
Towards Consistent Speci�cations of Product

Families?

Alexander Harhurin and Judith Hartmann

Institut für Informatik, TU München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany

{harhurin|hartmanj}@in.tum.de

Abstract. Addressing the challenges faced today during the develop-
ment of multi-functional system families, we suggest a service-oriented
approach to formally specifying the functionality and, in particular, the
functional variability already in the requirement engineering phase. In
this paper, we precisely de�ne the underlying concepts, such as the notion
of individual services, the combination of services, inter-service depen-
dencies, and variability. Thereby, we especially focus on establishing the
consistency of the overall speci�cation. To that end, we formally de�ne
con�icts between requirements and describe how they can be detected
and resolved based on the introduced formal concepts.

1 Introduction

Today, in various application domains, e.g. the automotive domain, software
plays a dominant role. The rapid increase in the amount and importance of dif-
ferent software-based functions and their extensive interaction as well as a rising
number of di�erent product variants are just some of the challenges that are faced
during the development of multi-functional system families. As a consequence
there is a need for adequate modeling techniques for functional requirements.
Prevalent approaches like UML Use Cases or FODA [1] lack a precise seman-
tics in general. However, in order to assure the consistency of a speci�cation,
a precise semantics of the modeling techniques is inevitable. Based on a formal
foundation, discrepancies between con�icting functionalities can be detected and
resolved already in the early phases of the development process. Furthermore,
such a formal speci�cation represents the �rst model in a model-based system
development along di�erent abstraction levels as introduced in [2]. It serves as a
formal basis for the construction and veri�cation of the models in the consecu-
tive design phase. Consequently, we focus on the formal de�nitions of functional
requirements and relations between them, and show how the upcoming service-
oriented paradigm is used to handle the aforementioned functional intricacy.

? This work was partially funded by the German Federal Ministry of Education and
Research (BMBF) in the framework of the VEIA project under grant 01ISF15A.
The responsibility for this article lies with the authors.

Our notation technique, the Service Diagram, informally introduced in [3]
describes the system as a set of related functional requirements (services). Re-
garding product families, our approach includes concepts which allow for the for-
mal speci�cation of functional variability. Thereby, functional variability means
that the speci�cation includes alternative functional requirements. Each variant
of the product family is required to satisfy at least one of the alternative re-
quirements. Thus, the denotational semantics of our Service Diagram speci�es
the behavior of a product family as the behavior that can be delivered by at least
one of its variants. Also, we precisely de�ne the meaning of typical dependencies
for product families, namely excludes and requires. These dependencies specify
which requirements must and which ones must not be simultaneously satis�ed
by a variant of a product family.

In this paper, we especially focus on understanding how single services de-
pend on and interfere with each other. Thereby, the main goal of our approach
is to ensure the consistency of the speci�cation, i.e. the absence of con�icts be-
tween services. Informally, there is a con�ict between two services if they impose
con�icting requirements on the behavior of a system which can not be simulta-
neously ful�lled. Giving formal de�nitions of these concepts, our approach can
be used for a tool-supported analysis of the functional requirements and, in
particular, for consistency checks between di�erent variants.

1.1 Running Example

The concepts introduced in the remainder of the paper will be illustrated by a
simpli�ed example of a cruise control (cp. Figure 1). The cruise control com-
prises a manual cruise control (MCC) and an adaptive cruise control (ACC). The
MCC speci�es the acceleration/deceleration of the vehicle triggered by the ac-
celeration/brake pedal (Pedal). Additionally, there is an option to control the
speed via buttons on the steering wheel (Steering Wheel). The ACC comprises
an automatic speed control (Speed), which controls the vehicle speed for a con-
stant target speed. There exist two alternative variants varying in the way how
the target speed is selected by the driver (target speed arbitrarily con�gurable
(Input) or target speed set to the current vehicle speed when the ACC is acti-
vated (Save)). Furthermore, the ACC optionally comprises a follow-up control
(Follow-Up) to automatically follow a target vehicle and a pre-crash control
(Pre-Crash). There exist two variants of the pre-crash control, one which dis-
plays a warning (Warning) and one which actively brakes (Brake) as soon as a
potential crash is detected. There are several dependencies between these func-
tionalities to assure a correct interplay between them. The dependencies as well
as all other relevant details will be described at the appropriate places.

1.2 Outline

The rest of this paper is organized as follows: In Section 2 the semantics of
the Service Diagram is presented. In particular, we explain the formal speci�ca-
tion of functional requirements by means of services, concepts for hierarchically

structuring services, variability concepts, and concepts for modeling dependen-
cies between services. In Section 3, we concentrate on the consistency of a service
speci�cation. To that end, we formally de�ne con�icts and describe how they can
be detected and resolved based on the introduced formal concepts. Contributions
of our approach are listed in Section 4. Finally, we compare our service model
to related approaches in Section 5 before we conclude the paper in Section 6.

