Proc. (Constraint) Logic Programming and Software Engineering (LPSE), London, July 2000

AuTOFocCUs on Constraint Logic Programming*

Heiko Lotzbeyer and Alexander Pretschner
Institut fiir Informatik, Technische Universitdt Miinchen
Arcisstrafle 21, 80290 Miinchen, Germany
www4.in.tum.de/"{loetzbey,pretschn}

Abstract

The CASE tool AuToFocus allows for modeling and validating concurrent reactive
systems on the basis of a simple, clearly defined formal semantics. It is shown
how executable code for common Constraint Logic Programming languages can be
generated automatically. Applications include simulation for rapid prototyping and
debugging as well as the semi-automatic generation of test sequences.

Keywords. CASE, Constraint Handling Rules, Code Generation, Rapid Proto-
typing, Reactive systems, Simulation, Test Case Generation.

1 Introduction

Considerable effort has been devoted to the specification and verification of reactive sys-
tems. While in terms of specification, results are already used in practice (CASE tools),
there are still severe shortcomings of verification techniques. To mention a few, these
include problems with state space explosion, usually restriction to finite state spaces, not
intuitive and hence impractical formalisms, and they mostly aim at verifying properties
of a system specification. However, the latter point may resolve just one part of the
overall problem since if the specification is assumed to be “correct” or “consistent”, this
does not necessarily mean the actual implementation also is.

Model checking enables one to prove usually highly general properties or invariants.
Because of the properties’ generality there is not much information available, and model
checking is usually done in two steps: After generating the model, specified properties are
checked. If, on the other hand, properties are more specialized, it is possible to interleave
the model’s generation with the verification of these properties. Model checking on-the-
fly, for instance, composes an automaton describing a system with a property (e.g., in
LTL) encoded as an automaton. However, it yet suffers from inefficiency due to a lack
of efficient representations such as BDDs.

When testing an implementation, the properties to be checked are usually quite spe-
cialized. They describe, for instance, partial I/O traces or transition sequences. Such
properties may constrain the set of possible system runs (traces) in a significant way,
and if these properties are sufficiently specific, they can be used in building a model of
manageable size which may help in alleviating the problem of state space explosion.

Testing usually focuses on finite (or even short) system traces, and it usually is in-
herently incomplete. As formal methods yet do not scale to real size applications, this
deficit has to be accepted but borne in mind. The popular remark that testing can only
reveal the presence but never the absence of errors also applies to formal methods: One
can only check properties that have been formulated by a human. This process, however,
obviously is also necessarily incomplete.

*This work was in part supported with funds of the Deutsche Forschungsgemeinschaft under reference
number Be-1055/7-2 within the priority program KONDISK.

Simulation and Testing. In this paper, we lay the foundations for testing executable
system specifications (system models) as well as implementations. In our view, this turns
out to be a generalization of the simulation of reactive systems: If simulation is seen as
simply executing a system model with given input traces, then a test case specification,
i.e., the specification of a desired system’s behavior, consists of stating exactly these
input traces [18]. If, on the other hand, simulation is considered to comprise a modeling
of the environment, then the environment’s as well as the system’s behavior can be
computed with a test case specification merely stating that traces are not to exceed some
finite length, or by imposing other constraints on these traces. A system that supports
this kind of development will then find one or many or all system traces, according to
the technique used for test case generation. This point of view also allows one to see
simulation/testing as a debugging aid for rapid or evolutionary prototyping: While the
model is specified, the developer may ask for certain states to be reached and thus for a
set of I/O traces which may be helpful in detecting flaws in the specification [22].

Code Generation. In order to simulate a system it is necessary to have an executable
model. We show how system models formulated within the CASE tool AuToFoCUS
can naturally be translated into Constraint Logic Programming (CLP) languages. This
translation scheme can be fully automated and is fully compositional with an interleaving
model of concurrency. There are two advantages of a CLP based code generation in
contrast to C or JAVA code generators. First, writing correct code generators for Java
and C turned out to be a thorny and error-prone task. Since the translation proposed in
this paper is short and close to the model, the generated code is easier to validate. Second,
the possibility of inverting functions as provided by Logic Programming languages makes
these languages a good candidate for building programs for test case generation. We
believe that CLP with its mechanisms of a priori pruning the search tree is particularly
suited for effectively and efficiently generating test cases. Note, however, that the focus
of this article is on code generation. Nonetheless, the underlying design decisions are
heavily influenced by the goal of creating a system for the generation of test cases [18].

Overview. The remainder of this paper is organized as follows. After briefly discussing
related work, Section 2 presents the CASE tool AUTOFOCUS into which we integrated
our CLP based simulation system. The modeling concepts are illustrated along the
lines of a simple system consisting of a bulb that blinks according to a timer that may
be set by the user. Section 3 starts with a a brief overview over Constraint, Logic, and
Constraint Logic Programming. It is then shown how system models in AUTOFOCUS can
automatically be translated into CLP by maintaining full compositionality. In section 4
we demonstrate how our approach can be applied to user defined domains via Constraint
Handling Rules (CHRs). We also consider the problems of types in CLP. Finally, we
draw some conclusions and present current as well as future work in Section 5.

