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Abstract

We study the expressiveness of finite message-passing automata with a priori un-
bounded FIFO channels and show them to capture exactly the class of MSC lan-
guages that are definable in existential monadic second-order logic interpreted over
MSCs. Furthermore, we prove the monadic quantifier-alternation hierarchy over
MSCs to be infinite and conclude that the class of MSC languages accepted by
message-passing automata is not closed under complement.
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1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [16]) is widely
used in industry to formalize such typical behaviors.
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An MSC depicts a single partially-ordered execution sequence of a system.
It defines a set of processes interacting with one another by communication
actions. In the visual representation of an MSC, processes are drawn as vertical
lines that are interpreted as time axes, while a labeled arrow from one line to
a second corresponds to the communication events of sending and receiving a
message. Collections of MSCs are then used to capture the scenarios that a
designer might want the system to follow or to avoid. In this respect, several
specification formalisms have been considered, such as high-level MSCs or
MSC graphs [3,26]. The next step in the design process usually is to derive
an implementation of the system to develop [11], preferably automatically. In
other words, we are interested in generating a distributed automaton realizing
the behavior given in form of scenarios. This problem asks for the study of
automata models that are suited for accepting the system behavior described
by MSC specifications.

A common model that reflects the partially-ordered execution behavior of
MSCs in a natural manner are message-passing automata, MPAs for short.
They consist of several components that communicate using reliable FIFO
channels. Several variants of MPAs have been studied in the literature: au-
tomata with a single or multiple initial states, with finitely or infinitely many
states, bounded or unbounded channels, and systems with a global or local
acceptance condition.

In this paper, we will focus on MPAs with a priori unbounded FIFO chan-
nels and a global acceptance condition where each component employs a finite
state space. Thus, our model subsumes the one studied in [11] where a local
acceptance condition is used. It coincides with the one used in [15,17], al-
though these papers characterize the fragment of channel-bounded automata.
It extends the setting of [1,24] in so far as we provide synchronization messages
and a global acceptance condition to have the possibility to coordinate rather
autonomous processes. Altogether, our version covers most existing models of
communicating automata for MSCs.

A fruitful way to study properties of automata is to establish logical charac-
terizations. For example, finite word automata are known to be expressively
equivalent to monadic second-order (MSO) logic over words [6,8]. More pre-
cisely, the set of words satisfying some MSO formula can be defined by a
finite automaton and vice versa. Those results then initiated the study of au-
tomata models for generalized structures such as graphs or, more specifically,
labeled partial orders and their relation to MSO logic has been a research
area of great interest aiming at a deeper understanding of their logical and
algorithmic properties (see [29,7] for overviews).

In this paper, we show that MPAs accept exactly those MSC languages that
are definable within the existential fragment of MSO, abbreviated by EMSO.
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We recall that emptiness for MPAs is undecidable and conclude that so is
satisfiability for EMSO logic. Furthermore, we show that MSO is strictly more
expressive than EMSO. More specifically, the monadic quantifier-alternation
hierarchy turns out to be infinite. Thus, MPAs do not necessarily accept a
set of MSCs defined by an MSO formula. We use this result to conclude that
the class of MSC languages that corresponds to MPAs is not closed under
complementation, answering the question posed in [17].

Previous work deals with MPAs and sets of MSCs that make use only of a
bounded part of the actually unbounded channel [15,17,9]. When restricting
to sets of bounded MSCs (no matter if universally- or existentially-bounded),
MSO corresponds to the class of MPAs and is as expressive as its existential
fragment [13,17,10]. However, an algebraic or logical characterization of the
whole class of MPAs has been unknown.

The next two sections introduce some basic notions and recall the definitions
of MSCs and (existential) MSO logic, respectively. Section 4 deals with MPAs
and their expressive equivalence to EMSO logic, while Section 5 studies the
gap between MSO formulas and their existential fragment.

Acknowledgment We would like to thank Dietrich Kuske for valuable remarks
on a previous version of this paper.

2 Preliminaries

Let us first recall some basic definitions and notions. A partially ordered set
(also called poset for short) is a pair (E,≤) such that E is a nonempty finite set
and ≤ is a binary relation on E that is reflexive, transitive, and antisymmetric.
In this context, the relation ≤ is called a partial order. A totally ordered set is
a poset (E,≤) such that, for any e, e′ ∈ E, e ≤ e′ or e′ ≤ e. Accordingly, we
then call the relation ≤ a total order. Let P = (E,≤) be a poset. By <, we
denote ≤ \ {(e, e) | e ∈ E}. Moreover, for e, e′ ∈ E, let us write e l e′ if both
e < e′ and, for any e′′ ∈ E, e < e′′ ≤ e′ implies e′′ = e′. Then, (E,l) and l
are called the Hasse diagram of P and, respectively, the covering relation of ≤.
For e ∈ E, we furthermore say that e is minimal/maximal in P (we may also
say minimal/maximal in (E,<)) if there is no e′ ∈ E such that e′ < e/e < e′,
respectively.
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2.1 Graphs

Directed acyclic labeled graphs can be seen as the most general structure we
consider in this paper. Message sequence charts can be embedded into acyclic
graphs or at least have a corresponding one-to-one graph representation.

Let in the following Σ and C be alphabets, i.e., nonempty finite sets, which
contain the elements the components of a graph are labeled with.

Definition 2.1 ((Directed) Graph)
A (directed) graph over (Σ, C) is a structure G = (E, {Cc}c∈C , λ) where E is
its nonempty finite set of nodes, the Cc ⊆ E ×E are disjoint binary relations
on E, and λ : E → Σ is a (node-)labeling function.

In the sequel, we call C :=
⋃

c∈C Cc the edge relation or the set of edges of G.
Moreover, we sometimes write ≤c for (Cc)

∗, abbreviate (Cc)
+ by <c, set ≤ to

be the relation C∗, and abbreviate C+ by <. The cardinality of G, denoted by
|G|, is actually meant to be the cardinality of E. Moreover, for a subset Σ′ of
Σ, we set |G|Σ′ to be |λ−1(Σ′)|. For a ∈ Σ, we then abbreviate |G|{a} by |G|a.

Graphs will primarily serve as a convenient representation of partial orders,
which, in turn, are a general model for the behavior of a distributed system.
Thus, we assume in the sequel a graph (E, {Cc}c∈C , λ) to generate a partial
order, which means that (E,C∗) is supposed to be a poset. We furthermore
require C to be irreflexive. The set of all those acyclic graphs is denoted by
DG(Σ, C). A useful subclass of DG(Σ, C), denoted by DGH(Σ, C), is the set
of graphs (E, {Cc}c∈C , λ) ∈ DG(Σ, C) such that C = l, i.e., (E,C) is the
Hasse diagram of some poset. Throughout the paper, the nodes of a graph are
called events executing actions, which are given by their node labeling.

It may be the case that the set of node labelings or the set of edge labelings is
a singleton so that we do not need to explicitly refer to Σ and C, respectively.
In that case, we speak of graphs over (Σ,−) or over (−, C) and, for example,
write DG(Σ,−). Moreover, if the labeling alphabets are clear from the context,
we often omit the reference to Σ and C completely.

An important concept of partially ordered sets and their associated graphs is
their characterization in terms of linear extensions or linearizations, which es-
tablishes a relationship between posets (or their associated graphs) and words.
So let G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C) be a graph. A graph w = (E ′,C′, λ′) ∈
DG(Σ,−) is called a linearization of G if E ′ = E, C′ is the covering relation
of some total order containing C∗, and λ′ = λ. Thus, w can be considered to
be a word from Σ∗. The set of linearizations of G is denoted by Lin(G). This
notion is extended to sets L of graphs according to Lin(L) :=

⋃
G∈L Lin(G).
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For G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C), a nonempty subset Σ′ of Σ with
λ−1(Σ′) 6= ∅, and c ∈ C, we denote by G � (Σ′, {c}) (we may write G � Σ′

if C is a singleton) the projection (E ′,C′
c, λ

′) ∈ DG(Σ′, {c}) of G onto Σ′

and c where E ′ = λ−1(Σ′), C′
c is the union of Cc ∩ (E ′ × E ′) and the cov-

ering relation of the partial order (Cc)
∗ ∩ (E ′ × E ′), and λ′ = λ|E′, i.e., λ′

is the restriction of λ to E ′. For e ∈ E, let furthermore G ⇓ e stand for the
downwards closure of G wrt. e, i.e., for (E ′, {C′

c}c∈C , λ
′) ∈ DG(Σ, C) where

E ′ = {e′ ∈ E | e′ C∗ e}, C′
c = Cc ∩ (E ′ × E ′), and λ′ = λ|E′.

Let B be a natural. For G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C), we say that the
degree of G is bounded by B if, for any e ∈ E, |{e′ ∈ E | e C e′ or e′ C e}| ≤ B.
Given K ⊆ DG(Σ, C), the degree of K is said to be bounded by B if, for any
G ∈ K, the degree of G is bounded by B. We say that K has bounded degree
if its degree is bounded by some B.

Let Q be a nonempty and finite set. A (Q-)extended graph over (Σ, C) is a
graph (E, {Cc}c∈C , λ) ∈ DG(Σ × Q,C), i.e, λ is a mapping E → Σ × Q.
Note that λ can be seen as a pair (λ′, ρ) of mappings E → Σ and E → Q,
respectively. Given a class K of graphs over (Σ, C), the corresponding set of
Q-extended graphs over (Σ, C) is denoted by KQ.

2.2 Monadic Second-Order Logic over Graphs

Throughout the paper, we fix supplies Var = {x, y, . . . , x1, x2, . . .} of individual
variables and VAR = {X, Y, . . . , X1, X2, . . .} of set variables.

Definition 2.2 (Monadic Second-Order Logic over Graphs)
Formulas from MSO(Σ, C), the set of monadic second-order formulas over the
class DG(Σ, C), are built up from the atomic formulas λ(x) = a (for a ∈ Σ),
x Cc y (for c ∈ C), x ∈ X, and x = y (where x, y ∈ Var and X ∈ VAR) and,
furthermore, allow the boolean connectives ¬, ∨, ∧, →, ↔ and the quantifiers
∃, ∀, which can be applied to either kind of variable.

Let G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C) be a graph. Given an interpretation
function I, which assigns to an individual variable x an event I(x) ∈ E and
to a set variable X a set of events I(X) ⊆ E, the satisfaction relation G |=I ϕ
for a formula ϕ ∈ MSO(Σ, C) is given by G |=I λ(x) = a if λ(I(x)) = a,
G |=I x Cc y if I(x) Cc I(y), G |=I x ∈ X if I(x) ∈ I(X), and G |=I x = y if
I(x) = I(y), while the remaining operators are defined as usual. If we consider
sentences, i.e., formulas without free variables, we replace |=I with |=.