2 Service Diagram

This section introduces the denotational semantics of the Service Diagram, a hi-
erarchical model for the speci�cation of the system functionality. This diagram
gives a black-box speci�cation of a system, i.e. the system behavior is speci�ed
as a causal relation between input and output messages. Thus, an implementa-
tion satis�es the speci�cation formalized by a Service Diagram if it shows the
same I/O behavior as speci�ed by the diagram. A Service Diagram consists of
hierarchically subdivided services and four kinds of relationships between them,
namely aggregation, functional dependencies, optional and alternative relations
(cp. Figure 1). All these concepts will be introduced in the following subsections.
A more detailed description of the basic concepts can be found in [4].

Pre-Crash

Cruise
Control

MCC ACC

Pedal Steering
Wheel

Speed Follow-up

Input Save Warning Brake

Aggregation Alternative DependencyOptional

Fig. 1. Service Diagram for the Cruise Control

2.1 Single Service

The Service Diagram is based on the notion of a service [5] as the fundamental
concept of the model. Intuitively, a service represents a piece of functionality by
specifying requirements on the I/O behavior. More precisely, a service speci�es
a relation between certain inputs and outputs. Hence, the Service Diagram is a
restrictive speci�cation, where each service imposes a requirement on the sys-
tem and, thus, further restricts the valid I/O behavior. Formally, a service is a

(partial) stream-processing function which maps streams of input messages to
corresponding streams of output messages. Here, a stream s of elements of type
Data can be thought of as a function s : N → Data.

Syntactic Interface Every service has a syntactic interface (I I O), which
consists of a set I of typed input ports and a set O of typed output ports.

Table 1 depicts the syntactical interfaces of the atomar services of our ex-
ample. Exemplary, the type of the port currentSpeed is N and the type of the
port speed is {accelerate, decelerate, ε}. Note, that if necessary the type of a
port includes the empty message ε to explicitly model no interaction.

Service I Ports O Ports

MCC/Pedal brakePedal, accPedal speed

MCC/Steering Wheel brakeButton, accButton speed

ACC/Speed/Input currentSpeed, targetSpeed speed

ACC/Speed/Save active, currentSpeed speed

ACC/Follow-Up objectDetected, objectDistance, currentSpeed speed

ACC/Pre-Crash/Warning objectDetected, objectDistance, currentSpeed warning

ACC/Pre-Crash/Brake objectDetected, objectDistance, currentSpeed speed

Table 1. Syntactical Interfaces of the Modular Services of the Cruise Control

With each port we associate a set of streams representing the syntactically
correct communication over this port. Formally, for a given set of ports P , a port
history is a mapping which associates a concrete stream to each port: h : P →
(N → Data). H(P) denotes the set of all such histories. H(Is)×H(Os) speci�es
the set of all syntactically correct I/O history pairs (x, y) for a service s with
interface (Is I Os). For a history h ∈ H(P), we de�ne its projection h|P ′ ∈
H(P ′) to be the history containing only streams which are attached to the ports
in P ′ ⊆ P . Also, we denote a projection of a history x to the interface of a
service s by xs, i.e. xs = x|Is. The same goes for an I/O history pair: (xs, ys) =
(x|Is, y|Os). Furthermore, we use h[p] to denote the stream associated with the
port p by the history h, i.e. h[p] = h(p). Then, the term h[p](t) denotes the
message contained in the stream h[p] on the port p within time interval t ∈ N.

Semantics To specify the behavior of a service, we use an assumption/guarantee
notation (A/G) which consists of two predicates, namely, an assumption and
a guarantee. The assumption speci�es the domain of a service1. The guarantee
characterizes the reaction of a service to its inputs if the inputs are in accordance
with the assumption. Formally,

A : H(I) → Bool, G : H(I)×H(O) → Bool.

1 We do not require that a service can react to every possible input, i.e. there may be
inputs which are not explicitly covered by the service speci�cation.

By this, a service is a restrictive speci�cation which restricts the set of all syn-
tactically correct histories to a subset of (semantically) valid histories. An I/O
history pair (x, y) is valid for a service if it ful�lls the A/G of this service. We
say, the behavior of a service is the set of all valid history pairs for this service.
Formally, a service s with the syntactic interface (I I O) is de�ned as a rela-
tion from the set of input port histories (according to the assumption) to the
powerset of output port histories (according to the guarantee):

s : H(I) → P(H(O)), s(x) ≡ {y|As(x) ∧Gs(x, y)}.

In our example, the variant Input of the speed control is speci�ed as follows:

A(x) ≡ ∀t ∈ N : x[currentSpeed](t) ∈ [20..220] ∧ x[targetSpeed](t) ∈ [40..200]
G(x, y) ≡ ∀t ∈ N :

x[currentSpeed](t) > x[targetSpeed](t) ⇒ y[speed](t + 1) = decelerate ∧
x[currentSpeed](t) < x[targetSpeed](t) ⇒ y[speed](t + 1) = accelerate ∧
x[currentSpeed](t) = x[targetSpeed](t) ⇒ y[speed](t + 1) = ε

The assumption formalizes, that the behavior of the cruise control is only speci-
�ed for current speed between 20 and 220 km/h and target speed between 40 and
200 km/h. In our terminology, a valid history x must contain a value between 20
and 220 on port currentSpeed and a value between 40 and 200 on targetSpeed

within each time interval t. Otherwise, the behavior is not de�ned. The guarantee
requires for each time interval, that the vehicle accelerates if the current vehicle
speed is less, decelerates if the current speed is higher, and neither accelerates
nor decelerates if the current speed is equal to the target speed.

