
Don’t Know in Probabilistic Systems

Harald Fecher1, Martin Leucker2, and Verena Wolf3

1 Institute of Informatics, University of Kiel, Germany
2 Institute of Informatics, TU Munich, Germany

3 Institute of Informatics, University of Mannheim, Germany

Abstract. In this paper the abstraction-refinement paradigm based on
3-valued logics is extended to the setting of probabilistic systems. We
define a notion of abstraction for Markov chains. To be able to relate the
behavior of abstract and concrete systems, we equip the notion of ab-
straction with the concept of simulation. Furthermore, we present model
checking for abstract probabilistic systems (abstract Markov chains) with
respect to specifications in probabilistic temporal logics, interpreted over
a 3-valued domain. More specifically, we introduce a 3-valued version of
probabilistic computation-tree logic (PCTL) and give a model checking
algorithm w.r.t. abstract Markov chains.

1 Introduction

Abstraction is one of the most successful techniques for fighting the state space
explosion problem in model checking [4]. Abstractions hide some of the details of
the verified system, thus resulting in a smaller model. In the seminal papers on
abstraction-based model checking, conservative abstractions for true have been
studied. In this setting, if a formula is true in the abstract model then it is also
true in the concrete (precise) model of the system. However, if it is false in the
abstract model then nothing can be deduced for the concrete one [3].

In the 3-valued setting, the goal is to define abstractions that are conservative
for both true and false. Therefore, a third value indefinite (also called don’t
know), denoted by ?, is introduced that identifies when too much information is
hidden to decide whether the formula evaluates to true or false in the concrete
system. Thus, indefinite indicates that the abstract system has to be refined,
meaning that less information should be concealed.

Kripke Modal Transition Systems (KMTS, [13]) have become a popular de-
vice to model abstractions of transition systems. In the abstraction process,
states of the concrete system are grouped together in the abstract system. Tran-
sitions between sets of concrete states are then classified as must or may edges.
Very roughly, may edges are a kind of over approximation while must edges are
a kind of under approximation.

In this paper, we study abstractions for (labeled discrete-time) Markov chains
(MCs). MCs are a typical underlying model for sequential probabilistic programs
or probabilistic process algebras [19]. In simple words, MCs are transition sys-
tems where the transitions are enriched with transition probabilities. To get an

abstraction in the same spirit as the one for KMTS, one could again group states
of the concrete system together to obtain an abstract system. Then we have to
come up with a suitable notion of over and under approximation of transitions.
We suggest to label transitions by intervals of probabilities, similar as in [15,
20]. The lower bound of an interval represents an under approximation while
the upper bound is used for the over approximation.

This motivates to define the notion of Abstract Markov Chains (AMCs) as a
kind of transition system where transitions are labeled with intervals of probabil-
ities. To compare the behavior of a given AMC and a given MC, we introduce a
simulation relation, called probabilistic simulation. We call an AMC M ′ coarser
or an abstraction of AMC M if M ′ simulates M and vice versa M is called finer
or a refinement of M ′. We show that the abstractions obtained by the process
mentioned above are in the simulation relation.

When AMCs are used in the context of abstraction, we motivate that only
certain combinations of intervals are meaningful and call such AMCs delimited.
Cutting arbitrary AMCs to delimited ones, also during the model checking pro-
cess, will give more precise results at (nearly) no cost, as we will describe.

Our main motivation for abstraction is model checking. For probabilistic
systems, Jonsson and Hansson introduced Probabilistic Computation Tree Logic
(PCTL) [10] that allows formulation of statements involving the measure of
certain paths. We give PCTL a 3-valued semantics over AMCs. The semantics is
defined, as we show, in the right manner w.r.t. abstractions: If a formula evaluates
to true or false in the abstract system, it does so in the concrete system. If the
result is indefinite, nothing can be said about the concrete system.

We then present (two versions of) a model checking algorithm for AMCs
and 3-valued PCTL. The gist of our algorithms is to use 3-valued combinations
instead of boolean (as in the 2-valued case) for state formulas and to compute
measures for each path property similar as in the setting of Markov decision
processes [1, 7].

Recently, 3-valued-based model checking and refinement has gained a lot of
interest. A framework for 3-valued abstraction is introduced in [13, 8]. In [17, 16,
2], model checking of 3-valued (or multi-valued) versions of CTL or CTL∗ have
been studied. Game-based approaches allow an elegant treatment of refinement
and have been presented in [18, 9] in the setting of CTL and respectively the
µ-calculus.

General issues for abstractions of probabilistic systems are discussed in [12,
14] while we concentrate on a specific abstraction together with dedicated model
checking algorithms. The closest works to ours are [6] and [11]. In [6], Markov
decision processes are proposed for abstracting of MCs. However, they only con-
sider reachability properties while we study PCTL model checking. More impor-
tantly, our notion of simulation is coarser—thus allowing for coarser and there-
fore smaller abstractions—while maintaining soundness w.r.t. 3-valued PCTL. In
[11]1, criterias have been engineered that guarantee an abstraction to be optimal
(in some sense). While, of course, such an optimal abstraction sounds preferable,

1 We thank the author for providing us the as yet unpublished manuscript.

the approach loses some of its elegance since—in simple words—it requires stor-
age of much information. Furthermore, it is not clear (to us) how to obtain this
information without constructing the underlying MC.

We conclude our paper by discussing the pros and cons of the different ap-
proaches in detail and order them w.r.t. their precision (in a sense made precise
below).

Outline AMCs are derived in the next section. Before, introducing 3-valued
PCTL in Section 4, we discuss the relation of measures of paths in finer and
coarser systems first for reachability properties, in Section 3. The model checking
algorithms for PCTL is given in Section 5. We compare our framework with
existing ones in Section 6.