For an MSO(Σ, C)-formula ϕ, the notation ϕ(x1, . . . , xm, X1, . . . , Xn) shall in-
dicate that at most x1, . . . , xm, X1, . . . , Xn occur free in ϕ. The fragment of
MSO(Σ, C) that does not make use of any set-variable quantifier is the set of
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first-order formulas over DG(Σ, C) and denoted by FO(Σ, C). An MSO(Σ, C)-
formula is called existential if it is of the form ∃X1 . . .∃Xnϕ(X1, . . . , Xn, Y )
where Y is a block of second-order variables and ϕ(X1, . . . , Xn, Y ) ∈ FO(Σ, C).
Let EMSO(Σ, C) denote the class of existential MSO(Σ, C)-formulas. In gen-
eral, we would like to distinguish formulas by their quantifier-alternation
depth. So Σk(Σ, C) (k ≥ 1) shall contain the MSO(Σ, C)-formulas of the form
∃X1∀X2 . . .∃/∀Xkϕ(X1, . . . , Xk, Y ) with first-order kernel ϕ(X1, . . . , Xk, Y )
(Xi and Y are blocks of second-order variables). Note that Σ1(Σ, C) and
EMSO(Σ, C) coincide. Let us furthermore introduce a variant of MSO(Σ, C):
choosing our atomic entities to be λ(x) = a (for a ∈ Σ), x ≤ y, x ∈ X, and
x = y yields the logics MSO(Σ, C)[≤], EMSO(Σ, C)[≤], and Σk(Σ, C)[≤]. The
semantics of x ≤ y wrt. a graph G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C) and an
interpretation function I is determined by G |=I x ≤ y if I(x) C∗ I(y).

Let K ⊆ DG(Σ, C). For an MSO(Σ, C)-sentence ϕ, the language of ϕ relative
to K, denoted by LK(ϕ), is the set of graphs G ∈ K with G |= ϕ. However, as a
formula ϕ(X1, . . . , Xn) ∈ MSO(Σ, C) (with free variables) can be considered to
define a language of graphs whose labelings are enriched by tuples from {0, 1}n,
we may accordingly denote the corresponding language of ϕ relative to K by
LK(ϕ), too, which is then a subset of K{0,1}n

. More precisely, an extended graph
G = (E, {Cc}c∈C , (λ, ρ)) ∈ K{0,1}n

satisfies ϕ if we have (E, {Cc}c∈C , λ) |=IG
ϕ

where, for any e ∈ E, e ∈ IG(Xi) if ρ(e)[i] = 1 (where ρ(e)[i] yields the i-th
component of ρ(e)).

For F ⊆ MSO(Σ, C) and sets L,K ⊆ DG(Σ, C), L is called FK-definable
if L = LK(ϕ) for some sentence ϕ ∈ F. Moreover, the language classes of
MSO(Σ, C)K-, EMSO(Σ, C)K-, and Σk(Σ, C)K-definable sets are denoted by
MSO(Σ, C)K, EMSO(Σ, C)K, and LK(Σk(Σ, C)), respectively. Similarly, wrt.
the alternative predicate symbol ≤, we obtain further classes of graph lan-
guages, for example MSO(Σ, C)[≤]K and EMSO(Σ, C)[≤]K.

For K ⊆ DG(Σ, C), we say that the monadic quantifier-alternation hierarchy
over K is infinite if the sets LK(Σk(Σ, C)), k = 1, 2, . . ., form an infinite strict
hierarchy. Recall that, in general, the classes of Σk(Σ, C)DG(Σ,C)-definable lan-
guages form an infinite hierarchy [23,22].

2.3 Graph Acceptors

Besides formulas, graphs themselves may provide a framework to specify graph
properties. For instance, we might be interested in the set of those graphs in
which a given pattern occurs at least, say, n ∈ IN times. A pattern H hereby
specifies the local neighborhood around a distinguished center γ where the
size of the neighborhood is constituted by a natural R ∈ IN, the radius of H,
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Fig. 1. A 2-sphere over ({a, b}, {1, 2})

which restricts the distance of any node of H to γ.

Let us make this idea more precise and let R be a natural. Given a graph G =
(E, {Cc}c∈C , λ) ∈ DG(Σ, C) and nodes e, e′ ∈ E, the distance dG(e′, e) from
e′ to e in G is ∞ if it holds (e, e′) 6∈ (C ∪ C−1)∗ and, otherwise, the minimal
natural number k such that there is a sequence of elements e0, . . . , ek ∈ E
with e0 = e, ek = e′, and ei C ei+1 or ei+1 C ei for each i ∈ {0, . . . , k − 1}.
Sometimes, if it is clear from the context, we omit the subscript G just writing
d(e′, e). An R-sphere over (Σ, C) is a graph H = (E, {Cc}c∈C , λ, γ) over (Σ, C)
together with a designated sphere center γ ∈ E such that, for any e ∈ E,
dH(e, γ) ≤ R (in abuse of notation, the distance from one node to another will
be given wrt. a sphere as well). For a graph G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C)
and e ∈ E, let the R-sphere of G around e, denoted by R-Sph(G, e), be given
by (E ′, {C′

c}b∈C , λ
′, e) where E ′ = {e′ ∈ E | dG(e′, e) ≤ R}, C′

c = Cc ∩
(E ′ × E ′) for each c ∈ C, and λ′ is the restriction of λ to E ′. A 2-sphere over
({a, b}, {1, 2}) is shown in Figure 1 (a) where the sphere center is depicted as
a rectangle. It precisely deals with the 2-sphere of the graph aside around e.

Graph acceptors [27,29] are a generalization of finite automata to graphs. They
are known to be expressively equivalent to EMSO logic wrt. graphs of bounded
degree. A graph acceptor works on a graph as follows: it first assigns to each
node one of its control states and then checks if the local neighborhood of
each node (incorporating the state assignment) corresponds to a pattern from
a finite supply of spheres.

Definition 2.3 (Graph Acceptor [27,29])
A graph acceptor over (Σ, C) is a structure B = (Q,R,S,Occ) where

– Q is its nonempty finite set of states,
– R ∈ IN is the radius,
– S is a finite set of R-spheres over (Σ ×Q,C), and
– Occ is a boolean combination of conditions of the form “sphere H ∈ S

occurs at least n times” where n ∈ IN.
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A run of B on a graph G = (E, {Cc}c∈C , λ) ∈ DG(Σ, C) is a mapping ρ : E →
Q such that, for each e ∈ E, the R-sphere of (E, {Cc}c∈C , (λ, ρ)) around e is
isomorphic to some H ∈ S. We call ρ accepting if the tiling of G with spheres
from S, which is uniquely determined by ρ, satisfies the constraints imposed
by Occ. (In the tiling induced by ρ, sphere H ∈ S occurs |{e ∈ E | H ∼=
R-Sph((E, {Cc}c∈C , (λ, ρ)), e)}| times.) The language of B relative to a class
K ⊆ DG(Σ, C), denoted by LK(B), is the set of graphs G ∈ K on which there is
an accepting run of B. Moreover, we denote by GA(Σ, C)K (GAK if Σ and C are
clear from the context) the class {L ⊆ K | L = LK(B) for some graph acceptor
B over (Σ, C)}. An interesting class of graph languages distinguishes those sets
that are recognized by some graph acceptor that employs only 1-spheres [28].
We denote by 1-GA(Σ, C)K or 1-GAK the class {L ⊆ K | L = LK(B) for some
graph acceptor B = (Q,R,S,Occ) over (Σ, C) with R = 1}.

Note that, considering a graph acceptor relative to the class DG of all graphs,
its spheres themselves are contained in DG. It might be worth noting that
such a coincidence does not necessarily hold for arbitrary classes of graphs,
i.e., applying graph acceptors to a subclass K of DG, their spheres might
still require a more general structure than K admits. But obviously, it always
suffices to restrict to those spheres that can be embedded into some graph from
K in a sense made precise below. Those considerations will play a role when
we address the issue of graph acceptors over message sequence charts.

Graph acceptors can be characterized logically as follows:

Theorem 2.4 ([28,29]) For any class K ⊆ DG of bounded degree, it holds
EMSOK = GAK.

The proof relies on Hanf’s Theorem [12], which basically states that any first-
order sentence can be rephrased as a boolean combination of conditions “R-
sphere H occurs at least n ∈ IN times”.

2.4 Grids

An important class of graphs is provided by grids, which, once more, are a
special case of graphs. However, while the node-labeling is a singleton and will
therefore be omitted, an edge of a grid is labeled with either 1 or 2. Let in the
following IN≥1 stand for IN \ {0} and, given n ∈ IN≥1, [n] for {1, . . . , n}.

Definition 2.5 (Grid)
Given n,m ∈ IN≥1, the (n,m)-grid is the graph G(n,m) := ([n]×[m], S1, S2) ∈
DGH(−, {1, 2}) where S1, S2 ⊆ ([n]×[m])2 contain the pairs ((i, j), (i+1, j)) ∈
([n] × [m])2 and ((i, j), (i, j + 1)) ∈ ([n] × [m])2, respectively.
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Note that, in the context of grids, we use S1 and S2 rather than C1 and,
respectively, C2 to denote the edge relations, because this is more common.
The set of grids is denoted by GR. A relation R ⊆ IN≥1 × IN≥1 may be
represented by the grid language {G(n,m) | (n,m) ∈ R}. As a unary function
f : IN≥1 → IN≥1 can be considered as a binary relation, we define the grid
language G(f) of f to be the set {G(n, f(n)) | n ∈ IN≥1}.

By means of grids, Matz and Thomas showed that quantifier alternation of
second-order variables in MSO logic over graphs forms an infinite hierarchy.

Theorem 2.6 ([23,22]) The monadic quantifier-alternation hierarchy over
GR is infinite.

3 Message Sequence Charts

Forthcoming definitions will be made wrt. a fixed finite set P of at least
two processes. We denote by Ch(P ) the set {(p, q) | p, q ∈ P, p 6= q} of
reliable FIFO channels. Thus, a message exchange is allowed between distinct
processes only. Let Act !(P ) denote the set {p!q | (p, q) ∈ Ch(P )} of send
actions while Act ?(P ) denotes the set {q?p | (p, q) ∈ Ch(P )} of receive actions.
Hereby, p!q and q?p are to be read as p sends a message to q and q receives
a message from p, respectively. They are related in the sense that they will
label communicating events of an MSC, which are joint by a message arrow
in its graphical representation. Accordingly, we set Com(P ) := {(p!q, q?p) |
(p, q) ∈ Ch(P )}. Observe that an action pθq (θ ∈ {!, ?}) is performed by
process p, which is indicated by P (pθq) = p. We let Act(P ) stand for the
union of Act !(P ) and Act ?(P ) and, for p ∈ P , set Act(P )p to be the set
{σ ∈ Act(P ) | P (σ) = p}. Moreover, we use Pc as a shorthand for P ] {c}
(the symbol c will be subsequently used to label message arrows in an MSC,
while a process will label the successor relation of the corresponding process
line). As P will be clear from the context, we take the liberty of omitting the
reference to P and just write Ch, Act !, Act ?, Act , and Com.