2.2 Aggregation

The aggregation relation allows to arrange individual services into a service hi-
erarchy. The semantics of a compound service (composed of several sub-services)
is de�ned as being a container of all concurrently operating sub-services.

The interface of a compound service sC composed of a set of sub-services
S aggregates all I/O ports of all its sub-services. Its behavior is de�ned as the
conjunction of the modular A/Gs of its sub-services. Formally,

AsC
(x) ≡

∧
s∈S

As(xs), GsC
(x, y) ≡

∧
s∈S

Gs(xs, ys). (1)

A more detailed description of the aggregation relation including illustrating
examples can be found in [4].

2.3 Variability

The basic concept to model variability are variation points (VPs). Intuitively, a
VP is a compound service composed of some mandatory, alternative, and/or op-
tional sub-services (the latter two are also called variants). In the following, the

syntactic interface and the behavior of a VP comprising alternative sub-services
are introduced. Subsequently, we explain the semantics of optional services based
on the de�nitions for alternative VPs. To understand the following de�nitions,
it is important to keep in mind that our Service Diagram is a restrictive speci-
�cation. Each service in the Service Diagram imposes a requirement on the I/O
behavior which must be ful�lled by any valid I/O history. If a service is absent
in a diagram (e.g. the service is not selected in a con�guration2), the property
speci�ed by this service is not required. However, a valid I/O history is not
prohibited from ful�lling this property.

Syntactic Interface An alternative VP comprising a set of alternative services
SV has the set-valued interface

IVP ≡ {(Is I Os)|s ∈ SV } .

Herewith, in combination with the aggregation relation, we can specify the inter-
face of a product family. Mandatory and optional ports can be easily identi�ed
by means of the set-theoretical operations over the set-valued interface.

We call a history pair (x, y) syntactically correct for a VP if it conforms to
the interface of one of its variants, i.e. if ∃ (I I O) ∈ IVP : (x, y) ∈ H(I)×H(O).

To be able to aggregate VPs, the de�nition of the history projection (see
Section 2.1) must be adapted for set-valued interfaces. Since a VP comprises
a set of interfaces, the projection to the interface of a VP results in a set of
histories. For an I/O history pair (x, y) this projection is de�ned as follows:

(x, y)|IVP ≡ {(xs, ys)|(Is I Os) ∈ IVP}. (2)

Semantics Each alternative VP speci�es a set of history pairs which are valid
for at least one of its variants. Thereby, for the de�nition of the semantics, the
syntactic interface must be taken into account. A history pair (x, y) de�ned over
the interface (I I O) is valid if it ful�lls the A/G speci�cation of one of the
variants with the same interface:

AVP (x) ≡ ∃s ∈ SV : x ∈ H(Is) ∧As(x)
GVP (x, y) ≡ ∃s ∈ SV : (x, y) ∈ H(Is)×H(Os) ∧ (As(x) ∧Gs(x, y)).

(3)

The assumption of a VP describes all input histories which are valid for at least
one variant, in terms of sets:

⋃
s∈SV

{x ∈ H(Is) | As(x)}. The guarantee of a
VP describes all I/O history pairs which are valid for at least one variant, in
terms of sets:

⋃
s∈SV

{(x, y) ∈ H(Is)×H(Os) | As(x)∧Gs(x, y)}. Note, according
to De�nition 1, the projection of a valid history pair of the compound service
must ful�ll the A/G of a VP if this VP is a sub-service of the compound service.
According to De�nition 2, the projection of a history pair to the interface of a

2 By con�guration we mean an instance of a product family speci�cation where all
variation points are resolved, i.e. certain variants are selected.

VP yields a set of history pairs. Thereby, a set of projected history pairs satis�es
the speci�cation of a VP if at least one of the pairs ful�lls this speci�cation.

In our example, the speed control Speed is a VP comprising two alternative
variants (Input and Save). The speci�cation of Input is given in Section 2.1.
The speci�cation of Save di�ers in the way how the target speed is selected. The
target speed is set to the current speed if the speed control is activated. More pre-
cisely, let Save be active (value 1 on port active) exactly in the interval [t1..t2].
Then, in the interval [t1 +1..t2 +1], the target speed for the speed instruction on
port speed is equal to the value on port currentSpeed in t1. The corresponding
A/G formulas are similar to those of Input and, therefore, not explicitly speci�ed
here. The VP Speed conjoins the behaviors of both variants. So, Speed de�nes the
set of all valid history pairs that ful�lls the A/G of Input or Save. The syntac-
tical interface ISpeed is obtained according to the de�nition of the set-valued in-
terface: {({currentSpeed, targetSpeed} I {speed}), ({currentSpeed, active} I
{speed})}. The A/G of Speed is easily derivable according to De�nition 3, but
due to space limitation not presented here.

