Towards a Calculus for UML-RT Specifications

R. Grosu, M. Broy, B. Selic*, Gh. Stefanescu?

Institut fiir Informatik, TU Miinchen, D-80290 Miinchen
*ObjecTime Limited, K2K 2E4 Kanata, Ontario
tFaculty of Mathematics, University of Bucharest, RO-70109 Bucharest

email:grosu,broy@in.tum.de, bran@QObjecTime.com, ghstef@stoilow.imar.ro

Abstract

The unified modeling language (UML) developed under the coordination
of the Object Management Group (OMG) is one of the most important stan-
dards for the specification and design of object-oriented systems. This stan-
dard is currently tuned for real-time applications in the form of a new proposal,
UML for Real-Time (UML-RT), by Rational Software Corporation and Ob-
jecTime Limited. Because of the importance of UML-RT we are investigating
its formal foundation in a joint project between ObjecTime Limited, Technis-
che Universitdit Minchen and the University of Bucharest. In this paper we
present part of this foundation, namely the theory of flow-graphs.

1 Introduction

The specification and design of an interactive system is a complex task that has to
work out data, behavior, intercommunication, architecture and distribution aspects
of the modeled system. Moreover the specification has to assure the successful com-
munication between the customer and the software expert. In order to fulfill these
requirements, an UML-RT [8] specification for an interactive system is a combined
visual /textual specification, called a capsule class, which is built hierarchically as
shown in Figure 1, left.

A capsule class has associated two visual specifications: a structure specification
and a behavior specification. The structure specification gives the architecture of
the capsule in terms of other capsules and connectors (or duplex channels) between
capsules. The connectors are typed, i.e., they have associated protocol classes defin-
ing the messages allowed to flow along the connectors. The types of the messages,

and therefore the protocols themselves, are defined in terms of data classes or di-
rectly in C++ or RPL!. The flow of the messages along the channels is controlled
by the run-time system.

The behavior of a capsule is controlled by a state transition diagram. The state
variables and the functions occurring in this diagram are also defined in terms of
data-classes, C++ or RPL. Moreover, the detailed description of the actions as-
sociated to a transition are given in C++ or in RPL. Hence, the UML-RT visual
specifications build on the top of a sequential object-oriented language. Special ac-
tions like sending a message or setting a timer are performed by calling the run-time
system. Hence, UML-RT also builds upon a communication and synchronization
model. Since a sender may always send a message this is an asynchronous commu-
nication model.

capsule-class component model

has has
structure |, behavior ’m’:’m‘
controls controls
USeS | Uses| uses USeS | Uses | uses models | uses uses | models
data-class state-model
encoded models
’ c++orrpl ‘ ’ interaction-graphs ‘
l embedded l implemented
’ run-time system ‘ ’ flow-graphs ‘

Figure 1: The layers of UML-RT

The semantics we currently define for UML-RT, in a joint project between Objec-
Time Limited, Technische Universitat Miinchen and the University of Bucharest,
follows a similar hierarchy, as shown in Figure 1, right. It consists of a structure-
model, a behavior-model and a state-model. Each model interprets an associated
interaction-graph. These graphs closely resemble the UML-RT visual specifications.
However, they are completely formalized and this makes them an ideal candidate
for the semantics.

The structure-model defines the structure of a capsule class in terms of other cap-
sules and connectors between these capsules. It also defines the synchronization
between capsules. The behavior-model defines the behavior of a capsule in terms
of hierarchical states and transitions between these states. The state-model is the
equivalent of the data-classes and the object-oriented languages. It allows us to
define arbitrary data-types and functions processing these types. Hence, it is used
both by the structure and the behavior-models. In contrast to UML-RT, this is also
a model for interaction-graphs. Hence, using our semantics, one can make UML-RT
completely visual and independent from any particular programming language.

'RPL (Rapid Prototyping Language) is a very simple object-oriented language based on
Smalltalk-80.

