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ABSTRACT

The correct interplay among components in a distributed,
reactive system is a crucial development task, particularly
for embedded systems such as those in the automotive do-
main. Model-based development is a promising means for
capturing key structural and behavioral requirements before
implementing code. Current development approaches focus
on components as the central development entity, leaving
component integration as a separate and error-prone task
in later stages of the system development process. This ap-
proach is particularly problematic in the area of Quality-
of-Service properties that are inherently end-to-end. We
address this problem by using a model where system func-
tions, not components implementing them, are central from
the early phases of requirements capture through implemen-
tation. We develop a domain model for system functions (or
services) based on interaction patterns; this model captures
deadline specifications ranging from individual messages to
entire services. Using a combination of modeling tools and
code-generators for the RT CORBA platform, we provide
an experimentation platform for monitoring these specified
deadlines in executable specifications.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.11 [Software Engineering]: Software Architectures;
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms

Design, Verification
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1. INTRODUCTION

Distributed, reactive, embedded systems are notoriously
difficult to develop. The shift from monolithic to highly
networked, heterogeneous, interactive systems has led to a
dramatic increase in both development and system complex-
ity. At the same time the demands for safety, reliability,
and other qualitative attributes have increased across ap-
plication domains. This can be observed clearly in the au-
tomotive domain where the situation is aggravated further
by demanding time-to-market requirements, short develop-
ment cycles, and rapid change of technological infrastruc-
tures, customer demands and product lines.

The major challenge in developing such systems is to man-
age the complexity induced by the distribution and interac-
tion of the corresponding components. Model-based devel-
opment techniques and notations have emerged as an ap-
proach to dealing with this complexity, in particular dur-
ing the analysis, specification and design phases of the de-
velopment process; popular examples are the UML [48],
SysML [45], ROOM [40] and SDL [9]. Each of these ex-
amples proposes managing the complexity of software de-
velopment by separating the two major modeling concerns:
system structure and system behavior. Other approaches
work with generic models of a specific target application do-
main [29], and provide modeling environments and tools for
model validation [4] and transformation [42] to add value
beyond graphical modeling.

However, the center of concern in model-based design
has so far been individual components rather than their
interplay; yet many important properties, especially of dis-
tributed embedded systems, are non-local in nature: Quality-
of-Service (QoS) properties such as throughput, execution
time and memory constraints are examples of this obser-
vation. Typically, such properties are best associated with
multiple components carrying out a specific task.

Contributions and Outline: In this paper, we demon-
strate how to specify and monitor end-to-end QoS proper-
ties — in particular, interaction deadlines — using models that
capture the cross-cutting interaction aspects of distributed,
reactive systems. This places the functions (or features, ser-
vices) provided by the system — rather than the components
implementing them — in the center of the development pro-
cess. We show how to create an infrastructure for simu-
lation and validation based on RT CORBA [31]; this in-
frastructure includes a distributed monitoring facility that
currently observes interaction deadlines during runtime. In
this paper, we focus on monitoring deadline violations in ex-



ecutable specifications; this is an important capability used,
for instance, to check QoS properties during conformance
testing of supplier-provided components. Monitoring exe-
cution is an important complement to system testing and
formal validation techniques, such as model checking and
theorem proving.

The remainder of this document is structured as follows.
In Section 2, we provide a domain model for interactions
and QoS constraints for our interaction-based development
approach. This domain model shows the relationships be-
tween the modeling entities underpinning our notion of sys-
tem functions; it also serves as the basis for tool develop-
ment. Section 3 shows how end-to-end interaction deadlines
are modeled by using an excerpt of a central locking system
as an automotive example. We describe the relationship be-
tween the interaction model and a corresponding prototypic
tool chain, and how it can be used to generate RT CORBA
prototypes where real-time constraints are monitored. In
Section 4, we discuss our approach in the context of related
work. Section 5 contains our conclusions and outlook.

2. INTERACTION-BASED DEVELOPMENT
FOR QOS PROPERTIES

In this section we first give our rationale for the use of
interactions as a key ingredient in the software develop-
ment process of embedded reactive systems. Then, we dis-
cuss a domain model that clarifies the relationships between
system functions, roles, interactions and components, and
shows how real-time constraints can be modeled. This do-
main model is the basis for the tool chain we describe in
detail in Section 3.3; it provides a structure for the data
format for model interchange between the elements of the
tool chain. In fact, our model can easily serve as a meta-
model for tools such as GME [11] to exploit generic model
transformations as described in [42].

2.1 Servicesin the Automotive Domain

The automotive domain is particularly attractive to ex-
plore the ideas presented in this text. Typical luxury cars
have up to 80 distinct microprocessors (embedded within
Electronic Control Units, ECUs) implementing hundreds to
thousands of software-enabled vehicular functions. The high
degree of dependencies and resulting interaction between
these functions is observed to be a limiting factor in the de-
velopment and implementation of new functionality [6, 12].
Triggered by the success of service-oriented development ap-
proaches in telecommunications and business systems (most
notably under the keyword “web services”), car manufac-
turers are exploring service-oriented software design also for
the vehicle [30]. The work we present here provides a basis
for systematic development steps into this direction; it ties
in with standardization efforts based on explicit or implicit
feature or service notions such as AMI-C [2], EAST-EAA
[8] and AutoSAR [5]. For further information on the emerg-
ing field of service-oriented development in the automotive
domain, we refer the reader to [3].