Optional Service Intuitively, an optional service so represents an alternative
between the presence and the absence of this service within the Service Diagram.
Consequently, it can be transfered into an alternative VP. This VP consists of
two alternatives, namely the service so and no service. If the optional service is
selected, a valid history must ful�ll the requirements speci�ed by the service so. If
no service is selected, a valid history does not have to ful�ll these requirements.
Formally, no service is described by a special service sΩ which has no ports
(IsΩ

≡ OsΩ
≡ ∅) and is always ful�lled (AsΩ

(x) ≡ GsΩ
(x, y) ≡ true). Thus, sΩ

imposes no requirement on the I/O behavior of the system. Consequently, sΩ

acts as identity element concerning the aggregation relation, i.e. the aggregation
of any service s and sΩ results in s.

In our example, the service Follow-Up to control the speed based on the
distance to a vehicle in front is optional. Thus, it can be transfered into a VP
with syntactical interface I ≡ {(∅ I ∅), (IFollow−Up I OFollow−Up)}. According
to De�nition 3, this VP (i.e. the optional service Follow-Up) de�nes the set of
history pairs (x, y) with either (x, y) ∈ H(∅)×H(∅) or (x, y) ∈ H(IFollow−Up)×
H(OFollow−Up) and (x, y) in accordance with the speci�cation of Follow-Up.

2.4 Dependencies

By dependencies, we mean relations between services in a way that the behavior
of one service in�uences the behavior of another one. As our approach aims at the
speci�cation of the user-visible behavior, only those dependencies are speci�ed
which are observable at the overall system boundaries. Dependencies between
services can be explicitly given by functional requirements or they are introduced
during the aggregation process to solve con�icts between services (see Section 3).

In the following, we introduce two kinds of dependency relations: depen-
dency predicates and dependency functions. Dependency predicates formalize

additional requirements on the I/O behavior and, thus, further restrict the set of
valid I/O histories. Dependency functions, however, modify the user observable
behavior of the in�uenced services without explicitly modifying their modular
speci�cations. Having introduced these relations, we show how the behavior of
a compound service composed of several sub-services is de�ned in consideration
of the dependencies in-between. To simplify matters, we limit the following for-
mal de�nitions to dependencies between two services. However, the extension to
m : n dependencies is straightforward.

Dependency Predicates A dependency predicate describes further restrictions on
the inputs or outputs of the services. Formally, a predicate between the services
s1 and s2 speci�es a relation between messages on I/O ports of s1 and s2 in
certain time intervals:

dPr : H(Is1)×H(Os1)×H(Is2)×H(Os2) → Bool.

Dependency Functions A dependency function speci�es a mapping from the orig-
inal output histories (speci�ed by the modular A/G speci�cation) to new ones.
This transformation of output histories greatly supports the modularity of our
approach since single services can be speci�ed without considering the interac-
tion with other services. This is especially suitable in the context of product
families where the context, i.e. the interaction with other services, may di�er
from variant to variant. Formally, a dependency function dFct between an in-
�uencing service s1 and an in�uenced service s2 is a function of the form

dFct : H(Is1)×H(Os1)×H(Is2)×H(Os2) → P(H(Os2)).

In our example, there is a dependency function between the services MCC and
ACC. The application of the brake or accelerator (pedal or button) immediately
deactivates the ACC. Whenever the MCC requires a nonempty speed instruction
on port speed, the speed instruction calculated by the ACC is overwritten by
those of MCC. This dependency is formalized as follows:

d(xm, ym, xa, ya) ≡ y′a : ∀t ∈ N :ym[speed](t) = ε ⇒ y′a[speed](t) = ya[speed](t)
∧ym[speed](t) 6= ε ⇒ y′a[speed](t) = ym[speed](t).

Analogously, a further dependency between ACC and MCC determines that empty
speed instructions of MCC are overwritten by those of ACC. Furthermore, there is
a dependency function between the services Pedal and Steering Wheel. This
dependency resolves situations where the services require di�erent instructions
on the common port speed, e.g. when the driver simultaneously presses a pedal
and a button. In this case the output history of Steering Wheel is modi�ed, i.e.
Pedal overrules Steering Wheel. Analogously, the Follow-Up control overrules
the Speed control. The formalizations of these dependences are very similar to
the foregoing one and therefore omitted here due to the limitation of space.

Aggregation with Dependency For each kind of dependency relation, the
behavior of the compound service sC composed of two sub-services s1 and s2

and a dependency d in-between is de�ned in the following paragraphs.

If d speci�es a dependency predicate between s1 and s2 which restricts the
outputs of the services, the additional predicate must hold in the compound
guarantee:

G(x, y) ≡ Gs1(xs1 , ys1) ∧Gs2(xs2 , ys2) ∧ d(xs1 , ys1 , xs2 , ys2). (4)

If the dependency predicate a�ects the input histories, the compound assumption
has to be modi�ed analogously.