Finally, interaction graphs are implemented by flow-graphs. In contrast to interac-
tion graphs which are appropriate for high-level design, the later ones are low-level
graphs which make causality explicit.

Because of obvious space limitation, in this paper we concentrate on the theory
of flow-graphs. This theory is characterized by three elements: a wisual notation,
a textual notation and a calculus. The visual notation consists of a set of graph-
construction primitives presented in a visual form. They define the user interface
to an abstract editor for diagrams. The textual notation consists of the same set of
graph-construction primitives, presented in a textual form. They define an abstract
internal representation of the above primitives. The textual form is automatically
generated from the visual form, and it is usually hidden from the user. It can be
roughly understood as the program that actually runs on the computer. Finally, the
calculus is the engine that allows us to transform a diagram into another diagram
that has the same meaning but optimizes time and/or space. Moreover it determines
whether two diagrams are equivalent. The calculus consists of a set of equations
which identify equal graphs. This immediately allows us to compare diagrams.
Orienting the equations (e.g. from left to right) one obtains a rewriting calculus,
i.e., an interpreter.

The rest of the paper is organized as follows. In Section 2 we introduce the syntax
of flow-graphs. In Section 3 we present the calculus of flow-graphs. In Section 4
we present a non-trivial flow-graphs transformation by using the above calculus.
Finally in Section 5 we draw some conclusions.

2 Flow-Graphs Syntax

A hierarchical flow-graph consists of a set of nodes connected by a set of directed
arcs. In the following we treat the syntax of flow-graphs and their axioms.

2.1 Nodes

Consider the graph shown in Figure 2, left, consisting of two nodes A and B and an
arrow m from A to B. Regarding A and B as sets (or types) m can be regarded as
a function (or transition relation) mapping elements of A into elements of B. The
corresponding textual notation is then m : A — B.

A—(m)—e

Figure 2: Alternative representation of nodes and arrows

Since m turns out to be the most important element of the graph, one can change
the roles of nodes and arrows and obtain the graph shown in Figure 2, right. This

graph has a very intuitive computational interpretation: m is a computation unit
receiving on the input port messages of type A from the environment and sending
along the output port messages of type B to the environment. Hence, this notation is
well suited for the description of open systems. These are systems that are connected
to the environment. In the following, we shall use only this notation.

For example, the right-hand-side notation of Figure 2 is used in UML-RT both in
the architecture and in the behavior specifications, as shown in Figure 3.

(niws Al
Figure 3: Actors and states in UML-RT

In the architecture specification, m is a capsule receiving messages of type A and
sending messages of type B along a duplex port. The tuple (A~, B*) is said to be the
protocol defining the input and the output messages flowing along the port. In the
behavior specification, m is an extended state with an entry point A of an incoming
transition and an exit point B of an outgoing transition.

2.2 Graph Primitives

As shown in Figure 4, we consider three operators on nodes: sequential composition,
visual attachment and feedback.

A
A, Ay
OGN
B, B, B
sequential composition visual attachment feedback

Figure 4: The node operators

Sequential composition. The most basic way to connect two nodes is by se-
quential composition, i.e., as shown in Figure 4, left, by connecting the output of
one node to the input of the other node, if they have the same type. Textually we
denote this operator by the semicolon ;. Given m : A — B and n: B — C we
define m;n to be of type m;n : A — C. Regarding the nodes as computation units,
Figure 4, left, says that the output produced by m is directed to the input of n. The
connection between m and n as well as the units m and n themselves, are internal
to m;n. In other words, m;n does not only define a connection relation but also a
containment relation.

Visual attachment. By visual attachment we mean that nodes and corresponding
arrows are put one near the other, as shown in Figure 4, middle. To obtain a textual

representation for visual attachment, we need therefore an attachment operator both
on arrows and on nodes. We denote this operator by *. Given two arrows A and B
their visual attachment is expressed by A * B. Given two nodes m : A; — B; and
n : Ay — B, their visual attachment is expressed as m *n : A; * Ay — B; x B».
Visual attachments also defines a containment relation. We say that m and n are
contained in m x n.