Definition 3.1 (Message Sequence Chart)
A message sequence chart (over P ) is a graph M = (E, {Cp}p∈P ,Cc, λ) ∈
DG(Act , Pc) such that

– Cp is the covering relation of some total order on Ep := λ−1(Actp)
(recall that this total order is then denoted by ≤p),

– Cc ⊆ E × E such that, for any e, e′ ∈ E, e Cc e
′ iff

• (λ(e), λ(e′)) ∈ Com and
• |M ⇓e|λ(e) = |M ⇓e′|λ(e′), and

– |M |p!q = |M |q?p for each (p, q) ∈ Ch.
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Recall that λ is a labeling function of type E → Act and C∗ = (Cc ∪
⋃

p∈P Cp)
∗

is required to be a partial order. Moreover, E is a nonempty finite set of events.
Events on one and the same process line are totally ordered and events on
distinct process lines that are immediately concerned with each other (wrt.
Cc) are labeled with actions related by Com.

Given an MSC (E, {Cp}p∈P ,Cc, λ) and e ∈ E, P (e) will serve as a shorthand
for P (λ(e)). The set of MSCs over P is denoted by MSC(P ) or just MSC.
Summarizing, we model an MSC as a graph, adopting the view taken in [20,4]
rather than considering partial orders [14,24,17]. As we will discuss in more
detail, this does not affect our main results.

1 2 3
1

1
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2

2
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3

c

c

c

c

c

1!2

1!2

1!3

2?1

2!3

2?1

2?3

3?2

3?1

3!2

(a) (b)
Fig. 2. An MSC

An MSC is depicted in Figure 2 (b). However, to illustrate an MSC, one
mostly represents it by a diagram such as shown in Figure 2 (a), which is
more intuitive and provides enough information to infer the corresponding
graph. This example shows that it would be too restrictive if we confined
ourselves to graphs from DGH(Act , Pc), as the edge representing the second
message from process 1 to process 2 is already implicitly present.

To be able to apply Theorem 2.4, the following remark will prove important.

Remark 3.2 The degree of MSC is bounded by 3.

Note that, for clarity, an MSC does not carry any information about the con-
crete messages to be sent. However, forthcoming results can be easily extended
towards MSCs that are equipped with message information, as they are pro-
vided in [1,3,11], for example.
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4 Message-Passing Automata and Their Expressiveness

In this section, we introduce and study message-passing automata (MPAs), a
model of computation that is close to a real-life implementation of a commu-
nicating system.

4.1 Message-Passing Automata

An MPA is a collection of state machines that share one global initial state
and several global final states. The machines are connected pairwise with a
priori unbounded reliable FIFO buffers. The transitions of each component are
labeled with send or receive actions. Hereby, a send action p!q puts a message
at the end of the channel from p to q. A receive action can be taken provided
the requested message is found in the channel. To extend the expressive power,
MPAs can send certain synchronization messages.

Definition 4.1 (Message-Passing Automaton)
A message-passing automaton (over P ) is a structure A = ((Ap)p∈P ,D, s

in , F )
such that

– D is a nonempty finite set of synchronization messages (or data),
– for each p ∈ P , Ap is a pair (Sp,∆p) where
• Sp is a nonempty finite set of (p-)local states and
• ∆p ⊆ Sp × Actp ×D × Sp is the set of (p-)local transitions,

– sin ∈
∏

p∈P Sp is the global initial state, and
– F ⊆

∏
p∈P Sp is the set of global final states.

By SA, we denote the set
∏

p∈P Sp of global states of A. For s = (sp)p∈P ∈ SA,
s[p] will henceforth refer to sp.

An MPA A = ((Ap)p∈P ,D, sin , F ), Ap = (Sp,∆p), is called deterministic if,
for any p ∈ P , ∆p satisfies the following conditions:

– If (s, p!q,m1, s1) ∈ ∆p and (s, p!q,m2, s2) ∈ ∆p, then m1 = m2 and s1 = s2.
– If (s, p?q,m, s1) ∈ ∆p and (s, p?q,m, s2) ∈ ∆p, then s1 = s2.

An MPA with set of synchronization messages {◦, •}, which is not deter-
ministic, is illustrated in Figure 3. Note that its MSC language cannot be
recognized by some MPA with only one synchronization message. Never-
theless, it can be recognized by some deterministic MPA. (To verify this is
left to the reader as an exercise. Basically, the second component A2 has
to be modified accordingly.) Let us define the behavior of MPAs. In do-
ing so, we adhere to the style of [17]. In particular, an automaton will run

11



1!2, ◦

2?1, •

1?2, ◦

2!1, ◦1!2, • 1?2, ◦

2?1, ◦ 2!1◦

A1: A2:

Fig. 3. A message-passing automaton

on MSCs rather than linearizations of MSCs, allowing for its distributed
behavior. Let A = ((Ap)p∈P ,D, sin , F ), Ap = (Sp,∆p), be an MPA and
M = (E, {Cp}p∈P ,Cc, λ) ∈ MSC be an MSC. For a function r : E →

⋃
p∈P Sp,

we define r− : E →
⋃

p∈P Sp to map an event e ∈ E onto sin [P (e)] if e is
minimal in (EP (e),≤P (e)) and, otherwise, onto r(e′) where e′ ∈ EP (e) is the
unique event with e′ CP (e) e. A run of A on M is a pair (r,m) of mappings
r : E →

⋃
p∈P Sp with r(e) ∈ SP (e) for each e ∈ E and m : Cc → D such that,

for any e, e′ ∈ E, e Cc e
′ implies

– (r−(e), λ(e), m((e, e′)), r(e)) ∈ ∆P (e) and
– (r−(e′), λ(e′), m((e, e′)), r(e′)) ∈ ∆P (e′).

For p ∈ P , let fp denote sin [p] if Ep is empty. Otherwise, let fp denote the
p-local state r(e′) with e′ maximal in (Ep,≤p). We call (r,m) accepting if
(fp)p∈P ∈ F . By L(A) := {M ∈ MSC | there is an accepting run of A on
M}, let us denote the language of A. Moreover, we set MPA := {L ⊆ MSC |
there is an MPA A such that L = L(A)}. We also say that the languages
from MPA are the implementable ones. This nomenclature is arbitrary and
rather geared to the literature, where the term realizability usually refers to
locally-accepting MPAs without any synchronization message [2,18,24].

Remark 4.2 The emptiness problem for MPAs is undecidable.

Proof Several decidability questions were studied for communicating finite-
state machines, a slightly different variant of MPAs. Among them, the empti-
ness problem for communicating finite-state machines turned out to be unde-
cidable [5]. The proof can be easily adapted towards MPAs. 2

Note that, for any deterministic MPA A and any MSC M , there is at most one
run of A on M . However, introducing a sink state and an error message, A can
be easily extended towards a deterministic MPA A′ such that L(A′) = L(A)
and, for any MSC M , there is exactly one run of A′ on M .

Consider a variant of MPAs, which allows for accepting extended MSCs, say
from MSCQ for some alphabet Q. Accordingly, for p ∈ P , the p-local transition
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relation of an MPA is henceforth a subset of Sp×(Actp×Q)×D×Sp. However,
the type of an action (σ, q) still solely depends on σ so that, in particular, a
run may allow communicating events to have different additional labelings.
Such an automaton will be used in Section 5 to characterize the language of
some EMSO(Act , Pc)-formula ϕ(X1, . . . , Xn), which, as mentioned in Section
2, defines a subset of MSC{0,1}n

.

In [15,24,9], a run of an MPA is defined on linearizations of MSCs rather than
on MSCs, which reflects an operational behavior at the expense that several
execution sequences might stand for one and the same run. Usually, such a
view relies on the global transition relation of A, which, in turn, defers to the
notion of a configuration. Let us be more precise and consider an MPA A =
((Ap)p∈P ,D, sin , F ), Ap = (Sp,∆p). The set of configurations of A, denoted
by ConfA, is the cartesian product SA × CA where CA := {χ | χ : Ch → D∗} is
the set of possible channel contents of A. Now, the global transition relation
of A, =⇒A ⊆ ConfA × Act ×D × ConfA, is defined as follows:

– ((s, χ), p!q,m, (s′, χ′)) ∈ =⇒A if
• (s[p], p!q,m, s′[p]) ∈ ∆p,
• χ′ = χ[(p, q)/m·χ((p, q))] (i.e., χ′ maps (p, q) tom·χ((p, q)) and, otherwise,

coincides with χ), and
• for all r ∈ P \ {p}, s[r] = s′[r].

– ((s, χ), p?q,m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that
• (s[p], p?q,m, s′[p]) ∈ ∆p,
• χ((q, p)) = w ·m,
• χ′ = χ[(q, p)/w], and
• for all r ∈ P \ {p}, s[r] = s′[r].

Let χε : Ch → D∗ map each channel onto the empty word. If we set (sin , χε) to
be the initial configuration and F × {χε} to be the set of final configurations,
A defines in the canonical way a word language Lw(A) ⊆ Act∗. As one can
easily verify, it holds Lw(A) = Lin(L(A)).

4.2 The Expressiveness of Message-Passing Automata

We now turn towards our main result, which states that any EMSO-definable
MSC language is implementable as an MPA and, vice versa, any MSC language
recognized by some MPA has an appropriate EMSO counterpart.

The easier part is to provide an EMSO formula for a given MPA. We can
hereby mainly follow similar constructions applied, for example, to finite word
and asynchronous automata.

Lemma 4.3 MPA ⊆ EMSOMSC
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Fig. 4. A graph acceptor over (Act , Pc)

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1

1!2

1!2

2?1

1!2

2?1

2?1
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1!2

2?1

2?1

Fig. 5. The run of a graph acceptor

Proof Several instances of this problem have been considered in the literature
and can be easily adapted to our setting. See [30,17], for examples. 2

Corollary 4.4 The following two problems are undecidable:

(a) Satisfiability for EMSO sentences over MSC
(b) Universality for Σ2-sentences over MSC

Proof Using Remark 4.2 and Lemma 4.3, we get Corollary 4.4 (a). Corollary
4.4 (b) follows from an easy reduction from the satisfiability problem: there
is an MSC satisfying a given EMSO sentence ϕ iff not any MSC satisfies the
dual of ϕ, which can be written as a Σ2-sentence. 2

We now show that an EMSO(Act , Pc)-sentence that is interpreted over MSCs
can be transformed into an equivalent MPA.

Theorem 4.5 MPA = EMSOMSC

Proof It remains to show inclusion from right to left. So suppose ϕ to be an
EMSO(Act , Pc)-sentence. As MSC is a set of bounded degree (cf. Remark 3.2),
we can, according to Theorem 2.4, assume the existence of a graph acceptor B
over (Act , Pc) that, running on MSCs, recognizes the MSC language defined by
ϕ. In turn, B will be translated into an MPA A that captures the application
of B to MSCs, i.e., L(A) = LMSC(B). So let B = (Q,R,S,Occ) be a graph
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(1!2, q1)
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(3?2, q3)
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(1!2, q1)

(1!2, q1)

(2?1, q2)

(2?1, q3)

(b)

Fig. 6. The sphere(s) of a graph acceptor over (Act , Pc)

acceptor over (Act , Pc). (A simple graph acceptor tailored to MSCs—without
occurrence constraints and a singleton as set of states—and a correspond-
ing run are depicted in Figures 4 and 5, respectively. However, there is an
equivalent graph acceptor even with radius 0.)