If d is a dependency function (s1 in�uences s2), the guarantee of the com-
pound service is de�ned as:

G(x, y) ≡ ∃y′ ∈ H(Os2) : Gs1(xs1 , ys1) ∧Gs2(xs2 , y
′)

∧ ys2 ∈ d(xs1 , ys1 , xs2 , y
′).

(5)

In the compound service the assumption and guarantee of the in�uencing service
s1 must hold. Additionally, there must exist an output history y′ which ful�lls
the guarantee of s2 and which is transformable to ys2 by the dependency d.

Obviously, if the respective compound services are optional, the dependencies
must only be considered if the services are selected. Regarding product family de-
pendencies, the e�ects on the syntactical set-valued interface must be considered
in addition to the e�ects on the behavior (see the following subsection).

Requires and Excludes Dependencies Although there are a lot of method-
ological signi�cant dependencies, here, we focus on typical dependencies for prod-
uct families, namely requires and excludes. These dependencies specify that cer-
tain services must or must not be selected together in a con�guration. Thereby,
to select a service means that the valid I/O history pairs must ful�ll the require-
ment formalized by this service. In the following, we introduce precise semantics
of these relations by describing the corresponding dependency predicates.

A requires dependency between two alternative or optional services (t re-
quires s) means that if t is selected in a con�guration, s must be selected, too.
Intuitively, a valid history is required to ful�ll the requirement speci�ed by the
service s whenever it ful�lls the requirement speci�ed by t. Formally, a history
pair (x, y) of the compound service is valid if its projections to the interfaces of
the services t and s satisfy the condition At(xt)∧Gt(xt, yt) ⇒ As(xs)∧Gs(xs, ys).
However, this condition is only su�cient if the sets of valid histories speci�ed by
alternative services are disjunct. Otherwise, (x, y) � more precisely, respective
projections of (x, y) � could ful�ll the speci�cation of more than one variant, e.g.
t and t′. Since t′ is allowed to be selected without s, a pair (x, y) which ful�lls t
and t′, is valid even if s is not ful�lled. Thus, the correct meaning of requires is
that all history pairs which exclusively ful�ll the service t must ful�ll the service
s. Valid history pairs ful�lling t and another variant of the same VP do not

necessarily have to ful�ll s. Formally, the de�nition of t requires s is given by:

(@t′ ∈ VT \ {t} : (xt′ , yt′) ∈ H(It′)×H(Ot′) ∧At′(xt′) ∧Gt′(xt′ , yt′))
⇒ (As(xs) ∧Gs(xs, ys)) ,

(6)

where VT denotes the set of all variants of the VP comprising t. This means,
a valid history pair (x, y) that ful�lls the A/G of no variant of VT except for t
must ful�ll the A/G of s. Although, satisfying t is not explicitly required in this
de�nition, it is implicitly given since any valid history pair must ful�ll at least
one of the variants according to De�nition 3. Here, this variant can only be t.

The dependency t excludes s means that the services t and s are not allowed
to be selected simultaneously, i.e. if the satisfaction of the service t is required
(i.e. t is selected), the satisfaction of the service s must not be required. Since
at least one of the alternatives of a VP must be ful�lled, this implies that the
satisfaction of one of the other alternatives must be required. Formally, the
de�nition of the dependency t excludes s is given by:

(@t′ ∈ VT \ {t} : (xt′ , yt′) ∈ H(It′)×H(Ot′) ∧At′(xt′) ∧Gt′(xt′ , yt′)) ⇒
(∃s′ ∈ VS \ {s} : (xs′ , ys′) ∈ H(Is′)×H(Os′) ∧ (As′(xs′) ∧Gs′(xs′ , ys′))) ,

(7)

where VT and VS denote the sets of variants of the respective VPs. A valid
history pair (x, y) that ful�lls the A/Gs of no variant of VT except for t must
ful�ll the A/G of a variant s′ 6= s of VS .

Additionally to the behavior, the e�ects on the syntactical interface must
be considered. The set-valued interface of a compound service only comprises
interfaces which result from the aggregation including s1 and s2 or none of them
if there is a requires dependency between them. If there is an excludes depen-
dency between these services, the set-valued interface of their common compound
service does not comprise the interfaces which originated from combinations in-
cluding s1 and s2.

In our example, there is a requires dependency between Pre-Crash and
Follow-Up which re�ects technical prerequisites: the pre-crash control uses the
sensors of the follow-up control, which are available in a vehicle only if the lat-
ter control is built in. Thus, their common compound service ACC de�nes a set
of valid history pairs which obligatory satisfy Speed and ful�ll Follow-Up if
they ful�ll Pre-Crash. Also, there is an excludes dependency between Steering

Wheel and the variant Brake of the pre-crash control. If both services would be
present in a con�guration, there might be a con�ict, e.g. if the pre-crash control
demands the vehicle to slow down and, simultaneously, the driver presses the
acceleration button. Hence, it was a marketing decision (non-functional require-
ment) to resolve this con�ict by means of an excludes dependency. Consequently,
if Steering Wheel is selected, Warning must be selected, too.