2.2 Interaction-Based Development of End-to-
End QoS Properties
Our approach is based on the observation that central as-

pects of system behavior involve the coordination or interac-
tion of multiple components [25, 26, 22]. A system function

(or service) in our approach, is defined as the collaboration
among a set of components to accomplish a particular task.
We have shown in [23] that this interaction-based notion
is suitable for modeling of automotive software and how it
can be supported by tools for interaction-based modeling,
validation and code generation [22].

The principle development steps in interaction-based de-
velopment are service elicitation and architecture mapping.
During service elicitation we perform the following steps:
(1) structure and determine the principal use cases of the
system under consideration; (2) from the use cases, deter-
mine the key roles (also called actors); (3) determine the
interactions among these roles required to execute the ser-
vice — we use extended Message Sequence Charts (MSCs,
[20]) to specify these interaction patterns. During architec-
ture mapping we perform the following steps: (4) specify
the target component configuration (deployment architec-
ture), such as the layout of the ECUs and communication
buses in the vehicle; (5) associate the roles elicited in step 2
with the deployment components. This approach supports
general mappings of multiple roles to the same deployment
component as needed, for instance, for model-driven archi-
tecture [33] and product-line architectures [36]. Often, how-
ever, models assume a one-to-one relationship between roles
and deployment components, i.e. there is exactly one de-
ployment component per role; for reasons of brevity we will
work with this assumption in the remainder of this text as
well. This development process is intended to be exercised
in a highly iterative, incremental fashion.
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Figure 1: Interaction Domain Model

In [26] we have introduced an architecture definition lan-
guage (ADL) supporting both steps of the interaction-based
development process. This ADL offers system services and
their defining interaction patterns as first-class modeling el-
ements for software architectures. Instead of repeating the
syntactic elements used in the ADL, we show the underlying
domain model in Fig. 1. We use a class diagram as notation
to define the main entities and their relationships that we
need to model interactions. The domain model abstracts
from the actual language syntax of the ADL given in [26].
The dotted area in Fig. 1 contains the model of system ser-
vices (functions) defined as interaction patterns: a System
Function consists of an interaction specification (an Interac-
tionElement) among a set of Roles. An interaction specifi-
cation is either simple (an Atom), or composed from an op-
erator and its operands. Messages and References (to other
interaction specifications) are examples of simple interac-



tion specifications. Composite interaction specifications are
labeled with an operator and have a set of operands. Ex-
amples of operators are sequential and parallel composition,
alternatives, loops, as well as joins. The join of two in-
teraction specifications synchronizes its operands on shared
interactions while interleaving all others. As we have de-
scribed in [24], join supports the composition of overlapping
system functions. Both Basic and High-Level MSCs are also
interaction specifications.

The interaction-based system model described above pro-
vides an anchor-point for specifying QoS properties (dashed
area in Fig. 1). With each system function, we associate
a set of real-time constraints; each real-time constraint can
relate any set of InteractionElements. As a special case in
this paper, we consider deadlines associated with Interac-
tionElements. This allows us to model deadlines for entire
functions (services), but also for individual messages within
interaction patterns.

An interaction-based development process supporting spe-
cification and validation of end-to-end QoS properties now
emerges as follows from the one described above: Perform
all development steps as described above; while determin-
ing the interactions among the roles required to execute a
system function in step (3), identify QoS constraints and
associate them with the appropriate InteractionElements.
The corresponding model records the key interaction pat-
terns together with their QoS constraints; the augmented
notion of interactions we have introduced thus captures QoS
constraints as cross-cutting system aspects.

In the following section we demonstrate the application
of this idea to an automotive example; we also describe the
tool support we have built to support the modeling and
run-time validation of end-to-end deadlines using the model
introduced here.

3. MODEL-BASED RUN-TIME MONITOR-
ING OF QOS PROPERTIES

The model developed in the previous section not only al-
lows us to capture QoS properties; it provides us with the
ability to monitor whether the specified properties are ob-
served during runtime in actual or simulated deployments.
This is important, for instance, for conformance testing of
supplier-provided components in a complete system envi-
ronment. It allows the supplier to test compliance of com-
ponents with the rest of the system during development; it
also provides the system integrator with an environment to
integrate and test supplied, reengineered, or evolved compo-
nents against the specification. Both capabilities are highly
relevant and demanded in situations where time-to-market
as well as outsourcing pieces of development dictate sys-
tems engineering, as currently observed in the automotive
industry [3]. In this section we present an approach utiliz-
ing the RT CORBA infrastructure to provide a non-invasive
approach to monitoring end-to-end RT constraints at run-
time.