For our purpose, it suffices to consider only those R-spheres H ∈ S for which
there is a Q-extended MSC M = (E, {Cp}p∈P ,Cc, λ) ∈ MSCQ, which has
an extended labeling function λ : E → Act × Q, and an event e ∈ E such
that H is the R-sphere of M around e. Other spheres cannot contribute to
an MSC. Because, to become part of a run on some MSC M , an R-sphere
has to admit an embedding into M . Accordingly, the 2-sphere illustrated in
Figure 6 (a) may contribute to a run on an MSC (it can be complemented
by a 1!3-labeled event arranged in order between the two other events of
process 1), while the 2-sphere illustrated aside is irrelevant and will be ignored
in the following. This assumption is essential, as it ensures that, for each
H = (E, {Cp}p∈P ,Cc, λ, γ) ∈ S and e ∈ E, dH(e, γ) < R implies that E also
contains a communication partner of e wrt. Cc.

In the following, we use notions that we have introduced for MSCs also for
spheres (E, {Cp}p∈P ,Cc, λ, γ) over (Act × Q,Pc), such as P (e) and Ep (to
indicate the process of e ∈ E and as abbreviation for λ−1(Actp ×Q), respec-
tively). Note also that, wrt. spheres, ≤p is not necessarily a total order. For
example, considering the 2-sphere from Figure 6 (a), P (a) = 1, E1 = {a, e},
and b ≤2 d, but not a ≤1 e. Let maxE := max{|E| | (E, {Cp}p∈P ,Cc, λ, γ) ∈
S} and let S+ be the set of extended R-spheres, i.e., the set of structures
((E, {Cp}p∈P ,Cc, λ, γ, e), i) where (E, {Cp}p∈P ,Cc, λ, γ) ∈ S, e ∈ E is the
active node, and i ∈ {1, . . . , 4 ·maxE 2 + 1} is the current instance. For p ∈ P ,
we define Sp := {(E, {Cp}p∈P ,Cc, λ, γ) ∈ S | P (γ) = p} and, furthermore,
S+

p := {((E, {Cp}p∈P ,Cc, λ, γ, e), i) ∈ S+ | P (e) = p}. Finally, let max(Occ)
denote the least threshold n such that Occ does not distinguish occurrence
numbers ≥ n. For readability, we let in the following C denote the collection
({Cp}p∈P ,Cc) and just write (E,C, λ, γ) instead of (E, {Cp}p∈P ,Cc, λ, γ).
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The idea of the transformation is that, roughly speaking, A guesses a tiling
of the MSC to be read and then verifies that the tiling corresponds to an
accepting run of B. Accordingly, a local state of A holds a set of active R-
spheres, i.e., a set of spheres that play a role in its immediate environment
of distance at most R. Each local state s (apart from the initial states, as we
will see) carries exactly one extended R-sphere ((E,C, λ, γ, e), i) ∈ S+ with
γ = e, which means that a run of B assigns (E,C, λ, γ) to the event that
corresponds to s. To establish isomorphism between (E,C, λ, γ) and the R-
sphere induced by s, s transfers/obtains its obligations in form of an extended
R-sphere ((E,C, λ, γ, e′), i) to/from its immediate neighbors, respectively. For
example, provided e is labeled with a send action and there is e′ ∈ E with
e Cc e

′, the message to be sent in state s will contain ((E,C, λ, γ, e′), i), which,
in turn, the receiving process understands as a requirement to be satisfied. As
there may be an overlapping of isomorphic R-spheres, a state can hold several
instances of one and the same sphere, which then refer to distinct states/events
as corresponding sphere center. Those instances will be distinguished by means
of the natural i. The benefit of i will become clear before long.

Let us turn to the construction of A = ((Ap)p∈P ,D, sin , F ), Ap = (Sp,∆p),
which is given as follows:

For p ∈ P , a local state of Ap is a pair (S, ν) where

– ν is a mapping Sp → {0, . . . ,max(Occ)} (let in the following ν0
p denote the

function that maps each R-sphere H ∈ Sp to 0) and
– S is either the empty set or it is a subset of S+

p such that
• there is exactly one extended R-sphere ((E,C, λ, γ, e), i) ∈ S with γ = e

(whose component (E,C, λ, γ) we identify by ς(S) from now on) and
• for any two ((E,C, λ, γ, e), i), ((E ′,C′, λ′, γ′, e′), i′) ∈ S,

(a) λ(e) = λ′(e′) ∈ Actp×Q (so that we can assign a well-defined unique
label λ(S) ∈ Actp × Q to S, namely the labeling λ(e) for some ex-
tended sphere ((E,C, λ, γ, e), i) ∈ S) and

(b) if (E,C, λ, γ) ∼= (E ′,C′, λ′, γ′) and i = i′, then e = e′.

The set D of synchronization messages is the cartesian product 2S
+

× 2S
+

.
Roughly speaking, the first component of a message contains obligations the
receiving state/event has to satisfy, while the second component imposes re-
quirements that must not be satisfied by the receiving process to ensure iso-
morphism.

Moreover, sin = ((∅, ν0
p))p∈P and, for (Sp, νp) ∈ Sp, ((Sp, νp))p∈P ∈ F if the

union of mappings νp satisfies Occ and, for all p ∈ P and ((E,C, λ, γ, e), i) ∈
Sp, e is maximal in (Ep,≤p).

So let us turn towards the definition of the p-local transition relation ∆p and
define ((S, ν), σ, (P,N ), (S ′, ν ′)) ∈ ∆p if the following hold:
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1. λ(S ′) = (σ, q) for some q ∈ Q.
2. For any ((E,C, λ, γ, e), i) ∈ S and e′ ∈ Ep, if ((E,C, λ, γ, e′), i) ∈ S ′,

then e Cp e
′.

3. For any ((E,C, λ, γ, e), i) ∈ S ′, if S 6= ∅ and e is minimal in (Ep,≤p),
then d(e, γ) = R.

4. For any ((E,C, λ, γ, e), i) ∈ S, if e is maximal in (Ep,≤p), then d(e, γ) =
R.

5. For any ((E,C, λ, γ, e), i) ∈ S ′, if e is not minimal in (Ep,≤p), then we
have ((E,C, λ, γ, e−), i) ∈ S where e− ∈ Ep is the unique event with
e− Cp e.

6. For any ((E,C, λ, γ, e), i) ∈ S, if e is not maximal in (Ep,≤p), then we
have ((E,C, λ, γ, e+), i) ∈ S ′ where e+ ∈ Ep is the unique event such that
e Cp e

+.
7. (i) In case that σ = p!q for some q ∈ P :

(a) for any ((E,C, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e Cc e
′, then

we have ((E,C, λ, γ, e′), i) ∈ P,
(b) for any ((E,C, λ, γ, e), i) ∈ S ′ and any e′ ∈ E, if e 6Cc e

′, then
we have ((E,C, λ, γ, e′), i) ∈ N , and

(c) for any ((E,C, λ, γ, e), i) ∈ P, there is e′ ∈ E such that e′ Cc e
and ((E,C, λ, γ, e′), i) ∈ S ′.

(ii) In case that σ = p?q for some q ∈ P :
(a) P ⊆ S ′,
(b) N ∩ S ′ = ∅, and
(c) for any ((E,C, λ, γ, e′), i) ∈ S ′, if there is e ∈ E with e Cc e

′,
then ((E,C, λ, γ, e′), i) ∈ P.

8. ν ′ = ν[ς(S ′)/min{ν(ς(S ′)) + 1,max(Occ)}] (ν ′ maps ς(S ′) to the mini-
mum of ν(ς(S ′)) + 1 and max(Occ) and, otherwise, coincides with ν).

Thus, Condition 1. guarantees that any state within a run has the same la-
beling as the event it is assigned to. Condition 2. makes sure that, whenever
there is a Cp-edge in the input MSC, then there is a corresponding edge in the
extended sphere that is passed from the source to the target state of the cor-
responding transition. Conversely, if there is no Cp-edge between two nodes
in the extended sphere, then it must not be passed directly to impose the
same behavior on the MSC, i.e., the corresponding events in the MSC must
not touch each other. Conditions 3. and, dually, 4. make sure that a sphere
that does not make use of the whole radius R is employed in the initial or
final phase of a run only. By Conditions 5. and 6., extended spheres must be
passed along a process line as far as possible, hereby starting in a minimal
and ending in a maximal active node. Condition 7. ensures the correspond-
ing beyond process lines, i.e., for messages. Finally, Condition 8. guarantees
that the second component of each state correctly keeps track the number of
spheres used so far.

Example 4.6 In the following, let H denote the 2-sphere from Figure 6 (a).
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Fig. 7. Simulating a graph acceptor

Figure 7, showing some MSC M with four processes, illustrates the transition
behavior of the MPA A. It demonstrates how a run of A on M transfers
extensions of H from one event of M to a neighboring one to make sure that
the 2-sphere around event ec (which is indicated by solid edges) is isomorphic
toH. For example, the state that is taken on event ea may contain the extended
sphere (H, a). (For clarity, control states and the instance i are omitted.) As
a Cc b (wrt. the edge relation of H), A passes (H, b) in form of a message
to process 2. Receiving (H, b), process 2 becomes aware it should bind eb to
some state that contains (H, b) (Conditions 7. (i) (a) and 7. (ii) (a) from the
definition of the transition relation). As, in H, b is followed by c, so ec has
to be associated with a state containing (H, c) (Condition 6.). In contrast,
eh is not allowed to carry the extended sphere (H, e), unless it belongs to
a different instance of H (Condition 2.). Now consider ed, which holds the
extended sphere (H, d). Due to Condition 5., the preceding state, which is
associated to ec, must contain (H, c), which means that a run cannot simply
enter H beginning with d. Moreover, as ed is a receive event, A has to receive
a message containing (H, d) (Condition 7. (ii) (c)). In turn, the corresponding
send event ee has to be associated with a state that holds (H, e) (Condition 7.
(i) (c)). As d(a, c) = d(e, c) = 2, the (illustrated parts of the) states assigned
to ea and ee satisfy Conditions 3. and 4.
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Fig. 8. Why we need different instances of extended spheres

Claim 4.7 LMSC(B) ⊆ L(A)

Proof of Claim 4.7. Let ρ : Ẽ → Q be an accepting run of B on the MSC
M = (Ẽ, {C̃p}p∈P , C̃c, λ̃) ∈ MSC and let in the following C̃ denote C̃c ∪⋃

p∈P C̃p and ρ̂ stand for the mapping Ẽ → S that maps an event e ∈ Ẽ onto

the R-sphere of (Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)) around e. We show that there is an
accepting run of A on M .

Consider Figure 8, which depicts an MSC inducing two isomorphic spheres,
say of type H. Obviously, e′ is actually not allowed to carry H forward. As the
example shows, however, both e and e′ must be able to carry distinct copies
of H as long as they defer to distinct events of the MSC at hand as sphere
centers. This is accomplished by enabling a state to carry even controversial
spheres, which are then equipped with distinct instances deferring to distinct
events as sphere centers. The following claim states that an assignment of
instances, which resolves such a conflict and where the number of required
instances only depends on B, is always possible.

