANy ern@y)yen—y=y)n\\(@y er
= =(\[tern\/(t' ernnt’)=x(t)Ap(t') # p(1)))
AN AVEerart)=x)

giving the intricate expression

f=lhnel(zzT nppT)IL N (ehn /L) .

On the other hand, we can define an “is-element-of” relation ep : X x Y «— Y X
as follows: The triple F = (7, p,ep) is called a function space if (R;) and (Ra2)
(numbered by (Fy) and (F3), respectively) hold with g replaced by ¢p and,
furthermore,

(F3) syq(ep,ep) C 1
(Fa) /\Lsyq(eF,R): L= (RRTCanTupp" ART7=1) .
R

Now, for R being a vector v : X x Y < 1l the second condition (F4) means that
the point vp(v) = syq(ep,v) : 2X*Y « 1 is in the function domain Y* if and
only if v represents a function, i.e., the relation rv=1(v) : X < Y is a function.
For details, see [1].

Injections: In addition to vectors, we have injective functions as a second
concept for representing subsets. Given an injective function 2 : X' — X we
call X' a subset of X given by 1. Clearly, if X’ is a subset of X given by 2, then
the vector 2TL : X « 1 describes X’ in the sense of Subsection 2.2. Since we
deal only with concrete relations, the transition in the other direction, i.e., the
construction of an injective function 2 : X’ — X from a given vector v : X « 1,
is also possible. Generally, we have: Let the vector v : X <« 1 describe the subset
X' of the set X. Then, ¢(v) : X’ — X is called an injection of v or an injection
of X' into X if

(I1) o(v) is an injective function (I2) v= z(v)TL .

Clearly, it follows that X’ is a subset of X given by 2(v). Again, it can be shown
that injections are determined uniquely up to isomorphism by (I3) and (I2).
Namely, if ¥ : X «— Y is a bijective function and v’ : Y « 1 is a vector such
that it describes a subset Y/ of Y and v = Wv' is satisfied (i.e., v/ = ¥Tv),
then 7 = (®,¥) is an isomorphism between ¢(v) and ¢(v'), where the bijective
function @ : X’ « Y is given by & = 1(v)W2(v')T.



In most cases, injections are used within our applications in the context of
higher-order objects like sets of sets. Namely, if the vector v : 2X «— 1 describes a
subset S of sets, then it is straightforward to compute an injection u(v) of S into
2% . From 1(v) we obtain the elements of S (represented as vectors) as the columns
of the relation e2(v)T : X « S, which leads to an economic representation of the
set S of sets by a Boolean matrix.

4 Relational Problem Specification and Prototyping

In this section, we show how the computation of certain mathematical objects
(like sets, correspondences, mappings) can be described in terms of relations.
The general method is as follows. First, we specify the problem with the help
of a formula ¢ which characterizes the objects to be computed. Using the cor-
respondences between certain kinds of formulae and certain relation-algebraic
constructions (resp. operations), we then transform ¢ into a component-free re-
lational expression R such that ¢ is valid if and only if its free variables are
related by R. Hence, this expression R can be seen as a relational problem
specification (cf. [5]) which is executable as it stands, i.e., as an algorithm for
computing the set of specified objects. At this place it should be mentioned that
in easy cases or for people well-trained in the relational calculus the specification
R can be written down immediately.

Of course, algorithms produced in the way just described frequently may
be fairly inefficient compared to hand-made ones and, thus, in many cases only
applicable to small or medium-sized examples. However, they are built up very
quickly, which is an important factor of economy. Furthermore, they ensure cor-
rectness and their proofs of correctness are very simple. Moreover, an executable
relational specification can be the starting point for the derivation of an efficient
algorithm using some development method as we will show in Section 5. Hence,
we have the typical situation of the rapid prototyping approach (see [10]) for a
validation and analysis of specifications.