3 Consistency

The basic idea of our approach is that the overall speci�cation is the combination
of modularly speci�ed sub-functionalities. Thereby, di�erent services might be

de�ned over the same I/O ports. Thus, the integration of di�erent functions
might cause unforeseen con�icts (known as feature interaction) and consequently
lead to an inconsistent speci�cation of the overall behavior. As a consequence,
it becomes a central task during the functional integration to detect and resolve
con�icts in order to assure the consistency of the overall speci�cation. In the
following sections, we precisely de�ne what we mean by con�icts and show how
the introduced formal concepts can be used to detect and to resolve con�icts
between functional requirements. Regarding product families, we show how the
compatibility of di�erent variants can be analyzed.

3.1 Consistency of a Single System

A speci�cation of a single product is consistent if there is no con�ict neither
between di�erent modular services nor between services and dependencies. To
allow tool-supported con�ict detection and consistency checks we �rstly intro-
duce formal de�nitions of con�icts. Subsequently, we show how these con�icts
can be detected and resolved.

Con�ict De�nitions We di�erentiate two kinds of con�icts, namely input and
output con�icts. There is an input con�ict between aggregated services and/or
dependencies if there is no history h ∈ H(IsC

) that ful�lls the assumption of
their common compound service sC :

{x ∈ H(IsC
) | AsC

(x)} = ∅. (8)

An input con�ict shows that the assumptions of the sub-services of sC (and
potential dependencies between them) are contradictory.

The follow-up control of our example (Follow-Up) is designed for city tra�c
and consequently only de�ned for target speeds between 40 and 80 km/h. The
pre-crash control, however, is designed for motorway tra�c, e.g. for target speed
between 100 and 200 km/h. Then, the aggregations of these services results in
an input con�ict as there exists no input history which satis�es the assumptions
of both services on their common input port targetSpeed.

Analogously, there is an output con�ict between aggregated services and/or
dependencies if the history set de�ned by the guarantee of their common com-
pound service is empty for a valid input history:

∃x ∈ H(IsC
) : AsC

(x) ∧ {y ∈ H(OsC
) | GsC

(x, y)} = ∅. (9)

An output con�ict indicates that the guarantees of the sub-services of sC (and
potential dependencies between them) are not satis�able simultaneously for at
least one valid input.

In our example, the services MCC and ACC are output-con�icting. There are
input histories which cause contradictory output histories, e.g. an input his-
tory where the brake pedal is pressed in a time interval in which the current

speed is lower than the target speed. In this case, the MCC demands the mes-
sage decelerate on the output port speed, whereas the service ACC requires
the message accelerate within the same time interval.

The con�icts captured by the introduced de�nitions can be further classi�ed
according to their causes. We di�erentiate service-service con�icts, dependency-
service con�icts, and dependency-dependency con�icts. Thereby, the de�nitions
of I/O con�icts remain the same but the common compound service sC is ob-
tained in di�erent ways (cp. De�nition 1, 4).

Note, there are no con�icts between a dependency function and the service
in�uenced by it. Nevertheless, there might be con�icts between the in�uenced
service and other services or dependency predicates. These con�icts are also
covered by the de�nitions introduced above (cp. De�nition 5).

Con�ict Detection and Resolution Obviously, two services are indepen-
dently combinable if their sets of I/O ports are disjunct. Thus, methodically, we
propose to start with an analysis of the syntactical interface to de�ne the set of
candidates for con�icting services. These services must be analyzed for service-
service con�icts as described above. Subsequently, we take dependency predi-
cates into consideration and check all a�ected services for dependency-service
and dependency-dependency con�icts.

In order to get a consistent speci�cation all detected con�icts have to be
resolved. Therefor, we propose two methodical procedures. A con�ict can be
resolved by changing the modular speci�cation of at least one of the a�ected
services or dependencies respectively. In many cases, con�icts can be resolved
easily by introducing nondeterminism in the modular speci�cation. This res-
olution method is applicable to all kinds of con�icts. Moreover, changing the
modular speci�cation is the only way to solve input con�icts.

The input con�ict between Follow-Up and Pre-Crash is solved by changing
the modular speci�cations of both services. The assumption of both services is
enlarged to target speed between 40 and 200 km/h. However, it is not further
speci�ed how the system reacts to the additional input histories, i.e. every output
message is valid � both services are nondeterministic. This nondeterminism is
resolved in the compound service ACC according to De�nition 1.

For most of the output con�icts this procedure is not adequate since changing
the modular speci�cation accordingly to the behavior of another service implies
a loss of modularity. Therefore, to resolve the source of output con�icts (namely,
the service interaction) we propose to introduce additional dependency func-
tions. A new dependency modi�es the output histories in such a way that both
interacting services always send the same message on the common ports. By
this, we preserve the modularity of services and, furthermore, make functional
dependencies explicit.

In our example, the output con�ict between MCC and ACC is resolved by in-
troducing the dependency function as described in Section 2.4. This dependency
speci�es that the service MCC overrules the service ACC, i.e. if con�icting the
output of the service ACC is substituted by the output of the service MCC.

