
Regular Linear Temporal Logic⋆

Martin Leucker1 and César Sánchez2,3

1 Institut für Informatik
TU München, Germany

2 Computer Science Department
Stanford University, Stanford, USA

3 Computer Engineering Department
University of California, Santa Cruz, USA

Abstract. We present regular linear temporal logic (RLTL), a logic that
generalizes linear temporal logic with the ability to use regular expres-
sions arbitrarily as sub-expressions. Every LTL operator can be defined
as a context in regular linear temporal logic. This implies that there is a
(linear) translation from LTL to RLTL.
Unlike LTL, regular linear temporal logic can define all ω-regular lan-
guages, while still keeping the satisfiability problem in PSPACE. Unlike
the extended temporal logics ETL∗, RLTL is defined with an algebraic
signature. In contrast to the linear time µ-calculus, RLTL does not de-
pend on fix-points in its syntax.

1 Introduction

We present regular linear temporal logic (RLTL), a formalism to express prop-
erties of infinite traces by conveniently fusing regular-expressions and linear-
temporal logic. Moreover, we show that the satisfiability and equivalence of
RLTL expressions are PSPACE-complete problems.

The linear temporal logic (LTL) [19, 16] is a modal logic over a linear frame,
whose formulas express properties of infinite traces using two modalities: next-

time and until. LTL is a widely accepted formalism for the specification and
verification of concurrent and reactive systems. However, Wolper [26] showed
that LTL cannot express all ω-regular properties (the properties expressible by
finite-state automata on infinite words, known as Büchi automata [4]). In par-
ticular, it cannot express the property “p holds at every other moment”. In
spite of being a useful specification language, this lack of expressivity seems to
surface in practice [20] and it has been pointed out (see for example [3]) that
regular-expressions are sometimes very convenient in addition to LTL, in formal
specifications. Actually, in the industry standard specification language PSL,
arbitrary mixtures of regular expressions and LTL are allowed [1].

⋆ Part of this work was done during the first author’s stay at Stanford University and
was supported by ARO DAAD190310197. The second author has been supported in
part by NSF grants CCR-01-21403, CCR-02-20134, CCR-02-09237, CNS-0411363,
and CCF-0430102, and by NAVY/ONR contract N00014-03-1-0939.

To solve the expressivity problem, Wolper introduced the so called extended
temporal logic ETL where new operators are defined as right linear grammars,
and language composition is used to compose operators. ETL was later ex-
tended [25] to different kinds of automata. The main drawback of the extended
temporal logics is that, in order to obtain the full expressivity, an infinite number
of operators is needed.

An alternative approach consists on adapting the modal µ-calculus [5, 12]
to the linear setting, which gives rise to the linear time µ-calculus, denoted as
νTL [2]. Here, the full expressivity is obtained by allowing the use of fix point
operators. It can be argued that this formalism is not algebraic either since one
needs to specify recursive equations to describe temporal properties. Moreover,
the only modality is the nexttime. Even though every ground regular expression
can be translated into a νTL expression (see [14]), the concatenation operator
cannot be directly represented in νTL, i.e., there is no context of νTL that cap-
tures concatenation. On the other hand, extending νTL with concatenation (the
so-called fix point logic with chop FLC [18, 15]) allows expressing non-regular
languages. This extra expressive power comes at the price of undecidable satis-
fiability and equivalence problems. A more restricted extension of νTL allowing
only left concatenation with regular expressions is possible along the lines pre-
sented here, but this is out of the scope of this paper.

There have also been dynamic logics that try to merge regular expressions
(for the program part) and LTL (for the action part), for example, Regular Pro-
cess Logic [7]. However, it makes the satisfiability problem non-elementary by
allowing arbitrary combinations of negations and regular operators. Dynamic
linear-temporal logic DLTL [8] keeps the satisfiability problem in PSPACE, but
restricts the use of regular expressions only as a generalization of the until op-
erator. While the generalized until present in DLTL and the power operators
present in RLTL are complementary (in the sense that none can be defined in
terms of each other), the power operators are more suitable for extensions that
can handle past, as discussed in Section 5.

An arbitrary mixture of (sequentially extended) regular expressions and LTL
is possible in PSL [1, 6]. However, decision procedures for satisfiability etc. and
their complexities are still an area of active research (for full PSL). Thus, RLTL
can be understood as subset of PSL for which an efficient satisfiability procedure
(PSPACE) is available.

The logic that we present here is a generalization of linear temporal logic
and ω-regular expressions, based on the following observation. It is common for
different formalisms to find the following three components in the (recursive)
definition of operators:

1. attempt : an expression that captures the first try to satisfy the enclosing
expression.

2. obligation: an expression that must be satisfied, if the attempt fails, to con-
tinue trying the enclosing expression. If both the attempt and the obligation
fail, the sequence is not matched.