Most of the following examples of rapid prototyping using a relation-algebraic
description of the given problem are borrowed from graph theory. They deal with
the computation (strictly speaking: the enumeration) of higher-order objects like
sets of sets (represented as vectors v : 2% « 1) or sets of functions (represented
as vectors v : YX « 1). Here our approach leads to an extensive use of the rela-
tional characterization of sets and functions as presented in Section 3. Therefore,
in the following, we have to distinguish between the two meta-level symbols €
and C and the “is-element-of” relation and the set inclusion relation on the
object-level. As in Section 3, we use in the sequel the two relations ¢ : X « 2%
and C : 2% « 2% on the object level. Especially, we have x € s (resp. s C t) if
and only if the relation g5 (resp. Cy¢) holds.

Here, only a carefully selected couple of representative examples is presented.
Further examples may be found in the report [8], so the computation of further
point sets of a directed graph (like strongly connected components, point bases,
or hammocks), point/edge coverings of graphs of various kinds, and so on.



4.1 Kernels

Let G = (V, B) be a directed graph, i.e., V a non-empty set of points (also:
vertices, nodes) and B : V < V arelation between points. Furthermore, assume
e :V < 2V to be the “is-element-of” relation between V and its powerset 2"
and C: 2V — 2 to be the inclusion relation between point sets.

A set a € 2V of points is said to be absorbant in G if from every point outside
of a there is at least one arc leading into a, i.e., if the first-order formula

/\an\/\/(Bxy/\yEa)

K)

holds. Furthermore, a set s € 2V of points is called stable in G if no two points of
s are related via the relation B. This situation is characterized by the first-order

formula .
/\xEs—>/\(yEs—>Bxy) :
£ y

Finally, a kernel k € 2V of G is a set which is at the same time absorbant and
stable. The concept of a kernel plays an import role in combinatorial games; for
an overview see e.g., [24] and [25], Sections 8.2 and 8.3.

Expressing the above two formulae in terms of the operations on relations
introduced in Section 2, we get that the first one is equivalent to (L \ (¢ U Be))}
and the second one is equivalent to ((¢NBe)\O);. In the second case, for instance,
we express /\y(y € 5 — Byy) as (Be),s and obtain, thus, the original formula in

the form A (e N Be)ys. Now, the universal quantification can be removed using
a right residual construction, cf. Section 2. Summing up, in a component-free
notation, we have

absorb(B) = (L \ (¢ U Be))T

as the vector absorb(B) : 2V — 1 describing the absorbant sets of G (where
L:V < 1) and
stable(B) = (e N Be)\ O

as the vector stable(B) : 2V« 1 describing the stable sets of G (where O : V —1).
Finally, the vector kernel(B) : 2V « 1 describing the elements of 2V which are
kernels of G is given by

kernel(B) = absorb(B) N stable(B) .

4.2 Dedekind Cuts

Now, we deal with an order-theoretic problem; for a more visualized treatment
of this example, compare [3]. Let O = (M, Q) be a partially ordered set, i.e.,
M be a non-empty set of points and ¢ : M < M be an ordering relation
on points. Furthermore, assume again € : M — 2M to be the “is-element-of”
relation between M and its powerset 2 and T: 2™ «— 2 to be the inclusion
relation on point sets.



For an element s € 2% let Ma(s) denote its upper bounds wrt. @ and Mi(s)
denote its lower bounds wrt. Q. Then, ¢ € 2M is called a Dedekind cut of O if
the equation ¢ = Mi(Ma(c)) is valid, i.e, if the first-order formula

/\l‘ €c—x€ Mi(Ma(c))

xr

holds which in turn is equivalent to

\/ Az €c =z eMi(Ma(s)) he=>s .

5 xr

Obviously, for each element # € M the set (z) = {y € M : Qyz} is a cut, called
the principal cut generated by x. The fact that a set p € 2% is a principal cut,
hence, 1s described by the first-order formula

Veepn \Nyer—Qu.) .
@ Yy

Now, let C C 2™ denote the set of cuts of @ and P C 2™ denote the set
of principal cuts of @. Furthermore, let C¢ : € <= C and Cp : P «— P denote
the restrictions of set inclusion to the cuts and principal cuts, respectively. Then
0" = (C,C¢) is a complete lattice, called the cut completion of O, and the
function emb(@) : M — C mapping z to the principal cut () is an injective
order homomorphism.