3.2 Consistency of a System Family

Next, we aim at ensuring the consistency of a product family. The speci�cation
of a product family is consistent if there is at least one consistent con�guration
of this family. In the following, we explain the meaning of con�icts between a
service and a VP and sketch the methodology to analyze product families for
con�icts.

Con�ict De�nitions Obviously, I/O con�icts between services and a certain
variant of a VP are covered by the same de�nitions as con�icts between services
of a single product. Based on these de�nitions, there is no con�ict between a
service s and a VP comprising a set of variants V if no con�ict is detected between
s and any variant v ∈ V . Particularly, the service s and the VP are independently
combinable if s and each variant v ∈ V are independently combinable.

Con�ict Detection and Resolution In order to reduce the e�ort of the
con�ict detection we �rstly analyze the syntactical interfaces. If s has no common
port with the maximum interface of a VP3, i.e. s has no common port with any
variant of the VP, there is no con�ict between s and any variant � no further
analysis is necessary. Otherwise, a syntactical analysis of the single variants yields
the variants which must be further analyzed (analogously to single services). To
resolve con�icts we apply the already introduced procedures. Furthermore, we
can eliminate con�icts by introducing excludes or requires dependencies.

To exemplify the procedure, we analyze the service Follow-Up and the VP
Pre-Crash for output con�icts. An output con�ict can not be excluded based on
the syntactical analysis of the maximum interface of the VP. But the syntactical
analysis of the single interfaces yields that Follow-Up and Warning have no com-
mon output port � they are independently combinable. Brake and Follow-Up use
the common output port speed and a further analysis of their behaviors shows an
output con�ict between them. To resolve the con�ict we introduce a dependency
function which states that the service Brake has a higher priority. Note, that in-
troducing an excludes dependency (Brake excludes Follow-Up) would also solve
this output con�ict, but would provoke a new dependency-dependency con�ict
because of the dependency Pre-Crash requires Follow-Up.

3.3 Tool Support

Thanks to the formal de�nitions of services, dependencies as well as con�icts,
we can use a theorem prover (e.g. Isabelle [6]) to assure the consistency of a
service speci�cation. Thereby, all services (atomar as well as compound) are
transformed into Isabelle functions. Then, for each compound service we have
to prove two lemmata that claim that the sets of de�ned valid histories are not
empty (negation of De�nitions 8 and 9). However, the transformation to Isabelle
is not scope of this paper � it is precisely addressed in [7].

3 The maximum interface is the conjunction of the sets of all I/O ports of all variants.

4 Contributions

Having introduced the formal foundation of the underlying concepts in the pre-
vious sections, we shortly sketch the potential of our approach in the following.

Formalization of requirements In contrast to pure informal approaches like
FODA, we have introduced a formal model with a well-de�ned semantics for
specifying functionality. This has several advantages. Firstly, a formal model
which formalizes (functional) requirements allows an analysis of the system al-
ready in the early phases of the development process. By this, discrepancies
between con�icting requirements can be detected and resolved. Secondly, since
implementation models will build upon this functional speci�cation, it supports
bridging the formal gap between functional requirements and design models.
The Service Diagram provides formal speci�cation of the functional require-
ments which can be used for a (tool-supported) veri�cation of the subsequent
design models.

Functional Variability Furthermore, we have enlarged our approach to model
whole families of related systems instead of single systems only. While traditional
approaches mainly focus on structural aspects, we concentrated on the behavior
and have precisely de�ned the behavioral meaning of variability. We especially
focused on the consistency of the speci�cation of a product family. By formally
reasoning about the behavior con�icts between variants can be detected and
resolved by introducing excludes and requires relations. By this, dependencies
between variants which have not been realized during earlier engineering stages
can be derived and made explicit.

5 Related Work

Formal Semantics The de�nition of a formal semantics for feature models � the
main method to formalize variability in product families � is not new. In [8], Ba-
tory and O'Malley use grammars to specify feature models. The formalization
of feature models with propositional formulas goes back to the work by Man-
nion [9], in which logical expressions can be developed using propositional con-
nectives to model dependencies between requirements. Further formal semantics
are compared in [10]. Another approach to specifying multi-functional systems
is introduced by van Lamsweerde et al in [11]. The main de�cit of all these ap-
proaches is a disregard for the behavior of single features. Moreover, approaches
like FODA only provide a two-valued notion of variability, i.e. a functionality
might be present or not present in a system. �As a consequence, these approaches
focus on the analysis of dependencies, however abstracting away from the causes
for these dependencies� [12].

In [13], Czarnecki and Antkiewicz recognize that features in a feature model
are �merely symbols�. They propose an approach to mapping feature models to
other models, such as behavior or data speci�cations, in order to give them se-
mantics. However, this approach only focuses on assets like software components

and architectures. Our approach, however, focuses on formalizing user require-
ments and their analysis in the early phases of the development process.

Our work is founded on a theoretical framework introduced by Broy [5] where
the notion of a service behavior is formally de�ned. This framework provides
several techniques to specify and to combine services based on their behaviors.
However, this approach does not cover several relevant issues such as techniques
for the speci�cation of functional variability and of inter-service dependencies.

