
Functional programming languages for verification tools: a comparison
of Standard ML and Haskell

Martin Leucker1,1, Thomas Noll2, Perdita Stevens3,2, Michael Weber2

1 Department of Computer Systems, Uppsala University, Box 337, 75105 Uppsala, Sweden
e-mail: leucker@docs.uu.se
2 Lehrstuhl für Informatik II, RWTH Aachen, Ahornstr. 55, Aachen, Germany
e-mail: {noll,weber}@i2.informatik.rwth-aachen.de
3 School of Informatics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
e-mail: Perdita.Stevens@ed.ac.uk

Keywords:

Abstract

We compare Haskell with Standard ML as
programming languages for verification tools based
on our experience developing the verification plat-
form Truth in Haskell and the Edinburgh Con-
currency Workbench (CWB) in Standard ML.
We review not only technical language features
but also the “worlds” of the languages, for ex-
ample, the availability of compilers, tools, and
libraries. We also discuss the merits and diffi-
culties of comparing programming languages in
this wide sense and support our view that Truth
and the CWB are similar enough to justify the
conclusions drawn in this paper.

1 Introduction

Concurrent software and hardware systems play an in-
creasing role in today’s applications. Due to the large
number of states and to the high degree of non-determin-
ism arising from the dynamic behaviour of such systems,
testing is generally not sufficient to ensure the correct-
ness of their implementation. Formal specification and
verification methods are therefore becoming more and
more popular, aiming to give rigorous support for the
system design and for establishing its correctness prop-
erties, respectively (cf. [1] for an overview).

In view of the inherent complexity of formal meth-
ods, it is desirable to provide the user with tool sup-
port. It is even indispensable for the design of safety-
critical concurrent systems where an ad hoc or conven-
tional software engineering approach is not justifiable.
For example, model checking is a particularly successful
automated approach to verification in which one employs
decision procedures to prove that (a model of) a system
has certain properties specified in a suitable logic.

One major concern in the development of model-
checking tools and other verification tools is correctness.

1 Supported by European Research Training Network “Games”
2 Supported by EPSRC GR/A01756/01

1 STTT0184 – January 11, 2005 9:29



Since a verification tool is used for verifying hardware,
protocols, and software, it would be useless if it were not
trustworthy. Thus, a programming language employed
for developing a verification tool should support the task
of verifying the code, at least in the informal sense of
satisfying oneself that the code is correct. In general,
functional languages are often considered to provide this
feature, especially if the language disallows side effects.

Considering the broad range of functional languages
that have been designed, it is surprising, and in our view
unfortunate, that there is little literature comparing dif-
ferent functional languages. The Pseudoknot benchmark
paper [3] studies several implementations of functional
programming languages (Haskell and Standard ML
among them) with respect to their runtime and mem-
ory performance, and [7] compares the module systems
of Haskell and Standard ML. However, the developer
trying to choose between the languages needs to be con-
cerned about a much wider class of issues, including both
technical language features and “environmental” aspects
such as the availability of libraries, documentation, sup-
port, and multiplatform compilers. We did not find good
sources of help for a developer trying to choose between
the languages based on a larger collection of relevant as-
pects like this. By contrast, many comparisons of Java
with C++ are readily available.

It is unsurprising, therefore, that developers (those
who choose a functional language at all) often choose the
language most used in their institution, without seriously
considering alternatives. The difficulty of getting infor-
mation to guide an informed choice may also contribute
to developers whose workplaces do not have a history of
functional programming language use deciding against
experimenting with one.

Why is there so little material to help developers
make an informed choice? Part of the reason must be
that it is very hard to do convincing comparisons of lan-
guages without being vulnerable to the criticism that one
is not comparing like with like. We think that a fair com-
parison needs to be based on real experience of people
using the languages to build real systems in the same
domain; otherwise it is almost impossible to be sure that
differences are not due to differences in the domains of
application. The systems themselves need to be broadly
comparable in size and complexity, need to be more than
toys, and should preferably have been developed and
maintained over years (since a language that makes de-
velopment easy might nevertheless encourage the devel-
opment of code that is unmaintainable). Moreover, the
domain should be one where either of the languages is
a reasonable choice, and the comparison should be done
by people with a reasonably typical level of experience in
the languages. A comparison is probably most generally
useful to developers when it is done neither by novices
in the languages compared nor by people intimately fa-
miliar with the compiler internals.

2 STTT0184 – January 11, 2005 9:29



This paper recounts our experiences in using SML
and Haskell for two broadly comparable applications
in the domain of verification tools on which the authors
have worked for some years: the Edinburgh Concurrency
Workbench (CWB), in SML, and the verification plat-
form Truth, in Haskell. The domain of verification
tools is eminently suited to the use of a statically typed
functional language such as SML and Haskell, and
both languages are popular choices in this domain. All
of the authors have accumulated considerable experience
with the languages we use, but we are not functional pro-
gramming researchers.

Thus our primary motivation for writing this paper is
that we believe we are in an unusually good position to
produce a comparison of Haskell with SML that may
be useful to developers choosing between the languages.
A secondary motivation is to be helpful to language de-
signers and developers who work to support languages
by providing a record of our experiences, good and bad,
with SML and Haskell.

The rest of this paper is structured as follows. Sec-
tion 2 discusses the domain of verification tools and in-
troduces the two systems. Section 3 discusses the class
of languages from which SML and Haskell are drawn
and briefly introduces the two languages for readers who
may not be familiar with them. Sections 4 and 5 are
the main body of the paper; Sect. 4 compares Haskell
and SML on the basis of their technical language design
features, whereas Sect. 5 considers the equally important
“environment” aspects. Finally, Sect. 6 concludes.

2 Verification tools

The domain on which we compare SML and Haskell
is that of verification tools. The term “verification tool”
covers any tool whose task it is to assist in checking the
correctness of some artefact. Usually the artefact con-
cerned is (an abstraction of) something produced in the
software or hardware development process.

We introduce Truth and the CWB and briefly sum-
marise their histories before discussing the characteristic
features of verification tools in general.