3. delay: an expression that describes when the enclosing expression must be
started again.

For example, the binary Kleene-star z∗y matches a string s if either y (the
attempt) matches s, or if after z (the delay), the whole expression z∗y matches
the remaining suffix. In this case, no obligation is specified, so it is implicitly
assumed to hold. Formally, the following equivalence holds z∗y = y + z ; z∗y, or
more explicitly

z∗y = y + (Γ ∗ | z ; z∗y),

where x | y denotes the intersection operator present in (semi-)extended regular
expressions [22]. Consider also the linear temporal logic expression x U y. An
ω-sequence satisfies this expression if either y does (the attempt) or else, if x
does (the obligation) and in the next step (the delay), the whole formula x U y
holds. Formally,

x U y = y ∨ (x ∧ (x U y)).

In Section 2 we will formalize this intuition by introducing a general operator
that can be specialized for temporal logic and regular-expression constructs.

The rest of this document is structured as follows. Section 2 defines regu-
lar linear-temporal logic. Section 3 shows how to translate LTL and ω-regular
expressions into RLTL. Section 4 shows, via a translation to alternating Büchi
automata, that the logic defines only ω-regular languages, and that the satis-
fiability and equivalence problems are in PSPACE. Finally, Section 5 presents
some concluding remarks.

2 Regular Linear Temporal Logic

We define in this section regular linear temporal logic, in two stages. First, we
introduce a variation of regular expressions over finite words, and then—using
these—we define regular linear temporal logic to describe languages over infinite
words. Each formalism is defined as an algebraic signature, by giving meanings
to the operators. We use Σre for the operators in the language of regular expres-
sions, Σtl for the signature of the language for infinite words, and Σ as a short
hand for Σre ∪Σtl.

We begin by fixing a finite set of propositions Prop, and from it the alphabet
Γ = 2Prop of input actions (observable properties of individual states). As usual,
Γ ∗ denotes the finite sequences of words over Γ , Γω stands for the set of infinite
words, and Γ∞ is Γ ∗ ∪ Γω. Given a word w, we use pos(w) to denote the set of
positions of w: if w ∈ Γω then pos(w) is {1, . . .} = ω; if w ∈ Γ ∗ then pos(w) =
{1, . . . , |w|}, where |w| denotes the length of w as usual. We use w[i] to denote
the letter from Γ at position i of w. We use Pos to denote the set of positions
of words in Γω, i.e., Pos is an alias of ω.

2.1 Regular Expressions

We first introduce a variation of regular expressions that can define regular
languages that do not contain the empty word. Basic expressions are boolean

combinations of elements from B(Prop) that identify the elements of Γ , including
true for Prop and false for ∅.

Syntax The language of the regular expressions for finite words is the smallest
set closed under:

α ::= α+ α
∣∣ α ; α

∣∣ α∗α
∣∣ p (1)

where p ranges over basic expressions. The operators +, ; and ∗ define the stan-
dard union, concatenation and binary Kleene-star4. The signature of regular
expressions is then

Σre = {B(Prop)0, +2, ;2, ∗2}

where the superindices indicate the arity of the operators. The set of regular
expressions RE is the set of all ground expressions over this signature. Note that
this signature contains no variables or fix-point quantifiers.

Semantics To ease the definition of RLTL for infinite languages, we define
regular expressions as accepting segments of an infinite word. Given an infinite
word w and two positions i and j, the tuple (w, i, j) is called a segment of
the word w. Similarly, (w, i) is called a pointed word. The semantics of regular
expressions is described by defining a relation �re that relates expressions with
their sets of segments, that is �re ⊆ (Γω × Pos × Pos) × RE. The semantics is
defined inductively as follows. Given a proposition p ∈ Prop, expressions x, y,
and z, and a word w,

− (w, i, j) �re p whenever w[i] satisfies p and j = i+ 1.
− (w, i, j) �re x+ y whenever either (w, i, j) �re x or (w, i, j) �re y,

or both.
− (w, i, j) �re x ; y whenever for some k ∈ pos(w),

(w, i, k) �re x and (w, k, j) �re y.
− (w, i, j) �re x

∗y whenever either (w, i, j) �re y, or for some
sequence (i0 = i, i1, . . . im) (w, ik, ik+1) �re x
and (w, im, j) �re y.

The semantical style used above, more conventional for temporal logics, is
equivalent to the more classical of associating a language over finite words to a
given expression: for v ∈ Γ ∗, v ∈ L(x) whenever for some w ∈ Γω, (vw, 1, |v|) �re

x. In this manner the definition of ∗ is equivalent to the conventional definition,
that is, both describe the same language:

L(x∗y) = L(
∑

i≥0

xi ; y)

where xi ; y is defined inductively as x0; y = y and xi+1 = x ; xi, as usual. Since
p satisfies that if (w, i, j) �re p then j > i, it follows the empty word is not in

4 Stephen C. Kleene himself in [11] introduced the ∗ operator as a binary operator.
Our choice of a binary ∗ is determined by our key decision of defining languages that
do not contain the empty word. An alternative is to introduce a unary x

+ operator.