2 Abstract Markov Chains

To introduce our notion of abstraction, let us consider the Markov chain shown
in Figure 1(a). A Markov chain consists of states labeled with propositions. The
states are connected by transitions that are labeled with probabilities for taking
the corresponding transitions. Following the idea of Kripke Modal Transition
Systems, states of the concrete system are grouped together in the abstract
system. For example, s5 and s6 form the abstract state A2 (Figure 1(b)). While
in the case of transition systems, we obtain so-called may- and must-transitions
denoting that there may be a transition from one state to the other, or, there
is a transition for sure, we deal with lower and upper bounds on the transition
probabilities here. For example, we say that we move from A2 to A1 with some
probability in [0, 1

4] since we either cannot move to A1 (when in s6) or move to
A1 with probability 1

4 (when in s5). This motivates the definition of an abstract
Markov chain. Let us first fix some notation:

Let AP be a nonempty finite set of propositions and B3 = {⊥, ?,>} the
three valued truth domain. Let X be a finite set. For Y, Y ′ ⊆ X and a function
Q : X × X → R let Q(Y, Y ′) =

∑

y∈Y

∑

y′∈Y ′ Q(y, y′). We omit brackets if
Y or Y ′ is a singleton. The function Q(x, ·) is given by x′ 7→ Q(x, x′) for all
x′ ∈ X . Furthermore let psdistr(X) = {f : X → [0, 1]} be the set of all pseudo
distribution functions on X and distr(X) = {f ∈ psdistr(X) |

∑

x∈X f(x) = 1}
the set of distributions on X .

Definition 1. An abstract Markov chain (AMC) is a tuple (S, P l, P u, L) where:

– S is a finite set of states,
– P l, P u : S×S → [0, 1] are matrices describing the lower and upper bounds for

the transition probabilities between states such that for all s, s′ ∈ S, P l(s, ·)
and P u(s, ·) are pseudo distribution functions and

P l(s, s′) ≤ P u(s, s′) and P l(s, S) ≤ 1 ≤ P u(s, S), (1)

– L : S × AP → B3 is a labeling function that assigns a truth value to each
pair of state and proposition.

A1

A2 A3

s1 s2 s3 s4

s5 s6 s7 s8

2

3

1

2

1

2

1

4

3

4

3

4

1

3

1

3

1

3
1

1

3

1
1

3

1

4

1

3

1

3

(a) Markov Chain

A1

A2 A3

[0, 3

4
]

[1
4
, 2

3
]

[0, 1

3
]

[1
3
, 3

4
]

[0, 1

4
]

[0, 1]

[2
3
, 1]

(b) AMC

Fig. 1. A Markov chain and its abstraction

Note that with condition (1) we do not consider states without any outgoing
transition. We call an AMC M = (S, P l, P u, L) a Markov chain (MC) if P l =
P u =: P . Note that in this case P (s, ·) ∈ distr(S), for all s ∈ S. Let X be a
finite set. Let gl, gu be a pair of functions in psdistr(X) with gl(x) ≤ gu(x) for
all x ∈ X . We write g(x) for the interval [gl(x), gu(x)] ⊆ [0, 1] and distr(g) for
the set {f ∈ distr(X) | ∀x ∈ X : f(x) ∈ g(x)}. If gl = Ql(x, ·) and gu = Qu(x, ·)
for some Ql, Qu ∈ psdistr(X ×X) we put distr(Q(x, ·)) = distr(g).

Let us now formalize the notion of abstraction:

Definition 2. Let M = (S, P l, P u, L) be an AMC and A = {A1, A2, . . . , An} ⊆
2S a partition of S, i.e. Ai 6= ∅, Ai∩Aj = ∅ for i 6= j, 1 ≤ i, j ≤ n and

⋃n
i=1Ai =

S. Then the abstraction of M induced by A is the AMC abstract(M,A) =
(S̃, P̃ l, P̃ u, L̃) given by

– S̃ = A,
– P̃ l(Ai, Aj) = mins∈Ai

P l(s, Aj) and P̃ u(Ai, Aj) = maxs∈Ai
P u(s, Aj).

– For a ∈ AP the labeling of an abstract state (also called macro state) A ∈ A
is given by

L̃(A, a) =







>, if L(s, a) = > for all s ∈ A,

⊥, if L(s, a) = ⊥ for all s ∈ A,

?, otherwise.

Example 1. Figure 1 (a) illustrates a MC with 8 states. These states are grouped
together, denoted by the dashed grey circles, to form the abstract system with
three states.2 The intervals of probabilities are obtained as described before. For

2 Note that the question of how to partition the state space usually depends on where
MCs are used and is beyond the scope of this paper.

s

v

u[1
2
, 3

4
]

[1
4
, 3

4
]

(a)

s

v

u[1
2
, 3

4
]

[1
4
, 1

2
]

(b)

s

v

u[1
4
, 3

4
]

[1
4
, 3

4
]

(c)

Fig. 2. Sharpening and widening the intervals

simplicity we consider a single proposition a ∈ AP that holds exactly in all grey
shaded states. Thus, in the abstract system, we get L̃(A1, a) =?, L̃(A2, a) = ⊥
and L̃(A3, a) = >.

Scheduler In the setting of AMCs, in every state s, there is a choice for the distri-
bution yielding the probabilities to reach successor states. This non-determinism
can be resolved by means of a scheduler: A (history-dependent) scheduler for a
state s0 is a function η : s0S

∗ → distr(S×S) that maps each sequence of states
s0 . . . s to a distribution in distr (P (s, ·)). The set of all schedulers for an AMC
M starting in state s0 is denoted by S(M, s0). We write S(s0) if M is clear from
the context.

Delimited AMCs Since a scheduler is defined to select only distributions (rather
than pseudo distributions), we can sharpen the definition of AMCs, motivated
as follows (see also [20]):

Consider the AMC M in Figure 2, (a)3. Assume that one chooses the value 3
4 ,

i.e. P u(s, v) = P l(s, v) = 3
4 , from the interval [14 ,

3
4] labeling the transition from

state s to v. But then, the transition probability from state s to u is P (s, u) =
1−P (s, v) = 1

4 6∈ [12 ,
3
4]. This problem does not occur in case (b) and (c) of Figure

2. The AMC in case (b) is ”finer” than (a) since [14 ,
1
2] ⊂ [14 ,

3
4], whereas case

(c) is more abstract than (a). In the following we will “cut” AMCs so that cases
with “non-constructive” information do not occur and give a transformation that
refines an AMC such that the conditions are fulfilled. Thus, for the example, we
change from case (a) to the finer model of (b) rather than to (c).