Related work. Code Generation from reactive systems on the basis of CLP has been
discussed recently. Delzanno and Podelski [4] focus on general Labeled Transition Sys-
tems. The motivation for their translation is model checking. Ciarlini and Frithwirth [3]
focus on Hybrid Automata [1] that allow for continuous activities within discrete states.
So does Urbina [23]; his work aims at verification techniques on the basis of CLP. In prin-
ciple, hybrid automata could also be used for modeling purely discrete systems: Gupta
and Pontelli [10], for instance, provide a translation of timed automata into CLP. Timed
automata form a proper subset of hybrid automata. One of the major drawbacks of both
types of automata is, however, that they are not well suited for modular design [19]. Fri-
bourg and Veloso-Peixoto [6] give another approach to the generation of CLP code from

concurrent automata similar to Labeled Transition Systems with explicit constraints. All
approaches share the commonality of synchronizing components via variables rather than
explicit channels (modularity), and of not being supported by tools. Fribourg [5] reviews
previous work on the relationship between CLP and Model Checking. Finally, there is a
wealth of literature on test case generation; [24, 18] contain some relevant references.

2 Modeling with AutoFocus

AvutoFocus [12, 13, 22] is a tool for graphically specifying embedded systems. It sup-
ports different views on the system model: structure, behavior, interaction, and data
type view.

Structural view: SSDs. In AuToFocus, a distributed system is a network of com-
ponents, possibly connected one to the other, communicating via so-called channels. The
partners of all interactions are components that are specified in System Structure Dia-
grams (SSD). Figure 1 (a) shows a typical SSD. In this static view of the system and
its environment, rectangles represent components and directed lines visualize channels
between them. Both of them are named with a label. Channels are typed and directed,
and they are connected to components at special entry and exit points, so called ports.
Ports are visualized by filled and empty circles drawn on the outline (the interface) of
a component. As SSDs can be hierarchically refined, ports may be connected to the
inside of a component. Accordingly, ports which are not related to a component are
meant to be part of unspecified components which define the outside world and thus the
component’s interface to its environment.

Behavioral view: STDs. The behavior of an AUTOFOCUS component is described
by a State Transition Diagram (STD). Figures 1 (b) through (d) show typical STDs.
Initial states are marked with a black dot. An STD consists of a set of control states,
transitions and local variables. The set of local variables builds the automaton’s data
state. Hence, the internal state of a component consists of the automaton’s control as well
as its data state. A transition can be complemented with several annotations: a label,
a precondition, input statements, output statements and a postcondition. The precon-
dition is a boolean expression that can refer to local variables and transition variables.
Transition variables are bound by input statements, and their life-cycle is restricted to
one execution of the transition. Input statements consist of a channel name followed by a
question mark and a pattern. An output statement is a channel name and an expression
separated by an exclamation mark. The expression on the output statement can refer
to both local variables as well as transition variables. A transition can fire if the pre-
condition holds and the pattern on the input statements match the values read from the
input. After execution of the transition the values in the output statements are copied
to the appropriate ports, and the local variables are set according to the postcondition.
Actually the postcondition consists of a set of actions that assign new values to local
variables, i.e., the assignments set the automaton’s new data state.

Communication semantics. AUTOFO0OCUS components have a common global clock,
i.e., they all perform their computations simultaneously. The cycle of a composed system
consists of two steps: First each component reads the values on the input ports and
computes new values for local variables and output ports. After the time tick, the new
values are copied to the output ports where they can be accessed immediately via the

(c) driver behavior
interval ?i:set!i; bulbPulse!true:ival =i

timeout ?true: set!ival; bul bPul se! fal se

interval:Int X bul bPul se: Bool Bul bSi gnal : Bool
)]

(a) Systemstructure

t >0t =t-1
- set?n::t =n
@D =—Cmn> >
—
— t == 0::tinmeout!true: timeout ?true: set!ival; Bul bPul se!true
(b) timer behavior (d) blinker behavior

Figure 1: Timer/blinker example

input ports of connected components and the cycle is repeated. This results in a time
synchronous communication scheme with buffer size 1.

The use of Sequence Charts for visualizing component interaction (traces) is also
supported in AuTOF0oCUS. Sequence Charts can be used for specifying systems as well
as test cases [24]. This issue is omitted here for the sake of brevity but will be referred
to again in the conclusion.

Datatype view: DTDs. For the specification of user defined data types and functions
AvutoFocus provides DTDs. The definitions in DTDs are written in Gofer like functional
syntax.

Even though different views are mainly orthogonal, there is a natural portion of
overlapping that may result in inconsistent specifications. For detecting inconsistencies
between different views, the tool has some built-in consistency checks that work on a
syntactical basis [14].

Example. Figure 1 shows the structure as well as the behavior of a simple timer
example: a system consisting of three components, a timer, a blinker, and a driver.
Figure 1 (a) depicts the system’s structure. It shows how the following channels are
connected: The set and timeout channels of the timer and the blinker, and the driver’s as
well as the blinker’s bulbPulse channels. Part (b) of the figure shows the timer’s behavior:
Whenever the component receives a value on the set channel, it sets its internal variable
t to this value, and decrements it until zero is reached. The timer then waits for the next
value on channel set. Part (c) exhibits the driver’s behavior. At every tick, the driver
outputs the last value received on its input channel. Finally, part (d) is a description
of the blinker’s behavior. Once it receives a value on its input channel Interval, the
internal variable ival is set to this value, and the very same value is written to the timer.
Whenever the timer decrements this value to zero, the bulb’s status is toggled, and the
timer is reset. In the composed system, the timer is hence initialized with the value
at channel Interval. The timer then ticks until it reaches a timeout, and whenever the
timeout is reached, the timer is reset, and a signal is sent to the driver. Within each
time period, the driver copies its last input value to its output channel.

Figure 5 shows parts of the automatically created CLP code for this example (which
has been modified for this presentation). We chose to add the driver to our example in
order to emphasize the compositionality of our approach. A driver component can be

specified and tested separately from the rest of the system.