L(p), and also that L(x + y) and L(x ; y) cannot contain the empty word. It
also follows that x∗y cannot contain the empty word: if v is in L(z∗y) then v is
in L(zky) for some k.

Moreover, every regular language over finite words (that does not contain
the empty word) can be defined, since x+ is equivalent to x∗x.

2.2 Regular Linear Temporal Logic over Infinite Words

RLTL is built from regular expressions by using intersection, concatenation of
a finite and an infinite expression, and two ternary operators, called the power

operators. As we will see, the power operators generalize both the LTL constructs
and the ω-operator.

Syntax The set of RLTL expressions is the smallest set closed under:

φ ::= φ ∨ φ
∣∣ φ ∧ φ

∣∣ α ; φ
∣∣ αφφ

∣∣ αφφ
∣∣ α̂ (2)

where α ranges over regular expressions RE. The symbols ∨ and ∧ stand for the
conventional union and intersection of languages (i.e., conjunction and disjunc-
tion in logics and + and | in semi-extended ω-regular expressions). The symbol ;
stands for the conventional concatenation of an expression over finite words and
an expression over infinite words.

The operators αφφ, called the power operator, and its dual αφφ allow simple
recursive definitions, including the Kleene-star (xω for infinite words) and the
various operators in linear temporal logic. Finally, α̂ denotes the suffix closure
(arbitrary extension of a set of finite words to infinite words). The signature of
RLTL is then:

Σtl = {∨2, ∧2, ;2, (···)3 , (···)
3, ·̂1}

where the superindices again indicate the arity of the operators. Even though the
symbol ; is overloaded we consider the signatures to be disjoined. The operators
∨ and ∧ require two expressions in the language of Σtl, while (···), (···) and ·̂
require the first argument to be an expression in the language of Σre and the
rest in Σtl. The set of regular linear temporal logic expressions RLTL is the
set of all ground expressions over this signature. Note again that this signature
contains no variable or fix-point quantifier.

Semantics The semantics of an RLTL expression is defined as a binary relation
� between pointed words and expressions, that is � ⊆ (Γω×Pos)×RLTL. This
relation is defined inductively as follows. Given RLTL expressions x and y and
regular expression z:

− (w, i) � x ∨ y whenever either (w, i) � x or (w, i) � y, or both.
− (w, i) � x ∧ y whenever both (w, i) � x and (w, i) � y.
− (w, i) � z ; y whenever for some k ∈ pos(w),

(w, i, k) �re z and (w, k) � y.
− (w, i) � zxy whenever (w, i) � y or for some sequence

(i0 = i, i1, . . . im) (w, ik, ik+1) �re z and (w, ik) � x,
and (w, im) � y.

− (w, i) � zxy whenever one of:
(i) (w, i) � y and (w, i) � x
(ii) for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) �re z and (w, ik) � y and (w, im) � x
(iii) for some infinite sequence (i0 = i, i1, . . .)

(w, ik, ik+1) �re z and (w, ik) � y
− (w, i) � ẑ whenever for some k ∈ pos(w), (w, i, k) �re z.

The semantics of zxy establish that either the obligation y is satisfied at the
point i of evaluation, or there is a sequence of delays—as determined by z—
after which y holds, and x holds after each individual delay. The semantics of
zxy establish that y must hold initially and after each delay—as determined by
z— and that x determines when the repetition of the delay can stop (if it stops
at all).

As with regular expressions, languages can also be associated with RLTL
expressions in the standard form: a word w ∈ Γω is in the language of an
expression x, denoted by w ∈ L(x), whenever (w, 1) � x. The following lemmas
hold immediately from the definitions:

Lemma 1. For every RLTL expressions x and y and RE expression z:

– The expression zxy is equivalent to y ∨ (x ∧ z ; zxy).
– The expression zxy is equivalent to y ∧ (x ∨ z ; zxy).

Lemma 2. If Lx is the language of x, Ly is the language of y and Lz the

language of z, then

– The language of zxy is the least fix-point solution of the equation:

X = Ly ∪ (Lx ∩ Lz;X)

– The language of zxy is the greatest fix-point solution of the equation:

X = Ly ∩ (Lx ∪ Lz;X)

where ; is the standard language concatenation.

Thus, although the semantics of the power operators is not defined using fix
point equations, it can be characterized by such equations, similar as the until
operator in LTL.