Definition 3. For a finite set X let gl, gu ∈ psdistr(X) with gl(x) ≤ gu(x) for
all x ∈ X. The cut of gl and gu is the pair cut(gl, gu) = (f l, fu) given by

f l(x) = min{h(x) | h ∈ distr(g)} fu(x) = max{h(x) | h ∈ distr(g)}

We call an AMC M = (S, P l, P u, L) delimited iff for all s ∈ S it holds that

cut(P l(s, ·), P u(s, ·)) = (P l(s, ·), P u(s, ·)).

3 We sometimes omit outgoing transitions in examples from now on.

Summing up, cut deletes values that cannot be completed to a distribution,
so no scheduler of an AMC gets lost:

Lemma 1. Let M = (S, P l, P u, L) be an AMC and M ′ = (S, cut(P l, P u), L)
the delimited version of M . Then for all s ∈ S,

S(M, s) = S(M ′, s)

Note that the cut operator is easy to calculate, e.g., the lower bound of the
transition probability for s to s′ will be max{P l(s, s′), 1 −

∑

s′′ 6=s′ P u(s, s′′)} in
the delimited version. If a lower bound is adapted no upper bound has to be
adapted and vice versa.

If we construct abstract(M,A) we always receive a delimited AMC if M is
a MC. This is not necessarily the case if M is an AMC, even if M is delimited,
as Figure 3 shows.

Remark 1. In the following we assume that w.l.o.g. all considered AMCs are
delimited unless otherwise stated.

Extreme Distributions As will become apparent in the following, distributions
taking up values on the borders of intervals, called extreme distributions, are of
special interest. Let gl, gu ∈ psdistr(X) with gl(x) ≤ gu(x) for all x ∈ X and
cut(gl, gu) = (gl, gu). For X ′ ⊆ X let exmin(gl, gu, X ′) be the set of distributions
h ∈ distr (g) such that X ′ = ∅ implies h = gl = gu and X ′ 6= ∅ implies

∃x ∈ X ′.h(x) = gl(x) ∧ h ∈ exmin (cut(gl, gu[x 7→ gl(x)]), X ′ \ {x}),

where f [s 7→ n] denotes the function that agrees everywhere with f except at
s where it is equal to n. Dually, let exmax (gl, gu, X ′) be the set of distributions
h ∈ distr (g) such that X ′ = ∅ implies h = gl = gu and X ′ 6= ∅ implies

∃x ∈ X ′.h(x) = gu(x) ∧ h ∈ exmax (cut(gl[x 7→ gu(x)], gu), X ′ \ {x}).

Definition 4. We say that a distribution h ∈ distr(g) min-extreme if h ∈
exmin(gl, gu, X) and max-extreme if h ∈ exmax (gl, gu, X). h is called extreme if
it is min-extreme or max-extreme.

s

u

v1

v2

[1
2
, 3

4
]

[1
4
, 1

2
]

[0, 1

4
]

(a)

s

u

v1

v2

[1
2
, 3

4
]

[1
4
, 3

4
]

(b)

s

u

v1

v2

[1
2
, 3

4
]

[1
4
, 1

2
]

(c)

Fig. 3. Cutting abstraction: (a) abstracted to (b) delimited to (c)

Simulation To compare the behavior described by two AMCs, we introduce the
notion of probabilistic simulation that is an extension of probabilistic simulation
for MCs [15].

Definition 5. Let M = (S, P l, P u, L) be an AMC. We call R ⊆ S×S a prob-
abilistic simulation iff sRs′ implies:

1. ∀a ∈ AP : (L(s′, a) 6=?) =⇒ L(s′, a) = L(s, a),
2. for each h ∈ distr(P (s, ·)) there exists h′ ∈ distr (P (s′, ·)) and δ ∈ distr(S ×

S) such that for all u, v ∈ S

(i) δ(u, v) > 0 =⇒ uRv, (ii) δ(u, S) = h(u), (iii) δ(S, v) = h′(v).

We write s � s′ iff there exists a probabilistic simulation R with sRs′. For
AMC Mi = (Si, P

l
i, P

u
i, Li), si ∈ Si, i = 1, 2 we write s1 � s2 iff there exists a

probabilistic simulation R on S1 ∪ S2 with s1Rs2 in the composed AMC of M1

and M2 (which is constructed in the obvious way, assuming S1 ∩ S2 = ∅).
Note that if s � s′ then all possible distributions h of s are matched by a

distribution h′ of s′. The opposite does not hold, i.e., the set distr(P (s′, ·)) may
contain distributions that can not be simulated by a distribution of s.

The previously defined abstraction operator induces a simulation:

Theorem 1. Let M = (S, P l, P u, L) be an AMC and abstract(M,A) an ab-
straction of M induced by a partition A of S. Then s is simulated by its macro
state, i.e. for all s ∈ S,A ∈ A

s ∈ A =⇒ s � A.

Example 2. Consider the MCM of Example 1, Figure 1. We have s4 � A1, for in-
stance: Let R = {(si, A1) | 1 ≤ i ≤ 4}∪{(s5, A2), (s6, A2)}∪{(s7, A3), (s8, A3)}.
Since L̃(a,A1) = ? condition (1) of Definition 5 is trivially fulfilled. Checking
condition (2) for (s4, A1) yields: δ(s3, A1) = δ(s4, A1) = δ(s6, A2) = 1

3 and 0 for
all remaining pairs. Then h′ ∈ distr(A) with h′(A1) = δ(s3, A1)+ δ(s4, A1) = 2

3 ,

h′(A2) = 1
3 , and h′(A3) = 0 is an element of distr (P̃ (A1, ·)) such that condition

(2) is fulfilled.

3 Measures and Simulation

Let us define a notion of measure for AMCs and discuss how measures are related
w.r.t. simulation. Here, we study reachability properties. In the next section, we
extend our study to a three-valued version of Probabilistic Computation Tree
Logic (PCTL).

A nonempty set Ω of possible outcomes of an experiment of chance is called
sample space. A set B ⊆ 2Ω is called Borel field (or σ-algebra) over Ω if it
contains Ω, Ω \ E for each E ∈ B, and the union of any countable sequence

of sets from B. The subsets of Ω that are elements of B are called measurable
(w.r.t. B). A Borel field B is generated by an at most countable set E , denoted
by B = 〈E〉, if B is the closure of E ’s elements under complement and countable
union.