Adequacy. Experiences with students as well as industrial partners have shown that
the semantics of AUTOFOCUS is quite easy to grasp. In fact, we believe that this is
one of the distinguishing features of AUTOFoOCUS. Shortcomings of this approach are,
nonetheless, problems with asynchronous communication schemes that often occur in
telecommunication systems. The semantics of AUTOFOCUS is a stream-based one that
has been formally defined in [14]. This feature makes it particularly suitable to code
generators that mainly operate on lists which is the case for Prolog and CLP languages.

3 Translation into CLP(FD)

In this section, we present a translation of AUTOFOCUS automata into CLP that is
(a) fully compositional and (b) can be performed fully automatically. For the sake of
clarity, we restrict ourselves to finite integer domains; the handling of other domains is
the subject of section 4.

3.1 Logic and Constraint Programming

Our initial goal is the task of simulation and, closely related, automatically deriving
test cases. In order to fulfill it, we chose the following programming paradigms for the
following reasons: They at least partly allow for automatic function inversion which
is a crucial point of this task. A second important issue is the reduction of the set
of meaningful test cases, and Constraint Programming seems a natural candidate for
resolving this problem. Furthermore, it is possible to work on infinite domains (e.g., real
numbers) with finite representations (intervals).

Logic Programming. One of the roots of Logic Programming (LP) is Kowalski’s
crucial idea to consider algorithms as composed of logic and control, thus explicitly sep-
arating the “What?” from the “How?”. The ultimate (but, as experience has shown, yet
unrealistic) goal of declarative programming languages is to program in a purely declar-
ative way by simply stating a set of relations that describe a given problem. Common
LP languages such as Prolog then interpret these relations or predicates in a procedural
manner by relying on a powerful general problem solving mechanism, namely backtrack-
ing. LP languages exhibit another important feature, namely the possibility of function
inversion: Under certain circumstances, given the result of a function application, one
can infer the function’s arguments (or a set of them).

Constraint Logic Programming. However, there are some pitfalls in LP. On the
one hand, solutions of programs (models of logical formulae) are always based on the
same carrier set, a term universe (the so-called minimal Herbrand model). On the other
hand, in implementations of LP languages, there is a certain order in which predicates are
evaluated (in the procedural sense, see above) which may result in infinite evaluations
even though the succeeding predicate could prevent infinite backtracking by imposing
constraints that its preceding predicate can only satisfy in a finite number of ways. This
led to the idea of merging Constraint Languages with LP into Constraint Logic Program-
ming (CLP) languages [16]. These languages allow for the formulation of constraints that
are checked for satisfiability in every step of the evaluation of a set of logical formulae
(expansion of a node in the resolution tree), and they hence necessitate mechanisms for
delaying subexpressions. This yields the possibility of a priori cutting the evaluation

tree of these formulae; the “generate and test” paradigm of LP languages is modified to
“constrain and generate”. On the other hand, with CLP, one can calculate in domains
other than the Herbrand universe, for instance finite (integer) domains FD, or rational
or real numbers @ and R (one crucial point in the latter two domains is to calculate on
finitely representable intervals.) One can, for instance, formulate Linear Programming
Problems with a set of unknown variables, and if the CLP language is equipped with
suitable constraint solvers (e.g., Simplex), the desired optimal results can be found by
binding variables to the corresponding rational numbers or intervals. LP is an instance
of CLP with constraints being equations over terms, or finite trees, respectively.

Constraint Handling Rules. Even though there are many constraint solvers avail-
able, it turned out that sometimes people do not want to calculate on one specific domain
but rather a mixture of different domains, and that there sometimes is need to create
new domains and constraint handlers. This led to the development of Constraint Han-
dling Rules (CHR [7]), a meta language that allows for the definition of new constraint
handlers (solvers) that, subsequently, can be translated into the corresponding target
language, CLP in our case.

3.2 Translation

In the sequel, we will not distinguish between a channel, its name and its history (or
“trace”: the sequence of symbols that were observable on the channel so far). Histories
may be seen as timed streams, and they are implemented as lists. All terms starting with
capital letters are variables, with “.” being the anonymous variable, and if the name of
a sequence occurs at some position, then we assume that this name is expanded to the
corresponding sequence where all elements start with a capital letter (thus becoming
Prolog variables). Set operations naturally become operations on sequences/lists (e.g.,
union becomes concatenation).

Transitions. Let a sequence z1,...,%, or (1,%1),-..,(Zn,yn) be denoted by T" or
(z,y) ", respectively. Furthermore, let the sequence of lists [1|zs1],..., [Zn|Tsn] be
denoted by [x|xs]n Each component of an overlined term thus gets an index ranging
from 1 to the index of the overlined term, n in this case. For each transition we now
introduce a rule

step(Sre, (L, L)), (TY), (0), tname(W), Dst) <

", T, (1,0 AvT", T, 1", ©).

with Src being the source and Dst being the destination state, and where primed
variants of L; represent the new values of component-local variables L; after the transition
has fired, i.e., after a time tick. In addition, W is a sequence of local variables (or input
channels) the respective transition is, for tracing purposes, to be annotated with. The
I; (0;) consist of pairs ({msg,no_msg},value), and they represent the state of input
(output) channel I; (O;): If a value is present at this channel, the first component is
set to msg and to no_msg otherwise. ® and ¥ are the result of translating the pre-
and postcondition ¢ and 1 into constraints (see below). Postconditions may modify the
primed L;, thus resulting in a new data state.

k

Pre- and Postconditions. Pre- and postconditions are directly translated into a con-
junction of constraints by replacing operations on input values and the values of local
variables by their respective operation in the constrained domain (e.g., < becomes # <,
see section 4 for other domains than integers). Preconditions involve only unprimed vari-
ables whereas postconditions may involve primed variables. If a condition requires that

a value of some channel be present, then the corresponding pair in the head of the step
predicate must be msg in its first component; otherwise, this first component is no_msg
or even _ if this information is not necessary in order to evaluate the conditions (e.g., if
a transition does not involve the state of some channel). Note that msg can denote both
a concrete value, or, in the case of finite integer domains, an interval (a finite domain
variable). Note also that postconditions in AuToF0cCuUs always hold and that it is hence
not possible to “hide” preconditions within the postconditions.