Feature Interaction Using the formal foundation, a central task of our approach is
to detect and resolve con�icts between single requirements (feature interaction)
in order to assure the consistency of the overall speci�cation. A large body
of research [14] on feature interaction was caused by the the huge amount of
software-based functions in telecommunication. The telecommunication-speci�c
approaches to modeling feature interaction, like those by Jackson and Zave [15]
or Braithwaite and Atlee [16], consider only telecommunication-speci�c features
(functionality additional to the core body of software) and show how they can be
combined in telecommunication systems. Thus, they are not directly applicable
to other kinds of systems and for this reason can be barely compared to our
work.

If we consider �feature� as a synonym of �function�, we �nd further related
work, e.g. approaches by Stepien and Logrippo [17] or Klein et al. [18]. All these
approaches are comparable in the sense that they aim at explicit speci�cation of
feature behavior and at identifying feature interaction on the basis of behavior
models. In our terminology, they look for interactions between services of a single
product. However, they do not provide any means of variability.

To summarize, to the best of our knowledge, there is no approach to specify a
product family, by formally describing the behavioral variability in requirements,
and to detect con�icts between variants based on their behavioral speci�cations.

6 Conclusion and Future Work

In this paper, we have introduced and formally founded the underlying con-
cepts of our service speci�cation, which focuses on the modeling and structuring
of functional requirements. Thereby, the concept of a service is used to model
functional requirements in a modular fashion. In this paper, we especially con-
centrated on concepts to explicitly modeling inter-service dependencies. We have
integrated the concept of behavioral variability which makes the Service Diagram
suitable to formally capture functional requirements of a system family.

The formal speci�cation of the functional requirements, their dependencies,
and the behavioral variability already at an early stage of the development pro-
cess allows to perform a formal (and therefore tool-supported) analysis of the
functional requirements for con�icts. Since ensuring the consistency of the spec-
i�cation is one of the main goals of our approach, we have precisely de�ned the
meaning of con�icts in the Service Diagram. Furthermore, we have described
the detection and resolution of con�icts from a methodological point of view.

Regarding product families, we have shown how the compatibility of di�erent
variants can be analyzed.

Since the e�ort to perform consistency checks separately for all possible com-
binations of variants grows exponentially, we are currently working on concepts
to reduce the e�ort of consistency checks by extracting commonalities between
variants. Beyond this, our future work includes the development of a user-friendly
syntax for the semantics introduced in this paper and the transition from the
Service Diagram to the consecutive design models.

References

1. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report, SEI, CMU, Pittsburgh (1990)

2. Gruler, A., Harhurin, A., Hartmann, J.: Modeling the functionality of multi-
functional software systems. In: Proceedings of ECBS07. (2007)

3. Gruler, A., Harhurin, A., Hartmann, J.: Development and con�guration of service-
based product lines. In: Proceedings of SPLC07. (2007)

4. Harhurin, A., Hartmann, J.: A Formal Approach to Specifying the Functionality
of Software System Families. Technical report, Technische Universität München
(2007) http://www.in.tum.de/forschung/pub/reports/2007/TUM-I0720.pdf.gz.

5. Broy, M.: Service-oriented systems engineering: Modeling services and layered
architectures. In: FORTE. (2003) 48�61

6. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL � A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

7. Spichkova, M.: Speci�cation and Seamless Veri�cation of Embedded Real-Time
Systems: FOCUS on Isabelle. PhD thesis, Technische Universität München (2007)

8. Batory, D., O'Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1 (1992)

9. Mannion, M.: Using �rst-order logic for product line model validation. In: SPLC.
(2002) 176�187

10. Trigaux, J.C., Heymans, P., Schobbens, P.Y., Classen, A.: Comparative semantics
of feature diagrams: Ffd vs. vdfd. CERE 0 (2006) 36�47

11. van Lamsweerde, A., Letier, E., Darimont, R.: Managing con�icts in goal-driven
requirements engineering. IEEE Trans. Softw. Eng. 24 (1998) 908�926

12. Schätz, B.: Combining product lines and model-based development. In: Proceed-
ings of Formal Aspects of Component Systems (FACS 2006). (2006)

13. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: GPCE. (2005) 422�437

14. Calder, M., Kolberg, M., Magill, E.H., Rei�-Marganiec, S.: Feature interaction: a
critical review and considered forecast. Comput. Networks 41 (2003) 115�141

15. Jackson, M., Zave, P.: Distributed feature composition: A virtual architecture for
telecommunications services. IEEE Trans. Softw. Eng. 24 (1998) 831�847

16. Braithwaite, K.H., Atlee, J.M.: Towards automated detection of feature interac-
tions. In: FIW. (1994) 36�59

17. Stepien, B., Logrippo, L.: Representing and verifying intentions in telephony fea-
tures using abstract data types. In: FIW. (1995) 141�155

18. Klein, C., Prehofer, C., Rumpe, B.: Feature speci�cation and re�nement with
state transition diagrams. In: Fourth IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems. (1997)