We finish this section by justifying the need of the operator α̂ in RLTL. It is
clear, directly from the semantics, that the operators ∧, ∨ and ; will not define
infinite languages (or equivalently pointed models) unless their arguments do. By
Lemma 1, the same holds for the power and dual power operators. The expression
x̂ serves as a pump of the finite models (segments) of x to any continuation. An
alternative would have been to include a universal expression (⊤ in the next
section) from which x̂ = x ; ⊤. Similarly, ⊤ = t̂rue, so both alternatives are
equivalent.

In the sequel, the size of an RLTL formula is defined as the total number of
its symbols.

3 Translating LTL and Regular Expressions into RLTL

We will use ⊤ and ⊥ as syntactic sugar for t̂rue and f̂alse (resp). In particular,
observe that (w, i) � ⊤ and (w, i) 0 ⊥ for every pointed word (w, i). We first
introduce some equivalences of RLTL, very simple to prove, that will assist in
our definitions:

x ∨ y = y ∨ x x ∧ y = y ∧ x
⊤ ∨ x = ⊤ ⊤ ∧ x = x
⊥ ∨ x = x ⊥ ∧ x = ⊥

3.1 Translating ω-regular expressions

First, we show how to translate ω-regular expressions into regular linear temporal
logic. An ω-regular expression is of the form:

∑

i

xi ; (yi)
ω

for a finite family of regular expressions xi and yi. Note that when a more con-
ventional definition of regular expressions is used (one that allows the definition
of languages containing the empty word), one must explicitly require that yi
does not posses the empty word property, which is not needed in our definition.
Also, the case of xi possessing the empty word property (in the classical defini-
tion), can be handled easily since for every yi the following equivalence holds:
yωi = yi ; (y

ω
i). Then every expression of the form xi ; (yi)

ω can be translated into
(xi ; yi) ; (yωi), for which the finite prefix does not accept the empty word and it
is in the variation of regular expressions introduced here.

Lemma 3. Given a regular expression z, the regular linear temporal logic ex-

pression z⊥⊤ is equivalent to zω.

Proof. As no pointed word (w, i) satisfies ⊥, the only relevant case in the se-
mantics of the dual power operator for z⊥⊤ is that there is an infinite sequence
of points (i1, i2, . . .) for which (w, ik, ik+1) � z. Therefore w ∈ L(zω). ⊓⊔

It follows that the ω-regular expression
∑

i xi ;(yi)
ω is equivalent to the RLTL

expression
∨
i xi ; (yi⊥⊤). This immediately implies:

Corollary 1. The following are true for regular linear temporal logic:

– RLTL can express every ω-regular language.

– The set of operators {∨, ;, dual power} is complete.

Observe that no alternation of the power operators is needed to obtain ex-
pressive completeness (or in terms of Lemma 2 no alternation of fix points is
necessary). This result is analogous to the linear µ-calculus [14], where the al-
ternation hierarchy collapses at level 0 (in terms of expressiveness).

3.2 Translating LTL

We consider the following definition of LTL:

ψ ::= p
∣∣ ψ ∨ ψ

∣∣ ψ ∧ ψ
∣∣ ψ

∣∣ ψ
∣∣ ψ

∣∣ ψ U ψ
∣∣ ψ R ψ

which allows to express every linear temporal logic property in negation normal
form. Note that ψ and ψ are just added for convenience.

The semantics of LTL expressions are defined, similarly to RLTL, by defining
a binary relation �LTL between pointed words and LTL expressions: �LTL ⊆
(Γω × Pos) × LTL. The semantics is defined inductively. The basic expressions
and boolean operators are mapped as conventionally. Let x and y be arbitrary
LTL expressions. The semantics of the temporal operators is:

− (w, i) �LTL x whenever (w, j) �LTL x for some j ≥ i.
− (w, i) �LTL x whenever (w, j) �LTL x for all j ≥ i.
− (w, i) �LTL x whenever (w, i+ 1) �LTL x.
− (w, i) �LTL x U y whenever (w, j) �LTL y for some j ≥ i, and

(w, k) �LTL x for all i ≤ k < j.
− (w, i) �LTL xR y whenever (w, j) �LTL y for all j ≥ i, or

for some j, (w, j) �LTL x and for all k
within i ≤ k < j, (w, j) �LTL y.

Consider the following procedure, that translates an LTL expression ψ into
an RLTL expression τ(ψ):

– τ(p) = p̂, τ(x ∧ y) = τ(x) ∧ τ(y), τ(x ∨ y) = τ(x) ∨ τ(y),
– τ(x) = true ; τ(x),
– τ(x) = true⊥τ(x),
– τ(x) = true⊤τ(x),
– τ(x U y) = trueτ(x)τ(y),
– τ(xR y) = trueτ(x)τ(y).

Theorem 1. Every LTL expression defines the same language as its RLTL

translation.