Claim 4.8 There is a mapping iM,ρ : Ẽ → {1, . . . , 4·maxE 2+1} such that, for
any e, e′, e0, e

′
0 ∈ Ẽ with ρ̂(e) ∼= ρ̂(e′), e 6= e′, d(e0, e) ≤ R, and d(e′0, e

′) ≤ R,
if e0 C̃ e′0 or e′0 C̃ e0 or e0 = e′0, then iM,ρ(e) 6= iM,ρ(e

′).

Proof of Claim 4.8. We can reduce the existence of iM,ρ to the existence of a
graph coloring. Recall some basic definitions: A graphG is a structure (V,Arcs)
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where V is a finite set of vertices and Arcs ⊆ V × V is a set of arcs. For a
natural n ≥ 1, a graph G = (V,Arcs) is called n-colorable if there is a mapping
χ : V → {1, . . . , n} such that (u, v) ∈ Arcs implies χ(u) 6= χ(v) for any two
nodes u, v ∈ V (we then say that G is n-colored by χ). Furthermore, for d ∈ IN,
G is said to be of degree d if d = max{|Arcs(u)| | u ∈ V } where, for u ∈ V ,
Arcs(u) = {v ∈ V | (u, v) ∈ Arcs or (v, u) ∈ Arcs}. It is easy to show that,
for any d ∈ IN and any graph G of degree d without self-loops, G is (d + 1)-
colorable. The mapping iM,ρ can now be obtained as follows: Let G be the
graph (Ẽ,Arcs) where, for any e, e′ ∈ Ẽ, (e, e′) ∈ Arcs iff e 6= e′, ρ̂(e) ∼= ρ̂(e′),
and there is e0, e

′
0 ∈ Ẽ with d(e0, e) ≤ R, d(e′0, e

′) ≤ R, and (e0 C̃ e′0 or e′0 C̃ e0
or e0 = e′0). As G cannot be of degree greater than 4 ·maxE 2 (for each e ∈ Ẽ,
there are at most four distinct events e′ ∈ Ẽ such that e C̃ e′, e′ C̃ e, or e = e′),
it can be 4·maxE 2+1-colored by some mapping χ : Ẽ → {1, . . . , 4·maxE 2+1}.
Now set iM,ρ to be χ. This concludes the proof of Claim 4.8. �

Now let iM,ρ be the mapping from the above construction. For H ∈ S and
e ∈ Ẽ, let furthermore leM(H, e) = |{e′ ∈ ẼP (e) | e′ ≤̃P (e) e, H ∼= ρ̂(e′)}|

and the mapping r : Ẽ →
⋃

p∈P Sp be given as follows: for e ∈ Ẽ, we define
r(e) = (S, ν) where

(1) ((E,C, λ, γ, e0), i) ∈ S iff there is an event e′ ∈ Ẽ such that d(e′, e) ≤ R,
(E,C, λ, γ, e0) ∼= (ρ̂(e′), e), and i = iM,ρ(e

′), and
(2) for H ∈ SP (e), ν(H) = min{leM(H, e),max(Occ)}.

For e ∈ Ẽ, we first verify that, in fact, r(e) = (S, ν) is a valid state of A. So sup-
pose there are extended R-spheres ((E,C, λ, γ, e0), i), ((E

′,C′, λ′, γ′, e′0), i
′) ∈

S. Of course, it holds λ(e0) = λ′(e′0). Assume now that both γ = e0 and γ′ = e′0.
But then (E,C, λ, γ, γ) ∼= (ρ̂(e), e) and (E ′,C′, λ′, γ′, γ′) ∼= (ρ̂(e), e) imply
(E,C, λ, γ, γ) ∼= (E ′,C′, λ′, γ′, γ′). In particular, it holds ς(S) = (E,C, λ, γ) ∼=
ρ̂(e). Furthermore, i = i′ = iM,ρ(e). Now assume (E,C, λ, γ) ∼= (E ′,C′, λ′, γ′)
and i = i′. There are events e1, e2 ∈ Ẽ such that d(e1, e) ≤ R, d(e2, e) ≤ R,
(E,C, λ, γ, e0) ∼= (ρ̂(e1), e), (E,C, λ, γ, e′0)

∼= (ρ̂(e2), e), and i = iM,ρ(e1) =
iM,ρ(e2). Clearly, we have ρ̂(e1) ∼= ρ̂(e2). Furthermore, e1 = e2 and, conse-
quently, e0 = e′0. Because e1 6= e2, according to Claim 4.8, implies iM,ρ(e1) 6=
iM,ρ(e2), which contradicts the premise.

Let m : C̃c → D map a pair (es, er) ∈ C̃c onto (P,N ) where (set (S, ν) to be
r(es)) P = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E with ((E,C, λ, γ, e0), i) ∈
S and e0 Cc e

′
0} and N = {((E,C, λ, γ, e′0), i) ∈ S+ | there is e0 ∈ E such

that ((E,C, λ, γ, e0), i) ∈ S and e0 6Cc e
′
0}. In the following, we verify that

(r,m) is a run of A on M .

For any distinct processes p, q ∈ P , e ∈ Ẽp, and er ∈ Ẽq with e C̃c er, we

check that (r−(e), λ̃(e), m((e, er)), r(e)) ∈ ∆p. So set (S, ν) to be r−(e) and
(S ′, ν ′) to be r(e).
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1. Of course, λ(S ′) = (λ̃(e), q) for some q ∈ Q.
2. Let ((E,C, λ, γ, e0), i) ∈ S and ((E,C, λ, γ, e′0), i) ∈ S ′ for some event
e′0 ∈ Ep and let e− ∈ Ẽp such that e− C̃p e (as S 6= ∅, such an e−

must exist). There is e−
′
, e′ ∈ Ẽ such that d(e−

′
, e−) ≤ R, d(e′, e) ≤

R, (E,C, λ, γ, e0) ∼= (ρ̂(e−
′
), e−), (E,C, λ, γ, e′0)

∼= (ρ̂(e′), e), and i =
iM,ρ(e

−′
) = iM,ρ(e

′). We show e−
′
= e′, as this implies (E,C, λ, γ, e0) ∼=

(ρ̂(e′), e−), (E,C, λ, γ, e′0)
∼= (ρ̂(e′), e), and e− C̃p e imply e0 Cp e

′
0. But

e−
′ 6= e′, according to Claim 4.8, implies iM,ρ(e

′) 6= iM,ρ(e), which leads
to a contradiction.

3. Suppose S 6= ∅ and suppose there is ((E,C, λ, γ, e0), i) ∈ S ′ with e0
minimal in (Ep, <p). There is e′ ∈ Ẽ such that d(e′, e) ≤ R and, moreover,
(E,C, λ, γ, e0) ∼= (ρ̂(e′), e). As S 6= ∅, e is not minimal in (Ẽp, <̃p) and,
consequently, d(γ, e0) = d(e′, e) = R (if d(e′, e) < R, e would have to be
minimal in (Ẽp, <̃p)).

4. Let ((E,C, λ, γ, e0), i) ∈ S with e0 maximal in (Ep, <p) and let e− ∈ Ẽp

such that e− C̃p e. Furthermore, as r−(e) = r(e−), there is e−
′ ∈ Ẽ

such that both d(e−
′
, e−) ≤ R and (E,C, λ, γ, e0) ∼= (ρ̂(e−

′
), e−). As e−

is not maximal in (Ẽp, <̃p), d(e0, γ) = d(e−
′
, e−) = R (analogously to 3.,

if d(e−
′
, e−) < R, e− would have to be maximal in (Ẽp, <̃p)).

5. Suppose there is an extended R-sphere ((E,C, λ, γ, e0), i) ∈ S ′ with e0 not
minimal in (Ep, <p). Let e−0 ∈ E such that e−0 Cp e0. As r(e) = (S ′, ν ′),
there is e′ ∈ Ẽ with d(e′, e) ≤ R such that (E,C, λ, γ, e0) ∼= (ρ̂(e′), e) and
i = iM,ρ(e

′). As a consequence, e is not minimal in (Ẽp, <̃p) so that there
is e− ∈ Ẽ with e− C̃p e. As furthermore d(e′, e−) = d(γ, e−0 ) ≤ R and
(E,C, λ, γ, e−0 ) ∼= (ρ̂(e′), e−), it holds ((E,C, λ, γ, e−0 ), i) ∈ S.

6. Suppose there is an extended R-sphere ((E,C, λ, γ, e0), i) ∈ S (then e is
not minimal in (Ẽp, <̃p), so let e− ∈ Ẽp such that e− C̃p e) with e0 not
maximal in (Ep, <p). Let e+

0 ∈ E such that e0 Cp e
+
0 . As we have r−(e) =

r(e−) = (S, ν), there exists e−
′ ∈ Ẽ with d(e−

′
, e−) ≤ R, (E,C, λ, γ, e0) ∼=

(ρ̂(e−
′
), e−), and i = iM,ρ(e

−′
). Since then d(e−

′
, e) = d(γ, e+

0 ) ≤ R and
also (E,C, λ, γ, e+

0 ) ∼= (ρ̂(e−
′
), e), we have ((E,C, λ, γ, e+

0 ), i) ∈ S ′.
7. Let P,N ⊆ S+ such that m((e, er)) = (P,N ).

(a) Let ((E,C, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition
of m, e0 Cc e

′
0 implies ((E,C, λ, γ, e′0), i) ∈ P.

(b) Let ((E,C, λ, γ, e0), i) ∈ S ′ and e′0 ∈ E. According to the definition
of m, e0 6Cc e

′
0 implies ((E,C, λ, γ, e′0), i) ∈ N .

(c) Let ((E,C, λ, γ, e0), i) ∈ P. Then, due to the definition of P, there
is e′0 ∈ E with e′0 Cc e0 and ((E,C, λ, γ, e′0), i) ∈ S ′.

8. As ς(S ′) ∼= ρ̂(e) and |{e′ ≤̃p e | ς(S ′) ∼= ρ̂(e′)}| = |{e′ <̃p e | ς(S ′) ∼=
ρ̂(e′)}| + 1, we have ν ′(ς(S ′)) = min{|{e′ <̃p e | ς(S ′) ∼= ρ̂(e′)}| +
1,max(Occ)}. Furthermore, ν ′(H) = ν(H) if H 6= ς(S ′).

Verifying (r−(e), λ̃(e), m((es, e)), r(e)) ∈ ∆p for any e ∈ Ẽp and es ∈ Ẽ with
es C̃c e differs from the above scheme only in point 7. (set (S, ν) to be r(es)
and (S ′, ν ′) to be r(e) and let P,N ⊆ S+ such that m((es, e)) = (P,N )):
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7. (a) Suppose there is ((E,C, λ, γ, e′0), i) ∈ P. Then there exists e0 ∈ E
with ((E,C, λ, γ, e0), i) ∈ S and e0 Cc e

′
0. Due to ((E,C, λ, γ, e0), i) ∈

S, there is e′s ∈ Ẽ with d(e′s, es) ≤ R, (E,C, λ, γ, e0) ∼= (ρ̂(e′s), es), and
i = iM,ρ(e

′
s). As then d(e′s, e) = d(γ, e′0) ≤ R and (E,C, λ, γ, e′0)

∼=
(ρ̂(e′s), e), ((E,C, λ, γ, e′0), i) ∈ S ′.