Idle Transitions. In AUTOFOCUS, if no transition can fire, the system remains in the
current state. The translation so far needs to be complemented: For k input channels

Ii,..., I} and m transitions T4, ..., T, leaving some state s we have (1 < j <m)
—k
T; = step(s,...,((ind;,I)),...,s) <
k
/\ matchj;(I;) A prej(fnjk) A actionj(fn,ﬁnjk). (1)

i=1
indj;=msg

where ind;; € {_,msg,no_msg}, match;;(I;) are the pattern match conditions of transi-
tion j involving input channels, pre; contains the preconditions involving local variables
and channel inputs, and action; is the conjunction of the transition’s actions (i.e. assign-
ments to local variables, or postconditions). We do not need to consider outputs here.
Formula 1 can be rewritten as

ek
T; = step(s,...,((X,1)),...,s) <
—=n =k . —=n —n =k
prej(Ln,I YA actzonj(Ln,L’n,I YA
k k
/\ (X,- = msg A matchji(lz-)) A /\ X; = no_msg, (2)
ind;i==1msg indj::nla_msg
where new variables X; are introduced, indicating whether a message is sent over the
appropriate channel and = is Prolog’s unification equality. From formula 2 the body of
the negated enabling condition for transition 7} can be derived:

k k
T; = ﬂprej(fnjk) \% \/ (X; = no_msg V —~match;;(I;)) V \/ X; = msg,
'ind;'i==1msg indj;:nla_msg

where —pre; is the negation of the constraints contained in pre;. Note that the action
predicates are left out because they are not influencing the enabledness of transitions.

We hence need decidable complementation operators in the constrained domain. This
is closely related to the problem of negation in LP [2]. The CHRs we consider are of
the form name @ head < guard|body with the intuitive meaning that if head is in the
constraint store and the optional guard is evaluated to true, then we might replace
head by body in the constraint store (simplification rules). For a most common type of
constraints, namely equality and inequality on finite enumeration types, we define the
CHRs a =° b < a = b|true and a#°b < a = b|fail with no check of guard bindings. For
integers, they are predefined in the FD library: # = and #\ =.

For each state s, this results in an idle transition predicate

step(s, ..., ((X, I)k), c,8) & Ti,...,Tm,®,!. where ® maps the internal variables
to their primed (i.e., after the tick associated with the transition) counterparts, i.e.,
L'# = L. The cut is inserted for efficiency reasons.

7

— n]

doStep(Sre, ([LLs]"), @), ("), TrHist, Clock, Clockumax, { Results}) <
Clock# < Clocknaz,
% do the transition
step(Sre, (L, L')"), (CurI"), (WE), Trans, Dest),
% and restart from the new state
doStep(Dest, (I, L|Ls]), ((CurI|I]"), ([O'[O]),
[Trans|TrHist], Clock + 1, Clockpqz, { Results}).

Figure 2: Running one single automaton with doStep

Control. Automata are controlled by a predicate doStep (Fig. 2). For testing purposes,
we declare every state as a final state. This is done by adding a predicate doStep in which
all histories are copied into the result variables. For test purposes, it is a good idea to
find the shortest transition sequence first; this is why this predicate should be added in
front of the other ones. In this definition, the first argument, Src, represents the state
out of which some transition is to be taken. The second argument represents the histories
of all local variables; the third and fourth arguments represent the histories of the in-
and output channels. If for an automaton A the input before tick ¢; is denoted by z'A(tj_)

and its output after this tick by oA(t;r), then (I"") corresponds to the set of all iA(tj_),
and (54) to the set of all oA(t;-"). In normal operation mode (inputs are known at run

time), (I"") are instantiated input and (6£) are free output variables. TrHist records the
transitions, Clock has to be smaller than Clockq, (finiteness!), and Results is a set of
arguments into which, at the end, histories of interest will be copied.

Obviously, the first call to doStep requires the involved lists to be nonempty. For
channels, pairs of the form (no_msg,-) should be the elements of the argument lists, and
local variables may have arbitrary values. This first call models initial states.

Parallel Composition. Given two automata A and B, X € {A, B}, let in(X) (out(X))
denote the input (output) ports of automaton X. The composition of two automata re-
quires that some output ports of A be attached to some input ports of B via connecting
channels and vice versa. We thus introduce a set Z C (in(A)®@out(B)) U (in(B) ®out(A))
which represents the channels to be connected. Remember that the channels are con-
sidered sequences (lists) rather than sets; since there are always two ports that are
connected, ® simply denotes the pairing operator on lists L; = [L;(1), L;(2), .. ., L;(n)]
for i € {1,2}: L1 ® L2 = [(L1(1), L2(1)), ..., (L1(n), L2(n))].

We will need to distinguish between internal communication channels and external
ones. A first step consists of defining two sets IBound = {i|30.(i,0) € Z} and OBound =
{0|3i.(i,0) € Z}, respectively, that contain the set of “connected”, or bound, input resp.
output ports. Call an input port (or its value) unbound, if it is not connected to an
output port of another component. Furthermore, let v(t;) denote a variable v’s value
before tick t;, and let v(tf) denote v’s value after this tick.

The justification for the counterintuitive construction of Z by making the input chan-
nel the first component and the output channel the second is as follows:

For the composed system C, we have a set of unbound inputs to A4 and B, 7% =
{i€|i¢ € (in(A) Uin(B)) — IBound} at time t; . The respective set of unbound outputs
is O* = {ii¢ € (out(A) U out(B)) — OBound} at time t]. The composed system’s

local variables include the internal variables of all components, (Ji_, (L;(t7), L;(t})).

