
Dynamic Component and Code Co-Evolution

Markus Pizka
Institut für Informatik

Technische Universität München
Germany - 80290 Munich

pizka@in.tum.de

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement —Extensibility, Restructuring

Keywords
Software Evolution

ABSTRACT
This papers presents a radically new approach for the dy-
namic evolution of long-lived systems that can not easily be
shut-down for maintenance and restarted afterwards. Con-
ventionally, the source code of a software system is viewed
as a static entity and separated from the system at runtime.
This seems intuitive as a single piece of code is usually asso-
ciated with multiple components at runtime. Obviously, this
viewpoint is a major obstacle for dynamic evolution during
runtime as it raises difficult consistency issues concerning
the relationship between static code and the dynamically
executing system. The evolution approach presented in this
paper takes a completely different direction by seamlessly
integrating static code with dynamic execution. By this
and sound concepts for component categories, incomplete-
ness and dynamic completion, software can be generalized
and adapted during runtime in a highly flexible way.

1. DYNAMIC EVOLUTION
The process of software evolution often applies the follow-
ing strategy one way or the other: save-state, shutdown,
perform-modification, restart, restore-state. Despite of its
simple structure, this pattern already raises numerous non-
trivial questions, such as how can the state be captured at
an arbitrary point in time and how can quality be reassured.
Regardless of these questions, this static view of evolution
assumes that it is possible to shut the system to be modified
down. In cases of continuous operation, such as large-scale
mission-critical databases, central components within a net-
work or process steering systems (e. g. chemical processes)

International Workshop on Principles of Software EvolutionIn conjunction
with the International Conference on Software Engineering (ICSE-2002),
May 2002, Orlando, Florida, USA

this requirement must be considered at least strongly unde-
sirable.

1.1 Code Co-Evolution
Thus, dynamic evolution, i. e. adapting the system during its
runtime without (or hardly any) disruption of its operation
is strongly more favorable. Additionally, the conventional
evolution strategy tends to blur the important link between
the source level program1 and the system in execution. This
has several drawbacks. E. g., there is no evolvable represen-
tation of the system in execution if the code is modified while
the system is executing. Furthermore, individual modifica-
tion of two instances a and b of the same class c, specified
by a single piece of static code, requires at least expensive
versioning. Our approach to circumvent these problems, is
to view the code as an integral part of each component in
execution. By this evolution always affects code and com-
ponent simultaneously.

1.2 Scope
We investigated the question of how to dynamically mod-
ify systems in the context of an effort to develop a general
purpose distributed operating system (OS) [1, 7, 6, 4]. Our
research goal was to build a distributed system with the
requirement that the complete system, including its poten-
tial evolution, has to be fully known by the distributed OS
at any time. The reason for this unusual requirement was
the observation that a distributed OS must possess exten-
sive information to be able to automatically select suitable
resource management techniques, such as replication or mi-
gration for remote object access [10]. If a distributed OS fails
to dynamically switch to an adequate management strategy,
the performance delivered is usually unacceptable due to the
enormous gap between the speed of local and network ac-
cesses (≈ 105).

To approximate the requirement for complete knowledge we
employed an integrated, single system view. The OS and
all applications within the distributed system are regarded
as a single structured system. Consequently, to be able to
introduce new applications into the already running single
system or to evolve parts of the OS we needed new concepts
for dynamic evolution.

1we further-on abbreviate source code with “code”



The results achieved within this context are not limited to
the scope of distributed systems. The concepts and imple-
mentation techniques developed can easily be transfered to
other environments where dynamic evolution of software at
runtime is either needed or desirable.

1.3 Outline
Section 2 introduces our notion of flexible incremental evo-
lution based on the two concepts completion and general-
ization. Section 3 defines the term evolvable “component”
by distinguishing three different categories of components,
which is a prerequisite to be able to fully model dynamic
evolution. Based on this conceptual framework we are able
to precisely define possible evolution steps during the life-
time of a dynamically evolving system in section 4. Finally,
we briefly discuss implementation aspects of our proof of
concept prototype in section 5.

2. INCREMENTAL COMPLETION
Figure 1 sketches our notion of flexible stepwise evolution.
System2 V1 is developed as a solution to problem P1. Af-

C1

P2P1

V2 V4V1 V3
A2A1

Figure 1: Incremental Evolution

terwards, V1 becomes generalized to V2 in step A1 by per-
forming an abstraction. Completely specified components
are replaced with incomplete ones. Step C2 completes the
generalized variant V2 according to the requirements of the
new problem P2 forming variant V3, which will be subject to
further completion and generalization steps over time. The
fundamental concepts completion and generalization are de-
tailed in [5].