The basic idea is to distribute the QoS specifications as-
sociated with each system function to all the deployment
components involved in executing the function. Each com-
ponent monitors whether its functions continue to operate
within the specified QoS properties; a flag is raised if any
QoS property is violated. These flags are communicated for
all subsequent interactions involved in a particular function.

A central monitor component collects flagged interactions
and alerts the developer about the violated properties.

Before we elaborate on this idea, we introduce the Central
Locking System (CLS) as an example from the automotive
domain to illustrate our interaction-based development ap-
proach.

3.1 Example: Central Locking System (CLYS)

The Central Locking System (CLS) is a well-studied and
documented example of a vehicle functionality. The CLS
integrates a multitude of separate subsystems in the vehicle,
ranging from safety critical ones (motor control and crash
sensors) to comfort functions (automatic seat positioning
and tuner presets in luxury vehicles). For reasons of brevity,
we present a simplified and abstract adaptation of the CLS.
We direct the reader to [30, 23] for a more comprehensive
description. Here, we focus on two specific use cases during
the unlocking of the vehicle: operation of locks and signaling
and transfer driver ID.
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Figure 2: CLS Domain Model

Figure 2 describes the roles we have identified for our CLS.
The CONTROL is the command center of the CLS. The
Lock Manger (LM) abstracts away the details of performing
the physical lock/unlock operations by providing a simplified
interface. Similarly, a vehicle contains several interior and
exterior lighting mechanisms, which are abstracted away by
the entity Lighting System (LS). The Security Module (SM)
handles security-related tasks of the vehicle, such as alarms,
vehicle tracking and authentication. A Key Fob (KF) is the
user interface for externally locking or unlocking the vehicle.
Finally, the Database (DB) represents a persistent storage
component, which logs identifications associated with par-
ticular users and/or key fobs.
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Figure 3: UNLK-1: Operation of Locks & Signaling

Figure 3 shows the operation of locks and signaling func-
tion. The graphical syntax we use is derived from MSCs
as described in [20, 24]. Upon receipt of the unick mes-
sage from KF, CONTROL issues an unlck message to LM.
Once LM acknowledges this with an ok message, CONTROL



requests signaling of the unlocking from LM by means of
a door_unld_sig message. Once it has issued this message,
CONTROL sends an ok message back to KF. The transfer
driver ID function is also triggered by the wunlck message
from KF to CONTROL. The corresponding interaction pat-
tern is shown in Fig. 4.
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Figure 4: UNLK-2: Transfer Driver ID

The MSCs of Figures 3 and 4 are both augmented with in-
teraction deadlines, indicated by means of a labeled dashed
line. The operation of locks and signaling function has a
deadline of 150 ms. This means that the vehicle must be un-
locked and the signaling must have occurred within 150 ms
according to the interaction specification. The transfer dri-
ver ID function has a deadline of 500 ms. These two opera-
tions are integral parts of the full unlocking use case; we can
observe that they are overlapping (i.e. they share common
messages).

3.2 Composition of QoS properties

Our interaction model allows us to compose overlapping

functions by means of the join operator introduced in Sec. 2.2.

The join operation combines two distinct, but overlapping,
functions (represented as MSCs) into a single function. A
combination of functions in our specification has to follow
the constraints imposed by each separate function. In our
example, the deadline for the joined function (called unlock-
ing) will become 150 ms, because the common messages on
which the two MSCs were joined upon were the start and
end messages of both functions. Note also that these dead-
lines relate the otherwise independent id and ok messages
seen in Fig. 4.

Our interaction model defines several operators to com-
pose interactions (MSCs or parts thereof) to more complex
interactions. Available operators are Seq, Par, Alt, Loop,
and Join as introduced in [20]. We discussed the join op-
erator above, where the result retains the minimum dead-
line of all operands. We currently consider only the com-
mon case where start and end messages are overlapping.
A similar logic is used for parallel composition (Par). Se-
quential composition (Seq) simply adds the deadlines of the
operands. For alternative interactions (Alt), the correct ex-
ecution path will be chosen at runtime and we can retain the
original deadlines. For Loops, the deadline is evaluated for
each cycle of the loop separately. If the entire loop should
have a fixed deadline independent of the number of cycles,
this deadline must be specified manually in the composed
function.

More precisely, we apply a bottom-up scheme for interac-
tion composition. Deadlines can be applied to basic inter-
actions. We can, for instance, define a deadline for a sin-
gle message or a message sequence. For each composition
operation, we apply defined rules that constrain the dead-
lines of the composite interactions. For instance, sequential
composition leads to an addition of the operands’ deadlines,
loops to a multiplication, parallel and join composition to
the selection of the minimum deadline. All deadlines can
be tightened manually. A less restrictive composition alter-
native (for instance than applying the minimum constraint
for join composition) would be to only consider a newly de-
fined deadline for the composite. Doing so would allow the
modeler to provide a different interpretation for the more
complex composite function — it can be more than the sum
of its parts. However, this may not yield a true refinement of
the specification in the bottom-up sense, because the com-
posite may not fulfill all QoS properties of the composed
interactions anymore. Practical considerations would deter-
mine the concrete composition scheme used. We chose the
composition variant that maintains all properties of basic
interactions and allows for methodological refinement. We
are aware that this is more restrictive to the modeler and
requires more frequent modifications or refactorings of the
specification.

