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Abstract. In this paper, a project to develop a computer-aided proof of
the Basic Perturbation Lemma is presented. This Perturbation Lemma is
one of the central results in algorithmic algebraic topology and to obtain
a mechanised proof of it, would be a first step to increase the reliability of
several symbolic computation systems in this area. Techniques to encode
the necessary algebraic structures in the theorem prover Isabelle are
described, and a sequence of high level lemmas designed to reach the
proof is included.

1 Introduction

Nowadays, there exists an increasing interest in the interplay between Computer
Algebra Systems (CAS) and Automated Theorem Provers (ATP) (see, for in-
stance, [9], [5], [3]). One of the possible applications of this interaction is related
to the analysis of the correctness of the programs appearing in a CAS, using as
a tool an ATP.

In the particular case in which the application domain of the symbolic compu-
tation system is Homological Algebra or Algebraic Topology this sort of analysis
is specially complex, due to the need of using infinite data structures and, then,
higher-order functional programming [24], [22]. This specific situation implies
there is a deep semantic gap between the proofs which appear in the standard
literature on Algebraic Topology and the semantics of the implementation lan-
guage used to build the symbolic computation system. Our aim is to bridge this
gap by using ATP technology.

One of the authors has collaborated in the development of Sergeraert’s sys-
tems for computing in Algebraic Topology, such as EAT [23] or Kenzo [12], and
then he and coauthors move to the specification of this kind of systems (see,
for instance, [16], [10], [11]). As a natural continuation of this research project,
we are now trying to prove, in a computer-aided way, one of the central results
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in algorithmic Homological Algebra: the Basic Perturbation Lemma (or BPL,
in short) [8]. The tool chosen to deal with this problem has been the tactical
theorem prover Isabelle [19].

In this paper, we will present a detailed plan of the steps to be given in
order to obtain a complete mechanised proof of the BPL, from fundamentals
on algebraic and data structures to high level lemmas organizing our proposed
proof. Our first experiences in implementing this plan by using Isabelle will be
also reported. (This paper is an extension of the work which has been previously
presented at [1] and [2].)

The organization of the paper is the following. In the next section our problem
is stated and some alternative approaches are briefly explored (in particular, the
possibilities of the ACL2 tool). Then, a bit of homological algebra is introduced
in order to formally state the Basic Perturbation Lemma. Section 5 is devoted
to the encoding of algebraic structures in Isabelle, and in Section 6 a sequence
of lemmas is presented, in order to reach a partial proof of the BPL. The paper
ends with conclusions and references.

2 Statement of the problem and alternative approaches

As explained in the introduction, the BPL has been implemented in Common
Lisp inside of the symbolic computation systems EAT [23] and Kenzo [12]. These
are quite large and complex Common Lisp programs (thousands of lines of code,
with intensive use of functional programming, lexical closures and other sophis-
ticated machinery). They have been capable of calculating homology groups
unknown until its construction [22]. After several years of successful testing, the
reliability of these systems is very high. Nevertheless, in order to increase even
further the reliability of the systems, and to increase the knowledge on the in-
ternal computing processes, a research project for analysing in a formal way
the programs was undertaken several years ago. One line of this project was
directed to the algebraic specification of the (complex, functional, infinite) data
structures appearing in the programs. Some of the results obtained in this line
were published in [16], [10] or [11].

Another line in this same project, more recently started, is related to the use
of ATP tools to analyse the correctness of the implementations. Since the BPL
is one of the most important parts of the programs, it was decided to start the
analysis from it.

In view that the problem is to prove, in an automated way, the correctness of
a Common Lisp program, an ATP tool which seems specially suitable is ACL2
[15]. The ACL2 system is a successor of the Boyer-Moore ATP, Nqthm [7] (see
also [6]). ACL2 allows the user to write Lisp programs in an extended functional
(in the sense of “side effects free”) subset of Common Lisp, in such a way that
termination is proved by the system (with some hints from the user, in the
difficult cases) and properties on the programs can be established with the help
of the system.



As it is well known in the automated deduction community, there exists a
trade-off between expressive power and degree of automation (and computa-
tion) in an ATP tool. In particular, the Boyer-Moore approach explicitly forbids
the use of lexical closures and lambda expressions (if this was allowed in its
full power, the halting problem would obstruct the automatic process). So, con-
fronted with this situation, three alternatives appear:

– To rewrite the symbolic computation systems avoiding the ACL2 forbidden
constructions.