Using abstract relation algebra and the above formulae (for the characteri-
zation of cuts the second version is more suited since it immediately leads to a
symmetric quotient construction syq(s, .. .);s) in combination with the function-
als mi, ma, and syq of Section 2.3, by

cut(Q) = (syq(e, mi(@, ma(@, ¢))) NT)L
(where L : 2% « T and I : 2M — 2M) we obtain the vector cut(Q) : 2M — 1
describing the elements of 2¥ which are Dedekind cuts, and by

pricut(Q) = (¢' Nsyq(e, Q)L
(where L : M « 1) we get the vector pricut(Q) : 2M «— 1 describing the elements
of 2™ which are principal cuts. Since the cuts are ordered by set inclusion, we
consider the relation C : 2% «— 2™ and the injection 2(cut(Q)) : C « 2M in the
sense of Subsection 3.2 and receive for C¢ the representation

Ce = o cut(Q)) Co(cut(Q)7T .

Also the function emb(Q) : M < C (in the relational sense) can be computed
with the help of «(cut(Q)). From the component-wise definition of emb(Q)z. by
the second-order formula

A Qe =\ € s Ar(cat(@)).)

we obtain /\y Qs — (e2(cut(Q))")y. and, thus, an application of the functional
syq yields the component-free relation-algebraic representation

emb(Q) = syq(Q, ex( cut(@Q))") .



4.3 Sets of Places of a Petri Net

A Petri net is a bipartite directed graph N' = (X, Y, R, S). The point set of N’
1s decomposed into the sets X of places and Y of transitions and the associated
relations are R : X «— Y and S : Y «— X. Petri nets have been widely used to
design and model concurrent systems, see [22] for example. Many of the static
properties of a Petri net (e.g., to be free-choice, to be conflict-free, or to contain
specific sets of places/transitions) can be tested using our relational approach.
In the following we show, how to compute specific sets of places. In doing so,
ex : X — 2% denotes the “is-element-of” relation between the places and the
sets of places.

A set d € 2% of places is called a deadlock if each of its predecessors is also a
successor. A somewhat dual notion is that of a trap: ¢ € 2% is said to be a trap if
1ts successor set is a subset of its predecessor set. Both, deadlocks and traps are
of interest if one is concerned with liveness properties. E.g., a transition never
can be enabled if its predecessor set contains an unmarked place of a deadlock.

Expressed by first-order formulae, we have that a set d of places is a deadlock
if and only if

AN #€dASy) —(\/ e €dAR,,)

K)

is valid and that a set t of places is a trap if and only if

/\(\/xEt/\ny)H(\/xet/\Syx)

y
holds. Using the operations on relations, the first formula becomes
AEX Sy — (X R)ay , ie. N\EXSTUEXR)ay -
y y

Hence, using a left residual construction and the universal relation L : YV « 1
we get in a component-free notation

deadlock(R,S) = (e x ST Uex R)/LT = (Sex N RTex)\ O

as the vector deadlock(R,S) : X < 1 enumerating all deadlocks of the net N
In the same way one obtains the vector trap(R,S) : X — 1 describing all traps
of N by exchanging the role of R and ST, ie., by

trap(R, S) = (ex RUex ST)/LT = (RYex N Sex)\ O .

It may also be of interest to compute minimal non-empty deadlocks or
traps. To this end, we assume T : 2¥ «— 2% to be the inclusion relation.
By the min functional and the E vector, we obtain the minimized version of
op € {deadlock, trap} from the expression min(C, op(R,S) N E).



4.4 Dicliques

In the preceding examples we have dealt with sets of points and edges, i.e.,
elements of the powerset of a given “base set”. The example of this subsection
shows how to describe the computation of pairs of elements of the powerset of a
given “base set” with relation-algebraic means, i.e., the computation of a relation
(correspondence) on a powerset. We consider again a directed graph G = (V, B)
and suppose the “is-element-of” relation ¢ : V « 2V and the inclusion relation
C:2Y « 2" on point sets.