2.1 The Edinburgh Concurrency Work-
bench, in SML

Work on the CWB3 began in 1986. The CWB’s key
strength is its breadth: a variety of different verification
methods are supported for several different process alge-
bras. In particular, it allows users to:

• Define behaviours given either in an extended ver-
sion of Milner’s CCS (Calculus of Communicating
Systems [5]) or in its synchronous version, SCCS,
and to perform various analyses on these behaviours,

3 http://www.dcs.ed.ac.uk/home/cwb/

3 STTT0184 – January 11, 2005 9:29



such as exploring the state space of a given process
or checking various semantic equivalences and pre-
orders;

• Define propositions in a powerful modal logic and
check whether a given process satisfies a property
formulated in this logic;

• Play Stirling-style model-checking games to under-
stand why a process does or does not satisfy a for-
mula;

• Derive automatically logical formulae which distin-
guish nonequivalent processes;

• Interactively simulate the behaviour of an agent,
thus guiding it through its state space in a con-
trolled fashion.

One major focus of the CWB was always research;
it was a platform which researchers (especially those at
Edinburgh) could use to experiment with new relations
between processes and new algorithms. In the early
years all of these changes were retained in the main tool,
even those which had been added experimentally without
much consideration for the integrity of the CWB over-
all. This contributed to the architectural degradation of
the CWB and its increasing fragility: an important task
faced by Stevens on taking over the maintenance of the
CWB in 1994 was to reverse this process. The current
version of the CWB consists of around 25 kloc in SML,
plus several thousand in other languages for various sup-
porting utilities.

The CWB was developed in Standard ML, but vari-
ations were long maintained for several major ML com-
pilers because different compilers provided different ex-
tensions to the SML90 standard, and especially because
they had different system build facilities. We settled on
Standard ML of New Jersey (SML/NJ) because most
users of the CWB used that compiler and the effort in
maintaining build scripts (the major point of difference)
for several compilers did not seem well spent. Perhaps
we should once again target Poly/ML,4 for example, in
future. We will discuss the history of the family of ML-
like languages in Sect. 3. For now it suffices to say that
this paper inevitably considers SML/NJ more than any
other SML compiler, and that since our experience is
with SML, we do not consider in depth other languages
in the ML family, specifically Caml and O’Caml. The
contribution made by the SML language to both the
architectural degradation problem and its solution are
discussed later.
4 http://www.polyml.org/

4 STTT0184 – January 11, 2005 9:29



2.2 The verification platform Truth, in
Haskell

In terms of features, Truth5 is similar to the CWB.
In its current version, it supports tableau-based model
checking for the full µ-calculus and game-based model
checking for the alternation-free subcalculus. Both op-
erate on finite transition systems, given in terms of CCS
processes. The latter can be visualised and simulated
in an interactive fashion, to help the user understand
Truth’s answers. Current development activities con-
centrate on the parallel implementation of model check-
ing on a cluster of workstations and on a specification
language compiler generator which, given the definition
of a language, automatically generates a corresponding
parser and a semantic evaluator.

Truth’s initial version dates back to 1997, and its de-
velopment could benefit a lot from the progress made in
the design of verification tools over the years. As a con-
sequence, its architecture is quite modular and easy to
understand, and a deep change of the module structure
has not been necessary so far. It now consists of approx-
imately 18 kloc in Haskell. Although there are several
Haskell compilers, Truth is written for the Glasgow
Haskell Compiler6 (GHC), and since it uses some non-
standard Haskell extensions and libraries only present
in the GHC, we have not tried to port it.

MoreoverTruthemploys theparsergeneratorHappy7

and many of the available Haskell libraries, and it inte-
grates several stand-alone systems such as the daVinci8

graph visualisation tool and the GraphViz package.9 Fur-
thermore, it uses existing C and Java libraries to provide
functionality such as textual and graphical user inter-
faces and network communication, comprising approxi-
mately 13 kloc. It is one of the bigger real-world applica-
tions that is registered in the official Haskell pages.10
It is worth mentioning that Truth is one of the few
tools listed there which was developed using but not for
functional programming.

2.3 Characteristics of verification tools
in general

The peculiarities of the verification tool domain from the
point of view of software engineering were considered by
Stevens in [9]. Here we briefly summarise and then focus
on the implications for language choice.

Verification tools answer precisely defined questions
about precisely defined systems. Thus it is compara-
tively easy to understand what it means for the tool’s
behaviour to be correct. The downside is that certain
5 http://www-i2.informatik.rwth-aachen.de/Research/Truth/
6 http://www.haskell.org/ghc/
7 http://haskell.cs.yale.edu/happy/
8 http://www.informatik.uni-bremen.de/daVinci/
9 http://www.graphviz.org/
10 http://www.haskell.org/practice.html

5 STTT0184 – January 11, 2005 9:29



classes of bugs are unacceptable in a verification tool;
semantic correctness is vital. Thus any language fea-
tures supporting the development of correct programs
are highly desirable.

A further characteristic is that verification tools tend
to be developed in research environments, where it is
more easily recognised for novel theoretical contributions,
or new applications of theory, than for the application of
“best practice” in software engineering, which is likely
to be discounted because it is not new. Anything that
speeds up development is an advantage, as it enables the
developers to spend a higher proportion of their time on
the work which is most valued. In such environments,
it is also difficult to justify spending large amounts of
effort on academically uninteresting aspects of the tool,
such as a GUI, or on “invisible” areas such as testing(!),
documentation, and ensuring portability. Nevertheless,
the usability and, ultimately, success of the tool depend
heavily on such aspects. Therefore, those planning to
develop verification tools will do well to choose a lan-
guage in which professional results can be achieved with
a minimum of effort.

It is perhaps instructive to note that in some cases,
the same considerations may apply to those developing
languages and their associated tools.

3 The space of programming lan-
guages

Clearly Haskell and SML, the languages of Truth
and the CWB, have a great deal in common: both are
basically functional languages and both have static type
systems which are strong in the sense that a well-typed
program will be free of certain classes of runtime errors.
Moreover, both are minority languages, with their origins
in academia. What is the significance of these features
for verification tools?