In terms of methodology, we can also apply top-down re-
finement of deadlines, while still fulfilling all properties of
bottom-up composition as described above. Starting from
deadlines for entire functions, we allow the modeler to pro-
vide specific deadlines to parts of the interaction, as long as
the overall deadlines are still satisfiable.

3.3 Tool Chain

In order to demonstrate the concept of interaction-based
development, we have designed and implemented a proto-
typic tool chain. The primary purpose of this tool chain is
to illustrate the complete development cycle, from the initial
modeling phase to execution on a real system. As shown in
Fig. 5, the tool chain consists of three main elements. First,
the modeling and specification tool itself (M2Code) provides
the means to specify roles, interactions patterns and sys-
tem services. Second, we apply tools for model simulation,
verification and testing of component configurations (Aut-
oFocus/MSCCheck). Third, we have developed a tool for
transforming the abstract specification model of M2Code or

AutoFocus/
MSCCheck [ ]

RT Code /

Generator

Figure 5: Tool Chain for Interaction-Based Devel-
opment



AutoFocus into executable code for the RT CORBA middle-
ware platform (Code Generator). We refer the reader to [22]
for a more in depth look at the tool chain.

M2Code allows modelers to specify system functions (ser-
vices) and QoS properties using MSCs, based on the domain
model introduced in Sec. 2.2. The real-time constraints are
specified on MSCs as shown in Figures 3 and 4. M2Code
applies the logic described above to yield deadlines for com-
posed interactions when applying MSC operators.

M2Code translates MSC specifications into component
structures and state machines for the individual components
[21, 22]. This abstract component specification is stored in
an XML file, similar in format and content to the XML
output of AutoFocus. This common XML specification file
format allows data to move between the various tools. Fig. 6
shows how the XML output of M2Code is extended to record
the QoS constraints for each system service using unlocking
as an example:

<QoS>
<services>
<service name="UNLCK">
<messages>
<message source="KF" dest="CONTROL" deadline="150">UNLOCK</message>
<message source="CONTROL" dest="LM" deadline="150">UNLOCK</message>
<message source="LM" dest="CONTROL" deadline="150">0OK</message>
<message source="CONTROL" dest="LS" deadline="150">DOOR_UNLD_SIG</message>
<message source="CONTROL" dest="KF" deadline="150">0OK</message>
<message source="CONTROL" dest="SM" deadline="150">HANDLE_ID</message>
<message source="SM" dest="KF" deadline="150">GET_ID</message>
<message source="KF" dest="SM" deadline="150">ID</message>
<message source="SM" dest="DB" deadline="150">ID</message>
</messages>
</service>
</services>
</QoS>

Figure 6: QoS Portion of XML Input

AutoFocus [4] and MSCCheck use the specification output
of M2Code to simulate and (through model-checking algo-
rithms) verify those behavioral aspects of the model that are
not related to QoS.

To accommodate analysis of QoS properties, we utilize the
infrastructure of RT CORBA [31] for simulation and valida-
tion. In contrast to the simulation tool found in AutoFocus,
the RT CORBA based runtime system we have implemented
provides monitoring and validation mechanisms for both log-
ical flow and real-time property validation. To bridge the
gap between the abstract XML specification and executable
code, we have developed a code generator and a runtime
system based on the RT CORBA platform. RT CORBA
was chosen for its robust capabilities of specifying and im-
plementing real-time properties. Our runtime system was
intentionally kept simple and straightforward by using the
Real-Time Event Service (RTES) messaging facility. The
RTES provides the fundamental abstraction for asynchron-
ous message passing, allowing each component to operate
independently. We also make use of hooks the RTES pro-
vides to incorporate a real-time scheduler. The simplicity
of a message-based communication system promotes future
deployment to other message-based runtime systems such
as a CAN (Controller Area Network) bus. Messaging and
scheduling mechanisms would have to be reproduced, but
fundamentally the system concept is portable.

The code generator supports two execution models: Aut-
oFocus and asynchronous. Intuitively, the AutoFocus execu-
tion model operates in a time-synchronous mode; messages
are exchanged via one-place buffers between components.

Each component waits for inputs to arrive on all of its input
buffers, then executes an enabled transition of its associ-
ated state machine, and finally writes to all of its output
buffers; this scheme is further described in [13]. The Aut-
oFocus model has the benefit that it is well-supported by
the validation and verification tool itself, namely AutoFo-
cus. This, however, results in “lock-step” executions of the
components that have to be coordinated by an abundance
of control messages on the communication medium.