Here, L;(t;) and L;(t]) correspond to L; and L) as explained above. We assume the
name spaces of the original components to be disjunct. The first component of each pair
denotes the variable’s value at before tick ¢;, and the second denotes its value after tick
t;-

Now, consider A’s output o that is connected to B’s input iZ, i.e., (i%,0%) € Z.
Obviously, we would like the equation o*(t}) = i®(¢;,,) to hold for all j. Internal
channels, i.e., channels that connect one component to another, may be regarded as
(new) variables of the composed system: Between two ticks, ¢t; and ¢;41, the value of
this variable is oA(tj) = oA(tj_+1). Before tick t;, its value is i® (t;), for it actually
is input to B. After this tick, its value is oA(tj), for it is output by A. Identifying
o(t]) with i5(t;,,) yields the variable’s evolution from i®(t;) = o(t;) to ®(t]) =
iB(t;,,) = o*(t]). Tt is usual to interpret composition of channels as information hiding
or existential quantification, respectively, e.g., [14].

This schema is identical to the above schema for internal variables of all components
(pairs L;(t;), Li(t])). All we need to do in order to model composition of the two
components is thus to add variables that evolve from % (t;) to oA(tj). For k connections
from A to B, let o;,“ be connected to if for 1 < p < k. We then define a new set of pairs

of variables, namely Uﬁzl(@(t;), 0 A,p(t;r)). Note that if this set is complemented by
adding the inverse connections from B to A, we exactly obtain set Z (modulo variable
renaming)! The composed system is executed by interleaving steps from A with B. The

step”lB ((SreA, SrcB), (LA, LAY, (LB, LB, (2)), (%), (O"),
(Tr4, Tr?), (Dest, Dest®)) « % Z is new!
stepA(SrcA, (LA, LAN), (in(A)), (out(A)), Tr*, Dest?),
stepB(SrcB, (LB, LBN™), (in(B)), (out(B)), TrB, DestB).

Figure 3: Interleaving two automata: step“I?B

new variables @ and op, are used as input (or output, respectively) variables when
component A or B is executed (Fig. 3).

One minor difference between the newly introduced variables with not composed lo-
cal variables is that their values are tagged with msg or no_msg (since channels may
carry no signal at all). Except for this, the connected channels indeed exhibit the same
characteristics as local variables, and we use this insight for the implementation. Sur-
prisingly at first, this simple approach is everything we need in order to model internal
communication.

Note again that our encoding works on a time synchronous communication scheme
with buffer size 1, even though the appearance of predicate stepllB suggests an asyn-
chronous communication scheme. Furthermore, the underlying interleaving model of
concurrency is directly reflected in the CLP rules.

Now, control is implemented by the corresponding predicate doStep”!B (Fig. 4),
where LZ denotes new variable names for the elements of Z, and | - | is the cardinality
function on sets (or a length function on sequences, respectively). As in the case of
a single component it seems reasonable to add a predicate that copies all histories of
interests in the {Results} set, thus modeling accepting states. Again, for test purposes,
the shortest transition sequence should be found first; this is why this predicate should
be added in front of the other ones.

Composition of more than two automata. The above translation scheme is fully
compositional. There are basically two ways of composing three automata A, B, C,

]n | Z|

doStepZ((Src#, SrcB), ([LALsA], [LB|LsB] , [LZ[Ls?]
variable for the history of each 7%,
variable for the history of each 0%,
(TransHist#, TransHist?), Clock, Clockmax, {Results}) <

Clock # < Clocknmaz,

step I8 ((Sre, Sre), (LA, LA, (E5, 180", (L2, 12))),
(CurI)lI ‘,(O’)‘O l,(TrA,TrB),(DestA,DestB)),

doStepAlB ((DestA, DestB),
(LA7, LALsA]", [LF7, LB|LsE] ", [LZ", LZ|Ls7] ~
(Vj.[Curlj|the respective input histories)),
(V5.[O}|the respective output histories]),
([TrA|TransHistA], [TrB|TransHist?)),
Clock + 1, Clockqz, {Results}).

)7

),

Figure 4: Running two automata concurrently with doStep/IB

depending on the system structure. If the system designer wishes to compose them in a
“fat” way, we define doStep“lIBIC as above with the difference of having three instead
of two source states (three instead of two histories, etc.). Accordingly, stepIBIC then
interleaves three instead of two transitions.

If, on the other hand, the designer wishes to compose first A with B and then A || B
with C, he may first compose A and B according to our translation scheme. This yields a
parallel step predicate step”!IB which can, iteratively, be combined with step€, yielding
the desired parallel composition step{AIBIIC. The construction of doStepAlIBIC g
then analogous to doStep”!l8 where, for instance, the first source state is invocated
with a pair of source states (for A and B or step”!IB, respectively). The second source
state then corresponds to the one in automaton C. In terms of the respective traces,
both translations yield the same semantics. It is evident that this scheme is directly
applicable to more than three automata. Furthermore, it is consistent with component
oriented system design. Actually, the code generator produces a parallel step predicate
stepCtliC2llICn for each system structure diagram with n subcomponents Cy || Co || - - ||
C,, and a step® predicate for each subcomponent. Thus, the hierarchy in the structure
of AuToFocCUS models is preserved and directly reflected in the generated CLP code.