The functional paradigm. Essentially, a functional
programming language is one in which the natural pro-
gramming style includes treating functions as first-class
concepts. For example, one expects to write higher-order
functions; that is, functions which take other functions
as arguments. There is, however, no universally agreed
definition of what it is to be a functional programming
language, although no reasonable definition would ex-
clude either SML or Haskell. The difficulty stems from
the impure nature of most languages, which stems in turn
from the need to permit the use of whichever paradigm is
most appropriate for a particular problem. It is possible,
for example, to write higher-order functions in C; the rea-
son why C is not included in definitions of a functional
programming language is that this is not the natural,
normal way to solve problems in C.

The main reason, in our view, for using a functional

6 STTT0184 – January 11, 2005 9:29



language for a verification tool is that the paradigm is
a good match for the domain, as the most important
concepts in the domain tend to be algorithms. It is
often claimed that programs written in functional lan-
guages are easier to reason about, and hence are more
likely to be correct, than those in one of the imperative
paradigms (procedural or object oriented). The theo-
retical concept on which the claim rests is referential
transparency, essentially the fact that identifiers are used
for values, rather than for references whose values may
change. Where this property holds, it can indeed facili-
tate reasoning, at least in small pieces of code. However,
we have found that in practice, building a verification
tool in a way which provides reasonable modularity and
efficiency necessitates the use of “impure” features of the
languages, so that referential transparency is lost.

Today the most obvious alternative to the functional
paradigm for a verification tool writer is the object-oriented
paradigm. The main argument in favour of the func-
tional paradigm is that the most important concepts in
the domain tend to be algorithms, not objects. In this
respect the verification tool domain differs from most
business domains, and the use of a less popular language
may be justified. However, as we shall see, being out of
the mainstream carries disadvantages sufficient to give
one pause.

Static typing. In a statically typed language, the com-
piler carries out certain checks to ensure that the pro-
gram is free of certain types of errors which might other-
wise cause incorrect behaviour at runtime. This does not,
of course, ensure that the program is free of errors, but it
can enable errors to be caught early and easily corrected,
thus speeding up the development process. Static typ-
ing is often criticised for being inflexible; but when such
criticisms are investigated, they turn out to be criticisms
of the inflexibility of a particular type system. We will
give examples of such inflexibilities in Sect. 4. We argue
that a coherent understanding of a solution to a prob-
lem includes an understanding of the types of the entities
involved; if these fit the type system of the language con-
cerned, it is hard to see how having errors caught by the
compiler can fail to be a benefit, although one could still
argue about the size of the benefit.

It is clear from the successes achieved by certain groups
working with dynamically typed languages such as Er-
lang (in the functional world) and Smalltalk (in the object-
oriented world) that it is possible to write complex, cor-
rect software without static typing. However, none of
the authors would willingly give up the benefits of static
typing. We will discuss particular features of the type
systems of SML and Haskell below.

7 STTT0184 – January 11, 2005 9:29



3.1 Standard ML

Standard ML ([6]) is an essentially functional language
in the sense discussed above. By “essentially” we mean
that it is not a pure functional language: for example,
references are permitted. ML originated at Edinburgh
in the late 1970s. Research and experimentation con-
tinued over the succeeding decades in several centres,
spawning a family of ML-like languages. In what is com-
monly regarded as the mainstream, a formal language
definition was produced; this defined “Standard ML”, or
SML90. From early on, there were several reasonably
faithful implementations of this standard. Later a major
rewrite of the original language definition resulted in the
new definition of Standard ML, sometimes referred to
as SML97. Other notable ML-like languages are Caml
and O’Caml. Although they have enough similarities to
SML that many of the same considerations will apply,
there are also some significant differences which might
affect a user’s choice. In particular O’Caml’s support
for software architecture is radically different, incorpo-
rating aspects of object orientation. We do not consider
these languages in this paper, since our experience is with
SML.

Technically, the revision to SML97 has been a sub-
stantial improvement; but it has led, temporarily at least,
to difficulties of tools and libraries not all being updated
at once; old SML programs cannot be compiled by new
compilers and vice versa.

A variety of compilers is still available for Standard
ML; by far the most widely used is Standard ML of
New Jersey (SML/NJ), and this is the only compiler
supported by the CWB.

The definition of Standard ML includes the Standard
Basis Library, providing such things as string manipula-
tion, operating system interfaces, and basic data struc-
tures. SML/NJ comes with a more extensive library.

3.2 Haskell

Haskell is a purely functional programming language [8].
The current standard is Haskell98, which fixes the syn-
tax and semantics as well as a large set of standard li-
braries.

Until recently the embedding of input and output
operations, which have to be considered as side effects,
in purely functional programming languages was gener-
ally poor. Monadic I/O is a very elegant approach to
overcoming this problem [11]. Haskell supports this
concept and supplies versatile I/O libraries offering ex-
ception handling and file manipulation operations, which
were of great help in building a user-friendly and reliable
tool.

8 STTT0184 – January 11, 2005 9:29



4 Comparison of language design
features

We begin by considering and comparing the more tech-
nical aspects of SML and Haskell, before going on to
consider non-technical questions in the next section.

4.1 Typing

As semantic correctness is crucial to any verification tool,
it is natural to believe that a strong static type system,
enabling a large class of errors to be caught at compile
time, is a good thing in a language for verification tools.
Our experience supports this; although verification tools
have been written in Lisp, for example, we would not
like to give up the static typing provided by both SML
and Haskell. The type systems of SML and Haskell
are actually rather similar. In this subsection we begin
our discussion by considering two related features which
Haskell and SML have in common: parametric poly-
morphism and type inference. In the following subsec-
tions, we shall discuss the major differences between the
languages’ type systems separately.