Proof. The proof proceeds by structural induction. For the basic expression, the
boolean operators and  the result holds directly from the definitions. We show
here the equivalence for U (the rest follow similarly). It is well known that xU y
is the least fix point solution of the equation X ≡ y ∨ (x ∧ (x U y)), which is
by Lemma 2 the semantics of trueτ(x)τ(y). ⊓⊔

Our translation maps every LTL operator into an equivalent RLTL context
(with the same number of holes). Consequently, this translation only involves a
linear blow-up in the size of the original formula. Since checking satisfiability of
linear temporal logic is PSPACE-hard [21] this translation immediately gives a
lower bound on the complexity of RLTL.

Proposition 1. The problems of satisfiability and equivalence for regular linear

temporal logic are PSPACE-hard.

4 Translating RLTL into Alternating Automata

We now show that every RLTL formula can be translated with a linear blow-up
into an alternating automaton accepting precisely its models.

4.1 Preliminaries

Let us, however, first recall the definitions of (nondeterministic) automata op-
erating on finite words and alternating Büchi automata operating on infinite
words.

A nondeterministic finite automaton (NFA) is a tuple A : 〈Γ,Q, q0, ∂, F 〉
where Γ is the alphabet, Q a finite set of states, q0 ∈ Q the initial state, ∂ :
Q × Γ → 2Q the transition function, and F ⊆ Q is the set of final states. An
NFA operates on finite words: A run of A on a word w = a1 . . . an ∈ Γ ∗ is a
sequence of states and actions ρ = q0a1q1 . . . qn, where q0 is the initial state of
A and for all i ∈ {1, . . . n}, we have qi+1 ∈ ∂(qi, ai). The run is called accepting

if qn ∈ F . The language of A, denoted by L(A), is the set of words w ∈ Γ ∗ for
which an accepting run exists.

For a finite set X of variables, let B+(X) be the set of positive Boolean

formulas over X , i.e., the smallest set such that X ⊆ B+(X), true, false ∈
B+(X), and φ, ψ ∈ B+(X) implies φ ∧ ψ ∈ B+(X) and φ ∨ ψ ∈ B+(X). We say
that a set Y ⊆ X satisfies (or is a model of) a formula φ ∈ B+(X) iff φ evaluates
to true when the variables in Y are assigned to true and the members of X\Y
are assigned to false. A model is called minimal if none of its proper subsets
is a model. For example, {q1, q3} as well as {q2, q3} are minimal models of the
formula (q1 ∨ q2) ∧ q3.

An alternating Büchi automaton (ABA) is a tuple A : 〈Γ,Q, q0, ∂, F 〉 where
Γ ,Q, and F are as for NFAs. The transition function ∂, however, yields a positive
boolean combination of successor states: ∂ : Q× Γ → B+(Q). Furthermore, an
ABA operates on infinite words: A run over an infinite word w = a0a1 . . . ∈ Γω

is a Q-labeled directed acyclic graph (V,E) such that there exist labellings l :
V → Q and h : V → N which satisfy the following properties:
– there is a single v0 ∈ V with h(v0) = 0. Moreover, l(v0) = q0.
– for every (v, v′) ∈ E, h(v′) = h(v) + 1.
– for every v′ ∈ V with h(v′) ≥ 1, {v ∈ V | (v, v′) ∈ E} 6= ∅,
– for every v, v′ ∈ V , v 6= v′, l(v) = l(v′) implies h(v) 6= h(v′), and
– for every v ∈ V , {l(v′) | (v, v′) ∈ E} is a minimal model of ∂(l(v), ah(v)).

A run (V,E) is accepting if every maximal finite path ends in a node v ∈ V
with ∂(l(v), ah(v)) = true and every maximal infinite path, wrt. the labeling l,
visits at least one final state infinitely often. The language L(A) of an automa-
ton A is determined by all strings for which an accepting run of A exists. We
also consider alternating co-Büchi automaton (AcBA), defined exactly as ABA,
except that the accepting condition establishes that all final states are visited
only finitely many times in accepting paths.

We measure the size of an NFA, ABA and AcBA in terms of its number of
states.

An ABA is weak (WABA), if there exists a partition of Q into disjoints sets
Qi, such that for each set Qi either Qi ⊆ F or Qi∩F = ∅, and, there is a partial
order ≤ on the collection of the Qi’s such that for every q ∈ Qi and q′ ∈ Qj for
which q′ occurs in δ(q, a), for some a ∈ Γ , we have Qj ≤ Qi.

It was shown in [13] that every AcBA can be translated into a WABA with a
quadratic blow-up. Furthermore, it was shown in [17] that for an ABA accepting
L, we get an AcBA accepting the complement of L, when dualizing the transition
function (switching ∧ with ∨ and true with false) and turning the acceptance
condition into a co-Büchi acceptance condition. This gives

Proposition 2. For every ABA A with n states, there is an ABA Ā with at

most n2 states accepting the complement of A’s language.