• A generalization of a system V is the detachment of
bindings within V , i. e. the replacement of bound iden-
tifiers with free variables. The resulting more incom-
plete derivate V ′ is a flexibilized abstraction of V .

• The binding of free variables of system V is called a
[partial] completion of V . Degrees of freedom are re-
moved and a more concrete system V ′ produced.

The specification of flexibility by means of incompleteness
and the determination of bindings during completion steps
is based on formal language concepts. In fact, the principles
of completion and generalization somehow already exist in
practice in several peculiarities. Examples are:

• input of data at runtime

• substitution by preprocessors

2“system” subsumes subsystems, components, and objects

• parameterized subroutines

• inheritance

• design patterns

Incomplete specification combined with static or dynamic
completion are integral parts of efforts to construct reusable
and evolvable systems. However, the primary goals and
problems of incremental evolution seem to have taken a back
seat in the past. Although many details, such as features of
macro substitution were improved (e.g. [2]), we argue that
the actual characteristics of incremental evolution have not
been systematically investigated, yet. This supposition is
supported by the fact that the correlation between statics
and dynamics seem to be hardly understood.

Here, completion and generalization is defined at a concep-
tual level. This has the advantage that these concepts are
not a priori influenced by the artificial border between stat-
ics and dynamics, which is introduced by the conventional
compilation, linking and execution cycle. In addition to this,
our scheme allows to introduce new degrees of freedom into
an already complete system in a defined way by means of
generalization steps. We believe that this is especially im-
portant for software evolution since future requirements are
in general unknown and can thus not be expected to be
respected in advance.

3. COMPONENT CATEGORIES
To be able to relate code with dynamic execution we distin-
guish three different component categories:

3.1 Incarnations
The set Xt of incarnations are procedures, functions, or
data objects executing at time t. An incarnation a ∈ Xt

usually contains other components of possibly varying cate-
gories and possesses a transient state.

3.2 Generators
Generators define classes of incarnations, such as a class
of procedure incarnations. Gt denotes the set of generators
within the system at time t. A generator is always con-
sidered a local component of an incarnation; i. e. for each
generator A ∈ Gt : ∃b ∈ Xt : A ∈ L(b).

Hence, generators are similar to classes in OO languages [9]
but differ in being integrated into the dynamics of execution.

3.3 Generator-Families
Generators are not equal to code but dynamic entities be-
cause generators are local components of incarnations. We
therefore need a third category of components to be able
to explain the origin of generators. We call this category
generator-families.

Gt denotes the set of generator-families at time t. Each
generator-family A ∈ Gt describes a class of generators. But
in contrast to incarnations and generators, which are par-
tially ordered by the flow of control, the set of generator-
families is partially ordered by the nesting of code.



Thereby, a hierarchy of generator-families may exist inde-
pendent of incarnations and generators. Notice, generators
can only exist within incarnations and are therefore not suit-
able to model code as part of the dynamic system. A result
of this consideration is that the intuitive code-is-class un-
derstanding in OO languages is misleading and an obstacle
for dynamic evolution.

3.4 Dependencies
This briefly sketched conceptual framework allows individ-
ual completion and generalization of incarnations, genera-
tors and generator-families. Hence, the properties of an in-
carnation a ∈ X need not be identical with the properties
of its generator G(a)3.

Obviously, certain restrictions for completion and general-
ization must apply to ensure consistency and controlled,
comprehensible evolution. The required regulations are de-
fined as life-time and property dependencies between the
components of the system, which are briefly sketched, be-
low.

3.4.1 Lifetime Dependencies
• Each incarnation a ∈ X is created by executing the

create operation of the corresponding generator Aa ∈
G (def.: Aa

c⇒ a).

• A generator A ∈ G emerges in turn of the elabo-
ration of the declaration part of an incarnation. If
the declaration part of b ∈ X contains a declaration
of a generator A then b elaborates the corresponding
generator-family AA ∈ G (def.: AA

e⇒ A). After its
elaboration A can be used by b to create incarnations
a ∈ X. Hence, generators are dynamically elaborated
on the basis of generator-families during the evalua-
tion of the declaration parts of incarnations. Genera-
tors are deleted with the deletion of the surrounding
incarnation.