– To extend ACL2 by incorporating some higher-order functional program-
ming features.

– To move from the initial objective, and to choose a tool expressive enough to
formally specify the general constructions of algorithmic algebraic topology
(paying the prince, in a first moment, of forgetting the actual Common Lisp
implementations).

Since points 1 and 2 seems very difficult and costly (we think that they
should be simultaneously carried out, finding a balance between code rewriting
and ACL2 extensions), possibility 3 has been first considered. The tool chosen
was Isabelle [20], [19], which is based on higher-order logic and therefore has a
great expressiveness. We concentrate ourselves in the proof of the BPL theorem
(rather than in the proof of correctness of BPL implementations), as explained
in the following sections.

3 The Basic Perturbation Lemma

In the following definitions, some notions of homological algebra are briefly in-
troduced (for details, see [17] for instance).

Definition 1. A graded group C∗ is a family of abelian groups indexed by the
integer numbers: C∗ = {Cn}n∈Z, with each Cn an abelian group. A graded group
morphism f : A∗ → B∗ of degree k (∈ Z) between two graded groups A∗ and
B∗ is a family of group homomorphisms: f = {fn}n∈Z, with fn : An → Bn+k

group homomorphism ∀n ∈ Z. A chain complex is a pair (C∗, dC∗), where C∗ is
a graded group, and dC∗ ( the differential map) is a graded group homomorphism
dC∗ : C∗ → C∗ of degree -1 such that dC∗dC∗ = 0. A chain complex homomor-
phism f : (A∗, dA∗) → (B∗, dB∗) between two chain complexes (A∗, dA∗) and
(B∗, dB∗) is a graded group homomorphism f : A∗ → B∗ (degree 0) such that
fdA∗ = dB∗f .

Let us note that a same family of group homomorphisms f = {fn}n∈Z can be
considered, depending on the source and the target, as a graded group morphism
or as a chain complex morphism. As it is usual, if no confusion can arise, we
denote by C∗ both a graded group and a chain complex; in this second case, the
differential on C∗ will be denoted by dC∗ .



Definition 2. A reduction D∗ ⇒ C∗ between two chain complexes is a triple
(f, g, h) where: (a) The components f and g are chain complex morphisms f :
D∗ → C∗ and g : C∗ → D∗; (b) The component h is a homotopy operator on
D∗, that is to say: a graded group homomorphism h : D∗ → D∗ of degree +1; (c)
The following relations are satisfied: (1) fg = idC∗ ; (2) gf+dD∗h+hdD∗ = idD∗ ;
(3) fh = 0; (4) hg = 0; (5) hh = 0.

Definition 3. Let D∗ be a chain complex. A perturbation of the differential dD∗
is a morphism of graded groups δD∗ : D∗ → D∗ (degree -1) such that dD∗ + δD∗
is a differential for the underlying graded group of D∗. A perturbation δD∗ of dD∗
satisfies the nilpotency condition, with respect to a reduction (f, g, h) : D∗ ⇒ C∗,
if the composition δD∗ ◦ h is pointwise nilpotent, that is, (δD∗ ◦ h)n(x) = 0 for
an n ∈ N depending on each x in D∗.

Theorem 1. Basic Perturbation Lemma — Let (f, g, h) : D∗ ⇒ C∗ be a
chain complex reduction and δD∗ : D∗ → D∗ a perturbation of the differential
dD∗ satisfying the nilpotency condition with respect to the reduction (f, g, h).
Then a new reduction (f ′, g′, h′) : D′∗ ⇒ C′∗ can be obtained where the underlying
graded groups of D∗ and D′∗ (resp. C∗ and C′∗) are the same, but the differentials
are perturbed: dD′∗ = dD∗ + δD∗ , dC′∗ = dC∗ + δC∗ , and δC∗ = fφδD∗g; f ′ = fφ;
g′ = (1 − hφδD∗)g; h′ = hφ, where φ =

∑∞
i=0(−1)i(δD∗ ◦ h)i.