A pair (d,¢) € 2¥ x 2V is called a block of G with domain d and co-domain ¢
if the product d x ¢ is contained in B. The (non-trivial) dicliqgues of G (this term
is introduced in [16]) are the inclusion-maximal blocks with non-empty domains
and co-domains. In other words, (d,¢) is a diclique if and only if it generates
an inclusion-maximal complete bipartite subgraph of G. A decomposition of a
graph into its dicliques can be very useful e.g., for storing i1t in a computer or for
determining the essential subsystems of the system it describes. See again [16].

The description of a block (d, ¢) # (§,0) by a first-order formula is

Vzedn(\zeon(\ved— N\y€ec— Byy)) .

Obviously, /\y Yy € ¢ — Bgy is equivalent to (F_E)xc, ie., to (B/el)s., which
implies the equivalence of A,z € d — /\y(y € ¢ — Byy) and (e \ (B/e1))qe.
This immediately leads to

block(B) = eTLNLTe N (e \ (B/eT)) =ENE Nl Be

(where L : V « 2V) as the relation block(B) : 2V < 2V of the blocks with non-
empty domain and co-domain. Le., block(B)g4. holds if and only if (d, ¢) # (0, 0)
is a block. To describe dicliques, we use that for a relation R : 2V «— 2V and a
pair (s,1) € 2V x 2V we have max(C, R),; if and only if s is inclusion-maximal
in the set {s’ € 2V : Ry1}. Hence, a two-fold maximalization via the functional
max yields

diclique( B) = max(C, max(C, block(B))T)T

as the relation diclique(B) : 2V « 2V of the dicliques of the directed graph G.
Now, let D C 2" (resp. C C 2") be the set of domains (resp. co-domains) of
the dicliques of G. Then we have the two injections

Wdiclique(B)L) : D — 2V Wdiclique(B)L) : C — 2V

for embedding D and C, respectively, into 2. Based on these injections, finally,
we are able to define a relation Diclique(B) : D — C describing the correspon-
dence between the domain and the co-domain of a diclique by

Diclique(B) = o(diclique(B)L)diclique( B)u(dicligue(B)TL)T

This means: A pair (d,¢) € D x C'is a diclique of G if and only if Diclique(B).q
holds.



4.5 Homomorphisms

This example will show how to describe the computation of sets of functions
from a set V to a set W with relation-algebraic means. As already mentioned,
we consider the set WV of functions from V to W as the set of the functional
and total relations between V and W, i.e., as a subset of the powerset 2V W
Therefore, suppose ep : V x W «— WV to be the “is-element-of” relation between
V x W and the set WV .

Let G = (V,B) and ‘H = (W, C) be directed graphs and @ € 2V*W be a
function in the relational sense (see Subsection 2.2). Furthermore, assume (7, p)
to be the projections of the direct product V x W to the first and the second
component, respectively. If we use the common function notation for = and p,
the fact that @ is a homomorphism means exactly that the first-order formula

ANuwed®— N\©wed— (Brum) = Cotuo))

is valid; see Subsection 3.1. Now, we use the relational notation also for the two
projections 7 and p, i.e., write (7B7 1)y, (resp. (pCpt)y,) instead of Br(uyr(v)
(resp. Cy(u)p(v))- This leads to the equivalent version

/\u €EP— /\(v €® — (rBrT U pCp")uy) -

Hence, we have again the pattern of the formula defining a set to be stable and,
therefore, we get the vector hom(B,C) : WY « 1 describing the homomor-
phisms from B to (' as

hom(B,C) = (ep N 7BxT U pCpTep)\ O = (er N (7BaL N pCpT)er)\ O ,

where the typing of the empty relation is O : V x W « 1.

5 Development of Efficient Algorithms

The execution of a specification produced in the way described in Section 4, fre-
quently may be fairly inefficient. In this subsection we demonstrate by means of
an example how to develop more efficient algorithms from the original inefficient
specifications using the relational calculus.

We consider again the problem of computing the kernels of a directed graph
G = (V, B). In contrast with Subsection 4.1, however, in the following we do not
consider sets as points p : 2V « 1 but as vectors v : V « 1. In doing so, € p
will be replaced by v;. So, the first-order formulae of Subsection 4.1 defining
absorbant and stable sets become

/\Ex — \/(ay A Byy) /\sx — /\(sy —>§w) .