A probability space is a triple PS = (Ω,B,Prob) where Ω is a sample space,
B is a Borel field over Ω, and Prob is a mapping B → [0, 1] such that Prob(Ω) =
1 and Prob(

⋃∞
i=1 Ei) =

∑∞
i=1 Prob(Ei) for any sequence E1, E2, . . . of pairwise

disjoint sets from B. We call Prob a probability measure.
For an AMC M = (S, P l, P u, L), let Ω = Sω be the set of trajectories (also

called paths) of M . Let B be the Borel field generated by {C(π) | π ∈ S∗}, where
C(π) = {π′ ∈ Ω | π is a prefix of π′} is the basic cylinder set of π. A sched-
uler η ∈ S(M, s0) induces a probability space PSη = (Ω,B,Probη) as follows:
Probη is uniquely given by Probη(Ω) = 1 and, for n ≥ 1, Probη(C(s0s1 . . . sn)) =
h1(s1) . . . hn(sn), where hi = η(s0 . . . si−1), for i ∈ {1, . . . , n}, is the probability
distribution selected by η. We set Probη(C(s′0s

′
1 . . . s

′
n)) = 0 if s′0 6= s0. Further-

more, we put π(s) = C(s) and for n = 0, 1, 2, . . . let π[n] denote the n-th state
of π.

When interested in the infimum of probabilities of measurable sets w.r.t. all
schedulers, it suffices to consider only extreme distributions, which take values
only at boundaries of intervals. A scheduler is called extreme iff it only chooses
extreme distributions. The set of all extreme schedulers for state s is denoted by
ES(M, s) and ES(s) if M is known.

Theorem 2. For state s in an AMC, we have for every measurable set Q of the
induced probability space that

inf
η∈ES(s)

Probη(Q) = inf
η∈S(s)

Probη(Q)

The previous theorem can easily be shown as follows: Take a scheduler η and
show that the measure is reduced (or stays the same) when changing η to an
extreme distribution.

Note that while there are typically infinitely many distributions leading from
one state to the other in an AMC, there are only finitely many extreme distri-
butions.

Let us compare the notion of AMCs with the one of Markov decision processes
(MDPs) in the three-valued setting: A Markov decision process (MDP) is a
tuple M = (S,Σ,Prob, L), where S is a finite set of states, Σ is a non-empty
finite set of letters, Prob : S × Σ ⇀ distr(S) is a partial function that yields
for a state s and a given letter σ a distribution function for successor states.
L : S × AP → B3 is a labeling function that assigns a truth value to each pair
of state and proposition.

The MDP M ′ = MDP(M) induced by an AMC M = (S, P l, P u, L) is given
as M ′ = (S,Σ,Prob, L) where Σ = {σh | h ∈ distr(P (s, ·)) for some s ∈
S and h is extreme}, Prob is such that Prob(s, σh) = h if h ∈ distr(P (s, ·))
and h is extreme and Prob(s, σh) is undefined otherwise.

Thus, MDP(M) defines a Markov decision process with the same state space
as M but with (finitely-many) extreme distributions. The notion of schedulers

carries over in the expected manner, i.e. ES(M, s) = ES(MDP(M), s) for all
states s. More importantly, the infimum of the measure of some measurable set
with respect to some scheduler class obviously coincides, due to Theorem 2.

For the remainder of this section, let us now concentrate on reachability
properties. More specifically, for an AMC M and s one of its state, a proposi-
tion a ∈ AP , α ∈ B3 and n = 0, 1, 2, . . ., let, Reach(s, a, α, n) := {π ∈ π(s) |
L(π[n], a) = α and for all k < n,L(π[k], a) 6= α} and

Reach(s, a, α) =
⋃

n≥0

Reach(s, a, α, n)

For reachability properties, it was shown in the setting of Markov decision
processes (MDPs), that the infimum with respect to all schedulers agrees with
the one when only so-called simple schedulers are considered [7]. A scheduler
η ∈ S(M, s) is called simple iff for all π, π′ ∈ S∗, s′ ∈ S, we have η(sπs′) =
η(sπ′s′), meaning that the choice does not depend on the history π. Thus, a
similar result holds for AMCs as well. The set of simple schedulers that choose
only extreme distributions is denoted by SES(M, s) for AMC or MDP M . Since
there are only finitely many simple extreme schedulers, the infimum is indeed a
minimum. Thus, we get

Lemma 2. For state s, a ∈ AP , and α ∈ B3 it holds that

infη∈S(s) Probη(Reach(s, a, α))
= infη∈SES(s) Probη(Reach(s, a, α))
= minη∈SES(s) Probη(Reach(s, a, α))

Let us now compare the behavior of two AMCs w.r.t. abstraction, i.e., sim-
ulation. We give the intuition of the following Lemma first. Let s0 � s′0. When
scheduler η ∈ S(s0) chooses some distribution h0, there is, according to the
definition of simulation, a corresponding h′0 ∈ distr(P (s′0, ·)). This implies that
for every state s1 reachable by h0 with positive probability, there is a set of
states s′11

, . . . , s′1k1
reachable by h′0 with positive probability, each simulating s1.

Now, for s0s1, we can argue in the same fashion: For η(s0s1) = h1 there is a
corresponding h′1i

for each s′0s
′
1i

, and so on. . .

Let us be more precise: For a scheduler η ∈ S(s0) we define a scheduler
η′ ∈ S(s′0) inductively as follows: For h = η(s0) define η′(s′0) = h′, where h′ is as
in the definition of the simulation relation. Similarly, let s0 . . . sn be a sequence of
states such that Probη(C(s0 . . . sn)) > 0 and h = η(s0 . . . sn). By induction, there
is a set of states s′n1

, . . . s′nk
each simulating sn. For each s′n′ ∈ {s′n1

, . . . s′nk
},

define η′(s′0 . . . s
′
n′) = h′, where h′ is as in the definition of the simulation relation.

Lemma 3. For α ∈ {>,⊥}, a ∈ AP it holds that s � s′ implies

inf
η∈S(s)

Probη(Reach(s, a, α)) ≥ inf
η′∈S(s′)

Probη′

(Reach(s′, a, α))

The previous lemma can be shown by induction on n, where n is the position
where the proposition a has value α for the first time. Induction hypothesis is
that

Probη(Reach(s, a, α, n)) = Probη′

(Reach(s′, a, α, n))

≥ infη′′∈S(s) Probη′′

(Reach(s′, a, α, n))

where η′ is the scheduler constructed for η as described above and η may be the
one for which the infimum is taken.