Feedback. Sequential composition allows to connect nodes in a linear way. To
deal with loops we introduce a feedback operator that, as shown in Figure 4,right,
allows to connect the rightmost output of a node to the rightmost input of the
same node, if they have the same type. Given m : A x C — B x C we define
m Tg, g A — B. Feedback also introduces a containment relationship. We say that
m and the feedback arrow are contained in m 1 p.

2.3 Connectors

The above graph primitives already allow us to construct a wide variety of graphs
from a given set of nodes. Since the primitives are strongly typed, the arrows of the
involved nodes have to match the arrows expected by the primitive. To take care
of possible mismatches we introduce, as shown in Figure 5, four standard nodes:
identity i4, transposition “XB, identification V , and ramification A*. Because they
allow us to “plug in nodes” we call them connectors.

A Y A
A B A A A A
identity transposition identification ramification

Figure 5: The connectors

Identity. In conjunction with visual attachment, the identity connector i4 : A—A
allows us to adapt the interface of a node in a way that makes explicit what does
not change.

Transposition. The transposition connector “XP : AxB—BxA allows us to take
care of the left /right mismatch, by exchanging the left arrow with the right arrow.

Identification The identification connectors T4 : E—Aand V, : AxA—A allow us
to merge (or concentrate) control flows in behavior specifications and to synchronize
communication in architecture specifications.

Ramification. The ramification connectors 14 : A — Fand A : A = Ax A
allow us to distribute control in behavior specifications and to copy (or broadcast)
messages in the architecture specifications.

3 Flow-Graphs Properties

In this section we present the properties of the above graph-construction primitives
and connectors. They define the calculus of flow-graphs.

3.1 General Flow-Graphs

In this section we deal with general flow-graphs. In the following section we treat
specific aspects of data-flow and control-flow graphs.

(cat)): Associativity of ; (caty): Unitof;

= (m;n);p m;n;p iam = mig = m

Figure 6: Properties of sequential composition

3.1.1 Sequential Composition

This section defines the axioms for sequential composition.

Associativity and unit. Suppose we connect three nodes, m,n and p as shown
in Figure 6, left. Then we require that m; (n;p) maps A to D in the same way as
(m;n);p, i.e., sequential composition is associative. As a consequence, we can drop
the internal box in the visual notation and the parenthesis in the textual notation.
To put it in another way, an implementation using a left parsing of the composition
is considered to be equivalent with one using a right parsing or even with one using
a mixed parsing.

For each arrow A we also require the existence of an identity node i4, i.e., of a node
that forwards its input to the output. Visually we represent this node by an arrow
or by an arrow surrounded by a dashed box if we want to emphasize it. This node
plays the role of a neutral element for composition, as shown in Figure 6, right.

In mathematical terms, a graph equipped with a composition operation and iden-
tities such that composition is associative and has identities as neutral elements is
called a category (cat).

(ssmcy): preserves composition (ssmcy): preservesidentities

(P * (i a)=(p,*p)i(a,* a) is*ig = i
(ssmc,): Associativity (ssmc,): Unit
Al Ay Ag AL Ay Ag A E E A A
| | | | | |
| — — !
w000 - (@) -
[[[[
') 1) 1 1
B, B, Bsg B, B, Bs B E E B B
m* (n* p) = (m*n)*p m*ig = ie*m = m
(ssmcg): Commutativity (ssmcg): X and E (ssmc)): X and A*B
Az |As Al A,
V ¥ i v E A A A B C AB C
W) - (@0 < VO LS
B A E A
Bal 1B, Byl 1B, CA B CAB
Pax Ao em) BB = men &= i, ABYC = (i, #BXO); (AXCrig)

Figure 7: Properties of visual attachment

3.1.2 Visual Attachment

Functoriality. Since m and n can themselves be composed nodes of the form
m = p1; ¢, and n = po; gy one can wonder how visual attachment relates to sequen-
tial composition. A very reasonable assumption is that visual attachment preserves
sequential composition and identities as shown by (ssmci_y) in Figure 7. In math-
ematical terminology, a mapping * both on nodes and on arrows having the above
properties is called a functor.