Extensive type inference is convenient especially in
functional programming where identifiers often have com-
plex higher-order types. However, it has serious draw-
backs for maintainability of code. The human reader of
code needs to understand the types involved, and it is
frustrating to know that the compiler has worked out in-
formation which is not available to the reader. The nat-
ural response is that good programming practice is then
to include type annotations; but we have found this hard
to put into practice. An annoyance is that the syntax of
Haskell sometimes makes this impossible. For example,
in Haskell function types are implicitly all-quantified
and thus it was not possible to give type annotations for
certain local functions. This has been remedied with so-
called scoped type variables, which have been introduced
in GHC around version 4.03 (too late for Truth), but
are not legal Haskell98.

A more serious point which applies even to SML
which does permit type annotations is that if type an-
notations are included which are descriptive enough to
be helpful, they are too specific to allow reuse through
parametric polymorphism. On the other hand the most
general type is – except for utility functions – often mean-
ingless to the programmer and fails to document the true
intention of the function. For example, perhaps the pro-
grammer writes a function whose first argument has most
general type α list × β. Maybe there is initially only
one application of this function, to an argument of type
action list× string. It may be that the fact that the first
argument has type action list is essential to the nature
of the function; for example, perhaps this is reflected in
the name of the function, and using the function on any
other kind of list would be confusing. However, perhaps

9 STTT0184 – January 11, 2005 9:29



the type of the second argument is less important, and
if the code works on another type, the programmer may
be quite happy to see it used on that type. “Morally”,
the function’s argument has type action list × α. If the
programmer thinks this through, it is possible to anno-
tate the function accordingly; but it is not natural to
do so, since it involves thinking about all possible future
reuse of the code at a time when it is more appropriate to
concentrate on the initial intended use. One could argue
that this is what comments are for, but the advantage of
type annotations is that the compiler can automatically
check that they are consistent with actual code.

There is a tension between trying to enable code reuse
on the one hand and on the other hand trying to make
code understandable and trying to maintain appropri-
ate encapsulation barriers. We find that these last two,
though different, often go together: one encapsulates the
definition of an important type together with appropri-
ate functions for manipulating it, and then uses the new
type name in type annotations to elucidate the code.
However, in doing so one loses the power of parametric
polymorphism for code reuse in clients of this new type
because clients cannot see the structure of the type.

For example, processes in the process calculi we work
with can have restrictions applied to them. A restriction
is conveniently implemented as a list of actions, but cer-
tain invariants need to be maintained. If we allow clients
to see that a restriction is a list of actions, then when
they manipulate processes they can use the standard list
functions on the restriction, but we cannot easily enforce
the invariants. On the other hand, if we use encapsula-
tion to make available only a type restriction so that we
can enforce the invariants, we have to provide all nec-
essary functions for manipulating this type. This is not
unreasonable: it is the same work, for example, that we
would have to do if we worked in an object-oriented lan-
guage and created a class Restriction. However, when we
have a variety of slightly different kinds of restriction, we
have to implement the manipulating functions afresh ev-
ery time; to gain encapsulation we have lost parametric
polymorphism as a reuse mechanism, and we do not have
inheritance available to us as an alternative mechanism.
This kind of situation arises very frequently in both the
CWB and Truth because we write code to deal with
variants of process algebras and logics and with variously
processed versions of them.

An additional issue in SML is that it is sometimes
difficult to decide whether a conceptual type should be
implemented at the module level or only at the core level;
in the CWB we generally resolve this by using both but
not revealing that decision outside the module where it
is made, so that, for example, the signature for processes
exports only a type restriction, whereas an implementa-
tion of that signature typically builds a structure Restric-
tion, exporting a type from the content of that structure.
(Note that because of the divide between module and

10 STTT0184 – January 11, 2005 9:29



core level, we do not have the option of working only at
the module level; in order to write functions that work
with restrictions – which is essential – at some point we
have to decide what type a restriction has. So functor
construction and multiple applications of functors do not
solve this problem, though they may contribute to a so-
lution.)

Further, we find that the powerful type systems of
SML and Haskell are a mixed blessing, often leading
to complex type errors which are understandable only
to people who are familiar with the subtleties of the re-
spective type system. This is to some extent inevitable
in a language whose standard idioms involve complex
higher-order types, but refinements such as SML’s equal-
ity types and weak types add to the problem, since the
need for these is not easy for the non-type-theorist pro-
grammer to understand. Recent work on more informa-
tive error messages, such as [4], is to be welcomed, but
has yet to make a difference to the compilers. Further-
more, an interactive type analyser would be desirable,
a tool which, requested by the user, would visualise the
types of certain subexpressions. In the meantime, our
advice is that there is little to choose between SML and
Haskell in this respect.

4.2 Strictness vs. laziness

The most obvious difference between SML and Haskell
is that SML is strict whilst Haskell is lazy. For dis-
cussion of the concepts in general see, for example, [10].
Basically, laziness means that values are only computed
on demand, allowing the implementation of infinite data
structures. In contrast, strictness refers to the fact that
e.g. the arguments of a function call have to be evalu-
ated before executing the call, no matter whether they
are required or not.

In the context of verification tools, laziness seems
to be an appealing feature because one might hope to
get “for free” certain “on-the-fly” verification techniques
that normally have to be worked out in each special case.
For example, consider a class of verification questions
concerning a system, such as the model-checking prob-
lem “does this system satisfy this property”. To answer
some questions in the class, it will be necessary to calcu-
late the entire state space of the system. For others, only
a small part of the state space, perhaps that reachable
within three transitions from the starting state, will be
relevant. A global algorithm is one which always calcu-
lates the whole state space; a local one does not. Local
algorithms are generally harder to design and verify than
global ones and often have poorer worst-case complex-
ity, though in practice they may perform much better.
One might hope to be able to get a local algorithm from
a global one “for free” using laziness because the code for
calculating certain parts of the state space would simply
never be evaluated if its results were not called for. In
practice, however, the Truth team found that one has

11 STTT0184 – January 11, 2005 9:29



to implement the algorithm generating the state space
carefully in order to guarantee the desired behaviour.
For example, the use of monads (cf. Sect. 4.3) or of ac-
cumulator techniques can easily destroy the on-the-fly
property. Since there are no visual clues (program anno-
tations) in the source code, it is often not entirely obvious
why a function is not as lazy as one would have hoped
when writing the code. Also, code which involves excep-
tions or destructive updates of data structures needs to
be crafted quite carefully in a lazy context. Eager evalu-
ation, on the other hand, is easier to write, comprehend,
and debug because things happen deterministically, in
the order dictated by the source code.