To better support the treatment of automotive environ-
ments with QoS constraints we have developed an asyn-
chronous execution model that is reactive in nature. In this
model, upon receipt of a message, each component imme-
diately executes an enabled transition of its automaton and
sends output on only the appropriate ports. This model
eliminates undesirable “waiting” as well as network flooding
by control messages. The drawback of this model is that we
lose AutoFocus as a validation tool. However, we are cur-
rently developing a tool called MSCCheck, which provides
model-checking capabilities also under the asynchronous ex-
ecution model.

The generated code employs RT CORBA’s Time Service
[32]. The Time Service provides a distributed, synchronized,
global clock to all components in the system. Mechanisms
for globally synchronized clocks exist on many embedded
platforms and so the runtime system is, again, fundamen-
tally portable in concept. This is critical for having com-
ponents monitor QoS constraints in a distributed fashion
without the need of an invasive entity like a central sched-
uler. We will discuss this further in the next section.

3.4 Deadline Monitoring

The broadcast/multicast nature of the Real-Time Event
Service (RTES) allows for external monitoring of timing
properties on the event channel. One approach to moni-
toring would be to register a single globally aware entity,
a central monitor. This entity would serve a multitude of
functions. It would include an internal timer to check for
message and interaction deadlines; it would include internal
state machines to associate incoming messages with the sys-
tem functions, and it would act as a single point of user in-
teraction. Although seemingly simple and obvious, this ap-
proach has an inherent flaw: in a heterogeneous, distributed
environment with network delays between components, the
monitor may receive messages before the specified recipient.
Thus, from the monitor’s perspective, a deadline may not
have been violated; yet, from the component’s perspective,
the deadline may have passed before receiving the actual
message.

We therefore introduce a fresh approach where parts of
the functionality of the monitor are pushed out into the
components. Specifically, all components contain a monitor-
ing element, component monitor (CMonitor), which checks
whether or not interaction deadlines have occurred.

In our approach, each message sent via RTES contains
interaction deadlines, calculated based on message and/or
system function specifications. Upon receipt of a message,
the CMonitor of the receiving component obtains the cur-
rent time from the Time Service and checks it against the
message’s carried interaction deadlines. If such a deadline
has been reached, the CMonitor sends the original message
back on to the event channel with a flag raised. The monitor
described below then displays this message, along with its



timing and system function information, to the user. The
user is then able to verify which messages were not able
to meet the deadline, by how much they were in excess of
the deadline, and which functions the exceeded messages
belonged to. Messages also carry function identifiers associ-
ated with the deadlines, to provide all necessary monitoring
information to the monitor. This concept of local moni-
toring generalizes to other QoS properties, such as memory
constraints and throughput, as well.

The remaining monitoring functionality, providing a point
of user interaction and global system information, is estab-
lished as a single entity, the monitor. The monitor regis-
ters itself with the RTES to receive copies of all messages
placed on the Event Channel. This allows the monitor to ob-
serve the interactions occurring in the system from a global
perspective. Alternatively, components register themselves
with the RTES to receive copies of messages from only those
components they are allowed to interact with, as specified
by the system function requirements. In Fig. 7, we show a
deployment picture of the CLS, which includes the monitor
and all CMonitors. Note that the internal wiring among
components remains the same as in Fig. 2 because of how
components registered themselves with the RTES. Also note
that since the monitor registers itself as a global entity, it
has a global view of the entire event channel. Additionally,
the monitor has the capability of injecting events on behalf
of components into the event channel, which is useful for
triggering a system function or a set of interactions. This is
a helpful tool for testing how components react to specific
messages.

RT Event Channel

KF LS

[ CMonitor | [ CMonitor |
SM ~ LM

[ CMonitor | [ CMonitor

Y Y Y
DB CONTROL

Figure 7: CLS Deployment Picture with Monitor

Let us examine a run-time execution instance of the un-
locking function we have described in Sec. 3.1. We begin by
utilizing the inject feature of the monitor. First, we choose
a message to be injected into the system. In our case, we
choose UNLCK. Next, source and destination components
must be selected to let the system know which component
the message should be sent to, and on whose behalf it should
be sent. We choose to send the message to CONTROL on
behalf of the KF. This simulates a user pressing the unlock
button on a key fob device. Finally, we press the inject
button in the monitor and observe the interactions among
components as well as a list of incoming alarms. The in-
teractions adhere to those specified in Fig. 3 and 4. The
alarms are messages that let us know which messages did
not meet their deadlines and by how much they were off. In
this specific execution instance, the final three messages of

the function exceeded the 150 ms deadline. The first mes-
sage exceeded it by 21 ms, the second by 37 ms, and the
final by 53 ms. In total, the function took 203 ms to com-
plete. This entire process can be observed by viewing the
unlock function as captured by our monitor in Fig. 8. As
system designers, we now know that the function has to be
refactored, (whether from a modeling, implementation, or a
hardware perspective) in order to meet the 150 ms deadline.
This information is invaluable because we have determined
such needs well before an actual deployment.
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Figure 8: Monitor During Unlock Execution

3.5 TowardsEnforcing QoS Properties

Our approach of monitoring interaction deadlines provides
developers and integrators of embedded systems with a pow-
erful means to check QoS properties using executable specifi-
cations against interaction-based system specifications. The
quality of the results — in terms of repeatability and de-
terminism — depends on the properties of the deployment
environment and configuration of the middleware.