Note that for the supremum, the corresponding result only holds when adding
the paths that reach a state for which a evaluates to ?:

Lemma 4. For α ∈ {>,⊥}, a ∈ AP we have that s � s′ implies

sup
η∈S(s)

Probη(Reach(s, a, α)) ≤ sup
η′∈S(s′)

Probη′

(Reach(s′, a, α)∪Reach(s′, η′, a, ?))

Thus, Lemma 2 and Lemma 3 yield that the lower bound for some reacha-
bility property in the coarser system is less or equal than in the finer system.

Theorem 3. Let s, s′ be states in an AMC with s � s′ and a ∈ AP , and
α ∈ {>,⊥}. Then

min
η∈S(s)

Probη(Reach(s, a, α)) ≥ min
η′∈SES(s′)

Probη′

(Reach(s′, a, α))

In simple words, the previous theorem says that when the minimum of a
reachability property is at least p in the coarser system, it is so in the finer
system as well.

4 3-valued PCTL

Recall that AP denotes a nonempty finite set of propositions. The set of Prob-
abilistic Computation-Tree Logic (PCTL) [10, 5] formulas over AP , denoted by
PCTL, is the set of state-formulas ϕ inductively defined as follows:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | [Φ]./p Φ ::= Xϕ | ϕ U ϕ

where ./ ∈ {≤, <,≥, >}, p ∈ [0, 1] and a ∈ AP . The formulas defined by Φ are
called path-formulas4.

In the setting of AMCs, a state might no longer just satisfy or refuse a
formula, but a third value ? (don’t know) is appropriate. Consequently, we define
the satisfaction of a formula w.r.t. a state as a function into B3, which forms a
complete lattice ordering the elements as ⊥ < ? < >. Joins and meets in this
lattice are denoted by t and u, respectively. Complementation is denoted by ,̄
where > and ⊥ are complementary to each other while ? =?.

4 To simplify the presentation, we omit the bounded until operator given in [10], which
could easily be added.

[[s, true]] = > [[s, false]] = ⊥
[[s, a]] = L(s, a)

[[s, ϕ1 ∧ ϕ2]] = [[s, ϕ1]] u [[s, ϕ2]] [[s,¬ϕ1]] = [[s, ϕ1]]

[[s, [Φ]≥p]] =

8

<

:

> if Prl(s, Φ,>) ≥ p

⊥ if Prl(s, Φ,⊥) > 1 − p

? otherwise

[[s, [Φ]≤p]] =

8

>

<

>

:

> if Prl(s, Φ,⊥) ≥ 1 − p

⊥ if Prl(s, Φ,>) > p

? otherwise
[[π, Xϕ1]] = [[π[1], ϕ1]]

[[π, ϕ1 U ϕ2]] =

8

<

:

> if ∃i.([[π[i], ϕ2]] = > and ∀0 ≤ j < i.[[π[j], ϕ1]] = >)
⊥ if ∀i.([[π[i], ϕ2]] 6= ⊥ =⇒ ∃0 ≤ j < i.[[π[j], ϕ1]] = ⊥)
? otherwise,

Fig. 4. Semantics of PCTL formulas

When a formula evaluates in a state to > or ⊥, we sometimes say that the
result is definite. Otherwise, we say that it is indefinite. Similarly, we say the
result holds for sure or is violated for sure if it evaluates to > respectively ⊥.
We say it may be true or may be false if it evaluates to ?.

Given an AMC M = (S, P l, P u, L) and a PCTL formula ϕ we define the
satisfaction function [[s, ϕ]] for state s ∈ S and [[π, Φ]] for trajectory π ∈ Sω induc-
tively as shown in Figure 4, where Prl(s, Φ, α) = infη∈SES(s) Probη({π ∈ π(s) |
[[π, Φ]] = α}) for α ∈ B3. For the cases ./ = < and ./ = > the value of [[s, [Φ]./p]]
is similar to the cases ≤ and ≥, respectively, but we exchange ≤ by < and vice
versa.

To understand why the above semantics is sound with respect to the notion
of simulation in Definition 5 we discuss each operator in the following and state
the soundness result later in Theorem 4.

Case true, false, a,∧,¬: The semantics is defined as expected for the base and
boolean cases.

Case X and U : The truth value of [[π,Xϕ1]] equals the result of ϕ1 in state
π[1]. A trajectory π satisfies the formula ϕ1 U ϕ2 for sure, if ϕ1 holds for sure
until ϕ2 holds for sure. It is violated, if either ϕ2 is always wrong for sure, or
otherwise ϕ1 is violated before.

Case [Φ]≥p: For [Φ]≥p, the situation is slightly more involved. First, we re-
mark that Lemma 2 holds also for PCTL path properties, i.e. that is suffices to
consider simple extreme schedulers instead of arbitrary ones.

Lemma 5. Let M be an AMC, s one of its states, Φ a path property of PCTL,
α ∈ B3, and Q = {π ∈ π(s) | [[π, Φ]] = α}. Then

inf
η∈S(s)

Probη(Q) = inf
η∈SES(s)

Probη(Q) = min
η∈SES(s)

Probη(Q)

In view of the simulation relation we can show that coarser systems yield even
lower bounds than finer systems.

Lemma 6. For states s, s′ in an AMC with s � s′ and Φ a path property of
PCTL, α ∈ {>,⊥}, Q = {π ∈ π(s) | [[π, Φ]] = α}, Q′ = {π ∈ π(s′) | [[π, Φ]] = α}

we have
min

η∈SES(s)
Probη(Q) ≥ min

η′∈SES(s′)
Probη′

(Q′)

The previous lemmas can easily be shown as their counterparts for reachability
properties listed in the previous section.

For [Φ]≥p, we measure the paths starting in s for which Φ evaluates to > and
check whether the lower bound of this measure is greater or equal to p. If so, the
result is > and for a finer state s′ with s′ � s this measure is also greater than
p.