4.2 Translation

We are now ready to formulate the main theorem of this section:

Theorem 2. For every φ ∈ RLTL, there is an ABA Aφ accepting precisely the

ω-words satisfying φ. Moreover, the size of Aφ is linear in the size of φ.

Corollary 2. Checking satisfiability of an RLTL formula is PSPACE-complete.

Proof. By Proposition 1, satisfiability of an RLTL formula is PSPACE-hard.
Given φ ∈ RLTL, we can construct Aφ according to Theorem 2, and check Aφ

for emptiness, which can be done in PSPACE [24].

As usual, we call two formulas of RLTL equivalent iff their sets of models
coincide.

Lemma 4. Checking equivalence of two RLTL formulas is PSPACE-complete.

Proof. By Proposition 1, equivalence of two RLTL formulas φ and ψ is PSPACE-
hard.

The formulas φ and ψ are equivalent iff both (¬φ ∧ ψ) and (φ ∧ ¬ψ) are
unsatisfiable. Even though complementation is not present in RLTL, we can
use automata constructions to perform these two tests. The construction of
Theorem 2 gives ABA Aφ and Aψ polynomial in the size of the formula. By
Proposition 2, we can complement an ABA with an at most quadratic blow-up.
ABAs in turn can be combined with ∧. The check for emptiness of the resulting
alternating automata can be done in PSPACE [24]. ⊓⊔

In the remainder of this section, we present the construction of Aφ for
φ ∈ RLTL, hereby proving Theorem 2. The procedure works bottom-up the
parse tree of φ. Recall that every regular expression α can be translated into an
equivalent NFA [9].

Now, consider alternating Büchi automata for x and y, Ax : 〈Γ,Qx, qxo , ∂
x, F x〉

and Ay : 〈Γ,Qy, qyo , ∂
y, F y〉, and a non-deterministic automaton (over finite

words) for z: Az : 〈Γ,Qz , qzo , ∂
z, F z〉. Without loss of generality, we assume

that their state spaces are disjoint. The construction is sketched visually in the
appendix. We consider the different operators of RLTL:

Disjunction The automaton for x ∨ y is:

Ax∨y : 〈Γ,Qx ∪Qy, q0, ∂, F
x ∪ F y〉

where q0 is a fresh new state. The transition function is defined as

∂(q, a) =

{
∂x(q, a) if q ∈ Qx

∂y(q, a) if q ∈ Qy

∂(q0, a) = ∂x(qx0 , a) ∨ ∂y(qy0 , a).

Thus, from the fresh initial state q0, Ax∨y chooses non-deterministically one of
the successor states of Ax’s or Ay’s initial state. Clearly, the accepted language
is the union.

Conjunction The automaton for x ∧ y is:

Ax∧y : 〈Γ,Qx ∪Qy, q0, ∂, F
x ∪ F y〉

where q0 is again a fresh new state. The transition function is defined as before
except

∂(q0, a) = ∂x(qx0 , a) ∧ ∂y(qy0 , a).

Hence, from the fresh initial state q0, Ax∧y follows both Ax’s and Ay’s initial
state. Clearly, the accepted language is the intersection.

Suffix extensions The automaton for ẑ is:

Abz : 〈Γ,Qz ∪ {qtt}, q
z
0 , ∂, {qtt}〉

where qtt is a fresh new state and ∂ is defined, for q ∈ Qz as:

∂(q, a) =

{∨
{∂z(q, a)} if q /∈ F z∨
{∂z(q, a)} ∨ {qtt} if q ∈ F z

and ∂(qtt, a) = qtt. Thus, from a final state, which signals that the prefix of the
infinite word read so far matches the regular expression, the automaton may
non-deterministically choose to accept the remainder of the word.

Concatenation The automaton for z ; x is:

Az;x : 〈Γ,Qz ∪Qx, qz0 , ∂, F
x〉

where ∂ is defined, for q ∈ Qz as:

∂(q, a) =

{∨
{∂z(q, a)} if ∂z(q, a) ∩ F z = ∅∨
{∂z(q, a)} ∨ qx0 if ∂z(q, a) ∩ F z 6= ∅

and, for q ∈ Qx as ∂(q, a) = ∂x(q, a). Recall that Az is a nondeterministic
automaton. Whenever Az can non-deterministically choose a successor that is a
final state, it can also switch to Ax. Thus, the accepted language is indeed the
concatenation.

qx

0

q
y

0

qz

0

q0

f

a

aa

a

b

b

Ax

Ay

Az

Fig. 1. Construction for the power operator

Power The automaton for zxy is:

Azxy : 〈Γ,Qz ∪Qx ∪Qy ∪ {q0}, q0, ∂, F
x ∪ F y〉

where ∂ is defined as follows. The successor for a of the initial state is:

∂(q0, a) = ∂y(qy0 , a) ∨ (∂x(qx0 , a) ∧
∨
{∂z(qz0 , a)})

The successor of Qx and Qy are defined as in Ax and Ay, i.e., ∂x(q, a) for q ∈ Qx,
∂y(q, a) for q ∈ Qy. For q ∈ Qz

∂(q, a) =

{∨
{∂z(q, a)} if ∂z(q, a) ∩ F z = ∅∨
{∂z(q, a)} ∨ q0 if ∂z(q, a) ∩ F z 6= ∅

The construction, depicted in Fig. 1, follows precisely the equivalence zxy ≡
y ∨ (x ∧ z; zxy) established in Lemma 1 and the construction for disjunction,
conjunction, and concatenation.