RT CORBA provides several mechanisms and policies that
allow us to consider end-to-end deadlines and adjust run-
time parameters to create an environment which can be simi-
lar to a specific target environment. We utilize the RT Event
Service; it provides us with hooks into a RT Scheduler which
we have incorporated. We employ a dynamic scheduling pol-
icy for individual messages known as Earliest-Deadline-First
(EDF). All messages in a sequence receive the same dead-
lines as the functions they are a part of. For example, each
message in the unlock service receives a deadline of 150 ms.
This scheme ensures that all messages within a sequence will
be treated equivalently; it enables us to deal with message
sequences, not just individual messages. Thus, since func-
tions are composed of message sequences, we provide means
to enforce end-to-end deadlines.

At system startup, each component obtains a reference
instance to the RT Scheduler. Before messages are sent out,
the deadlines are looked up in a hash table for the functions
that the message belongs to. The deadlines are then sent
along with the message and the RT Scheduler dispatches
messages according to the EDF policy described above.

If we can show that our executable specification meets all
specified QoS requirements in an environment with guaran-



teed real-time properties such as message delivery time and
scheduling policy, we know that the realized system running
on a real-time operating system with the same properties
will meet the QoS requirements as well.

3.6 Code Generator Design

We described an initial version of the RT CORBA code
generator RT'CGen, using a central scheduler for interaction
coordination, in [22, 28]. To accommodate the multiple dif-
ferent execution models for the generated code, as well as
to provision flexible integration of QoS monitoring and en-
forcement in the code generation process, we have redesigned
RTCGen in the following way.

RTCGen takes in two forms of inputs to produce exe-
cutable code for the RT CORBA middleware: a set of tem-
plates and an XML file obtained from M2Code; this XML
file contains the system structure, state machines for compo-
nent behavior as well as QoS constraints on a per-function
basis. The templates are a set of files which are used by
RTCGen in conjunction with data pulled and manipulated
from the XML file to produce code. A template essentially
contains three types of content: First, code that is indepen-
dent from the model and will be copied unchanged into the
output — this subsumes infrastructure tasks such as setup
and configuration of the naming service and RTES. Second,
XML-style basic-tags which represent information that is de-
pendent on the model (such as the project name) — tags are
dynamically replaced by the code generator with model spe-
cific content. Third, loop-tags, which contain basic-tags and
iterate over certain entities (such as the list of components
in the XML file). Using templates allows for great flexibil-
ity because they provide a means for easy manipulation of
target code. For example, swapping out middlewares can
be accomplished by altering existing templates or creating
a new set of templates.

We have also developed a framework and a common li-
brary that may be utilized by generated components. The
framework isolates from a large portion of the RT CORBA
middleware. Communication mechanisms, real-time schedul-
ing and timing instruments are handled within the frame-
work. Providing an abstraction from the often intricate
RT CORBA code decouples templates and generated code
from the details of the underlying middleware. This results
in cleaner and easier to maintain code. The common li-
brary contains project-specific code, declarations, utilities
and data structures that are common to all components of
a project. The modularity of the library keeps component
templates and the code they produce as simple as possible.

4. DISCUSSION & RELATED WORK

In the following paragraphs we put the interaction-based
development approach presented here into perspective by
discussing it in the context of related work.

Services and Roles. Triggered by its success in the
telecommunications domain [35, 37] the term service has
become quite prevalent in the literature, especially in the
context of “web services” [41]. So far, however, services
have been used mainly as an implementation concept, not
as a first-class modeling entity. Consequently, existing defi-
nitions for the term service capture only syntactic lists of op-
erations upon which a client can call. These definitions are
inadequate for a systematic treatment of services through-
out the development process. This is especially true also for

the UML [48] or SysML [45], which do not recognize ser-
vices as separate modeling entities. In our approach, the
interaction based service notion emerges as a cross-cutting
modeling element regarding both system structure and be-
havior. In particular, we have established a decoupling be-
tween services (functions) as modeling elements and imple-
mentation infrastructures on top of which services can be
implemented. We use a generalized notion of a system ser-
vice (or feature, function) in our interaction-based modeling
approach. In [25, 26, 23] we present our service modeling ap-
proach based on the modeling of role interactions [24]. It is
related to the role concept introduced in [34] and the activi-
ties of [19]. While our service concept is based on interaction
patterns, stressing the cross-cutting nature of services, the
roles of [34] describe projections of such patterns onto in-
dividual components; to yield the overall picture the latter
have to be recomposed into a global interaction specifica-
tion. Activities of [19] capture global interaction properties
as we do in our service definition; in contrast to our ap-
proach, however, [19] views activities as classes and roles as
extensions to these classes.