Associativity and unit. Similarly to sequential composition we require that the
visual attachment of nodes is associative with unit the identity node ¢z as shown
by (ssmes_4) in Figure 7. The arrow E is the unit for the visual attachment of
arrows. In mathematical terminology, a category equipped with a functor which is
associative and has a neutral element is called a strict monoidal category (smc).

Commutativity. Two nodes m and n may be visually attached in two different
ways: m x n, i.e., with m on the left or n * m, i.e., with n on the left. Since we
are mainly interested in the “one near the other” relation, these two attachments

should be equivalent. However, one can in general not assume that A« B = B x A
(think about sets product), but one can safely assume that A x B is isomorphic to
BxA. Denote by AXP : Ax B — Bx A the corresponding transposition isomorphism.
Then commutativity is expressed by (ssmcs) in Figure 7. Transposition is extended
to the neutral arrow E and to composed arrows A x B as shown by (ssmeg_7). In
mathematical terminology, X makes the strict monoidal category symmetric (ssmc).

(tmcy): Tightening (tmcy): Sliding

m

n)
D C D

=Lt
N\,
o[Ve3>

) P B B
| C—) ~—
E E
(m*i;n; (P*iNSe = m; (nt5);:p Mg M1, = () sm2,
(tmcy): Superposing (tmcy: Yanking
Al A2 Al A2
C
C [{
O] | =[G) -
¢ C
B, B, B, B,
m* (r”iz,Bz) = (m* n) */(a:l*Az,BfBz ("X = I
(tmcg): Vanishingon C*D (tmcg: Vanishingon E
A A
A A
] p—
v |
m) llen| = || m)q |0 () e[= (m)
—_
B B B B
miap = (M1ta0ED)tAs Mtre = m

Figure 8: Properties of feedback

3.1.3 Feedback

Naturality properties. The desired relation of feedback to sequential composition
is shown by (¢me;) in Figure 8. The first equation is called tightening, because it
tightens the scope of the feedback. The second equation is called sliding, because

n slides along the feedback loop. In mathematical terminology one says that the
feedback operator Tg, g is natural in the arrows A, B and C.

Superposing and yanking. The relation of the feedback to visual attachment and
to transposition is shown by (tmcs—_4) in Figure 8. The first equation is also called
superposing, because it superposes feedback over visual attachment. The second
equation is also called yanking, because it behaves like yanking a rope.

Feedback on composed arrows. Since the category is monoidal, it also contains
arrows F and A * B. As a consequence, we have to define the behavior of feedback
on these arrows, too. We do this by defining the behavior on E and by reducing the
behavior on A % B to the behavior on A and on B, as shown by (tmecs_¢) in Figure
8. These equations are also called the vanishing equations because they show how
to decompose the feedback loop.

In mathematical terminology, a strict symmetric monoidal category together with
a feedback operator satisfying the tightening, sliding, superposing, yanking and
vanishing axioms is called a trace monoidal category (tmc).

3.1.4 Identification

(mony) Associativity (mon,) Unit (mong) Commutativity
AA A A AA E A A E A A A
l\y) \</| L{' _ u - A A_ ><
A A A A \,(A
(ia*Va);Va = (Vaxia);Va (Taxia);Va = (ia*Ta);Va=ia Va ZAXA; Va
(mon,) A*B identification (mons) A*B unit (mong) E identification (mon;) E unit
A B A B
ABAB \ >< | E E E E E E E E
Y- N [] Y o= 1 =]
AB AB A B E E E E
A B
Vas= (ia* X% ig)i(Vax Vg) Tag = Tax T Ve o o= g Te = g

Figure 9: Properties of identification

Associativity. Since visual attachment is associative (with unit ix) and it com-
mutes with transposition, we require as shown by (mon;_3) in Figure 9, that Vv , :
AxA—A is also associative (with unit T4 : E—A) and that it commutes with
transposition.