(b) Suppose there is ((E,C, λ, γ, e′0), i) ∈ N ∩ S ′. Then there is e0 ∈ E
with ((E,C, λ, γ, e0), i) ∈ S and e0 6Cc e

′
0. Due to ((E,C, λ, γ, e0), i) ∈

S, there is e′s ∈ Ẽ satisfying d(e′s, es) ≤ R, (E,C, λ, γ, e0) ∼= (ρ̂(e′s), es),
and i = iM,ρ(e

′
s). Due to ((E,C, λ, γ, e′0), i) ∈ S ′, there is also e′ ∈ Ẽ

with d(e′, e) ≤ R, (E,C, λ, γ, e′0)
∼= (ρ̂(e′), e), and i = iM,ρ(e

′). Sup-
pose e′s 6= e′. But then, as ρ̂(e′s)

∼= ρ̂(e′), iM,ρ(e
′
s) 6= iM,ρ(e

′), which
leads to a contradiction. Now suppose e′s = e′. But then es C̃c e
implies e0 Cc e

′
0, also contradicting the premise.

(c) Suppose now there exist ((E,C, λ, γ, e′0), i) ∈ S ′ and e0 ∈ E with
e0 Cc e

′
0. Then there is e′ ∈ Ẽ with d(e′, e) ≤ R, (E,C, λ, γ, e′0)

∼=
(ρ̂(e′), e), and i = iM,ρ(e

′). As we have d(e′, es) = d(γ, e0) ≤ R and
(E,C, λ, γ, e0) ∼= (ρ̂(e′), es), it holds ((E,C, λ, γ, e0), i) ∈ S and, thus,
((E,C, λ, γ, e′0), i) ∈ P.

In the following, we verify that (r,m) is accepting. So set, given p ∈ P , (Sp, νp)
to be (∅, ν0

p) if Ẽp is empty and, otherwise, (Sp, νp) to be r(ep) where ep ∈ Ẽp

is the maximal event wrt. ≤̃p. Clearly, the union of mappings νp carries, for
each H ∈ S, the number of occurrences of H in ρ̂. Furthermore, for all p ∈ P
and ((E,C, λ, γ, e0), i) ∈ Sp, e0 is maximal in (Ep, <p). Because suppose there
is e′0 ∈ E with e0 Cp e

′
0. But then, as there exists no e+ ∈ Ẽ satisfying ep C̃p

e+, there is no e′ ∈ Ẽ either with d(e′, ep) ≤ R such that (E,C, λ, γ, e0) ∼=
(ρ̂(e′), ep), which contradicts the definition of r. This concludes the proof of
Claim 4.7. 2

Claim 4.9 L(A) ⊆ LMSC(B)

Proof of Claim 4.9. Let (r,m) be an accepting run of A on the MSC M =
(Ẽ, {C̃p}p∈P , C̃c, λ̃) ∈ MSC (again, let C̃ denote C̃c ∪

⋃
p∈P C̃p). We define

ρ : Ẽ → Q to map an event e ∈ Ẽ to the control state that is associated with
the sphere center of ς(S) where r(e) = (S, ν) for some ν. In other words, let
ρ be given by ρ(e) = q if there are S, ν, and σ such that r(e) = (S, ν) and
λ(S) = (σ, q). Then ρ turns out to be an accepting run of B on M . First,
let ρ̂ be the mapping Ẽ → S with ρ̂(e) = H if there are S and ν such that
r(e) = (S, ν) and H = ς(S). For an extended R-sphere ((E,C, λ, γ, e0), i) ∈
S+ and e ∈ Ẽ, we write ((E,C, λ, γ, e0), i) ∈ r(e) if there are S and ν such
that r(e) = (S, ν) and ((E,C, λ, γ, e0), i) ∈ S.

Claim 4.10 For each e ∈ Ẽ, ((E,C, λ, γ, ē), i) ∈ r(e), and d ∈ IN, if there
is a sequence of events e0, . . . , ed ∈ E such that e0 = ē and, for each k ∈
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{0, . . . , d − 1}, ek C ek+1 or ek+1 C ek, then there is a unique sequence of
events ê0, . . . , êd ∈ Ẽ with

– ê0 = e,
– for each k ∈ {0, . . . , d}, ((E,C, λ, γ, ek), i) ∈ r(êk), and
– for each k ∈ {0, . . . , d − 1}, êk C̃ êk+1 iff ek C ek+1 and êk+1 C̃ êk iff
ek+1 C ek.

Proof of Claim 4.10. We proceed by induction. Obviously, the statement holds
for d = 0. Now assume there is a sequence of events e0, . . . , ed, ed+1 ∈ E such
that e0 = ē and, for each k ∈ {0, . . . , d}, ek C ek+1 or ek+1 C ek. By induction
hypothesis, there is a unique sequence of events ê0, . . . , êd ∈ Ẽ with

– ê0 = e,
– for each k ∈ {0, . . . , d}, ((E,C, λ, γ, ek), i) ∈ r(êk) (in particular, λ(ek) =

(λ̃(êk), q) for some q ∈ Q), and
– for each k ∈ {0, . . . , d− 1}, êk C̃ êk+1 iff ek C ek+1 (which implies, for one

thing, êk C̃c êk+1 iff ek Cc ek+1) and êk+1 C̃ êk iff ek+1 C ek.

Suppose that

– ed Cp ed+1 for some p ∈ P . As ed is not maximal in (Ep, <p), r(êd) can-
not be part of a final state so that there is a (unique) event êd+1 ∈ Ẽ
with êd C̃p êd+1. Furthermore, due to item 6. from the definition of ∆p,
((E,C, λ, γ, ed+1), i) ∈ r(êd+1).

– ed+1 Cp ed for some p ∈ P . As ed is not minimal in (Ep, <p), there is,
according to item 5. from the definition of ∆p, a (unique) event êd+1 ∈ Ẽ
with êd+1 C̃p êd and ((E,C, λ, γ, ed+1), i) ∈ r(êd+1).

– ed Cc ed+1. There is a (unique) event êd+1 ∈ Ẽ with êd C̃c êd+1. Set (P,N )
to be m((êd, êd+1)). According to item 7. (i) (a) from the definition of ∆p,
((E,C, λ, γ, ed+1), i) ∈ P. With 7. (ii) (a), it follows ((E,C, λ, γ, ed+1), i) ∈
r(êd+1).

– ed+1 Cc ed. There is a (unique) event êd+1 ∈ Ẽ with êd+1 C̃c êd. Set (P,N )
to be m((êd+1, êd)). According to item 7. (ii) (c) from the definition of ∆p,
((E,C, λ, γ, ed), i) ∈ P. With 7. (i) (c), it follows ((E,C, λ, γ, ed+1), i) ∈
r(êd+1).

This concludes the proof of Claim 4.10. �

We have to show that, for each e ∈ Ẽ, the R-sphere of (Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ))
around e is isomorphic to ρ̂(e). So let e ∈ Ẽ and set (E,C, λ, γ) to be ρ̂(e) and
i ∈ {1, . . . , 4 · maxE 2 + 1} to be the unique element with ((E,C, λ, γ, γ), i) ∈
r(e).
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Claim 4.11 For each d ∈ {0, . . . , R}, there is an isomorphism

h : d-Sph((Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)), e) → d-Sph((E,C, λ), γ)

such that, for each ê ∈ Ẽ with d(ê, e) ≤ d, ((E,C, λ, γ, h(ê)), i) ∈ r(ê).

Proof of Claim 4.11. Let us proceed by induction. We easily see that the
statement holds for d = 0. Now assume d < R and there is an isomorphism
h : d-Sph((Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)), e) → d-Sph((E,C, λ), γ) such that, for each
ê ∈ Ẽ with d(ê, e) ≤ d, ((E,C, λ, γ, h(ê)), i) ∈ r(ê).

Extended sphere simulates MSC Suppose there is ê1, ê
′
1, ê2, ê

′
2 ∈ Ẽ such

that d(ê1, e) = d(ê2, e) = d, d(ê′1, e) = d(ê′2, e) = d + 1, (ê1 C̃ ê′1 or ê′1 C̃ ê1),
and (ê2 C̃ ê′2 or ê′2 C̃ ê2). Furthermore, suppose (let e1 and e2 denote h(ê1)
and h(ê2), respectively)

– ê1 C̃p ê
′
1 for some p ∈ P . As d(ê1, e) < R, we have d(e1, γ) < R. Due to item

4. from the definition of ∆p, e1 is not maximal in (Ep, <p) so that there is
e′1 ∈ E with e1 Cp e

′
1 and, due to item 6. and ((E,C, λ, γ, e1), i) ∈ r(ê1),

((E,C, λ, γ, e′1), i) ∈ r(ê′1).
– ê′1 C̃p ê1 for some p ∈ P . As d(ê1, e) is less than R, so is d(e1, γ). Due to

item 3. from the definition of ∆p, e1 is not minimal in (Ep, <p) so that there
is e′1 ∈ E with e′1 Cp e1 and, due to item 5. and ((E,C, λ, γ, e1), i) ∈ r(ê1),
((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– ê1 C̃c ê
′
1. Set (P,N ) to be m((ê1, ê

′
1)). As d(ê1, e) < R and, thus, d(e1, γ) <

R, there is e′1 ∈ E such that e1 Cc e
′
1. (This is because (E,C, λ, γ) can be

embedded into some MSC.) According to item 7. (i) (a) from the definition
of ∆p, ((E,C, λ, γ, e′1), i) ∈ P. Due to item 7. (ii) (a), it then follows from
((E,C, λ, γ, e1), i) ∈ r(ê1) that ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– ê′1 C̃c ê1. Set (P,N ) to be m((ê′1, ê1)). As d(ê1, e) < R and, consequently,
d(e1, γ) < R, there is also e′1 ∈ E such that e′1 Cc e1. (Recall that (E,C, λ, γ)
can be embedded into some MSC.) According to item 7. (ii) (c) from the
definition of ∆p, ((E,C, λ, γ, e1), i) ∈ P. Due to item 7. (i) (c), it then
follows that ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

Thus, depending on ê′1, we obtain from e1 a unique event e′1 ∈ E, which we
denote by h′(ê′1). According to the above scheme, we obtain from e2 a unique
event e′2 ∈ E, denoted by h′(ê′2). It holds d(e′1, γ) = d(e′2, γ) = d + 1. Now
suppose

– ê′1 C̃p ê
′
2 for some p ∈ P . As we already have ((E,C, λ, γ, e′1), i) ∈ r(ê′1) and

((E,C, λ, γ, e′2), i) ∈ r(ê′2), it follows from item 2. of the definition of ∆p

that e′1 Cp e
′
2.

– ê′1 C̃c ê
′
2. Set (P,N ) to be m((ê′1, ê

′
2)) and suppose e′1 Cc e

′
2 does not hold.

But then, according to items 7. (i) (b) and 7. (ii) (b) from the definition
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of ∆p, ((E,C, λ, γ, e′2), i) ∈ N and ((E,C, λ, γ, e′2), i) 6∈ r(ê′2), resulting in a
contradiction.