Dual power The automaton for zxy is:

Azxy : 〈Γ,Qz ∪Qx ∪Qy ∪ {q0}, q0, ∂, F
x ∪ F y ∪ {q0}〉

where ∂ is defined exactly as before except for the successor for a of the initial
state:

∂(q0, a) = ∂y(qy0 , a) ∧ (∂x(qx0 , a) ∨
∨
{∂z(qz0 , a)})

Note, however, the state q0 is now accepting, since the evaluation is allowed to
loop in z for ever, restarting a copy of y at each repetition of z.

Complexity Recall that a regular expression can linearly be translated into a
corresponding NFA [9, 10]. Examining the construction given above, we see that
each operator adds at most one extra state. Thus, the overall number of states
of the resulting automaton is linear with respect to the size of the formula.

The above construction for the concatenation operator relies heavily on the
fact that the automaton Az for a regular expression is nondeterministic. If RLTL
were based on extended regular expressions, which offer boolean combinations
of regular expressions (including negation), there would be no hope to get a
PSPACE satisfiability procedure, as checking emptiness for extended regular
expressions is already of non-elementary complexity [22]. On the same line, semi-
extended regular expressions (that add conjunction to regular expressions) and
input-synchronizing automata as introduced by Yamamoto [27] do neither give
a PSPACE algorithm.

5 Conclusion and Discussion

In this paper, we introduced RLTL, a temporal logic that allows to express all ω-
regular properties. It allows a smooth combination of LTL-formulas and regular
expressions. Besides positive boolean combinations, only two power operators
are introduced, which generalize LTL’s until as well as the ∗/ω-operator found
in ω-regular expressions. In contrast to LTL, RLTL allows to define arbitrary
ω-regular properties, while keeping LTL’s complexity of satisfiability (PSPACE).
In contrast to νTL, RLTL refrains the user to deal with fix point formulas.

Technically, RLTL can be considered as a sublogic of linear fix point logic
with chop (LFLC). As satisfiability for LFLC is undecidable, RLTL spots an
interesting subset of LFLC. Moreover, practically, the techniques developed for
LFLC [18, 15] should be usable for RLTL as well.

The careful reader has probably observed that complementation has not been
included in RLTL, even though doing so does not immediately turn the decision
problems non-elementary (regular-expressions would be built completely before
complementation is applied). The reason is that complementation for ABA (us-
ing the translation from AcBA to WABA to obtain an ABA) involves a quadratic
blow-up, and the resulting ABA for a given formula obtained at the end of the
inductive construction will no-longer have a polynomial size in all cases.

A different accepting condition can be used, for example a parity condition,
giving a linear size parity automaton at the end of the translation (using possibly
a linear number of colors). One way to attack the emptiness problem of parity
automata is then to translate the automaton into a weak alternating parity
automaton, whose emptiness problem is well known to be in PSPACE. However,
the best procedure known generates a weak automaton of size O(nk), for n states
and k ranks). The use of weak parity automata directly in the construction is
precluded by the dual power operator zxy, since one seems to be forced to express
that the initial state q0 must be visited infinitely often.

Recent developments [23] seem to indicate that the emptiness problem for
alternating parity automata is in PSPACE, by a direct algorithm. This result

would allow the introduction of negation in RLTL freely with no penalty in the
complexity class of the algorithms.

Nevertheless, as the resulting alternating Büchi automaton for a given RLTL
formula can be complemented with an at most quadratic blow-up, we can eas-
ily get an exponentially bigger nondeterministic Büchi automaton accepting the
formula’s refutations, so that automata-based model checking of RLTL specifi-
cations can be carried out as usual (for LTL).

Clearly, since ETL, νTL, DLTL, and RLTL are all expressively complete
wrt. ω-regular languages, for every ground formula in one logic defining some
ω-regular language, there is an equivalent ground formula in any of the other
logics defining the same language. From that perspective, all logics are equally
expressive. However, ETL, and νTL offer, for example, no translation of the
sequencing operator ; respecting a given context and DLTL does not allow to
formulate a corresponding ω-operator. Thus, RLTL’s unique feature is that every
LTL operator and the operators in regular expressions can be translated into an
equivalent RLTL context (with the same number of holes). This allows a linear,
inductive translation of LTL properties or regular expressions.