The equation (mon;) allows to construct (or replace) an n-ary identification either
by a left or by a right parse of binary identifications. The equation (mons) allows to

eliminate identifications and the equation (mons) allows to eliminate transpositions.
All three equations may be used to optimize the internal representation. In mathe-
matical terminology, one says that the arrow A equipped with the commutative and
associative connector V, with neutral element T 4 is a commutative monoid.

Extension to arbitrary arrows. The identification connectors are extended to
E and A % B as shown by (mony 7) in Figure 9. The equations (mong_7) allow to
eliminate identifications of empty arrows. The equations (mon4_5) give an inductive
algorithm for the construction of the identification connectors on composed arrows.
Hence, each arrow A in the monoidal category has a commutative monoid structure.

(mong) ldentif and m (mong) Unit and m (comg) Ramif and m (comg) Counit and m
A A A A E E A A A A
L ‘ A |
: P X da :
PE s
B B B B B B B B E
Va;m = (m+m);Vg Ta;m = Ts m;A2 = A (mxm) m;1® = i

Figure 10: Properties of morphisms
Monoid morphisms. Nodes that preserve this structure are called monoid mor-
phisms. Their morphism property is given by (mong o) in Figure 10. The morphism
property has a tremendous role in optimization because it allows to eliminate nodes.
An example for such an optimization is given in Section 4.

3.1.5 Ramification

(com;) Coassociativity (com,) Counit (comg) Cocommutativity
LooX LA A
A
A A | Lno X
AA A A AA E A A E A A A
Niax N = N (Nxin) A (Pri) =AY (ax =i A=A AR
(comy) A*B ramification (coms) A*B counit (comg) E ramification (com;) E counit
AB A B E E
A AN T) §
o X e S
A B A B E EE E E E E E
M= (PP (g s ig) 1M = 1w 1B S S = 5=k

Figure 11: Properties of ramification

Coasociativity and coneutral. The coassociativity and cocommutativity prop-
erties of the ramification are the mirror image of the corresponding properties of
identification, as shown in Figure 11. As with monoids, (com;) allows to opti-
mize sequences of binary ramifications, (coms) allows to eliminate ramifications and
(comg3) allows to eliminate transpositions. In mathematical terminology, one says
that the arrow A equipped with the cocommutative and coassociative connector A
with neutral element 14 is a commutative comonoid.

Extension to arbitrary arrows. The ramification connectors are extended to
A x B and E as shown by (comy 7) in Figure 11. Equations (comg_7) allow to
eliminate ramifications of empty arrows and equations (comy 5) give an inductive
algorithm for the construction of ramification on composed nodes. Hence, each
arrow A in the monoidal category also has a cocommutative comonoid structure.

Comonoid morphisms. Nodes that preserve this structure are called comonoid
morphisms. Their morphism property is given by (comg_o) in Figure 10. The
morphism property plays a very important role in optimization because it allows to
eliminate nodes.

3.1.6 Identification and Ramification

Since visual attachment together with identification and ramification generates both
a monoid and a comonoid structure on each arrow, one has to consider how these
structures relate to each other. A very reasonable requirement is that identification
preserves the structure generated by ramification or equivalently that ramification
preserves the structure generated by identification. In other words, identification
is a comonoid morphism and ramification is a monoid morphism. In analogy with
bialgebras, we call A in this case a bimonoid. The requirement that V 4 is a comonoid
morphism is given by (bim;_5) in Figure 12.

(bim;) Ramif and identif (bim,) Counit and identif (bimg) Ramif & unit (bim,) Counit & unit

A A 0 A A A

Y. 00 YeunoTen -]

AN Y S

A A A A E A A E E
Va iz (MY (G X% 10) (Var V) Vail® = 1A 1R TaiN' = TaxTa Tasl® = Qg

Figure 12: Bimonoidal properties

From a practical point of view, the equations (bim;) and (bims) allow to eliminate
identifications and ramifications. The requirement that T 4 is a comonoid morphism

is given by (bims_4). Again, from an optimization point of view, (bims_4) allow to
eliminate identifications and ramifications.