Altogether the effort required to preserve the locality
of a lazily evaluated, global algorithm often corresponds
to the design of an algorithm which is local by nature.

Summarising, lazy evaluation is an attractive feature,
but the Truth team would have liked a flexible mecha-
nism with which to specify parts of the program, which
should be evaluated eagerly or lazily.

4.3 Imperative features

Both the Truth and the CWB team have found imper-
ative features to be essential. Sometimes the concern is
efficiency, but more often it is understandability: many
of the algorithms we wish to implement are conceived
imperatively, and in such cases implementing them func-
tionally makes the implementation more difficult to read
and hence more likely to contain errors. Prominent ex-
amples of algorithms with an imperative character are
graph algorithms, which play an important rôle in tools
such as ours which deal with transition systems. The
data structures we deal with grow too big to keep several
copies in memory, and the usual way to extract informa-
tion from them is to walk them in a given order, collect-
ing information and destructively updating the structure
on the way, which can be straightforwardly described and
efficiently implemented in imperative ways.

Here SML scores by providing imperative features
in the core language in a reasonable and powerful way,
although they can be syntactically awkward. I/O is sup-
ported by the Standard Basis Library. Haskell uses
monads for destructive updates and I/O; they add a re-
stricted form of stateful computation to a pure language,
retaining referential transparency ([11]). The disadvan-
tage is that programs become more complicated. Also,
if imperative elements of a given application were not
taken into account during its design but turn out to
be necessary later on, often major parts have to be re-
designed or (at least) reimplemented, especially because
types change significantly. A simple but recurring exam-
ple is to add printing of status information to an oth-
erwise purely functional algorithm. In the worst case
this could result in having to rewrite the algorithm in
a monadic style, but also to rewrite its callers (and tran-
sitively their callers as well), plus adjusting all type an-

12 STTT0184 – January 11, 2005 9:29



notations on the way. Even when using opaque accessors
to data structures, the required changes cannot necessar-
ily be limited to a single module, but affect large parts
of the system. This is clearly undesirable from a soft-
ware engineering or economical point of view. Indeed
for certain parts of the Truth system a redesign turned
out to be necessary in the past, mostly in order to imple-
ment more efficient versions of algorithms by introducing
imperative constructs like destructive updates.

The Truth team considers this point as one of the
biggest drawbacks of the purely functional paradigm as
followed by Haskell.

4.4 Architecture support

The architecture of a system makes a vital contribution
to its correctness. We hope to study module systems in
this context, building on [7], in future; in this paper we
can only indicate the main issues.

A Haskell module defines a collection of values,
datatypes, type synonyms, classes, etc., as well as their
import/export relationship with other modules. Over-
loaded functions are provided in a structured way in the
form of type classes, which can be thought of as families
of types (or more generally as families of tuples of types)
whose elements are called instances of the class. In the
instantiation the definitions of the overloaded operations
are given.

In Standard ML, structures provide the main name-
space management mechanism; they may contain sub-
structures, functions, values, types, etc. A structure
may be coded directly or produced by the application
of a functor, which may be thought of as a generic or
parameterised structure. The programmer may define
signatures which act as the types for structures; for ex-
ample, a functor may be defined to take, as argument,
any structure matching a given signature. The mod-
ule system is separate from the core language; one can-
not, for example, apply a functor conditionally. Whilst
this keeps the language definition clean, in the CWB it
has often caused problems leading to code duplication.
The changes made to SML in SML97 are welcome; the
elimination of structure sharing and the introduction of
“where” clauses have solved several long-standing prob-
lems for the CWB.

A basic facility which is desirable in a module sys-
tem is that it should be possible to define an interface to
a module separately from the module itself. This helps
developers to understand the system, as they can read
interfaces to modules without being distracted by im-
plementation information. We also want to be able to
apply the same interface to several modules and to pro-
vide several interfaces to the same module. In both the
CWB and Truth this need arises, for example, because
we often work with several variants of a process alge-
bra, logic, or algorithm which share an interface. We
want the compiler to do the work of making sure that

13 STTT0184 – January 11, 2005 9:29



the modules stay consistent, and we want to avoid du-
plicating code. SML’s signatures support this way of
working reasonably well, although not without problems.
The Truth team has found that Haskell does not sup-
port this situation so well: inside the module export list,
entities cannot be annotated with types, so a common
practice is to add them in comments. However, this is
error prone, since there is no way for the compiler to
enforce their correctness or check their consistency with
the implementation in the module body.

We feel that SML’s architectural features are better
suited than Haskell’s to our purposes; neither is ideal,
however, and this seems an interesting area for future
study, especially as we do not think that the class and
package systems of C++ or Java would be ideal either.

4.5 Exceptions

The CWB used to make heavy use of exceptions as a con-
trol flow mechanism. This led to correctness problems
because the compiler could not check whether or not ex-
ceptions were always handled. A common class of bugs
occurred when a programmer added a new piece of func-
tionality to the CWB by adding a new module declaring
an exception; the exception could arise outside the new
module; but the programmer did not, for whatever rea-
son, modify the CWB’s top level module to handle the
exception sensibly. To make matters worse, in SML90,
although one could write a handler that would catch all
exceptions (using a wildcard), so that at least the user
would not see the CWB “crash” in the case of such a bug,
one could not tell dynamically which exception was ac-
tually being handled. This would result in a message to
the user of the CWB along the lines of “Sorry, an ML ex-
ception has been raised. This is a bug: please report it.”
The exception mechanism has been improved in SML97
compared with SML90: it is now possible to interrogate
an exception for its identity, which at least enables the
CWB to give a fuller error message, which is useful for
debugging.

