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Abstract

The uni�ed modeling language �UML� developed under the coordination

of the Object Management Group �OMG� is one of the most important stan�

dards for the speci�cation and design of object�oriented systems� This stan�

dard is currently tuned for real�time applications in the form of a new proposal�

UML for Real�Time �UML�RT�� by Rational Software Corporation and Ob�

jecTime Limited� Because of the importance of UML�RT we are investigating

its formal foundation in a joint project between ObjecTime Limited� Technis�

che Universit�at M�unchen and the University of Bucharest� In this paper we
present part of this foundation� namely the theory of �ow�graphs�

� Introduction

The speci
cation and design of an interactive system is a complex task that has to
work out data� behavior� intercommunication� architecture and distribution aspects
of the modeled system� Moreover the speci
cation has to assure the successful com�
munication between the customer and the software expert� In order to ful
ll these
requirements� an UML�RT ��� speci
cation for an interactive system is a combined
visual�textual speci
cation� called a capsule class� which is built hierarchically as
shown in Figure 	� left�

A capsule class has associated two visual speci
cations
 a structure speci
cation
and a behavior speci
cation� The structure speci
cation gives the architecture of
the capsule in terms of other capsules and connectors �or duplex channels� between
capsules� The connectors are typed� i�e�� they have associated protocol classes de
n�
ing the messages allowed to �ow along the connectors� The types of the messages�



and therefore the protocols themselves� are de
ned in terms of data classes or di�
rectly in C�� or RPL�� The �ow of the messages along the channels is controlled
by the run�time system�

The behavior of a capsule is controlled by a state transition diagram� The state
variables and the functions occurring in this diagram are also de
ned in terms of
data�classes� C�� or RPL� Moreover� the detailed description of the actions as�
sociated to a transition are given in C�� or in RPL� Hence� the UML�RT visual
speci
cations build on the top of a sequential object�oriented language� Special ac�
tions like sending a message or setting a timer are performed by calling the run�time
system� Hence� UML�RT also builds upon a communication and synchronization
model� Since a sender may always send a message this is an asynchronous commu�
nication model�
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Figure 	
 The layers of UML�RT

The semantics we currently de
ne for UML�RT� in a joint project between Objec�
Time Limited� Technische Universit�at M�unchen and the University of Bucharest�
follows a similar hierarchy� as shown in Figure 	� right� It consists of a structure�
model� a behavior�model and a state�model� Each model interprets an associated
interaction�graph� These graphs closely resemble the UML�RT visual speci
cations�
However� they are completely formalized and this makes them an ideal candidate
for the semantics�

The structure�model de
nes the structure of a capsule class in terms of other cap�
sules and connectors between these capsules� It also de
nes the synchronization
between capsules� The behavior�model de
nes the behavior of a capsule in terms
of hierarchical states and transitions between these states� The state�model is the
equivalent of the data�classes and the object�oriented languages� It allows us to
de
ne arbitrary data�types and functions processing these types� Hence� it is used
both by the structure and the behavior�models� In contrast to UML�RT� this is also
a model for interaction�graphs� Hence� using our semantics� one can make UML�RT
completely visual and independent from any particular programming language�

�RPL �Rapid Prototyping Language� is a very simple object�oriented language based on
Smalltalk����



Finally� interaction graphs are implemented by �ow�graphs� In contrast to interac�
tion graphs which are appropriate for high�level design� the later ones are low�level
graphs which make causality explicit�

Because of obvious space limitation� in this paper we concentrate on the theory
of �ow�graphs� This theory is characterized by three elements
 a visual notation�
a textual notation and a calculus� The visual notation consists of a set of graph�
construction primitives presented in a visual form� They de
ne the user interface
to an abstract editor for diagrams� The textual notation consists of the same set of
graph�construction primitives� presented in a textual form� They de
ne an abstract
internal representation of the above primitives� The textual form is automatically
generated from the visual form� and it is usually hidden from the user� It can be
roughly understood as the program that actually runs on the computer� Finally� the
calculus is the engine that allows us to transform a diagram into another diagram
that has the same meaning but optimizes time and�or space� Moreover it determines
whether two diagrams are equivalent� The calculus consists of a set of equations
which identify equal graphs� This immediately allows us to compare diagrams�
Orienting the equations �e�g� from left to right� one obtains a rewriting calculus�
i�e�� an interpreter�

The rest of the paper is organized as follows� In Section � we introduce the syntax
of �ow�graphs� In Section � we present the calculus of �ow�graphs� In Section �
we present a non�trivial �ow�graphs transformation by using the above calculus�
Finally in Section � we draw some conclusions�

� Flow�Graphs Syntax

A hierarchical �ow�graph consists of a set of nodes connected by a set of directed
arcs� In the following we treat the syntax of �ow�graphs and their axioms�

��� Nodes

Consider the graph shown in Figure �� left� consisting of two nodes A and B and an
arrow m from A to B� Regarding A and B as sets �or types� m can be regarded as
a function �or transition relation� mapping elements of A into elements of B� The
corresponding textual notation is then m 
 A� B�

m
A B A Bm

Figure �
 Alternative representation of nodes and arrows

Since m turns out to be the most important element of the graph� one can change
the roles of nodes and arrows and obtain the graph shown in Figure �� right� This



graph has a very intuitive computational interpretation
 m is a computation unit
receiving on the input port messages of type A from the environment and sending
along the output port messages of type B to the environment� Hence� this notation is
well suited for the description of open systems� These are systems that are connected
to the environment� In the following� we shall use only this notation�

For example� the right�hand�side notation of Figure � is used in UML�RT both in
the architecture and in the behavior speci
cations� as shown in Figure ��

(A , B )- + A Bm m

Figure �
 Actors and states in UML�RT

In the architecture speci�cation� m is a capsule receiving messages of type A and
sending messages of type B along a duplex port� The tuple �A�� B�� is said to be the
protocol de
ning the input and the output messages �owing along the port� In the
behavior speci�cation� m is an extended state with an entry point A of an incoming
transition and an exit point B of an outgoing transition�

��� Graph Primitives

As shown in Figure �� we consider three operators on nodes
 sequential composition�
visual attachment and feedback �
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Figure �
 The node operators

Sequential composition� The most basic way to connect two nodes is by se�
quential composition� i�e�� as shown in Figure �� left� by connecting the output of
one node to the input of the other node� if they have the same type� Textually we
denote this operator by the semicolon �� Given m 
 A � B and n 
 B � C we
de
ne m�n to be of type m�n 
 A� C� Regarding the nodes as computation units�
Figure �� left� says that the output produced by m is directed to the input of n� The
connection between m and n as well as the units m and n themselves� are internal
to m�n� In other words� m�n does not only de
ne a connection relation but also a
containment relation�

Visual attachment� By visual attachment we mean that nodes and corresponding
arrows are put one near the other� as shown in Figure �� middle� To obtain a textual



representation for visual attachment� we need therefore an attachment operator both
on arrows and on nodes� We denote this operator by �� Given two arrows A and B

their visual attachment is expressed by A � B� Given two nodes m 
 A� � B� and
n 
 A� � B� their visual attachment is expressed as m � n 
 A� � A� � B� � B��
Visual attachments also de
nes a containment relation� We say that m and n are
contained in m � n�

Feedback� Sequential composition allows to connect nodes in a linear way� To
deal with loops we introduce a feedback operator that� as shown in Figure ��right�
allows to connect the rightmost output of a node to the rightmost input of the
same node� if they have the same type� Given m 
 A � C � B � C we de
ne
m �CA�B
 A� B� Feedback also introduces a containment relationship� We say that
m and the feedback arrow are contained in m �CA�B�

��� Connectors

The above graph primitives already allow us to construct a wide variety of graphs
from a given set of nodes� Since the primitives are strongly typed� the arrows of the
involved nodes have to match the arrows expected by the primitive� To take care
of possible mismatches we introduce� as shown in Figure �� four standard nodes

identity iA� transposition

A
X
B� identi�cation �A and rami�cation �A� Because they

allow us to �plug in nodes� we call them connectors�
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Figure �
 The connectors

Identity� In conjunction with visual attachment� the identity connector iA 
 A�A

allows us to adapt the interface of a node in a way that makes explicit what does
not change�

Transposition� The transposition connector A
X
B 
 A�B�B�A allows us to take

care of the left�right mismatch� by exchanging the left arrow with the right arrow�

Identi�cation The identi�cation connectors �A 
 E�A and �A 
 A�A�A allow us
to merge �or concentrate� control �ows in behavior speci
cations and to synchronize
communication in architecture speci
cations�

Rami�cation� The rami�cation connectors �A 
 A � E and �A 
 A � A � A

allow us to distribute control in behavior speci
cations and to copy �or broadcast�
messages in the architecture speci
cations�



� Flow�Graphs Properties

In this section we present the properties of the above graph�construction primitives
and connectors� They de
ne the calculus of �ow�graphs�

��� General Flow�Graphs

In this section we deal with general �ow�graphs� In the following section we treat
speci
c aspects of data��ow and control��ow graphs�
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 Properties of sequential composition

����� Sequential Composition

This section de
nes the axioms for sequential composition�

Associativity and unit� Suppose we connect three nodes� m�n and p as shown
in Figure �� left� Then we require that m� �n� p� maps A to D in the same way as
�m�n�� p� i�e�� sequential composition is associative� As a consequence� we can drop
the internal box in the visual notation and the parenthesis in the textual notation�
To put it in another way� an implementation using a left parsing of the composition
is considered to be equivalent with one using a right parsing or even with one using
a mixed parsing�

For each arrow A we also require the existence of an identity node iA� i�e�� of a node
that forwards its input to the output� Visually we represent this node by an arrow
or by an arrow surrounded by a dashed box if we want to emphasize it� This node
plays the role of a neutral element for composition� as shown in Figure �� right�

In mathematical terms� a graph equipped with a composition operation and iden�
tities such that composition is associative and has identities as neutral elements is
called a category �cat��
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Figure �
 Properties of visual attachment

����� Visual Attachment

Functoriality� Since m and n can themselves be composed nodes of the form
m � p�� q� and n � p�� q� one can wonder how visual attachment relates to sequen�
tial composition� A very reasonable assumption is that visual attachment preserves
sequential composition and identities as shown by �ssmc���� in Figure �� In math�
ematical terminology� a mapping � both on nodes and on arrows having the above
properties is called a functor�

Associativity and unit� Similarly to sequential composition we require that the
visual attachment of nodes is associative with unit the identity node iE as shown
by �ssmc���� in Figure �� The arrow E is the unit for the visual attachment of
arrows� In mathematical terminology� a category equipped with a functor which is
associative and has a neutral element is called a strict monoidal category �smc��

Commutativity� Two nodes m and n may be visually attached in two di�erent
ways
 m � n� i�e�� with m on the left or n � m� i�e�� with n on the left� Since we
are mainly interested in the �one near the other� relation� these two attachments



should be equivalent� However� one can in general not assume that A � B � B � A

�think about sets product�� but one can safely assume that A � B is isomorphic to
B�A� Denote by A

X
B 
 A�B � B�A the corresponding transposition isomorphism�

Then commutativity is expressed by �ssmc�� in Figure �� Transposition is extended
to the neutral arrow E and to composed arrows A � B as shown by �ssmc����� In
mathematical terminology� X makes the strict monoidal category symmetric �ssmc��
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Figure �
 Properties of feedback

����� Feedback

Naturality properties� The desired relation of feedback to sequential composition
is shown by �tmc���� in Figure �� The 
rst equation is called tightening � because it
tightens the scope of the feedback� The second equation is called sliding � because



n slides along the feedback loop� In mathematical terminology one says that the
feedback operator �CA�B is natural in the arrows A�B and C�

Superposing and yanking� The relation of the feedback to visual attachment and
to transposition is shown by �tmc���� in Figure �� The 
rst equation is also called
superposing � because it superposes feedback over visual attachment� The second
equation is also called yanking� because it behaves like yanking a rope�

Feedback on composed arrows� Since the category is monoidal� it also contains
arrows E and A �B� As a consequence� we have to de
ne the behavior of feedback
on these arrows� too� We do this by de
ning the behavior on E and by reducing the
behavior on A �B to the behavior on A and on B� as shown by �tmc���� in Figure
�� These equations are also called the vanishing equations because they show how
to decompose the feedback loop�

In mathematical terminology� a strict symmetric monoidal category together with
a feedback operator satisfying the tightening� sliding� superposing� yanking and
vanishing axioms is called a trace monoidal category �tmc��

����� Identi�cation
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Figure �
 Properties of identi
cation

Associativity� Since visual attachment is associative �with unit iE� and it com�
mutes with transposition� we require as shown by �mon���� in Figure �� that �A 

A�A�A is also associative �with unit �A 
 E�A� and that it commutes with
transposition�

The equation �mon�� allows to construct �or replace� an n�ary identi
cation either
by a left or by a right parse of binary identi
cations� The equation �mon�� allows to



eliminate identi
cations and the equation �mon�� allows to eliminate transpositions�
All three equations may be used to optimize the internal representation� In mathe�
matical terminology� one says that the arrow A equipped with the commutative and
associative connector �A with neutral element �A is a commutative monoid�

Extension to arbitrary arrows� The identi
cation connectors are extended to
E and A � B as shown by �mon���� in Figure �� The equations �mon���� allow to
eliminate identi
cations of empty arrows� The equations �mon���� give an inductive
algorithm for the construction of the identi
cation connectors on composed arrows�
Hence� each arrow A in the monoidal category has a commutative monoid structure�
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 Properties of morphisms

Monoid morphisms� Nodes that preserve this structure are called monoid mor�
phisms� Their morphism property is given by �mon��	� in Figure 	�� The morphism
property has a tremendous role in optimization because it allows to eliminate nodes�
An example for such an optimization is given in Section ��

����� Rami�cation
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 Properties of rami
cation



Coasociativity and coneutral� The coassociativity and cocommutativity prop�
erties of the rami
cation are the mirror image of the corresponding properties of
identi
cation� as shown in Figure 		� As with monoids� �com�� allows to opti�
mize sequences of binary rami
cations� �com�� allows to eliminate rami
cations and
�com�� allows to eliminate transpositions� In mathematical terminology� one says
that the arrow A equipped with the cocommutative and coassociative connector �A

with neutral element �A is a commutative comonoid�

Extension to arbitrary arrows� The rami
cation connectors are extended to
A � B and E as shown by �com���� in Figure 		� Equations �com���� allow to
eliminate rami
cations of empty arrows and equations �com���� give an inductive
algorithm for the construction of rami
cation on composed nodes� Hence� each
arrow A in the monoidal category also has a cocommutative comonoid structure�

Comonoid morphisms� Nodes that preserve this structure are called comonoid
morphisms� Their morphism property is given by �com��	� in Figure 	�� The
morphism property plays a very important role in optimization because it allows to
eliminate nodes�

����� Identi�cation and Rami�cation

Since visual attachment together with identi
cation and rami
cation generates both
a monoid and a comonoid structure on each arrow� one has to consider how these
structures relate to each other� A very reasonable requirement is that identi
cation
preserves the structure generated by rami
cation or equivalently that rami
cation
preserves the structure generated by identi
cation� In other words� identi
cation
is a comonoid morphism and rami
cation is a monoid morphism� In analogy with
bialgebras� we call A in this case a bimonoid� The requirement that �A is a comonoid
morphism is given by �bim���� in Figure 	��
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 Bimonoidal properties

From a practical point of view� the equations �bim�� and �bim�� allow to eliminate
identi
cations and rami
cations� The requirement that �A is a comonoid morphism



is given by �bim����� Again� from an optimization point of view� �bim���� allow to
eliminate identi
cations and rami
cations�

The �ow�graphs equations presented so far express the properties common both
to structure and behavior diagrams� In the next sections we introduce additional
properties� which further re
ne �ow�graphs� These properties are closely related to
the monoid� and comonoid�morphism properties�

��� Data�Flow Graphs

A data��ow graph is a �ow�graph such that for each arrow A there is a unique node
mapping this arrow to the unit arrow E� namely the connector �A� In mathematical
terminology� one says that each node m satis
es the comonoid�morphism property
�com�� and that E is a terminal element� We write E in this case also as 	� In
deterministic data��ow graphs any node m also satis
es the comonoid�morphism
property �com��� i�e�� each node in a deterministic data��ow graph is a comonoid
morphism�

The connector � allows us to de
ne two projection connectors �� and �� as shown
in Figure 	�� Using the comonoid properties one can show that for any m 
 C�A

and n 
 C�B� the projections have the properties given by �prod���� in Figure 	��
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 Projection connectors and their properties

The uniqueness of �A and �B assures that �� and �� are the unique nodes �up to
isomorphism� having the properties �prod����� The composed node �A� �m � n� is
also written as �m�n� and the above axioms as �m�n�� �� � m and �m�n�� �� � n�

In mathematical terminology� A �B together with the unique connectors �� and ��
satisfying �prod�� and �prod�� is a product and data��ow graphs have 
nite products�
The monoidal functor � is written in this case as � and the identi
cation and
rami
cation connectors as ��� 	 and ��� � respectively� The rami
cation connector is
also called in this case the diagonal connector�



��� Control�Flow Graphs

A control��ow graph is a �ow�graph such that for each arrow B there is a unique
node mapping the unit arrow E to B� namely the connector �B� In mathematical
terminology� one says that each node m satis
es the monoid�morphism property
�mon�� and that E is an initial element� We write E in this case also as �� In
deterministic control��ow graphs any node m also satis
es the monoid�morphism
property �mon��� i�e�� each node in a deterministic control��ow graph is a monoid
morphism�
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The connector � allows us to de
ne two injection connectors �� and �� as shown in
Figure 	�� Using the monoid properties one can show that for any m 
 A�C and
n 
 B�C� the injections have the properties given by the equations �coprod���� in
Figure 	��

The uniqueness of �A and �B assures that �� and �� are the unique nodes �up to
isomorphism� having the properties �coprod����� The composed node �m � n���C is
also written as �m�n� and the above axioms as ��� �m�n� � m and ��� �m�n� � n� The
node �m�n� works by case analysis
 if its argument comes from A then it applies m�
if it comes from B then it applies n�

In mathematical terminology� A � B together with the unique connectors �� and ��
satisfying �coprod���� is a coproduct �or sum� and control��ow graphs have 
nite
coproducts� The monoidal functor � is written in this case as � and the identi
ca�
tion and rami
cation connectors as �	�� and 	��� respectively� In this case the
identi
cation connector is also called the codiagonal connector� Note that control�
�ow graphs are obtained from data��ow graphs by reversing the direction of arrows�
We therefore say that control��ow graphs are dual to data��ow graphs�

��� Mixed Flow�Graphs

A mixed �ow�graph is a �ow�graph having both sums and products such that the
products distribute over sums� i�e�� for any arrows A�B�C there exist an isomorphism
�A�B���A�C� 
� A��B�C�� This isomorphism is a new connector denoted by ��



In mathematical terminology � and � together with � de
ne a distributive category
structure on �ow�graphs� To explicitly distinguish sums from products in mixed
�ow�graphs� we use di�erent shadings and interface layering� as shown in Figure 	��
This information may also be left implicit�
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Figure 	�
 The shading conventions

The connectors ��� and � may be understood as a generalization of de�multiplexers
and associative memories� For the particular case that B � C � 	 we obtain
B�C � 	�	 � B and A�	 � A� where B is the set of Booleans� In this case the
connector ��� 
 A�B�A�A acts as a de�multiplexer� Given a data input a�A and
a control input b�B � it forwards a along the 
rst output if b � ����� and along the
second output if b � ���	�� The values ����� and ���	� are often written simply as �
and 	 or as false and true� The connector � 
 A�A�A�B acts as an associative
memory� It forwards a on the data output and the channel number where a was
received on the control output�
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Figure 	�
 Branching� if and while

Given a predicate b 
 S�B � we can de
ne with the help of ��� the branching con�
nector of UM�RT�Charts as a mixed �ow�graph as shown in Figure 	�� left� This
connector used in conjunction with sequential composition and identi
cation allows
to de
ne the if b then f else g � construct as in Figure 	�� middle� It also allows
to de
ne in conjunction with feedback the while b do f od construct� as shown in
Figure 	�� right� Binary branching may be easily extended to n�ary branching by
replacing B with n � n � 	�

Isomorphism properties� The properties �dis���� in Figure 	� say that � and ���

are inverse to each other�

Mixed superposing� An important question to answer is how does the additive�
feedback relate to the product and dually� the multiplicative�feedback to the sum�
The corresponding properties as given by �dis���� in Figure 	��
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 Properties of distributivity

Intuitively� �dis�� says thatm and n compute in parallel and output the result simul�
taneously� If m is faster then n then it has to idle until n 
nishes its computation�
This is achieved by using feedback �hence A� � B�� and by requiring that nodes are
idempotent� i�e�� that m�m�a�� � m�a�� From another perspective� �dis�� allows to
push feedback outside an expression�

Intuitively� �dis�� says that �in each time unit� either m or n is allowed to compute
the result� depending on the control information in the input data �� � X� ��� If the
input is of the form �a�� �� then the output is �b�� �� and it is produced by m� In
this case� the current feedback value c for n has to be preserved� This is achieved
by putting m in parallel with the identity which simply forwards c to the output�
If the input is of the form �a�� 	� then the output is of the form �b�� 	� and it is
computed by n according to a� and the feedback input c� From another perspective�
dis� allows to push feedback outside an expression�

� Example of Flow�Graph Transformation

Suppose a 
rst team has developed a component m� a second team used m to
implement a component p � ���n� i�m� � and a third team used m and p to
implement a component q � m� p� The question is� if this component may be



optimized� This is de
nitely possible� as shown in Figure 	�� First� we use sliding
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Figure 	�
 A graph transformation

�tmc�� to move m above n� Then we use tightening �tmc�� to move the 
rst m inside
the internal box� Then we use the morphism property �mon�� to move m after the
identi
cation� Finally we use tightening again �tmc�� to drop the internal box�

This transformation is non�trivial� Both the visual representation �the application�
designer interface� and the textual representation �the tool�designer interface� are
not immediately related to the original diagram and textual representation� More�
over� the 
nal component was optimized because we eliminated one component m�
This may have important consequences if m is a large �hardware� component�

� Conclusions

The main bene
ts of the �ow�graph theory can be summarized as follows� First�
it introduces a set of graph�construction primitives in a consistent way � This di�
minishes the arbitrariness in the choice of these primitives� Second� it provides
a mathematically precise semantics for these primitives� This is very useful as a
reference both for tool designers and for system development engineers because it
eliminates misinterpretation� Third� it provides a calculus which allows us to com�
pare and to optimize designs and even to do rapid prototyping� While the visual



notation is the interface to system engineers� the textual notation is the interfaces
to tool developers�

The general calculus of �ow�graphs is not new� It was already presented in the con�
text of �ow�charts in ���� The axioms for feedback were independently rediscovered
in ���� The intuitive names for these axioms were borrowed from that paper� Similar
properties for identi
cation and rami
cation were also given in ���� The �ow�graphs
operators were also used for the description of interactive systems in ��� and for
dynamic systems in ����

The treatment of data��ow and control��ow graphs as specialization of �ow�graphs
is to our knowledge new� The same holds for the treatment of mixed �ow�graphs�
In particular� for the axioms �bis���� The 
rst one relates additive �or timeless�
feedback to multiplicative �or parallel� composition� The second one relates multi�
plicative �or timed� feedback to additive �or alternative� composition� Conditions
related to �bis�� also occur in ���� However� this paper lacks the feedback operators�
which makes the formalization more complicated and less transparent�

The use of the �ow�graph theory in the context of visual formalisms� especially
for UML�RT is also new� Moreover� this theory also forms the basis for the de�
velopment of the theory of interaction�graphs� These are particularly relevant for
UML�RT structure diagrams and for the de
nition and use of procedures in UML�
RT behavior diagrams� By treating structure�diagrams and procedures as ordinary
data which can be manipulated and sent along channels� interaction�graphs also al�
low the description of mobile systems� The axiomatization of interaction�graphs is
very similar in spirit to the general form of the geometry of interaction �	��
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