Aggregation and dangling ports. Imagine we want to aggregate two components
into a new one, where some input ports of the inner components are directly connected
to the respective input ports of the new component, and some of the inner input ports
are dangling (this happens if components are reused and the total functionality is not
needed). We hence want to identify a subset of the internal ports with the external
ports, which can easily be achieved by unification of the corresponding history variables.
The dangling ports always get no signal (which actually is a signal, namely (no_msg,-)).
These remarks also hold if we exchange input with output channels. Finally, signals at
dangling output channels are ignored.

Furthermore, in our system, we implemented channel ramification, i.e., copying of
channels, and identification mechanisms. The translation is, again, straightforwardly
achieved by adequately identifying the corresponding variables.

Fig. 5 shows the generated code for our example (which has been modified for pre-
sentational purposes).

10

step®(init®, (L;, L), (T, TLi),), (T, true), (T, TLi)), start®, on®) <

L'# =TLi.
Li# = L.

stepb(offb, (Ls, LY), (o, (T, true)), (T, true), (T, L;)), switchOn®, onb) =
Li# = L.

% plus idle transitions ...

step (wait?, (L, L), (T,TLn), (L,), set’ (T Ln), run’) < Li# = TLn.
step'(run®, (Ls, L), _, (T, true), timeout?, wait’) <= Li# = 0, Li# = L.
step®(runt, (Ly, L}), -, (L,), tick®, run?) <= Li# > 0, Li# = L; — 1.

% plus idle transitions and code for the driver (step?)...

stepStructure((S1, Sz, S3), ((Li, L), (Lt, Lt), (Lb, L), (Cypy Cop),
(C‘;tv Cseg), (Ct_7 Ct)), Ci, Cbs, (T1, Tg, Tg), (.D17 D27 D3)) =
St6pb(517 (Liv L;)a (Ch C;)1 (Cbpa Cset), T17 Dl)a
stept(Sz, (Lt, L;), (Cs_et)v Ct, Tz, DQ),
step? (S, (Lv, L), (Cyy), Cos, T3, D3).
%copy
doStepStructure(S, (AL;, ALy, ALy, ALy, ALses, ALy), Al;; AOps, AHstirans,
Clock, Clockmaw, S, (AL{, ALt, AL(,, Apr, ALset; ALt), AIi, AObs’ AHSttrans) <~
Clock# < Clockmaz-
%go
doStepStructure(S, ([Li|Lsi], [Lt|Lst], [Lv|Lss], [Lop|LSop], [Lset|Lsset], [Lt|Lst]),
I;, Ops, Hstirans, Clock, Clockmaz, S,
(ALi, ALt, ALb, AL(,p, ALset, ALt), AIi, AObS, AHSttrans) =]
Clock# < Clockmaz,
StepStTUCture(Sa ((Lh L’z), (Lt; L;)a (Lby ;))’ (pr’ L;w)) (Lset, L{set)a (Lta L;)),
CI;,COps, Trans, D),
doStepStructure(D, ([L;, Li|Ls;], [Ly, L)t|Ls¢], [Ly, Ly| Lsy], [Ly, Lop| Lssp),
[L{seta Lset|Lsset], [L{f, LtlLSt]), [Cllez]; [Cobs |Obs], [T""U/nslHStt'rans],
Clock + 1, Clockmaz, S,
(ALi, ALt, ALb, Apr, ALset, ALt), A_Ii, AO,,S, AHStt,«ans).

Figure 5: Timer/blinker code. L is no_msg, T is msg.

4 Leaving finite domains via CHR

For the sake of brevity, our translation concentrated on finite (integer) domains. This
section shows how arbitrary domains can be involved.

First of all, it is worth noting that the results from the previous section vacuously
hold for CLP(Q,R) if the underlying constraint solver supports these domains (which
is the case for most CLP systems, e.g., Eclipse, Sicstus, GnuProlog!). Note also that
without appropriate abstraction techniques, verification techniques such as model check-
ing cannot cope with such systems because of a priori infinite state spaces. However, we
see testing and such techniques as complementary rather than rivaling approaches. The
FD constraint operators simply have to be replaced by the corresponding {Q, R} opera-
tors. These domains exhibit the advantage of a “free” abstraction into intervals (i.e., the
system calculates with intervals rather than points). Obviously, model checkers without
similar abstractions are not able to deduce any information about a system involving
such data types.

1

www.ecrc.de/eclipse, www.sics.se/sicstus.html, pauillac.inria.fr/~diaz/gnu-prolog

11

Recursive types. In addition, during the task of modeling a system, the need for
user-defined data types frequently occurs. AUTOFOCUS allows for the definition of poly-
morphic functional data types which may be recursive. While the focus of [21, 24] is on
a general translation of types, we discuss how (recursive) data types can be translated
into constraints in the remainder of this section. Domains other than FD, Q, R require
the definition (and automatic generation) of appropriate constraint handlers. Constraint
Handling Rules (CHR [7]) allow for the definition of constraint handlers on arbitrary
domains. In the context of testing, if at the end of the simulation/generation process
the constraint store contains delayed type constraints, the latter are used for the deter-
mination of actual test sequences. Since AUTOFOCUS is equipped with a type checker,
run-time type checking as described in the next paragraph is not necessary for simulation
purposes. However, it is necessary when test cases are to be constructed: Input values
of a correct type have to be generated.

Example: Peano terms. The most simple example are finite enumeration types.
Since they are comprised in the following example, we omit their explicit discussion.
Consider the timer of section 2. We want to maintain its functionality while replacing
the finite integer domain by Peano terms (s/0 terms). The obvious idea is to encode
these terms by predicates peano(z). and peano(s(X)) < peano(X). However, whenever
these rules are evaluated with an unbound variable as argument, the program will not
terminate. We thus have to move the handling of data types from the Prolog part into
the constraint logic part.