For scheduler η ∈ SES(M, s′) we set pη
α = Probη({π ∈ π(s′) | [[π, Φ]] = α})

and observe that
∑

α∈B3
pη

α = 1. If the measure of the paths starting in s for
which Φ evaluates to ⊥ is greater than 1− p, then this is also the case for s′, i.e.
p

η
⊥ > 1− p. Therefore, this leaves less than 1− (1− p) = p for pη

> + p
η
? . In other

words, even if pη
? is added to pη

>, the constraint ≥ p cannot be met. Therefore,
we decide for ⊥.

Case [Φ]≤p: For [Φ]≤p, we consider the measure of paths starting in s for
which Φ evaluates to >. If the lower bound is already bigger than p, it is so
especially so for s′ and we decide for [Φ]≤p as ⊥. Similarly, if for enough paths Φ
evaluates to ⊥, we can be sure that the measure of paths satisfying Φ is small.
If Prl(s, Φ,⊥) ≥ 1 − p then in the finer system for all η ∈ SES(M, s′) we get
p

η
⊥ ≥ 1 − p. But then p

η
? + p

η
> ≤ 1 − (1 − p) = p. In other words, even if pη

? is
added to pη

>, the constraint ≤ p is fulfilled and we go for >.
The following theorem states that our framework developed so far can indeed

be used for abstraction based model checking and follows easily from Lemma 6
and the discussion above. In simple words, it says that the result of checking a
formula in the abstract system agrees with the one for the finer system, unless
it was indefinite.

Theorem 4. Let s and s′ be two states of an AMC M with s � s′. Then for all
ϕ ∈ PCTL:

[[s′, ϕ]] 6= ? implies [[s, ϕ]] = [[s′, ϕ]].

Observe that the 3-valued PCTL semantics of an MC understood as an AMC
coincides with the usual 2-valued PCTL semantics for Markov chains.

5 Model Checking 3-valued PCTL

In this section, we discuss two model checking algorithms for 3-valued PCTL.
As for CTL, both model checking algorithms work bottom-up the parse tree of
ϕ. Hence, it suffices to describe their steps inductively on the structure of ϕ.
Each state s is labeled with a function ts assigning to each subformula its truth
value. ts is defined directly for true, false, a, ϕ1 ∧ ϕ2, and ¬ϕ1 according to the
definition of their semantics. For [Φ]./p, ts can easily be determined, provided
the lower bound of a measure of paths for some path property (denoted by Prl

in Figure 4) can be computed. Therefore, it remains to show how to compute

the lower bound of the measure of paths for which an until or next-step formula
evaluates to >, ⊥, and ?. Let us discuss Φ := ϕ1 U ϕ2. The treatment of the next-
step operator is similar but easier and is omitted here. Thanks to Theorem 2,
computing the measure for an until property becomes (technically) easy, since
only extreme distributions have to be considered.

Reduction to MDP model checking The first idea is to convert an AMC M to an
MDP MDP(M) and reuse existing methods for computing path properties on
MDPs. Before translating M , we can assume that for every state, we know the
truth values of ϕ1 and ϕ2. We annotate MDP(M) with (two-valued) propositions
corresponding to the values of ϕ1 and ϕ2 inM . More specifically, label a state s of
MDP(M) by the (new) propositions aϕ1

and aϕ2
, if ϕ1 respectively ϕ2 evaluates

to > in s. Label s by propositions āϕ1
and āϕ2

, if ϕ1 respectively ϕ2 are ⊥. Now,
considering the semantics of the until operation as shown in Figure 4, it is easy
to see that ϕ1 U ϕ2 on a path of M evaluates to > iff aϕ1

U aϕ2
on the same

path (of MDP(M)) evaluates to true. Similarly, it is easy to see that ϕ1 U ϕ2

on a path of M evaluates to ⊥ iff ¬(¬āϕ1
U ¬āϕ2

) evaluates to true.

Using the reduction to an MDP model checking problem for until properties,
we have completed the first algorithm that is mainly used to give an upper bound
on the complexity of the model checking problem.

Complexity Computing the semantics for an AMC M and a formula ϕ ∈ PCTL
bottom-up for every state can be done in linear time, provided the measures for
path properties are given. For every state s with k outgoing transitions, one can
obtain, in the worst case, k! extreme distributions. Thus, the size of MDP(M) is
at most exponential in the size of M , where, as expected, the size of M , denoted
by |M | is the number of states plus the number of transitions, i.e., pairs (s, s′) for
which P l(s, s′) > 0. Computing the measure for a path property in an MDP M ′

is polynomial with respect to the size of M ′ (states plus non-zero transitions) [7].
Thus, overall, we get:

Theorem 5. Given an AMC M = (S, P l, P u, L) and a PCTL formula ϕ, then
the algorithm outlined in this section labels every state s ∈ S with ts(ψ) = [[s, ψ]]
for each subformula ψ of ϕ in time polynomial w.r.t. O(2|M | log |M |) and linear
w.r.t. the size of ϕ, where |M | denotes the size of M .

Fixpoint computation The reduction to an MDP for computing path properties
suffers from the effort spent for computing all extreme distributions. Therefore,
we have implemented a version of the algorithm that is based on fixpoint itera-
tion. This algorithm, while (only) approximating the minimal result in question,
chooses (and computes) extreme distributions in an on-the-fly fashion, leading
to huge space gains.

Our approach is inspired by the treatment in [1, 5] done for MDPs. Let us
define the sets:

W+
> = {s | ts(ϕ2) = >}

W−
> = {s | ts(ϕ2) 6= > and ts(ϕ1) 6= >}

W+
⊥ = {s | ts(ϕ2) = ⊥ and ts(ϕ1) = ⊥}

W−
⊥ = {s | ts(ϕ2) 6= ⊥}

To simplify our presentation, we say that Φ evaluates in a state to some value
in B3 if it evaluates to that value on all paths starting in this state.

Φ holds in W+
> for sure and is violated for sure in W−

> . However, the result
is ⊥ in W+

⊥ since ϕ1 as well as ϕ2 is ⊥. In W−
⊥ the formula is not necessarily

violated.
Let pmin

α abbreviate (Prl(s, Φ, α))s∈S . We obtain pmin
α as least fixpoint of

the iteration described in the following:
First, let Del be the set of all pairs of delimited pseudo distribution functions

on S and b ∈ {l, u}. Consider the minimization/maximization function ξb :
2S × Del × (S → [0, 1]) → [0, 1] that is given by ξb(∅, (gl, gu), x) = 0 and for
S′ 6= ∅

ξl(S′, (gl, gu), x) = gl(sl) · x(sl) + ξl(S′ \ {sl}, cut(gl, gu[sl 7→ gl(sl)]), x)

if x(sl) = mins′∈S′ x(s′),

ξu(S′, (gl, gu), x) = gu(su) · x(su) + ξu(S′ \ {su}, cut(gl[su 7→ gu(su)], gu), x)

if x(su) = maxs′∈S′ x(s′).