The flow-graphs equations presented so far express the properties common both
to structure and behavior diagrams. In the next sections we introduce additional
properties, which further refine flow-graphs. These properties are closely related to
the monoid- and comonoid-morphism properties.

3.2 Data-Flow Graphs

A data-flow graph is a flow-graph such that for each arrow A there is a unique node
mapping this arrow to the unit arrow E, namely the connector L#. In mathematical
terminology, one says that each node m satisfies the comonoid-morphism property
(com7) and that F is a terminal element. We write E in this case also as 1. In
deterministic data-flow graphs any node m also satisfies the comonoid-morphism
property (comsg), i.e., each node in a deterministic data-flow graph is a comonoid
morphism.

The connector L allows us to define two projection connectors m; and my as shown
in Figure 13. Using the comonoid properties one can show that for any m : C—A
and n : C—B, the projections have the properties given by (prod;_,) in Figure 13.

Definition of projections (prod;) 1st projection (prod,) 2nd projection
C C

C)\ C
neoo T A Ef AB N e |
Tt = } = 'Jgi) ? _@ @ _@
A B

A A B A B
MW o= iax ° n = [xig A (mxn); = m A (mxn); T, = n

Figure 13: Projection connectors and their properties

The uniqueness of 1“4 and LP assures that 7, and 7, are the unique nodes (up to
isomorphism) having the properties (prod; »). The composed node A4 (m x n) is
also written as (m,n) and the above axioms as (m,n);m = m and (m,n); 7 = n.

In mathematical terminology, A * B together with the unique connectors 7 and s
satisfying (prod;) and (prody) is a product and data-flow graphs have finite products.
The monoidal functor x is written in this case as x and the identification and
ramification connectors as ¥, ? and X, respectively. The ramification connector is
also called in this case the diagonal connector.

3.3 Control-Flow Graphs

A control-flow graph is a flow-graph such that for each arrow B there is a unique
node mapping the unit arrow E to B, namely the connector T z. In mathematical
terminology, one says that each node m satisfies the monoid-morphism property
(monz) and that F is an initial element. We write E in this case also as 0. In
deterministic control-flow graphs any node m also satisfies the monoid-morphism
property (mong), i.e., each node in a deterministic control-flow graph is a monoid
morphism.

Definition of injections (coprod;) 1st injection (coprod,) 2nd injection

A B
A B
A A B B T | T |
: 'i: : j P T
{ t C c

A B A B A B A B c C
1 = ia+ Tg lp, = Tayig li; (M+n); Ve = m lp;(M+n); Ve = n

Figure 14: Injection connectors and their properties
The connector T allows us to define two injection connectors 11 and 1o as shown in
Figure 14. Using the monoid properties one can show that for any m : A—C and
n : B—C, the injections have the properties given by the equations (coprod;_s) in
Figure 14.

The uniqueness of T4 and T p assures that +; and ip are the unique nodes (up to
isomorphism) having the properties (coprod;_s). The composed node (m *n); V. is
also written as [m, n] and the above axioms as t1; [m,n] = m and ts; [m,n] = n. The
node [m, n| works by case analysis: if its argument comes from A then it applies m;
if it comes from B then it applies n.

In mathematical terminology, A * B together with the unique connectors ¢; and ¢
satisfying (coprod; 2) is a coproduct (or sum) and control-flow graphs have finite
coproducts. The monoidal functor is written in this case as + and the identifica-
tion and ramification connectors as >e, T and e<, I respectively. In this case the
identification connector is also called the codiagonal connector. Note that control-
flow graphs are obtained from data-flow graphs by reversing the direction of arrows.
We therefore say that control-flow graphs are dual to data-flow graphs.