– ê′1 = ê′2. Then ((E,C, λ, γ, e′1), i) ∈ r(ê′1) and ((E,C, λ, γ, e′2), i) ∈ r(ê′1)
implies e′1 = e′2 (otherwise, r(ê′1) would not be a valid state of A).

The cases ê′2 C̃p ê
′
1 and ê′2 C̃c ê

′
1 are handled analogously.

MSC simulates extended sphere Suppose there is e1, e
′
1, e2, e

′
2 ∈ E such

that d(e1, γ) = d(e2, γ) = d, d(e′1, γ) = d(e′2, γ) = d + 1, (e1 C e′1 or e′1 C e1)
and (e2 C e′2 or e′2 C e2). We now proceed as in the proof of Claim 4.10. So
suppose (let ê1 and ê2 denote h−1(e1) and h−1(e2), respectively)

– e1 Cp e
′
1 for some p ∈ P . As e1 is not maximal in (Ep, <p), r(ê1) cannot be

part of a final state so that there is ê′1 ∈ Ẽ with ê1 C̃p ê
′
1. Furthermore, due

to item 6. from the definition of ∆p, ((E,C, λ, γ, e′1), i) ∈ r(ê′1).
– e′1 Cp e1 for some p ∈ P . As e1 is not minimal in (Ep, <p) there is, ac-

cording to item 5. from the definition of ∆p, ê
′
1 ∈ Ẽ with ê′1 C̃p ê1 and

((E,C, λ, γ, e′1), i) ∈ r(ê′1).
– e1 Cc e′1. There is ê′1 ∈ Ẽ with ê1 C̃c ê′1. Set (P,N ) to be m((ê1, ê

′
1)).

According to item 7. (i) (a) from the definition of ∆p, ((E,C, λ, γ, e′1), i) ∈
P. With 7. (ii) (a), it follows ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

– e′1 Cc e1. There is ê′1 ∈ Ẽ with ê′1 C̃c ê1. Set (P,N ) to be m((ê′1, ê1)).
According to item 7. (ii) (c) from the definition of ∆p, ((E,C, λ, γ, e1), i) ∈
P. With 7. (i) (c), it follows ((E,C, λ, γ, e′1), i) ∈ r(ê′1).

According to the above scheme, we obtain from ê2 a unique event ê′2. Suppose

– e′1 Cp e
′
2 for some p ∈ P . Assume ê′1 6C̃p ê

′
2. According to the definition of

the states of A, e′1 6= e′2, ((E,C, λ, γ, e′1), i) ∈ r(ê′1), and ((E,C, λ, γ, e′2), i) ∈
r(ê′2) implies ê′1 6= ê′2. But then, following the scheme depicted in Figure 9,
we can construct an infinite sequence x1, x2, . . . ∈ Ẽ inducing an infinite set
of (pairwise distinct) events: Suppose ê′1 <̃p ê

′
2. (The other case is handled

analogously.) Set x1 ∈ Ẽ to be the unique event satisfying ê′1 C̃p x1. We have
((E,C, λ, γ, e′2), i) ∈ r(x1) and x1 <̃p ê

′
2. According to Claim 4.10, there is

x2 ∈ Ẽ such that ((E,C, λ, γ, γ), i) ∈ r(x2) and x2 <̃P (e) e. (There is a path
in (E,C, λ) from e′2 to γ that, according to Claim 4.10, takes M from ê′2
to e. Apply this path to x1 yielding a path to a unique event x2 ∈ Ẽ with
((E,C, λ, γ, γ), i) ∈ r(x2). From x1 <̃p ê

′
2, it easily follows that x2 <̃P (e) e.)

Similarly, there is x3 ∈ Ẽ with ((E,C, λ, γ, e′1), i) ∈ r(x3) and x3 <̃p ê
′
1. Now

let x4 ∈ Ẽ be the unique event such that x3 C̃p x4 and ((E,C, λ, γ, e′2), i) ∈
r(x4) (as ((E,C, λ, γ, e′1), i) ∈ r(ê′1), it holds x4 <̃p ê

′
1) and let, again fol-

lowing Claim 4.10, x5 ∈ Ẽ be an event with ((E,C, λ, γ, γ), i) ∈ r(x5) and
x5 <̃P (x2) x2 and x6 ∈ Ẽ be an event with ((E,C, λ, γ, e′1), i) ∈ r(x6) and
x6 <̃p x3. Continuing this scheme yields an infinite set of events, contradict-
ing the premise that we deal with finite MSCs.
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ê′2

x1
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((E,C, λ, γ, e′2), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, e′2), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, e′1), i)

((E,C, λ, γ, γ), i)

((E,C, λ, γ, γ), i)

((E,C, λ, γ, γ), i)

Fig. 9. An infinite sequence of events

– e′1 Cc e
′
2. Assuming ê′1 6C̃c ê

′
2, we proceed according to the very same scheme

as in case e′1 Cp e
′
2 to generate an infinite sequence x1, x2, . . . ∈ Ẽ inducing

an infinite set of events, i.e., set x1 ∈ Ẽ to be the unique event such that
ê′1 C̃c x1 and ((E,C, λ, γ, e′2), i) ∈ r(x1). Assuming x1 <̃P (ê′

2
) ê

′
2, we can find

x2 ∈ Ẽ with ((E,C, λ, γ, γ), i) ∈ r(x2) and x2 <̃P (e) e and so on.

– e′1 = e′2. Again, assuming ê′1 6= ê′2, we generate a sequence x1, x2, . . . ∈ Ẽ
inducing an infinite set of events as follows: Suppose ê′1 <̃P (ê′

2
) ê

′
2. According

to Claim 4.10, we can find x1 ∈ Ẽ such that ((E,C, λ, γ, γ), i) ∈ r(x1) and
x1 <̃P (e) e. Furthermore, there is x2 ∈ Ẽ satisfying ((E,C, λ, γ, e′1), i) ∈
r(x2) and x2 <̃P (ê′

1
) ê

′
1 and so on.

The cases e′2 Cp e
′
1 and e′2 Cc e

′
1 are handled analogously. From the above

results, we conclude that the map ĥ : (d+1)-Sph((Ẽ, {C̃p}p∈P , C̃c, (λ̃, ρ)), e) →
(d+ 1)-Sph((E,C, λ), γ) given by

ĥ(ê) =




h(ê) if d(ê, e) ≤ d

h′(ê) if d(ê, e) = d+ 1

(for ê ∈ Ẽ with d(ê, e) ≤ d + 1) is an isomorphism satisfying, for any ê ∈ Ẽ
with d(ê, e) ≤ d+ 1, ((E,C, λ, γ, ĥ(ê)), i) ∈ r(ê). This proves Claim 4.11. �

As ((Sp, νp))p∈P ∈ F only if the union of mappings νp is a model of Occ, an
accepting run of A makes sure that the number of occurrences of an R-sphere
meets the obligations imposed by B. This concludes the proof of Claim 4.9
and the proof of Theorem 4.5. 2
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It is an easy task to transform an MPA into an equivalent graph acceptor with
radius 1. In fact, two subsequent local transitions with target and, respectively,
source s—where the first transition is accompanied by, say, sending a message
m from p to q—can be seen as a pattern of radius 1 around a (p!q, (s,m))-
labeled sphere center. Thus, we can conclude the following, extending known
results in the settings of words, grids, and Mazurkiewicz traces [28]:

Corollary 4.12 1-GAMSC = GAMSC

5 Beyond Implementability

In this section, we turn our attention to the relation between MSO logic over
MSCs and its existential fragment. We show that MSO logic is strictly more
expressive than EMSO. Together with the results of the previous section, this
will be used to prove that MPAs cannot be complemented in general solving
an open problem raised by Kuske [17]. We then study the expressiveness of
deterministic MPAs relative to the general case. Altogether, we highlight the
application limitations of MPAs.

5.1 EMSO vs. MSO

Let us first recall the corresponding problem in the bounded setting where
we restrict the interpretation of formulas to bounded MSCs, which get along
with systems whose channel capacity is restricted. Those systems turned out
to have simpler, more liberal logical characterizations than their unrestricted
counterparts and, furthermore, enjoy some nice algorithmic properties (see [9]
for an overview). In general, we distinguish two kinds of boundedness. If we
require any execution of an MSCs (by which we mean a linear extension of an
MSC) to correspond to a fixed channel capacity, we will speak of a universally-
bounded MSC [14]. If, in contrast, we require at least one linearization to fit
into the channel restriction, we call an MSC existentially-bounded [19]. While
regularity [13] gives rise to universally-bounded MSC languages, an existential
bound suffices to ensure decidability of some model-checking problems such
as the problem whether an MSO formula is satisfied by all MSCs from a given
high-level MSC [20,21]. Let B ≥ 1. As we define boundedness in terms of
linear extensions of MSCs, we first call a word w ∈ Act ∗ B-bounded if, for any
prefix v of w and any (p, q) ∈ Ch, |v|p!q − |v|q?p ≤ B (where |v|σ denotes the
number of occurences of σ in v). An MSC M ∈ MSC is called universally-B-
bounded (∀B-bounded) if, for any w ∈ Lin(M), w isB-bounded, and it is called
existentially-B-bounded (∃B-bounded) if there is at least one w ∈ Lin(M)
such that w is B-bounded. In other words, universal boundedness is safe in
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the sense that any possible execution sequence does not claim more memory
than some given upper bound, whereas existential boundedness allows an MSC
to be executed even if this does not apply to each of its linear extensions. We
call an MSC language L ⊆ MSC ∀B-/∃B-bounded if, for any MSC M ∈ L,
M is ∀B-/∃B-bounded. We call L ∀-/∃-bounded if it is ∀B-/∃B-bounded,
respectively, for some B.

The following is an easy consequence of our results from the previous section
and known results [15]:

Theorem 5.1 For any ∀-bounded MSC language L, the following statements
are equivalent:

(1) L ∈ EMSOMSC

(2) L ∈ MSOMSC

(3) L ∈ EMSO[≤]MSC

(4) L ∈ MSO[≤]MSC

(5) L ∈ MPA

Thus, our work subsumes the results by Henriksen et al. [15]. Recently, it was
even shown that, if we restrict to ∃-bounded MSC languages, any MSOMSC-
definable set is implementable, generalizing Theorem 5.1:

Theorem 5.2 ([9,10]) Theorem 5.1 holds for ∃-bounded MSC languages
verbatim.

In the following, we show that, in contrast to the bounded case (no matter
if globally or existentially, as we have seen), quantifier alternation forms a
hierarchy, i.e., MSO over MSCs is strictly more expressive than MPAs.

Matz and Thomas proved infinity of the monadic quantifier-alternation hier-
archy over grids [23,29] (cf. Theorem 2.6). We show how grids can be encoded
into MSCs and then rewrite their result in terms of MSCs adapting their proof
to our setting.

Theorem 5.3 The monadic quantifier-alternation hierarchy over MSC is in-
finite.