Analogously to the creation of a component, all incarnations
must be deleted before the corresponding generator can be
deleted and all generators must be deleted ahead of the cor-
responding generator-family.

3.4.2 Property Dependencies
The lifetime dependency induces a reasonable order on the
creation and deletion of components of different categories
but it does not define predicates concerning properties of
the components. In the presence of individual component
completion and generalization we therefore need further reg-
ulations to avoid anarchy and achieve controllable evolution
with well-defined and structured properties. To achieve this,
we introduce additional property dependencies.

• The set of properties E(A) of a generator-family A ∈
G is specified by means of the chosen programming
language. E(A) defines invariants for all generators

A ∈ G : A e⇒ A.

3for simplicity, we assume a snapshot at time t and omit
index t

• The set of properties E(A) of a generator A is specified
by means of the chosen programming language. E(A)

defines invariants for all incarnations a ∈ X : A
c⇒ a.

• The set of properties E(a) of an incarnation a is spec-
ified by means of the chosen programming language.

Hence, let a ∈ X, A ∈ G,A ∈ G be an incarnation, a gener-
ator and a generator-family, with A e⇒ A

c⇒ a, then

E(A) v E(A) v E(a).

This conceptual dependency defines a minimal requirement
for consistent transitions and must hold at all times, inde-
pendent of the degree of completeness of a component. By
this, it is for example not possible to have incomplete in-
carnations of a complete generator, whereas the opposite is
possible and also desirable.

3.5 Example
We illustrate our component and evolution concept with the
aid of the code excerpt shown in figure 2. After introduc-

PROCESS system IS

PROCEDURE a(I : IN INTEGER) IS

PROCEDURE b(J : IN INTEGER) IS

BEGIN

...

END;

BEGIN

b(I); -- create 1st b incarnation

IF I > 0 THEN

a(I-1);

END IF;

b(I); -- create 2nd b incarnation

END;

BEGIN

a(42);

END;

Figure 2: Evolution & Recursion

ing this code as a hierarchy of nested generator-families into
an initial boot process execution starts with the elabora-
tion of the outermost declaration part. Afterwards there is
one incarnation system which possesses a generator Ga as
a local component. As soon as execution reaches the call
a(42) Ga is used to create an incarnation a1. a1 in turn
owns a generator Ga1

b after elaborating the corresponding
generator-family in its declaration part. a1 uses Ga1

b to cre-
ate an incarnation ba1

1 before recursively creating a2 using
Ga and ba1

2 . Now, a2 elaborates a new generator Ga2
b , which

will be used to create an incarnation ba2
1 .

If we assume that the generator-family Gb is initially incom-
plete then we are now able to perform a range of different
evolutions during the recursive computation of the system.
Some examples:

• The most coarse evolutionary step would be to com-
plete Gb before the first b-generator Ga1

b becomes elab-
orated. This would have the effects that both Gai

b gen-
erators would be complete, E(Ga1

b ) = E(Ga2
b ), and all



future b-incarnations would have identical properties
leaving neither flexibility nor the necessity for future
adaptions. Thus, completion of the generator-family
gives little control over evolution.

• Another option is to individually complete the incom-
plete generators Ga1

b and Ga2
b in a1 and a2 before

a1 resp. a2 starts executing its statement part. This
would have the effect, that the two b-incarnations cre-
ated in each a would have identical properties although
the pair of b-incarnations of a1 might differ from the
pair of b-incarnations of a2. I. e., the subcomputations
of a1 and a2 are able to evolve differently.

• Obviously, the greatest flexibility is achieved by indi-
vidual evolution of the created b-incarnations. This
is accomplished by leaving Gb, Ga1

b and Ga2
b incom-

plete and performing an individual completion for each
created b-incarnation. Notice, this means that even
within a single a-incarnation such as a1, the two b-
incarnations created in the statement part can and
must be completed separately.

4. TRANSITIONS
The state transition diagram shown in figure 3 summarizes
all possible evolution steps of the system, based on the com-
ponent category concept and the life-time and property de-
pendencies introduced in section 3.4.