Translating these formulae into a notation without components, we get the in-
clusions @ C Ba and s C Bs. As a consequence, a vector k& : V < 1 is a kernel



of G if and only if k = Bk, i.e., if and only if it is a fixpoint of the functional
7(v) = Bu.

This example shows also that the change of set-representation does not el-
eminate the use of higher-order structures. Instead of the relation €, in the new
specification now a functional 7 is used. However, for specific classes of graphs
the fixedpoint specification enables the development of efficient algorithms as
will be shown now.

5.1 Progressively Finite Graphs

The just defined functional 7 is antitone, so the fixpoint theorem for monotone
functions on complete lattices cannot be applied. We therefore study the fix-
points of 72(v) := 7(7(v)) = BBv which is monotone. Suppose m,2 and M=
to denote the least resp. greatest fixpoint of 72. Then we have for each kernel k
that

ocr*(0)cr0)c...CmeCkCMeacC...7L)cr*(L)CL .
Also the two equations
(1) T(m7-2) = M7-2 (11) T(MT2) = M2

easily can be shown. Hence, if the gap between the lower bound m,2 and the
upper bound M2 of the set of all kernel closes, then the uniquely determined
fixpoint is a kernel of G:

Theorem. If the functional 7 has exactly one fizpoint (which is equivalent to
M2 C7(My2) or to T(my2) C myz ), then G has precisely one kernel. O

Using this theorem, for instance, it can be shown that a progressively finite
graph G = (V, B) (i.e., a graph in which all paths have finite lengths) has exactly
one kernel. When specifying progressive finiteness relationally, we obtain

(%) /\(v:vL/\vCBv—>v:O).

v

Now, if we use the Schroder equivalences, we obtain BTM.. C BM,> from
M,2 C 7%(M,2). Next, the Dedekind rule yields

BM.: N0 M2 C (B N M,&ME)(M,& N BTMTz)
C B(M,> N BYM,.)
C B(M,a N BMTz)

and, finally, in combination with () we obtain BM,2 N M= = O, which implies
M2 C 7(M;z). Hence, the functional 7 has precisely one fixpoint.

For the point set being finite we have that a directed graph is progressively
finite if and only if it is circuit-free. Therefore, we can compute the only kernel of
a finite circuit-free graph G = (V, B) by the iteration O C 72(0) Cc 7*(0) C ...
which takes at most |V| steps.



At this place 1t should be mentioned that in the case of a transitive relation
B the iteration stops after one step. This is due to the fact that in the case
B = Bt and B = B*BL (this latter condition follows from (*) and means that
from each point there is a path to a terminal one) the only kernel of G is the
least absorbant set which equals the set BL : V « 1 of all terminal points:

7%(0) = BBO = BL = BBL = 7%(L)

follows from BBL C BL and L = B*BL = BLU Bt BL = BL U BBL which in
turn is equivalent to BL C BBL.

5.2 Bipartite Graphs

Now, assume G = (X,Y, R, S) to be a bipartite graph in the sense of Subsection
4.3,1.e,we have R: X «— Y and S : Y — X. Furthermore let + : X —« X +Y
and k : Y < X 4+ Y be the natural injections into the binary direct sum X + Y.
Then

H = (V,B), where V:= X +Y and B:=/"Re UxT S ,

is the “ordinary” directed graph corresponding to G. Generalizing the above
technique of the composition of the antitone functional 7 with itself to pairs of
antitone functionals and using the laws of the direct sum, in the following we will
show that H has at least two kernels. To this end, we consider the functionals
a(v) = Rv and B(w) = Sw and obtain for the least and greatest fixpoints of the
compositions

(i) ®(Mgoa) = Maop (ii) a(mgoa) = Maop
(iil) B(Maop) = mpoa  (iv) B(Maop) = Mpoa -

If we use (only for explanatory purposes) 2 x 2-matrices and 2-vectors with
relations and vectors, respectively, as coefficients, then we have B as matrix

o-(28

and obtain two kernels of H by the vectors

M m
k — ozoﬁ k — ozoﬁ
' (mﬁoa) ’ (Mﬁoa

A component-free proof of this fact based on (i) through (iv) and the relational
characterization of the direct sum 1s given in the following. Define two vectors

ky = LTMQO@ U ﬁTm@oa X +Y <1
ko = LTmao@ U HTM@M X +Y < 1.