The BPL is a central result in algorithmic homological algebra (in particular,
it has been intensively used in the symbolic computation systems EAT [23] and
Kenzo [12]). It first appears in [25] and it was rewritten in modern terms in
[8]. Since then, plenty of proofs have been described in the literature (see, for
instance, [13], [4], [21]). We are interested in a proof due to Sergeraert [21]. This
proof is separated in two parts.
Part 1. Let ψ be

∑∞
i=0(−1)i(h ◦ δD∗)i. From the BPL hypothesis, the following

equations are proved: ψh = hφ; δD∗ψ = φδD∗ ; ψ = 1 − hδD∗ψ = 1 − ψhδD∗ =
1 − hφδD∗ ; φ = 1 − δD∗hφ = 1 − φδD∗h = 1 − δD∗ψh.
Part 2. Then, and only by using the previous equations, the BPL conclusion is
proved.

Before describing our plan to mechanise this proof, let us pay some attention
to the algebraic structures involved and to its possible implementation in the
tactical theorem prover Isabelle.

4 Algebraic structures in Isabelle

Isabelle [20], [19] is a theorem prover developed at the University of Cambridge
which provides a tool to interactive proof, specification and verification in higher
order logic. Our main initial interest is to formalise in Isabelle mathematical
structures such as chain complexes, morphisms, and so on. Since the algebraic
structures that appear in the proof of the BPL are quite involved, we first focus
on an elementary example: semigroups.



The formalisation is based on the work by Naraschewski and Wenzel [18],
where signatures are record types. The implementation of structures in Kenzo
was made also trough records with functional fields [12]. In the particular case
of semigroups, we start with the following type definition.

record ’a semigroup = "’a carrier" +
prod :: "’a => ’a => ’a" (infixl "\<cdot>\<index>" 70)

This gives only the signature of the semigroup. In order to include the axioms for
semigroups, we specify a predicate which is true on the records of type semigroup
on which the axioms of a real semigroup hold. It is done in the following Isabelle
definition.

constdefs semigroup :: "\<lparr>carrier :: ’a set,
prod :: ’a \<Rightarrow> ’a \<Rightarrow> ’a,
\<dots> :: ’b\<rparr> \<Rightarrow> bool"

"semigroup S \<equiv>
\<forall>x \<in> carrier S.
\<forall>y \<in> carrier S.
\<forall>z \<in> carrier S.

prod S (prod S x y) z = prod S x (prod S y z)"

This specification appropriately restricts the axiom to the carrier set of the
concrete structure, and not over a generic data type. This allows the convenient
construction of arbitrary carriers: they are not restricted to types in higher order
logic. Note that this construction uses the facility of dependent sets, which was
provided by Kammueller [14]. From this basis, it is possible to operate with
semigroups in Isabelle, and for instance to prove that the cartesian product of
two semigroups (with the canonical binary operation) is also a semigroup. This
kind of results are necessary, with respect more complex structures, to mechanise
a proof of the BPL.

An additional benefit of the use of Wenzel’s perspective to formalise alge-
braic structures is that it is easily extensible. This allows algebraic specification
with inheritance. For instance, both the declaration and the specification of the
structure of Group can be constructed from that of Semigroup, as it is shown in
the following Isabelle fragment.

record ’a group = "’a semigroup" + inv :: "’a \<Rightarrow> ’a"
("(_\<inv>\<index>)" [1000] 999) one :: ’a ("\<one>\<index>")

constdefs group :: "\<lparr>carrier :: ’a set,
prod :: ’a \<Rightarrow> ’a \<Rightarrow> ’a,
inv :: ’a \<Rightarrow> ’a, one :: ’a,
\<dots> :: ’b\<rparr> \<Rightarrow> bool"

"group G \<equiv> semigroup G \<and>
(\<forall>x. prod G (inv G x) x = one G) \<and>
(\<forall>x. prod G (one G) x = x)"



Then, it is easy to understand how the algebraic structures for the BPL can
be step-by-step constructed. From Group to Abelian Group and from this to
Differential Abelian Group (that is to say, an abelian group G endowed with a
group homomorphism d : G→ G such that d ◦ d = 0). This is “almost” a chain
complex (only the degree information is missing there). We conjecture that the
main parts of the BPL (and, more concretely, of the second part of Sergeraert’s
proof previously evoked) could be established in this more general setting.

While developing step-by-step the data structures, the constructions on these
structures should be also produced in a modular (and “extensible” way). For
instance, the cartesian product construction on semigroups should be extended
to the cartesian product (direct sum) of chain complexes. At that point, the first
important lemmas to prove the BPL can be stated.