This is easily done by defining CHRs p_axl @ peano(z) <= true and p-az2 Q
peano(s(X)) < peano(X). Note that z demonstrates how enumerative types are im-
plemented. For efficiency reasons (and for an easier handling of the remaining con-
straint store which will be used for, e.g., the generation of test cases), we add a fail-
ing constraint: p_fail @ peano(X) & X # z,X # s(.)|fail. For the timer, we
need a predicate leq which corresponds to < on integers. The functional definition
z leqt _ = true, s(0) leqf z = false, s(X) leqf s(Y) = X leq/ Y is automatically
compiled (basically by flattening the function definition) into its constraint logic coun-
terpart as shown in Figure 6. In order to add more knowledge to the constraint system,

legl @ leg® (2, X, tt) < peano(X)|true.
leq2 @ leq® (2, X,Y) & Y # tt|fail.
leg3 @ leq® (s(X), z, ff) © true.
leqgd @ leq®(s(X),2,Y) oY # ff|fail.
legb @ leq® (s(X), s(Y), Z) < peano(X), peano(Y)|leq® (X,Y, Z).
fail @ leq™ (X,Y,Z) & X # 2, X # s();Y #2,Y # 5(); Z # tt,Z # ff|fail.

Figure 6: Function < on integers becomes CHR legq.

we could add the constraint fail and its symmetric counterpart. What remains to do
is replace the constraint operators on integers by the newly defined ones and to add a
type check in every predicate for the in- and output channels: peano(I) or peano(0),
respectively. In this context, it is noteworthy that in his decision to design the Temporal
Logic of Actions [17] as an untyped language, Lamport argues that “types add a great
deal of complexity to a logic” and render reasoning about programs much more difficult.

The example of Figure 5 can easily be modified in order to work on Peano terms:
“X+41” becomes s(X), # < becomes leq/3 with the corresponding arguments. The trans-
lation of arbitrary functions is done in exactly the same way as the translation of types
by flattening expressions. This is the subject of the following paragraph.

12

Generalization and Types. We have seen that the timer example of section 2 can
easily be transformed into a similar one by replacing constraints on integers by con-
straints on recursively defined s/0 terms. In this paragraph we describe the integration
of arbitrary types into our framework.

Since during design of the translation we always have borne in mind the generation
of test cases, we needed to take some care in binding free variables. Consider a tran-
sition X?Z where X is an external input channel which checks if there is some value
on channel X. We have to make sure Z is of the type of channel X. This motivates
the following translation of types into constraint logic. Consider a data type_decla-
ration t(&) = ¢1(B1)].--|en(Bn) where @ is a sequence of type variables, Var(5;) is a
subset of @, and ﬂ_; are terms composed of constructors, type operators, and type vari-
ables. Type operators are constants that appear on the left hand sides of data type
declarations. Constructors are constants that ezclusively appear on right hand sides (in
list(a) = mil|c(a, list(a)), for instance, list is a type operator whereas nil and ¢ are
constructors). Type operators as well as constructors may be of arbitrary (finite) ar-
ity. Aliasing is not allowed (e.g., data nat = int), but can be simulated with additional
constructors.

We now define a constraint predicate isType/3 for a representative constructor c(g)
where isType(T Name, TV, Const) should be read as “Const is of type TName with type
variables T'V”. First of all, we have to flatten recursive types. Call a subterm minimal
iff its head symbol is a type operator and no proper subterm contains a type operator.
We iteratively replace all minimal subterms in ¢(8) by fresh variables and maintain a
list that associates the fresh variable X; with its (parameterized) type operator, 7;(;)
where ¥; is the sequence of variables that are occurring in the subterm that is to be
replaced (with possibly multiple occurrences; for a monomorphic 7;, ¥; is the empty
sequence). If 4; contains constructors, the type declaration is illegal since type operators
and type constructors have been mixed. Let c¢(3") denote the result of this operation
which terminates when no more type operators occur in the term. If the corresponding
type operator T is parameterized by type variables @, we define isType(T, &, c(8')) &
isType(r1,v1, X1)A ... A isType(tk, vk, Xi). If there are £ definitions on the right hand
side of T"’s definition, there are ¢ such constraint predicates. What remains to do is add
a failing constraint that asserts that the constraint predicate fails if the conditions can
not be fulfilled. Figure 7 shows an example for Peano terms as well as lists.

peanol @ isType(peano, _ , z) <=> true.
peano0 @ isType(peano, _ , s(X0)) <=> isType(peano, _, X0).
failpeano @ isType(peano, _, _C) <=>
(_C\=z, _C \= s(X0)
; nonvar(_C), _C = s(X0), \+ isType(peano, _, X0)
; nonvar(_C), _C=z, \+ true) | fail.
listl @ isType(list, A, nil) <=> isType(_, _, A).
1listO0 @ isType(list, A, c(A, X0)) <=> isType(list, A, X0),
isType(_, _, A).
faillist @ isType(list, A, _C) <=> (_C\=nil, _C \= c(4, X0)
; nonvar(_C), _C = c(A, X0),
\+ (isType(list, A, X0), isType(_, _, A))
; nonvar(_C), _C=nil, \+ isType(_, _, A)) | fail.

Figure 7: Types as automatically constructed CHRs
Finally, the existing finite domain on natural numbers is incorporated into this schema

by using special CLP predicates: Within Eclipse, for instance, we may define FD by
FD @ isType(int, -, X) < dvar_attribute(X, _)|true and FD fail @ isType(int,_, X) <

13

\ + dvar_attribute(X,)| fail.

For the sake of simplicity, we ignored built-in selector or projection functions, e.g.,
hd and tl in list(a) = nil|c(hd : a,tl : list(a)). Their translation, however, is straight-
forward (e.g., hd(c(X,Y),R) & R = X|true). Note that in this case we want to bind
variable R.