Service vs. Component-Based Development. The
component-based development approach [46] certainly has
many advantages, including support for encapsulation, mod-
ularity, defining a unit of deployment, fault-containment,
and many more. However, it falls short for cross-cutting
aspects [15] including interaction patterns. In contrast, by
establishing a decoupling between service modeling and de-
ployment of the resulting services on top of component ar-
chitectures, we allow for “late binding” between functional-
ity and components. Services provide a level of abstraction
higher than components because services hide the compo-
nents that implement them. This induces a choice regard-
ing the architecture on top of which the services are imple-
mented.

Our approach allows for the system to be understood at
the granularity of individual features instead of components.
The ability to gracefully deal with faults, both predictable
and unpredictable, is an important property of embedded
systems. Although we have not elaborated on this topic
here, our approach allows for a better understanding of fail-
ures that emerge from the interplay of multiple components;
the component-based approach accounts for faults localized
to individual components.

Quality of Service. Defining system functions (ser-
vices) based on the notion of interaction patterns gives us
an immediate handle at defining Quality-of-Service proper-
ties similar to the approach proposed in the UML Profile
for Schedulability, Performance, and Time (UPSPT) [47];
in fact, our service definition supports more general QoS
specifications than what is possible in UPSPT. The General
Resource Model (GRM) consists of the following fundamen-
tal components: Resource, ResourceService, QoSCharacter-
istic, and Scenario. Resources can be described as compo-
nents in a system that will provide services. Each Resource
provides a set of ResourceServices. QoSCharacteristics are
the Quality of Service requirements which can be applied to
both Resources and ResourceServices. This limits specifica-
tion of QoS properties on a rather fine level of granularity;
basically they have to be broken down to the level of individ-
ual functions of executable components. Often, especially
in the early stages of development, it is helpful to specify
QoS properties that span multiple components or resources.



Our approach provides means to specify QoS properties of
interaction-based scenarios on all levels of granularity, from
an entire service down to a single interaction.

Specification and verification of QoS Properties.
Many suggestions for expressing Quality-of-Service attribu-
tes of distributed, reactive, embedded systems (DREs) exist
in the literature. Some are based on formal specification
languages such as timed automata [1]. Timed automata are
a successful approach for the specification and verification of
real-time systems; they extend traditional labeled transition
systems with clocks, i.e. real-valued variables that record the
passage of time and influence how the system evolves. The
work in [7] provides a real-time extension of the process
algebra CSP inspired by timed automata to enable auto-
matic verification of refinement relations between processes.
Several model-checking approaches exist to verify real-time
properties in system specifications using timed automata,
cf. [43, 49].

The work in [27] introduces a composition analysis model
for component-based embedded systems. QoS requirements
are considered in analyzing the solution space using an evo-
lutionary algorithm and to provide component selections
and parameter settings for the system as a result. Simi-
larly, [18] shows a model-driven development technique for
middleware configurations on end-to-end real-time and em-
bedded system quality of service. It helps to select middle-
ware configuration parameters that satisfy key functional
and QoS requirements of DREs. The work in [16] shows
how to compute worst-case execution times (WCET) for
functionality-oriented Matlab/Simulink models of DREs; it
is possible to make use of WCET analysis while modeling on
a higher level of abstraction. The authors make use of the
code-generation capabilities of Matlab/Simulink to perform
the WCET analysis on assembly/object code levels. The
work in [38] presents an approach of run-time monitoring
of formal specifications. This provides a capability to dis-
tribute the monitoring of specifications on multi-processor
hardware platforms to meet practical time constraints. [38]
describes techniques for distributing checks onto different
processors and discusses error reporting and recovery in a
multi-processor environment.

Our approach is based on a formal model of interactions
that enables model-based verification techniques such as mo-
del-checking and WCET analysis. In this paper, however,
we describe an approach to test generated executable com-
ponents for the RT CORBA middleware using run-time mon-
itoring. This is, for instance, very useful when perform-
ing compliance testing of supplier-provided components in
a fully integrated environment as specified; it also demon-
strates the flexibility of our approach to target different ex-
ecution environments with RT CORBA being one example.
The selection of the test environment certainly determines
the significance of the results. The more guarantees a test
environment provides and the more it resembles the real ex-
ecution environment, the more significant the test results
will be. We chose RT CORBA because it provides for us a
useful trade-off between flexibility of use and quality of the
results for our case studies and industry collaborations.

In this paper, we focused on timing deadlines as one ex-
ample of Quality of Service properties that can be effec-
tively be represented in interaction-based service specifica-
tions. Other QoS properties include, for instance, through-
put, memory consumption, CPU usage, I/O load, energy

consumption, transmission reliability etc. Specific QoS prop-
erties might require specific approaches to verify and test
them; not all can be checked using run-time monitoring.
Our model-based approach provides the basis for the speci-
fication of cross-cutting QoS properties on the system level,
but also on the level of individual interactions or compo-
nent activities. Verification approaches can be flexibly built
upon these specifications. We provided an interaction and
QoS specification domain model as a basis for efficient tool
support of our methodology.