Still, in a language with type safety as a strength, it is
a pity to use a programming style in which the program-
mer cannot be certain that all exceptions are handled.
From the point of view of the user of a verification tool,
it is not very much better for the application to terminate
because of an unhandled exception than it would have
been for it to terminate because of a runtime type error.
Therefore, the CWB now uses exceptions in a more dis-
ciplined way which seems to work well. A small number
of specified exceptions (corresponding to such things as
“error in user input”, “assertion violated”, etc.) are al-
lowed to rise to the top level and are individually handled
there. All other exceptions are kept within small pieces
of code (e.g. within one SML module) and in each case
the programmer verifies by eye that the exception can-
not escape. Because the latter is hard work, exceptions
are only used where the alternative is really painful.

14 STTT0184 – January 11, 2005 9:29



We are not claiming, of course, that SML compil-
ers could and should check whether exceptions are al-
ways handled; this has been a research topic for some
time. Java’s requirement that functions document (cer-
tain kinds of) exceptions that may be raised is an at-
tempt to address the problem, but it is clumsy and in-
teracts badly with a functional programming style. Our
point is that the style of Standard ML programming of-
ten seen and encouraged, relying heavily on exceptions,
has serious disadvantages which the software engineer
needs to guard against.

The Truth team found that exceptions interacted
badly with laziness: as a rather disturbing effect, partial
evaluation enables exceptions to escape from an enclos-
ing exception handler. To get the exceptions actually
raised inside the handler, initially the Truth team had
to resort to code like if x==x then x else x to en-
force the evaluation of x at the right time. Recently,
better ways to trigger full evaluation have been pro-
vided (deepSeq $! x), but they are non-standard and
of course destroy laziness. We think it would be much
more natural to avoid situations of this kind by adopting
strict rather than lazy evaluation as the standard strat-
egy in the language. Laziness, which is a very costly
feature, could then be provided upon request, using an-
notations of the function and constructor symbols.

We have often seen programming languages compared
on the basis of how many lines of code it takes to imple-
ment some piece of functionality. We consider this a poor
metric. The length of a piece of code is not well corre-
lated either with the time it takes to write it or with the
time it takes to understand it; a short piece of code may
well be harder to write and to maintain than a longer
one. This is why we have not tried to compare SML and
Haskell on this point.

5 Comparison of non-language de-
sign features

5.1 The available compilers and their char-
acteristics

There are now three main freely available SML97 com-
pilers, SML/NJ, Poly/ML, and Moscow ML. (Harlequin
MLWorks ceased to be available when Harlequin was
bought: there was hope that it might become open source,
but this now appears unlikely.) SML/NJ can now pro-
duce native code for many platforms, which is important
for a widely distributed verification tool. However, it
needs a third-party utility to produce stand-alone appli-
cations, and even then there is a problem with running
the application from outside its directory. This is hard to
explain to users of the CWB and causes embarrassment.

For Haskell, too, three compilers are available, all
of them freely: NHC98, HBC, and GHC. For Truth,

15 STTT0184 – January 11, 2005 9:29



only GHC was considered feature-complete enough; it
also provides some extensions to the Haskell98 lan-
guage which have proven helpful, for example multipa-
rameter classes and existential types.

5.2 Libraries and associated tools

Good libraries and tools can help to ensure correctness
(e.g. because well-used libraries have been debugged by
others) and can cut down development time. We con-
sider and compare what is available for Haskell and
for SML.

General-purpose libraries. Both Haskell and SML
come along with standard libraries specified alongside
the language. SML97 defines the Standard Basis Library11

(ML97SBL); Haskell98’s libraries are described in the
Library Report12 (H98LR). Broadly similar, these pro-
vide basic data structures, interface to the operating sys-
tem, etc. Both GHC and SML/NJ ship with some extra,
non-standard libraries.

GUI libraries. There is an X Window System toolkit,
eXene,13 written in Concurrent ML, though for a long
time this was apparently not usable with SML97 (be-
cause of a signal-handling bug, fixed more recently than
the last major CWB changes). Research projects have
provided portable GUI library facilities for use with Stan-
dard ML, such as sml tk.14 Thus one can implement
a GUI in SML; but really good high-level toolkits are
still lacking. The CWB has made no serious attempt to
do this. For Haskell, too, some bindings for common
GUI toolkits are available, but at the time GUI sup-
port was added to Truth none of them was regarded as
stable or feature-complete enough to be usable for what
was planned. In the end, the process simulation GUI
for Truth was written in Java and was interfaced to
the Haskell part via Unix pipes. (The CWB followed
a similar path in a student project, as yet unreleased.)

Associated tools. A debugger is invaluable in pro-
gram development, especially when experimenting with
verification algorithms which may contain bugs. Un-
fortunately, writing debuggers for functional languages
turned out to be harder than for imperative languages
like C. This is even more true for a lazily evaluated
language like Haskell, where the inspection of a value
would sometimes change the evaluation order. Never-
theless some attempts have been made in this direction,
mostly resulting in so-called tracers (like Freya, Hood, or
Hat), which can record program runs for later analysis.

11 http://www.smlnj.org/doc/basis/
12 http://www.haskell.org/definition/
13 http://people.cs.uchicago.edu/∼jhr/eXene/
14 http://www.informatik.uni-bremen.de/∼cxl/sml tk/

16 STTT0184 – January 11, 2005 9:29



None of them was used during Truth development be-
cause they were either not available at that time or did
not support some of the GHC features used in Truth.
There is no debugger available for SML/NJ. There is,
however, a debugger for Poly/ML, which is a welcome
development. We have not yet used it.

There is a lexer (ML-Lex) and a parser generator
(ML-Yacc) for SML. These were long unavailable in SML97
versions but do now seem to work (see below re docu-
mentation). The CWB uses ML-Lex but does not use
ML-Yacc. At a very early stage a hand-built parser was
produced, and by the time the major reengineering work
was done on the CWB its syntax (perhaps unfortunately,
but understandably) included features which were not
supported by ML-Yacc, so that to move to ML-Yacc
at that point would have involved a user-visible syntax
change. This is an example of the problems which can
arise when a suitable third-party component is not avail-
able at the right moment; users may not have the op-
tion of adopting it later. As mentioned, Truth uses the
Happy parser generator.