3.4 Mixed Flow-Graphs

A mized flow-graph is a flow-graph having both sums and products such that the
products distribute over sums, i.e., for any arrows A, B, C there exist an isomorphism
(AxB)+(AxC) =2 Ax(B+C). This isomorphism is a new connector denoted by 0.

In mathematical terminology x and + together with ¢ define a distributive category
structure on flow-graphs. To explicitly distinguish sums from products in mixed
flow-graphs, we use different shadings and interface layering, as shown in Figure 15.
This information may also be left implicit.

Product Sum dMux Assoc Mem
A BC AB AC
\ | Lo

[| |

5=)

[T {

Pl]
AB AC A BC

Figure 15: The shading conventions

The connectors §~! and § may be understood as a generalization of de-multiplezers
and associative memories. For the particular case that B = C = 1 we obtain
B+C =141 = B and Ax1 = A, where B is the set of Booleans. In this case the
connector § 1 : AxB— A+ A acts as a de-multiplexer. Given a data input a€A and
a control input beB, it forwards a along the first output if b = (x,0) and along the
second output if b = (*,1). The values (*,0) and (x,1) are often written simply as 0
and 1 or as false and true. The connector § : A+ A—AXB acts as an associative
memory. It forwards a on the data output and the channel number where a was
received on the control output.

S I S N D0 S

<; (bxi); 8" <b]; [f.] (> b]; (f+i)) 1

A
=2
I

Figure 16: Branching, if and while

Given a predicate b : S—B, we can define with the help of §=! the branching con-
nector of UM-RT-Charts as a mized flow-graph as shown in Figure 16, left. This
connector used in conjunction with sequential composition and identification allows
to define the if b then f else g fi construct as in Figure 16, middle. It also allows
to define in conjunction with feedback the while b do f od construct, as shown in
Figure 16, right. Binary branching may be easily extended to n-ary branching by
replacing B with n =n - 1.

Isomorphism properties. The properties (dis;_») in Figure 17 say that ¢ and § 1
are inverse to each other.

Mixed superposing. An important question to answer is how does the additive-
feedback relate to the product and dually, the multiplicative-feedback to the sum.
The corresponding properties as given by (diss_4) in Figure 17.

(dis;) 1somorphism right-left (dis;) Isomorphism left-right
A BC A BC AB AC AB AC

| 11

Lo
:[) %%
i

(@)

A BC A BC AB AC AB AC
3% = iax (B+C) 3;8" = | (AxB)+(AxC)
(dis;) Superposing over product (dis,) Superposing over sum

A A,

A A,

)
1

— —
Bi B ﬂ &C Bi B
Bit 'Bx By
mxmtS) = @;(mxn);dHtEC m+ntS) = (€5 (mxi)+n);)’

Figure 17: Properties of distributivity

Intuitively, (diss) says that m and n compute in parallel and output the result simul-
taneously. If m is faster then n then it has to idle until n finishes its computation.
This is achieved by using feedback (hence A; = By) and by requiring that nodes are
idempotent, i.e., that m(m(a)) = m(a). From another perspective, (dis3) allows to
push feedback outside an expression.

Intuitively, (disy) says that (in each time unit) either m or n is allowed to compute
the result, depending on the control information in the input data (e = X;d). If the
input is of the form (a;,0) then the output is (by,0) and it is produced by m. In
this case, the current feedback value ¢ for n has to be preserved. This is achieved
by putting m in parallel with the identity which simply forwards ¢ to the output.
If the input is of the form (as,1) then the output is of the form (be,1) and it is
computed by n according to as and the feedback input ¢. From another perspective,
dis, allows to push feedback outside an expression.