Metamodels and Domain Specific Modeling Lan-
guages. Metamodels are described as formal models or
specifications of domain-specific modeling languages [29]. A
metamodel permits the creation of models using only the
semantics prescribed by the metamodel. This is the ba-
sis to build a generic tool suite that will eventually cre-
ate a product-line solution [14]. It is argued by [29] that
this reduces development costs because one can reuse ex-
isting model components in the design process. One ex-
ample toolset that complements this strategy is known as
the Generic Modeling Environment (GME) [14, 11]. The
domain model we have presented for our interaction-based
approach can be viewed as a metamodel in this sense. This
metamodel could serve as an input to tools such as GME and
be used to construct domain-specific models. This would be
an endeavor that awards further exploration. However, we
have chosen a more general approach using MS Visio. We
feel that with the tool’s pervasiveness and its graphical ca-
pabilities, coupled with our modifications, it serves as an
excellent modeling tool for service- and interaction-oriented
design.

Model-driven Development. Model-Driven Develop-
ment (MDD) techniques and tools help to specify, analyze,
optimize and verify distributed real-time and embedded sys-
tems. [39] shows that MDD techniques can significantly im-
prove quality and productivity for such systems, in particu-
lar in deployment scenarios using QoS-enabled component-
based middleware platforms. To that end, [39] introduces a
platform independent component modeling language (PIC-
ML). AIRES [17] and VEST [44] are MDD analysis tools
that evaluate whether certain timing, memory, power, and
cost constraints of real-time and embedded applications are
satisfied. The tools enable the annotation of components
from a pre-defined library with real-time properties and a
subsequent mapping to hardware platforms where the anal-
ysis is performed.

Our service-based approach targets similar systems and
adds the concepts of services and interactions as first-class
modeling elements; furthermore, it remains independent of
a certain component infrastructure or target hardware envi-
ronment. Our model-driven approach is related to Model-
Driven Architecture (MDA) [33], Model-Integrated Com-
puting [14], aspect-oriented modeling (AOM) [10] and ar-
chitecture centric software development (ACD) [48]; similar
to MDA and ACD we also separate the software architecture
into abstract and concrete models, as for instance shown in
[26]. In contrast to the cited model-driven development ap-
proaches, however, we consider services and their defining
interaction patterns as first-class modeling elements of all
our models throughout the different development phases.



5. CONCLUSIONSAND OUTLOOK

The development of high-quality, distributed, reactive,
embedded systems is still a daunting, error-prone task. As
we have discussed in this text, this is especially true in
the automotive domain, where the complexity induced by
an ever increasing amount of software functions and corre-
sponding interactions between these, has become a limiting
factor to innovation.

In this text, we have presented an interaction-based devel-
opment process as an alternative to traditional approaches
with components at the center of the development process.
Here, the defining elements for system functions are inter-
action patterns. This allows us to deal adequately with in-
teractions among sets of distributed components, as well as
with QoS properties associated with these interactions.

As foundation for systematic, model-based development
of interaction-based systems we have introduced a domain
model capturing the relationships between key entities of our
approach: system functions, roles, interactions, components
and QoS properties. System functions capture the interac-
tion patterns among sets of roles. Roles (and the functions
they are associated with) are mapped to component con-
figurations to obtain an architecture for the system under
consideration. QoS properties are associated with interac-
tion specifications; this supports associating QoS with entire
functions or individual messages of an interaction pattern.

We have also shown how to exploit this interaction model
in monitoring the QoS properties (specifically, end-to-end in-
teraction deadlines) during runtime within the RT CORBA
middleware infrastructure. To that end we have presented a
tool chain covering all phases of the development process we
have introduced. The generated RT CORBA code is very
useful as an executable specification that can be handed
over to suppliers for runtime analysis of subsystems within
context. Because of the flexible design of the code genera-
tor we can easily switch from one target platform (such as
RT CORBA) to another (such as a CAN-BUS/OSGi-based
platform for deployment). Together, these elements enable
interaction-based service-oriented specifications of complex,
distributed, reactive systems together with their QoS prop-
erties. The monitoring facility provides run-time analysis of
the QoS properties.

We have shown an application of our approach by means
of the Central Locking System (CLS), an example extracted
from the automotive domain. This example demonstrates
our interaction-based development process from the earliest
stages (identifying use cases) to the later ones (developing
deployment architectures) to run-time property monitoring.
Finally, we have provided a discussion on several key issues
in this realm.

Opportunities for Future work include the extension of the
code generator to provide monitoring of QoS properties of
different type. Refining the interaction/QoS domain model
to include more detailed QoS properties, such as worst case
execution times of local actions, or QoS levels is an example.
This would allow us to apply more sophisticated scheduling
and resource allocation algorithms towards an even better
enforcement of QoS properties, and provide the basis for
model-checking certain QoS properties. Interesting areas for
future research are also to evaluate opportunities for service
and architecture refinement provided by the domain model
and development process we have presented here.
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