Then, we obtain the equations Bk, = k; and Bks = k. E.g., a proof of Bk, = ki
proceeds as follows: We use an immediate consequence of (S7) through (S3), viz.
«TL = «TL, and obtain

k7L =.TL C LTMaoﬁ JL=rTLC HTm,@oa .



From the axioms of the direct sum we get also that both ;T and K’Iﬁe partial
functions and, due to Proposition 4.2.2.v of [25] (saying that QR = QRN QL for
@) being a partial function), we have

LTMQO@ = 1T Maop N L ﬁTm@oa = kTmgoa N kTL .
Now, we combine these properties and arrive at

" Muop U " Mgea = (" Maop NeTL) U (KT mgeq N kTL)

= (1" Maop U kT mgon) N (1T Maos U kTL)
NTLU KT mgon) N (TLUKTL)
(LT Maop U KT mgoa) N T Maos N ETMgoq
T Maop N ETMgeq

which in turn implies the desired result as follows:

Bky = (TR UKTS)(0" Maop U K mg0q )

= LTRm@(,CY U HTSMQO@ axioms of the direct sum
= LTa(m@oa) U ﬁTﬁ(Mao@)
= LTMQO@ U ﬁTm@oa due to (ii) and (iii)

= TMaos N ETMgoa

= 1TMaop UKTmgoa
=k .

Altogether, we have shown the following generalization of Richardson’s the-
orem an early version of which goes back to [27].

Theorem. If G s a bipartite graph, then the corresponding directed graph H
has (not necessarily distinct) kernels ki and ko. O

Namely, these two kernels can be computed with the help of the iterations
O C aoB(0) C aoP(aoB(0)) C ... O C Boa(0) C Boa(Boa(0)) C ...

to obtain maop and mgea, since by applying (iv) and (ii), respectively, from
above we can obtain the missing Mg and Mqyops.

Continuing the preceding treatment, the report [8] also deals with the eval-
uation of graph games, where moves are one-step walks along the edges, due to
loss, draw (by infinite repetition), and win: loss is obtained as the greatest stable
set and win 1s described as the complement of the smallest absorbant set.

6 Concluding Remarks

In this paper we have described a rapid prototyping approach for the enumera-
tion of certain mathematical objects in terms of relations. This has lead to an
extensive use of a relational characterization of higher-order objects like sets,
sets of sets, or functions. We have also shown how to develop more efficient algo-
rithms from inefficient specifications within the abstract relational framework.



Let us close with a few remarks about the execution of relational specifica-
tions. All examples given in this paper have been performed using RELVIEW, a
totally interactive and completely video-oriented computer system for the man-
ipulation of concrete relations which are considered as Boolean matrices (see
[1, 4]). The system does not only provide commands implementing the basic
operations on relations, but also commands for residuals, quotients, and clo-
sures, commands for certain tests on relations, and commands which implement
the operations important in relation-algebraic domain description (direct prod-
uct, direct sum, injections from vectors, power sets, and function spaces). And,
finally, RELVIEW allows the user to define and apply its own functionals on re-
lations, where in the case of a unary functional with identical domain and range
also repeated application is possible by an iteration command. A useful fact in
applications is that the latter command can be used to compute fixpoints of
monotone functionals, as for the efficient computations of Section 5. Of course,
computation with RELVIEW is limited in space and time. The limit, however,
depends heavily on the type of problem handled. In general, it is difficult to
treat the powerset of a set or function spaces since this means the computation
of vectors v : 2V — T or v : WY — 1 and consumes a lot of space and time.
However, the handling of relations R : V «— V, vectors v : V x V «— 1, or vec-
tors v : V < 1 is of such a complexity that admits a wide range of RELVIEW
applications. E.g., on our installation (SUN SPARCstation 10) we have treated
relations with domain/range up to 5000 elements. As the computation of ker-
nels shows, it seems promising to apply the relational calculus to obtain efficient
algorithms from inefficient specifications.

Acknowledgement: We wish to thank the referees for helpful comments and
hints.
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