4 Example of Flow-Graph Transformation

Suppose a first team has developed a component m, a second team used m to
implement a component p = (V;n;ix*m) 1 and a third team used m and p to
implement a component ¢ = m;p. The question is, if this component may be

optimized. This is definitely possible, as shown in Figure 18. First, we use sliding

~—_ 1 @@

(def) (tmcy)

™ (@ m); Vo oyt

m;p
S
(mong) (lrlq)
= m =
n
!
((m*m); V; n)t i ((Vim; mt ‘o (Vim; nt

Figure 18: A graph transformation

(tmcz) to move m above n. Then we use tightening (tme;) to move the first m inside
the internal box. Then we use the morphism property (mong) to move m after the
identification. Finally we use tightening again (tmc;) to drop the internal box.

This transformation is non-trivial. Both the visual representation (the application-
designer interface) and the textual representation (the tool-designer interface) are
not immediately related to the original diagram and textual representation. More-
over, the final component was optimized because we eliminated one component m.
This may have important consequences if m is a large (hardware) component.

5 Conclusions

The main benefits of the flow-graph theory can be summarized as follows. First,
it introduces a set of graph-construction primitives in a consistent way. This di-
minishes the arbitrariness in the choice of these primitives. Second, it provides
a mathematically precise semantics for these primitives. This is very useful as a
reference both for tool designers and for system development engineers because it
eliminates misinterpretation. Third, it provides a calculus which allows us to com-
pare and to optimize designs and even to do rapid prototyping. While the visual

notation is the interface to system engineers, the textual notation is the interfaces
to tool developers.

The general calculus of flow-graphs is not new. It was already presented in the con-
text of flow-charts in [4]. The axioms for feedback were independently rediscovered
in [6]. The intuitive names for these axioms were borrowed from that paper. Similar
properties for identification and ramification were also given in [2]. The flow-graphs
operators were also used for the description of interactive systems in [3] and for
dynamic systems in [5].

The treatment of data-flow and control-flow graphs as specialization of flow-graphs
is to our knowledge new. The same holds for the treatment of mixed flow-graphs.
In particular, for the axioms (bis3 4) The first one relates additive (or timeless)
feedback to multiplicative (or parallel) composition. The second one relates multi-
plicative (or timed) feedback to additive (or alternative) composition. Conditions
related to (bisg) also occur in [7]. However, this paper lacks the feedback operators,
which makes the formalization more complicated and less transparent.

The use of the flow-graph theory in the context of visual formalisms, especially
for UML-RT is also new. Moreover, this theory also forms the basis for the de-
velopment of the theory of interaction-graphs. These are particularly relevant for
UML-RT structure diagrams and for the definition and use of procedures in UML-
RT behavior diagrams. By treating structure-diagrams and procedures as ordinary
data which can be manipulated and sent along channels, interaction-graphs also al-
low the description of mobile systems. The axiomatization of interaction-graphs is
very similar in spirit to the general form of the geometry of interaction [1].

References

[1] S. Abramski. Retracing some paths in process algebra. In Seventh International
Conference on Concurrency Theory (Concur’96), Lecture Notes Computer Sci-
ence 1055, pages 21-33, 1996.

[2] D.B. Benson. Bialgebras: Some foundations for distributed and concurrent com-
putation. Fundamenta Informaticae, 12:427-486, 1989.

[3] M. Broy. Semantics of finite and infinite networks of concurrent communicating
agents. Distributed Computing, 2:13-31, 1987.

[4] V.E. Cazanescu and Gh. Stefanescu. Towards a new algebraic foundation of
flowchart scheme theory. Fundamenta Informaticae, 13:171-210, 1990.

[5] R. Grosu and K. Stglen. A Model for Mobile Point-to-Point Data-flow Networks
without Channel Sharing. In Proc. of the 5th Int. Conf. on Algebraic Methodol-

ogy and Software Technology, AMAST’ 96, Munich, pages 505-519. LNCS 1101,
1996.

[6] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Math. Proc.
Camb. Phil. Soc., 119:447-468, 1996.

[7] N Sabadini, S. Vigna, and RFC Walters. A note on recursive functions. Mathe-
matical Structures in Computer Science, 6:127-139, 1996.

[8] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.
Available under http://www.objectime.com/uml, April 1998.