5 Mechanising the proof

As a first step to start an Isabelle proof of the BPL, one must dispose of a
“by hand” proof detailed enough. The following sequence of lemmas will be
the basis of our approach. It is essentially Sergeraert’s proof in [21], but with
significant parts extracted as isolated lemmas. Obviously, each one of these high
level lemmas will have associated a quite large collection of Isabelle sub-lemmas.
So, the concrete structure of the final proof is difficult to foresee at this stage.
But we are confident that the central points are clearly stated in the presentation
that follows.

Lemma 1. Let (f, g, h) : D∗ ⇒ C∗ be a chain complex reduction. Then, there
exists a canonical and explicit chain complex isomorphism between D∗ and the
direct sum Ker(gf) ⊕ C∗. In particular, F : Im(gf) → C∗ and F−1 : C∗ →
Im(gf), defined respectively by: F (x) := f(x) and F−1(x) := g(x), are inverse
isomorphisms of chain complexes.

Lemma 2. Let D∗ be a chain complex, h : D∗ → D∗ (degree +1) a morphism
of graded groups, satisfying hh = 0 and hdD∗h = h. Let p be dD∗h+hdD∗ . Then
(1 − p, 1, h) is a reduction from D∗ to Ker(p).

Lemma 2 is used to give a (very easy) constructive proof of the following
result.

Lemma 3. Under the conditions and with the notations of the BPL, and as-
suming the equalities of Part 1 (Section 3), there exists a canonical and explicit
reduction D′∗ ⇒ Ker(p′), where p′ = dD′∗h

′ + h′dD′∗ .

Lemma 4. Under the conditions and with the notations of the BPL, and
assuming the equalities of Part 1 (Section 3), there exists a canonical and
explicit isomorphism as graded groups between Ker(p) and Ker(p′), where:
p = dD∗h+ hdD∗ and p′ = dD′∗h

′ + h′dD′∗ .



Lemma 5. Let A∗ a chain complex, B∗ a graded group and F : A∗ → B∗,
F−1 : B∗ → A∗ inverse isomorphisms between graded groups. Then, the graded
group homomorphism (degree -1) dB∗ := FdA∗F

−1 is a differential on B∗ such
that F and F−1 become inverse isomorphisms between chain complexes.

Lemma 6. Let (f, g, h) : A∗ ⇒ B∗ a reduction and F : B∗ → C∗ a chain
complex isomorphism. Then (F ◦ f, g ◦ F−1, h) : A∗ ⇒ C∗ is a reduction.

Lemma 7. Part 2 of the BPL — Under the hypothesis of the BPL and as-
suming the equalities of Part 1 (Section 3), the BPL follows.

Sketch of the proof — (The notations of the previous lemmas are kept.) By
Lemma 3, there exists a reduction D′∗ ⇒ Ker(p′). By Lemma 4, Ker(p′) ∼=
Ker(p) as graded groups. But Ker(p) = Ker(1 − gf) = Im(gf) ∼= C∗, by
Lemma 1. Thus we get an explicit isomorphism between Ker(p′) and C∗ as
graded groups. The differential on Ker(p′) is then transferred to C∗, by Lemma
5, giving a new chain complex C′∗, with the property that Ker(p′) ∼= C′∗ as
chain complexes. Applying Lemma 6 to D′∗ ⇒ Ker(p′) and Ker(p′) ∼= C′∗, an
explicit reduction from D′∗ to C′∗ is obtained. When conveniently composing the
morphisms from the different lemmas, the formulas announced in the BPL are
exactly produced.

6 Conclusions

In the previous Section, we have shown a strategy to give an mechanised proof
of part of the BPL. Some related lemmas proved by using Isabelle (in a simpler
context) [1] confirm that this strategy is sensible. In addition, we have presented
a way of dealing in Isabelle with algebraic structures (essentially due to Wenzel
[18] and Kammueller [14]), and this opens the door to the actual writing of an
mechanised proof of the BPL. Nevertheless, it is difficult to estimate now the
effort (in lines of Isabelle code, for instance) necessary to complete this task.

Even if the complete writing of our proposed proof is finished, the proof
of Part 1 of the BPL also seems challenging for the ATP tools, due to the
occurrence of the series φ and ψ, which will require an inductive treatment.
And even if the complete Isabelle proof of the BPL is achieved, the problem of
the code extraction (a tool recently included in Isabelle) or the rewriting of a
certified ML program for the BPL will be still open. And, even then, it would
be necessary to translate this certification to the Common Lisp program for
the BPL already running in EAT [23] or Kenzo [12]. So, a fruitful and exciting
research field is opened by the problem approached in this paper.
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