Note that ξb(S, (gl, gu), x) sorts the states s ∈ S ′ according to their values in x
and chooses h ∈ distr (g) that minimizes/ maximizes the value

∑

s∈S h(s) ·x(s).
5

Let S+, S− ⊆ S. We use ξb to define the function Fb
(S−,S+) : (S → [0, 1]) →

(S → [0, 1]) that determines the next iteration step by

Fb
(S−,S+)(x)(s) =







1 if s ∈ S+,

0 if s ∈ S−,

ξb(S, (P l(s, ·), P u(s, ·)), x) otherwise.

Furthermore, let x0 denote the function that maps everything to 0.

Theorem 6. The least fixpoint (w.r.t. point wise extension of the order of the
real numbers) of the function Fb

(S−,S+) can be used to calculate the values pmin
α :

pmin
> (s) = (tn∈INFl

(W−

>
,W

+

>
)

(n)
(x0))(s)

pmin
⊥ (s) = 1− (tn∈INFu

(W+

⊥
,W

−

⊥
)

(n)(x0))(s).

5 The function ξb is well defined, i.e., the same value is obtained if another maxi-
mal/minimal state s′ is considered. This follows from the fact that min{

P

s∈S′ h(s) |

h ∈ distr (g)} = min{
P

s∈S′ h(s) | h ∈ distr (cut(gl, gu[s′ 7→ gl(s′)]))} for all S′ ⊆ S

with s′ ∈ S′.

s

u

v1

w

v2

4

10

3

10

2

10

1

10

(a)

s′

u

v1

w

v2

1

10

2

10

3

10

4

10

(b)

s

s′

u

v1

w

v2

σ1

σ2

4

10

3

10

2

10

1

10

1

10

2

10

3

10

4

10

(c)

s

s′

u

v1

w

v2

[1

10
, 4

10
]

[2

10
, 3

10
]

[2

10
, 3

10
]

[1

10
, 4

10
]

(d)

Fig. 5. Abstraction by MDPs vs. AMCs

The proof goes along the lines of the proof for MDPs (see [1, Chapter 3] for
details).

Let us give an example showing that the cut in the definition of the fix-
point operator in Theorem 6 to calculate the probabilities for [Φ]./p is indeed
important:

Example 3. Let us consider the AMC shown in Figure 3 (a) (page 6) and Φ =
ϕ1 U ϕ2. Assume that ts(ϕ1) = tv2

(ϕ1) = tu(ϕ2) = > and all remaining
truth values for ϕ1 and ϕ2 are ⊥. Furthermore, assume that there is a [1, 1]-
transition from v2 back to itself. Then we get: W+

> = {u} and W−
> = {v1}.

For example, the maximization function ξu chooses P l(s, u) = P u(s, u) = 3
4

since 1 = max{1, 0, 0} = max{x(u), x(v1), x(v2)} after the first iteration step
and due to the cut operation P (s, v1) = [14 ,

1
4] and P (s, v2) = [0, 0]. Hence,

Pru(s, Φ,>) = 3
4 · 1 + 1

4 · 0 + 0 · 0 = 3
4 . W+

⊥ = {v1, v2} and W−
⊥ = {u}. Alto-

gether we get Pr(s, Φ,>) = [12 ,
3
4], Pr(s, Φ,⊥) = [14 ,

1
2], Pr(s, Φ, ?) = [0, 0]. Note

that we get the intervals shown in Figure 3 (c). Thus, the subsequent cut in the
definition of the fixpoint operator is necessary since the values in Figure 3 (b)
yield less precise results.

6 Alternatives to AMCs

Let us discuss alternative approaches for abstraction of Markov chains. For rea-
sons of space limitation, we keep the discussion informal.

Generally, Markov Decision Processes (MDPs) are considered to be abstrac-
tions for Markov chains. MDPs extend the model of MCs by allowing several
distribution functions in each state (see Figure 5 (c)).

Thus, when merging states to obtain an abstraction, one could define the
corresponding distribution functions, as indicated in Figure 5 (a)–(c). Hence,
the result would be an MDP. Now, one might be tempted to use existing model
checking theory for PCTL and MDPs to reason about the underlying Markov
chain. However, this is not possible since, as far as we know, there is no 3-valued
notion of PCTL for MDPs (not to mention, we need one that suits the role in
the abstraction defined here).

When interested in reachability properties, the approach is possible and was
pursued in [6]. Let us call the approach AMDP. Actually, the model checking
algorithms presented in the previous section considers the AMC as an MDP
with extreme distributions, but only when computing the minimal probabilities
of path properties.

Of course, one could have developed such a 3-valued version of PCTL for
MDPs as opposed for AMCs, as done here. But actually, the 3-valued PCTL
semantics given in Section 4 can easily be taken over for such a 3-valued PCTL
semantics for MDPs.

However, there is an intrinsic difference in the approach using AMCs and
the one based on MDPs. An MDP can easily be abstracted to an AMC. For
example, for the MDP shown in Figure 5 (c), we would get the AMC shown in
Figure 5 (d). But using intervals, one reduces more information.

This has two implications, one theoretical and one practical. Our semantics
for PCTL path properties compares only extreme distributions. Probabilities
that are not the bound of some transition probability interval are not considered.
However, we might consider all extreme distributions. For example, one extreme
distribution for the AMC in Figure 5 (d) is (u 7→ 4

10 , v1 7→ 2
10 , w 7→ 3

10 , v2 7→ 1
10),

which is not present in Figure 5 (c). Now, consider ϕ = [X(au ∨ aw)]≤ 6
10

, where

proposition au (aw) is > in state u (respectively w) and ⊥ in all other states.
Then the macro state in Figure 5 (c) provides > for ϕ but for the AMC in Fig-
ure 5 (d) the result is ?. Thus, our results might sometimes be less precise. From
the practical side, using MDPs, one reduces the number of states but basically
all distributions are kept. But storing all distributions causes no memory savings
and it is questionable whether such an abstraction does indeed satisfy practical
needs. In our approach, on the other hand, if, for example, a third distribution
denoted by σ3 with (u 7→ 2

10 , v1 7→ 2
10 , w 7→ 3

10 , v2 7→ 3
10) would be present in

Figure 5 (c), we obtain the same AMC, thus, reducing the memory requirments.