Overall there is little to choose between Haskell and
SML in this category, but both suffer from being minor-
ity languages. There are few providers of libraries and
tools, and key developers are often more concerned with
compilers. This is understandable, but to us libraries
and tools are just as important.

5.3 Documentation and other sources of
help

Famously, Standard ML has a formal specification [6],
but this is impenetrable to most programmers. Fortu-
nately there are also several accessible books and tu-
torials available. The official specification of Haskell
is given by the Haskell98 Language Report,15 which
defines the syntax of Haskell programs and gives an
informal abstract semantics. For such a technical doc-
ument it contains much plain text, and the general im-
pression of local Haskell developers is that it is quite
readable. On the other hand, as was noted elsewhere:16
“The informal specification in the Haskell report leaves
too much room for confusion and misinterpretation. This
leads to genuine discrepancies between implementations,
as many subscribers to the Haskell mailing list will
have seen.”

Regarding the compiler and associated tool docu-
mentation, the overall impression of the authors is that
GHC’s documentation is slightly better than that of SML/NJ.
(The ML-Lex documentation has not been updated for
SML97, for example.) This has not always been the
case, but the GHC developers have improved the docu-
mentation quite a lot in the recent past.

15 http://www.haskell.org/onlinereport/
16 http://www.cse.ogi.edu/∼mpj/thih/

17 STTT0184 – January 11, 2005 9:29



In both cases documentation for libraries is patchy,
especially in the case of compiler-specific libraries, where
it sometimes happens that the programmer must consult
the source code to get more information than the signa-
ture of a function. H98LR and ML97SBL are better doc-
umented. From 1997 to 2001 there was no complete and
up-to-date documentation of the latter, which was a se-
rious problem. Now, however, an updated web page is
available;17 the documentation appeared in book form [2]
in 2002, which is a welcome development. The CWB and
Truth teams each had the impression initially that the
other’s language’s libraries were better documented: this
may reflect that one notices faults only on close acquain-
tance. A plus for Haskell is that the GHC library doc-
umentation has a consistent history of being frequently
updated and improved.

Moving from documents to people as sources of help,
we have found the newsgroups comp.lang.ml and comp.lang.functional
and the GHC mailing lists to be useful. Naturally it is
easier to get help with problems which can be described
briefly. When we have needed help with, for example,
making architectural decisions, local language experts
have been invaluable; this is something that developers
should bear in mind.

Last but not least the home pages of Standard ML
of New Jersey18 and of Haskell19 provide useful collec-
tions of links and references to other resources.

5.4 Foreign-function interfaces

We have made no serious attempt to bind C and SML
code within the CWB, because the Standard ML foreign-
function interfaces were perceived (and experienced in
a student project) as hard to use and inefficient. Matthias
Blume’s new “NLFFI” foreign-function interface may well
change the situation.

The foreign-function interface in Haskell has under-
gone a major redesign and is now quite usable. Truth
has been extended by a parallel model-checking algo-
rithm, which uses the FFI layer to call C functions from
the MPICH resp. LAM libraries, both well-known imple-
mentations of the Message Passing Interface standard.
For this application the marshalling required to convert
between Haskell and C data formats turned out to
be very inefficient, however. Another problem was the
instability of the FFI interface at the time the Truth
team were using it: it changed rapidly between releases of
GHC. The Truth team made extraordinary use of pre-
processor directives and autoconf magic in an attempt
to allow Truth to support many compiler versions, but

17 Unfortunately, it documents the version of the library corre-
sponding to the very latest “working”, i.e. experimental, version
of the compiler. There still seems to be no freely available docu-
mentation for the version of the library in the latest release-quality
version of the compiler!
18 http://www.smlnj.org/
19 http://www.haskell.org/

18 STTT0184 – January 11, 2005 9:29



they were eventually forced to give up.

5.5 Stability of languages and their im-
plementations

The current stable version of Haskell is Haskell98,
dating from 1997. This is the fifth major version of the
language definition (the next will be Haskell 2 !). Com-
pilers, of course, provide the effective definition of the
language. There have been many changes in what GHC
supports (e.g. multiparameter classes, implicit parame-
ters). Not all changes to extensions have been backwards
compatible, which is inconvenient for programmers who
need those extensions.

Regarding the stability of Haskell implementations,
only GHC has been thoroughly examined, since the other
implementations have been ruled out by other issues, as
stated earlier. GHC is under steady development, and
the quality of released versions differs greatly. Some are
quite stable, but for others patch-level releases have to
be made quickly to fix the worst bugs. Unsurprisingly,
bugs often accompany new features. In fairness, bugs
are fixed promptly by the GHC developers once they are
reported to the relevant mailing list. However, faced with
a show stopper, an application programmer must choose
between waiting for an official release of GHC including
a fix, or becoming expert in building the compiler itself,
which is non-trivial, time consuming, and will not further
his/her aims.

Standard ML was subject to a major revision, from
SML90 to SML97. The SML/NJ compiler has under-
gone many releases, but now seems fairly stable. As
mentioned, tools and libraries tend to lag. The ML2000
project intended to develop a future version of ML. Lit-
tle has been heard of the project recently, and many of
its early ideas have been incorporated in O’Caml. We
believe that SML97 will increase, rather than decrease,
in stability over the next few years.

5.6 Performance

This is a controversial topic, but it is an important one
for developers of verification tools. Both speed and space
usage are important, with space usage often being more
important, as the amount of memory used by a verifica-
tion tool is normally the limiting factor. Our experience
with both SML and Haskell suggests that performance
is particularly poor with respect to memory usage. Also,
as noted, the key feature of Haskell, lazy evaluation,
comes at a high cost.

6 Conclusion

We proceed by summarising the features we found (not)
helpful in using functional languages in general, and spe-
cifically in the use of SML and Haskell.