Assuming the existence of an incarnation b ∈ X we focus
on a generator-family A and its descendants. Each node of
the state diagram describes the set of components descended
from a generator-family A. Horizontal transitions represent
the creation (resp. elaboration) and deletion of components
whereas vertical transitions represent completion and gen-
eralization steps. E. g. starting bottom left b may elaborate
generator A on the basis of the complete generator-family
A and later on use generator A to create an incarnation
a resulting in the state bottom right, with three complete
components a, A, A. This sequence of states corresponds to
the conventional execution of non-evolvable system.

Additionally, our flexible conceptual framework also allows
the user to perform controlled incremental evolution dur-
ing execution. Dependent on the current state of the sys-
tem and the property-dependency, it is possible to perform
a generator-family generalization (e. g. from bottom left to
state above), a generator completion on A (e. g. from state in
the middle to state below) or evolution steps on incarnations
(from/to top most state).

5. CONCLUSION
This paper describes a radically different approach to en-
capsulate static code with its incarnations. The main idea
is to differentiate between three different categories of com-
ponents to be able to model the relationship between code
and instances at runtime. These three categories are in-
stances, generators and generator-families. While instances
and generators are also common in other approaches, we
additionally identified the category generator-families, dis-
cussed its role for dynamic system evolution and proposed
a new concept for the systematic integration of these three
component categories into the dynamics of the system.

We furthermore sketched a conceptual framework for the
incremental generalization and abstraction of software com-
ponents. By means of a simple example, it was demon-
strated how the scope of a (de-)completion step relates with
the three component categories. However, program code is
always directly attached to a component and therefore par-
ticipates in the dynamics of the computation.

It seems important to mention, that we also implemented
this conceptual framework. The prototype shows that the
high degree of freedom for evolution described in this paper
can be achieved without significant constant performance
degradation. This was mainly achieved by providing an in-
cremental dynamic link loader and modifications of the stack
frame layout within the compiler [8, 3].

A major problem remaining is the question of how to spec-
ify incompleteness. In this paper, we simply assumed that
it is possible to specify incompleteness. As a matter of fact,
we do not know how to integrate the large number of dif-
ferent aspects of incompleteness, such as paramters, macro
expansion and design patterns, within a single sound spec-
ification concept, yet. Our future work aims at clarifying
this question.

6. REFERENCES
[1] C. Eckert and M. Pizka. Improving resource

management in distributed systems using
language-level structuring concepts. The Journal of
Supercomputing, 13(1):33–55, Jan. 1999.

[2] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From
macros to reusable generative programming. In GCSE,
pages 105–120, 1999.

[3] M. Pizka. Design and implementation of the GNU
INSEL-compiler gic. Technical Report TUM-I9713,
Technische Universität München, Dept. of CS, 1997.

[4] M. Pizka. Distributed virtual address space
management in the modis-os. Technical Report
TUM-I9817, Technische Universität München, 1999.

[5] M. Pizka. Integrated Management of Extensible
Distributed Systems. PhD thesis, Technische
Universität München, June 1999. german.

[6] M. Pizka and C. Eckert. A language-based approach
to construct structured and efficient object-based
distributed systems. In HICSS-30, pages 130–139,
Maui, Hawai, Jan. 1997. IEEE CS Press.

[7] M. Pizka, C. Eckert, and S. Groh. Evolving software
tools for new distributed computing environments. In
PDPTA’97, pages 87–96, Las Vegas, NV, July 1997.

[8] C. Rehn. Incremental and dynamic linking in a
distributed environment. Master’s thesis, Technische
Universität München, Institut für Informatik, 1998.

[9] B. Stroustrup. The C++ Programming Language.
Addison–Wesley, Reading, MA, 2. edition, 1991.

[10] H.-M. Windisch. Improving the efficiency of object
invocations by dynamic object replication. In H. R.
Arabnia, editor, Proc. of PDPTA, pages 115 – 131,
Nov. 1995.



A i

A i

A i

 resp. prefix GF:
generator
generator−family suffix C: completion

c : complete

i

GR

GFR

generator

creates a

ICIR

and
i

A

and
c

A

and
c

A cc
and and aA

i
and aand

i
A

c c
and and aA

i c
and and aA

suffix R: generalisation
index
indexA resp. prefix G:

a resp. prefix I:

A

GFRGFR

GR

generator−family incarnation

GFC

GC

b elaborates A

a terminates

: incomplete

incarnation

c

b terminates

A

A i

cAcA

A i A i

Figure 3: State Transitions