Proof A grid G(n,m) can be folded to an MSC M(n,m) as exemplarily
shown for G(3, 5) in Figure 10. A similar encoding was used in [28] to transfer
results on grids to the setting of acyclic graphs with bounded antichains. By
the type of an event, we recognize which events really correspond to a node
of the grid, namely those that are labeled with a send action performed by
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process 1 or 2. Formally, M(n,m) is given by its projections as follows:

M(n,m)�(Act 1, {1}) =





(1!2)n [(1?2)(1!2)]n((m−1)/2) if m is odd

(1!2)n [(1?2)(1!2)]n((m/2)−1) (1?2)n if m is even

M(n,m)�(Act 2, {2}) =





[(2?1)(2!1)]n((m−1)/2) (2?1)n if m is odd

[(2?1)(2!1)]n(m/2) if m is even

A grid language G defines the MSC language L(G) := {M(n,m) | G(n,m) ∈
G}. For a function f : IN≥1 → IN≥1, we furthermore write L(f) as a shorthand
for the MSC language L(G(f)). We now closely follow [29], which resumes
the result of [23]. So let, for k ∈ IN, the functions sk, fk : IN≥1 → IN≥1 be
inductively defined via s0(n) = n, sk+1(n) = 2sk(n), f0(n) = n, and fk+1(n) =
fk(n) · 2fk(n).

1!2

1!2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2?1

2?1

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

Fig. 10. Folding the (3, 5)-grid

Claim 5.4 For each k ∈ IN, the MSC language L(fk) is (Σ2k+3)MSC-definable.

Proof of Claim 5.4. We will show that, for any k ≥ 1, if a grid language G
is (Σk)GR-definable (over grids), then L(G) is (Σk)MSC-definable (over MSCs).
The claim then follows from the fact that any grid language G(fk) is (Σ2k+3)GR-
definable [29]. So let k ∈ IN≥1. We can easily determine an EMSO-sentence
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ϕGF = ∃XψGF (X) (over MSCs) with first-order kernel ψGF(X) that defines the
set of all grid foldings. It requires the existence of a chain iterating between
processes 1 and 2. Moreover, let ϕ = ∃Y1∀Y2 . . .∃/∀Ykϕ

′(Y1, . . . , Yk) be a Σk-
sentence (over grids) where ϕ′(Y1, . . . , Yk) contains no set quantifiers. Without
loss of generality, ϕGF and ϕ employ distinct sets of variables, which, moreover,
are supposed to be different from a variable Z. We now determine the Σk-
sentence Ψϕ with LMSC(Ψϕ) = L(LGR(ϕ)), i.e., the foldings of LGR(ϕ) form
exactly the MSC language defined by Ψϕ. Namely, Ψϕ is given by

∃Z∃X∃Y1∀Y2 . . .∃/∀Yk(ψbottom(Z) ∧ ψGF(X) ∧ ‖ϕ′(Y1, . . . , Yk)‖Z).

Hereby, the first-order formula ψbottom(Z) with free variable Z makes sure that
Z is reserved to those send events that correspond to the end of a column
(for simplicity, Z may contain some receive events, too). This can be easily
formalized starting with the requirement that Z contains the maximal send
event on the first process line that is not preceded by some receive event.
Furthermore, ‖ϕ′(Y1, . . . , Yk)‖Z is inductively derived from ϕ′(Y1, . . . , Yk) as
follows:

– ‖S1(x, y)‖Z =

¬(x ∈ Z)

∧
∨

σ∈{1!2,2!1}(λ(x) = σ ∧ λ(y) = σ)

∧ x C1 y

∨ ∃z(λ(z) = 1?2 ∧ x C1 z ∧ z C1 y)

∨ ∃z(λ(z) = 2?1 ∧ x C2 z ∧ z C2 y)

– ‖S2(x, y)‖Z =

λ(x) = 1!2 ∧ λ(y) = 2!1 ∧ ∃z(x Cc z ∧ z C2 y)

∨ λ(x) = 2!1 ∧ λ(y) = 1!2 ∧ ∃z(x Cc z ∧ z C1 y)

– ‖∃xϕ‖Z = ∃x((
∨

σ∈{1!2,2!1} λ(x) = σ) ∧ ‖ϕ‖Z)
– ‖∀xϕ‖Z = ∀x((

∨
σ∈{1!2,2!1} λ(x) = σ) → ‖ϕ‖Z)

The remaining constructors are derived canonically. Note that the above in-
ductive derivation makes sure that only elements that correspond to grid nodes
are assigned to Y1, . . . , Yk. �

Claim 5.5 Let f : IN≥1 → IN≥1 be a function. If L(f) is (Σk)MSC-definable
for some k ≥ 1, then f(n) is in sk(O(n)).

Proof of Claim 5.5. Let k ≥ 1 and let in the following the events of an MSC
(E, {Cp}p∈P ,Cc, λ) be labeled with elements from Act × {0, 1}i for some i ∈
IN≥1, i.e., λ : E → Act×{0, 1}i. But note that the type of an event still depends
on the type of its communication action only. Let furthermore ϕ(Y1, . . . , Yi)
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be a Σk-formula defining a set of MSCs over the new label alphabet that
are foldings of grids. For a fixed column length n ≥ 1, we will build a finite
(word) automaton An over (Act × {0, 1}i)n with sk−1(c

n) states (for some
constant c) that reads grid-folding MSCs column by column and is equivalent
to ϕ(Y1, . . . , Yi) wrt. grid foldings with column length n. Column here means
a sequence of communication actions, each provided with an additional label,
that represents a column in the corresponding grid. For example, running on
the MSC M(3, 5) as shown in Figure 10, A3 first reads the letter (1!2)3 (recall
that each action is still provided with an extra labeling, which we omit here for
the sake of clarity), then continues reading ((2?1)(2!1))3 and so on. Then, the
shortest word accepted by An has length ≤ sk−1(c

n) so that, if ϕ(Y1, . . . , Yi)
defines an MSC language L(f) for some f , we have f(n) ∈ sk(O(n)). Let us
now turn to the construction of An. The formula ϕ(Y1, . . . , Yi) is of the form

∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yi, Xk, . . . , X1)

or, equivalently,

∃Xk¬∃Xk−1 . . .¬∃X1ψ
′(Y1, . . . , Yi, Xk, . . . , X1).

We proceed by induction on k. For k = 1, ϕ(Y1, . . . , Yi) is an EMSO-formula.
According to Theorem 2.4, its MSC language (consisting of MSCs with ex-
tended labelings) coincides with the MSC language of some graph acceptor.
The transformation from graph acceptors to MPAs from the proof of Theorem
4.5 can be easily adapted to handle the extended labeling. Thus, ϕ(Y1, . . . , Yi)
defines a language that is recognized by some MPA A = ((Ap)p∈P ,D, s

in , F ).
The automaton An can now be obtained from A using a part of its global
transition relation =⇒A ⊆ ConfA× (Act ×{0, 1}i)×D×ConfA. Note that we
have to consider only a bounded number of channel contents, as the set of grid
foldings with column length n forms a ∀n-bounded MSC language. For some
constant c, we have (|SA| · (|D| + 1))|Ch|·n ≤ cn. Thus, cn = s0(c

n) is an upper
bound for the number of states of An, which only depends on the automa-
ton A and, thus, on ϕ(Y1, . . . , Yi). The induction steps respectively involve
both a complementation step (for negation) and a projection step (concerning
existential quantification). While the former increases the number of states
exponentially, the latter leaves it constant so that, altogether, the required
number of states is obtained. This concludes the proof of Claim 5.5. �

As fk+1(n) is not in sk(O(n)), it follows from Claims 5.4 and 5.5 that the
hierarchy of classes of (Σk)MSC-definable MSC languages is infinite. 2

Corollary 5.6 MPA = EMSOMSC $ MSOMSC

As, for any f : IN≥1 → IN≥1 and (E, {Cp}p∈P ,Cc, λ) ∈ L(f), C = l, which is
first-order definable in terms of ≤, we obtain the following:
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Corollary 5.7 MSO[≤]MSC and EMSOMSC are incomparable wrt. inclusion.

As MPA = EMSOMSC, it follows from Corollary 5.6 that the complement
MSC \ L of an MSC language L ∈ MPA, is not necessarily contained in
MPA, too. Thus, we get the answer to an open question, which has been
raised by Kuske [17].

Theorem 5.8 MPA is not closed under complementation.

5.2 Determinism vs. Nondeterminism

Real-life distributed systems are usually deterministic. Determinism is there-
fore one of the crucial properties an implementation of a distributed protocol
should have. Previous results immediately affect the question of whether de-
terministic MPAs suffice to achieve the full expressive power of general MPAs.
It is well-known that, in the framework of words and traces, any finite au-
tomaton and, respectively, any asynchronous automaton admits an equivalent
deterministic counterpart. However, things are more complicated regarding
MSCs. Let us first have a look at the bounded setting.

Theorem 5.9 ([25,17]) For any MPA that recognizes a ∀-bounded MSC
language, there is an equivalent deterministic one.

The algorithm by Mukund et al. to construct from a nondeterministic MPA a
deterministic counterpart is based on a technique called time stamping, while
Kuske’s construction relies on asynchronous mappings for traces. Unfortu-
nately, the preceding result cannot be transferred to the unbounded setting.

Theorem 5.10 Deterministic MPAs are strictly weaker than MPAs.

Proof Recall that, without loss of generality, we can assume a determinis-
tic MPA A = ((Ap)p∈P ,D, sin , F ) to be complete in the sense that, for any
MSC M , it allows exactly one run on M . If we set A to be the determin-
istic MPA ((Ap)p∈P ,D, sin , SA \ F ), it holds L(A) = MSC \ L(A). Thus,
the class of languages recognized by some deterministic MPA is closed under
complementation. However, as Theorem 5.8 states, MPA is not closed under
complementation, which implies the theorem. 2

Unfortunately, Theorems 5.8 and 5.10 show that both EMSO logic and MPAs
in their unrestricted form are unlikely to have some nice algorithmic properties
that would attract practical interest.
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6 Conclusion

Recall that we consider an MSC to be a graph, which corresponds to the
view taken in [20] but is different from the one in [15,17], who model an
MSC as a labeled partial order (E,≤, λ). However, while the way to define
an MSC immediately affects the syntax and expressivity of (fragments of) the
corresponding MSO logic, Theorem 5.8 holds independently of that modeling.
However, our logic can only be considered to be the canonical (existential)
MSO logic if MSCs are given as graphs.

Let us recall the results of the previous sections: we have studied the class
of MSC languages that corresponds to EMSO logic and MPAs. By means
of graph acceptors, we have shown that MPAs are expressively equivalent to
EMSO logic. In particular, for every EMSO sentence, there exists an equiva-
lent MPA. Our proof is based on results by Thomas, which, in turn, refer to
Hanf’s Theorem. For practical applications, it would be desirable to have a
simple effective transformation from (fragments of) EMSO to MPAs of rea-
sonable complexity. Furthermore, we proved that the class of MSC languages
definable in MSO logic is strictly larger. Consequently, MPAs cannot be com-
plemented in general. This question was raised in [17]. Finally, we showed the
deterministic model of an MPA to be strictly weaker than the general one.
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