19 STTT0184 – January 11, 2005 9:29



6.1 Helpful features

Both teams found the functional paradigm a good fit for
the domain of verification tools. The automatic mem-
ory management of SML and Haskell lets us focus on
the important parts of the algorithms instead of fiddling
with implementation details. Data structures that are
readily available like lists and their natural use were ap-
preciated as well. Also, static types proved to be helpful
in catching certain classes of errors early.

However, some of these features turned out to be
double-edged swords, and other features which were ini-
tially considered useful turned out not to be, or to be
less helpful than we had hoped.

6.2 Mythical silver bullets

The price of using convenient constructs like higher-order
functions and functional languages in general is often
paid in uncompetitive runtime and memory performance.
While in imperative languages it is possible, after getting
programs right, to get them fast, we find this harder in
functional languages.

It is commonly argued that referential transparency
makes programs easier to understand, easier to reason
about, and generally more robust. However, we did not
find this feature to be worth its cost. Constraining (in
Haskell) the use of e.g. destructive updates when they
are needed turned out to waste a lot of precious devel-
oper time. Reasoning about any sufficiently complex al-
gorithm on the source code level is intractable as well,
even when avoiding impure features.

Static types were helpful, as mentioned above, but
also got in our way. Understanding complex type errors
and their origins requires an intimate understanding of
the type system. Easier means of exploring them and
deriving complex type annotations are lacking.

6.3 SML vs. Haskell

The most outstanding difference between Haskell and
SML is the evaluation order. While Haskell’s lazy ap-
proach might have its merits in some cases, it was more
a hindrance than a help, causing longer development,
having negative impact on the performance, and making
the source code harder to understand.

While the use of monads in Haskell is a nice theo-
retical concept to capture side effects and stateful com-
putation in a purely functional setting, their disadvan-
tages lead us to vote for the impure SML here, especially
given that many of our domain’s algorithms are naturally
described imperatively.

We found the module systems in both SML and Haskell
lacking features from a software engineering point of view.
For example, in SML the “include” mechanism for sig-
natures is not flexible enough to prevent one from having
to duplicate information across several SML signatures

20 STTT0184 – January 11, 2005 9:29



when different views onto a structure are required (com-
parable to “private” and “public” interfaces in languages
such as Java). The lack of conditional application of
functors, similarly, can lead to code duplication, which
is in turn a maintenance problem. Since we have not
surveyed other programming languages in this respect,
it is not clear whether they would meet our demands,
though.

Both teams would have wished for better support for
exceptions in order to enhance runtime error messages
(SML) and to better cope with astonishing evaluation
order interactions (Haskell).

Confronted with the poor availability of ready-to-
use libraries for SML and Haskell compared to main-
stream languages, one is often referred to their foreign-
function interfaces. In Haskell, the use comes with
a performance penalty. We do not have first-hand expe-
rience for SML.

Aside from the language issues we have investigated,
we found the tool support in both languages lacking in
comparison to mainstream languages, resulting in the
reinvention of wheels other languages can readily use.
We regard this an important factor when planning the
development schedule of SML or Haskell programs.

We found documentation for Haskell to be better,
while stability of the SML implementation was found to
be superior when compared to its Haskell counterpart.

6.4 Considerations for future projects

There have been positive and negative aspects to both
our sets of experiences with Haskell and SML, as there
would doubtless have been with whatever language we
had chosen. Overall, we consider Standard ML to be
a slightly better choice for our kind of application than
Haskell, more because of a more stable environment
of supporting tools than because of language features.
Of course, there are many alternatives including other
functional languages with which we have less experience;
O’Caml might be a strong candidate.

However, it turned out in our discussions that none of
us were enthusiastic about the idea of using a functional
language for a future verification tool because of their
impoverished environments compared with mainstream
programming languages. Our impression was that SML
and Haskell can play out their advantages mainly in
the prototyping stages of a project, an arena where both
would have to compete with dynamic languages like Lisp
or Smalltalk, or scripting languages like Python (which
have faster turn-around cycles due to absence of a com-
pilation phase).

Our conclusion is that, if/when we develop new ver-
ification tools, we would like to conduct a study on the
uses of imperative languages for verification tools. Dur-
ing our investigations we got the impression that those
seem to be better equipped for features we need in our
domain.

21 STTT0184 – January 11, 2005 9:29



We hope that reporting our experience using major
functional languages will help the community to improve
such languages and their worlds in future.

Acknowledgement. We thank the anonymous referees
for helpful comments and discussions.

References

[1] Clarke EM, Wing JM (1996) Formal methods: state
of the art and future directions. ACM Comput Surv
28(4):626–643

[2] Gansner ER, Reppy JH (2002) The Standard ML
Basis Library. Cambridge University Press, Cam-
bridge, UK

[3] Hartel PH et al. (1996) Benchmarking implemen-
tations of functional languages with ‘Pseudoknot’,
a float-intensive benchmark. J Function Programm
6(4):621–655

[4] McAdam B (2002) Repairing type errors in func-
tional programs. PhD thesis, Division of Informat-
ics, University of Edinburgh

[5] Milner R (1989) Communication and concurrency.
International Series in Computer Science. Prentice-
Hall, Upper Saddle River, NJ

[6] Milner R, Tofte M, Harper R, MacQueen D (1997)
The definition of Standard ML (revised). MIT Press,
Cambridge, MA

[7] Nicklisch J, Peyton Jones SL (1996) An exploration
of modular programs. In: Glasgow workshop on
functional programming, July 1996

[8] Peterson J, Hammond K, et al (1996) Report on
the programming language Haskell, a non-strict
purely-functional programming language, version
1.3. Technical report, Yale University, New Yaven,
CT, May 1996

[9] Stevens P (1999) A verification tool developer’s vade
mecum. Int J Softw Tools Technol Transfer 2(2):89–
94

[10] Wadler P (1996) Lazy versus strict. ACM Comput
Surv 28(2):318–320

[11] Wadler P (1997) How to declare an imperative.
ACM Comput Surv 29(3):240–263

22 STTT0184 – January 11, 2005 9:29