The closest approach to RLTL is DLTL, though it is motivated in the context
of dynamic logic. Similarly as RLTL, DLTL implicitly follows similar concepts
as attempt, obligation, and delay by enriching the until operator. However, the
obligation must be met in every “intermediate” position between the current
and the one where the attempt holds. In RLTL, however, a sequence of delays
has to be considered and the obligation has to hold only when the delay begins.
The choice taken in RLTL has a huge advantage: It is straightforward to extend
RLTL with past operators, by changing the direction of delay expressions. Ex-
tending DLTL to handle past seems to be much more cumbersome. However,
this addition is left for future work.

References

1. IEEE P1850 - Standard for PSL - Property Specification Language, Sep 2005.

2. Howard Barringer, Ruurd Kuiper, and Amir Pnueli. A really abstract concur-
rent model and its temporal logic. In Procs. of the 13th Annual ACM Symp. on
Principles of Programming Languages (POPL’86), pages 173–183, 1986.

3. Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and
Yoav Rodeh. The temporal logic Sugar. In Procs. of the 13th Int’l Conf. on
Computer Aided Verification (CAV’01), pages 363–367. Springer, 2001.

4. Julius Richard Büchi. On a decision method in restricted second order arithmetic.
In Proc. of the Int’l Congress on Logic Methodology and Philosophy of Science,
pages 1–12. Stanford University Press, 1962.

5. E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In Proc. of the 7th Colloquium on Automata,
Languages and Programming (ICALP’80), pages 169–181. Springer, 1980.

6. Dana Fisman, Cindy Eisner, and John Havlicek. Formal syntax and Semantics of
PSL: Appendix B of Accellera Property Language Reference Manual, Version 1.1,
March 2004.

7. David Harel and Doron Peleg. Process logic with regular formulas. Theoretical
Computer Science, 38:307–322, 1985.

8. Jesper G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 96(1–3):187–207, 1999.

9. John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages and computation. Addison-Wesley, 1979.

10. Juraj Hromkovic, Sebastian Seibert, and Thomas Wilke. Translating regular ex-
pressions into small ǫ-free nondeterministic finite automata. In Proc. of STACS’97,
volume 1200 of LNCS, pages 55–66. Springer, 1997.

11. Stephen C. Kleene. Representation of events in nerve nets and finite automata.
In Claude E. Shannon and John McCarthy, editors, Automata Studies, volume 34,
pages 3–41. Princeton University Press, Princeton, New Jersey, 1956.

12. Dexter Kozen. Results on the propositional µ-calculus. In Proc. ICALP’82, pages
348–359. Springer, 1982.

13. Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that
weak. In Proc. of the Fifth Israel Symposium on Theory of Computing and Systems,
ISTCS’97, pages 147–158. IEEE Computer Society Press, 1997.

14. Martin Lange. Weak automata for the linear time µ-calculus. In Procs. of the
6th Int’l Conf. on Verification, Model Checking and Abstract Interpretation (VM-
CAI’05), volume 3385 of LNCS, pages 267–281. Springer, 2005.

15. Martin Lange and Colin Stirling. Model checking fixed point logic with chop.
In Procs. of the 5th Conf. on Foundations of Software Science and Computation
Structures (FOSSACS’02), volume 2303 of LNCS. Springer, 2002.

16. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems.
Springer, 1995.

17. David E. Muller and Paul E. Schupp. Altenating automata on infinite trees. The-
oretical Computer Science, 54:267–276, 1987.

18. Markus Müller-Olm. A modal fixpoint logic with chop. In Proc. of the 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’99), volume 1563
of LNCS, pages 510–520. Springer, 1999.

19. Amir Pnueli. The temporal logic of programs. In Proc. of the 18th IEEE Symposium
on Foundations of Computer Science (FOCS’77), pages 46–67, 1977.

20. Amir Pnueli. Applications of temporal logic to the specification and verification of
reactive systems – a survey of current trends. In Current Trends in Concurrency,
volume 224 of LNCS, pages 510–584. Springer, 1996.

21. A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
termporal logics. Journal of the ACM, 32(3):733–749, July 1985.

22. Larry J. Stockmeyer. The Complexity of Decision Problems in Automata The-
ory and Logic. PhD thesis, Department of Electrical Engineering, MIT, Boston,
Massachusetts, 1974.

23. Moshe Y. Vardi. Personal communication.
24. Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In

Logics for Concurrency: Structure versus Automata, volume 1043 of LNCS, pages
238–266. Springer, 1996.

25. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115:1–37, 1994.

26. Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.

27. Hiroaki Yamamoto. On the power of input-synchronized alternating finite au-
tomata. In Computing and Combinatorics: 6th Annual International Conference,
COCOON 2000, volume 1858 of LNCS, page 457. Springer, July 2000.