A different approach was taken in [11]. There, criterias have been engineered
that guarantee an abstraction to be optimal (in some sense). Let us call this
approach O. While, of course, such an optimal abstraction sounds preferable, it
turns out that neither AMCs nor MDPs carry enough information to be opti-
mal. In simple words, the approach loses some of its elegance since it requires
to store much information. Furthermore, it is not clear (to us) how to obtain
this information without constructing the underlying Markov chain. The author
of [11] therefore suggests as well a more simple approximation of the optimal
abstraction, which we call S. In simple words, S is similar to AMCs but does not
use the cut operator to optimize the information present in AMCs.

Let us discuss Example 15 of [11]: Consider Figure 6 and Φ = [X¬au1
]>0

where au1
is true in u1 and false in all other states. For the approach S the result

in u0 is ? because the sum of the two zero values of the lower bounds to the direct
successors ud and u0 are added which yields 0 + 0 = 0 (see [11, Example 15]).
In our setting after the first chosen zero value, say P l(u0, ud) = P u(u0, ud) = 0
through the cut the next choice is P l(u0, u0) = 1 − 0.01 = 0.99. The resulting
extrem distribution is (ud 7→ 0, u0 7→ 0.99, u1 7→ 0.01) which leads to [[u0, Φ]] = >.

u0

u1

ud

[0, 0.99]

[1, 1]

[0.5, 0.64]
[0, 0.01]

[0.36, 0.5]

[0, 1]

Fig. 6.

Thus, results based on S are less precise than the results obtained with our
method. In terms of memory, S and AMC are comparable, provided the fixpoint
computation method is used. Note that [11] does not address the question of
model checking.

Summarizing, with abstraction one loses information usually by reducing
space requirements. All approaches have in common, that states are grouped
together to form an abstract system. They differ in the information that is kept
for transitions. By means of precision, we can order the approaches S < AMC <

AMDP < O, where a < b means that a is less precise than b, when for some
concrete system, the same states are grouped together. In terms of memory
usage, we can order the approaches as S = AMC < AMDP < O, where a < b

means that a consumes less memory than b, when for some concrete system, the
same states are grouped together.

7 Conclusion

In this paper, we have extended the abstraction-refinement paradigm based on
three-valued logics to the setting of probabilistic systems. We have given a notion
of abstraction for Markov chains. In simple words, abstract Markov chains are
transition systems where the edges are labeled with intervals of probabilities.
We equipped the notion with the concept of simulation to be able to relate the
behavior of abstract and concrete systems.

We have presented model checking for abstract probabilistic systems (i.e.
abstract Markov chains) with respect to specifications in a probabilistic temporal
logic, interpreted over a 3-valued domain. More specifically, we studied a 3-
valued version of PCTL. The model checking algorithm turns out to be quite
similar to the ones developed in the setting of checking PCTL specifications of
Markov decision processes. Thus, using the intuitive concept of intervals allows
to refrain from saving all probability distributions present in concrete systems
but storing only boundaries, while allowing to adapt existing theory of model
checking probabilistic systems.

Our work can be extended into several directions. First, further insight in
which and how to split states is desirable, when the model checking result is
indefinite. It would also be interesting to extend our setting towards the more
expressive logic PCTL∗ or to the setting of continuous-time Markov chains.

References

1. Christel Baier. On the algorithmic verification of probabilistic systems. Universität
Mannheim, 1998. Habilitation Thesis.

2. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-valued symbolic
model-checking. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12:371–408, 2003.

3. E. Clarke, O. Grumberg, and D. Long. Model Checking and Abstraction. In Proc.
of POPL, pages 342–354, New York, January 1992. ACM.

4. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December
1999.

5. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, July 1995.

6. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reduction and refinement
strategies for probabilistic analysis. In PAPM-PROBMIV, pages 57–76, 2002.

7. Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997. Technical report STAN-CS-TR-98-1601.

8. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
Verification, Model Checking and Abstract Interpretation (VMCAI), volume 2575
of LNCS, pages 206–222, 2003.

9. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the µ-calculus.
In Proc. VMCAI’05, volume 3385 of LNCS. Springer, 2005.

10. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

11. M. Huth. On finite-state approximants for probabilistic computation tree logic.
Theoretical Computer Science. to appear.

12. M. Huth. An abstraction framework for mixed non-deterministic and probabilistic
systems. In Validation of Stochastic Systems, pages 419–444, 2004.

13. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A founda-
tion for three-valued program analysis. In European Symposium on Programming
(ESOP), volume 2028, pages 155–169, 2001.

14. Michael Huth. Abstraction and probabilities for hybrid logics. In Qualitative
Aspects of Programming Languages, 2004.

15. B. Jonsson and K. Larsen. Specification and refinement of probabilistic processes.
In Proc. 6th IEEE Int. Symp. on Logic in Computer Science, 1991.

16. B. Konikowska and W. Penczek. Model checking for multi-valued computation
tree logics. In Beyond two: theory and applications of multiple-valued logic, pages
193–210. Physica-Verlag GmbH, 2003.

17. B. Konikowska and W. Penczek. On designated values in multi-valued CTL∗ model
checking. Fundamenta Informaticae, 60(1–4):221–224, 2004.

18. S. Shoham and O. Grumberg. A game-based framework for CTL counterexam-
plesand 3-valued abstraction-refinemnet. In Computer Aided Verification (CAV),
volume 2725 of LNCS, pages 275–287, 2003.

19. R. van Glabbeek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative, and
stratified models of probabilistic processes. In Logic in Computer Science, pages
130–141, 1990.

20. W. Yi. Reasoning about uncertain information compositionally. In Proc. of the 3rd
International School and Symposium on Real-Time and Fault-Tolerant Systems,
volume 863 of LNCS. Springer, 1994.