5 Conclusions and Future work

Simulation and testing are the most widely used validation techniques for arbitrary
sytems. There is a strong and increasing industrial need for tool support in testing
and, more particularly, test case generation. To address this problem, we presented a
framework for simulating and testing concurrent reactive systems on the grounds of Con-
straint Logic Programming and Constraint Handling Rules. W.r.t. model checking, we
see testing as a complementary technique, with other goals and other implementations.
System specifications in AUTOFOCUS were shown to be automatically compilable into
CLP/CHR code in a fully compositional way, taking into account recursive functions as
well as recursive data types that occur in the system specification.

The code generator has been used for the determination of output traces of several
case studies, e.g., NASA’s Mars Polar Lander [22], a system consisting of event-discrete as
well as time-continuous components. Our current work concentrates on the determination
of test sequences (I/O traces) on the grounds of partial I/O specifications via Sequence
Charts [15, 8, 9]. There is some evidence that by encoding Sequence Charts as constraint
systems and using these constraints while executing the model, the search space for
test sequences can be significantly reduced (a-priori pruning of the search tree). The
existing Sequence Chart editor in AUTOFOCUS is being extended: We currently work
on a semantically clear integration of specification concepts for transitions and negation
within Sequence Charts. The existing editor allows for the specification of test cases
for testing based on Bounded Model Checking [24]. To date, Sequence Charts have to
be translated into CLP by hand. The automatic translation is the subject of ongoing
work. Furthermore, the CLP code from within AUTOFOCUS is the basis for work on
the generation of test cases for hybrid systems that are not discretized [20] in an ad-
hoc manner. Future work also includes the automatic evaluation of delayed goals in the
constraint store. We believe that analyses such as interval/boundary analysis will yield
a good class of test sequence representatives for the actual testing process.

Another important isue is the genral definition of what a “meaningful” test case is.
Finally, the use of functional logic languages such as Curry [11] seems to be particularly
suited for our purposes. However, there are no efficient non-proprietary implementations
yet that support different CLP libraries and Constraint Handling Rules.

Acknowledgment. We would like to thank Oscar Slotosch and Thomas Stauner for
fruitful discussions and clarifying comments on an earlier version of this paper.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3-34, February 1995.

[2] K. Apt and R. Bol. Logic Programming and Negation: A Survey. J. Logic Programming,
19/20:9-71, 1994.

14

(3]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]
[20]

(21]

[22]

(23]

[24]

A. Ciarlini and T. Frithwirth. Using Constraint Logic Programming for Software Valida-
tion. In 5th workshop on the German-Brazilian Bilateral Programme for Scientific and
Technological Cooperation, Konigswinter, Germany, March 1999.

G. Delzanno and A. Podelski. Model Checking in CLP. In Proc. Tools and Algorithms for
Construction and Analysis of Systems (TACAS’99), pages 223-239, 1999.

L. Fribourg. Constraint logic programming applied to model checking. In Proc. 9th Int.
Workshop on Logic-based Program Synthesis and Transformation (LOPSTR’99), LNCS
1817, Venice, 1999. Springer Verlag.

L. Fribourg and M. Veloso-Peixoto. Automates Concurrents 4 Contraintes. Technique et
Science Informatiques, 13(6):837-866, 1994.

T. Frithwirth. Constraint Handling Rules. In A. Podelski, editor, Constraint Pro-
gramming: Basics and Trends (LNCS 910), pages 90-107. Springer Verlag, 1995.
www.pst.informatik.uni-muenchen.de/personen/fruehwir/chr-intro.html.

J. Grabowski. Test Case Generation and Test Case Specification with Message Sequence
Charts. PhD thesis, Universitat Bern, 1994.

R. Grosu, I. Kriiger, and T. Stauner. Hybrid Sequence Charts. In Proc. 3rd IEEE Intl.
Symp. on Object-oriented Real-time distributed Computing (ISORC 2000). IEEE, 2000.
G. Gupta and E. Pontelli. A Constraint-based Approach to Specification and Verification
of Real-time Systems. In Proc. IEEFE Real-time Symposium, pages 230-239, San Francisco,
December 1997.

M. Hanus (ed.). Curry: An Integrated Functional Logic Language. www.informatik.uni-
kiel.de/"curry/report.html.

F. Huber, S. Molterer, A. Rausch, B. Schitz, M. Sihling, and O. Slotosch. Tool supported
specification and simulation of distributed systems. In B. Kramer, N. Uchihira, P. Croll, and
S. Russo, editors, Proc. Intl. Symp. on Software Engineering for Parallel and Distributed
Systems, pages 155-164. IEEE, 1998.

F. Huber, S. Molterer, B. Schitz, O. Slotosch, and A. Vilbig. Traffic Lights - An AutoFocus
Case Study. In 1998 International Conference on Application of Concurrency to System
Design, pages 282-294. IEEE Computer Society, 1998.

F. Huber, B. Schitz, and G. Einert. Consistent Graphical Specification of Distributed Sys-
tems. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Industrial Applications and Strength-
ened Foundations of Formal Methods (FME’97), LNCS 1313, pages 122-141. Springer Ver-
lag, 1997.

I’IgU. ITU-T Recommendation Z.120: Message Sequence Charts (MSC), November 1999.
J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. J. Logic Programming,
20:503-581, 1994.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872-923, 1994.

H. Lotzbeyer and A. Pretschner. Concurrent Reactive Systems and Constraint Logic Pro-
gramming: A framework for compositional testing and validation, 2000. Internal report,
Technische Universitdt Miinchen.

O. Miiller and T. Stauner. Modelling and verification using Linear Hybrid Automata.
Mathematical Computer Modeling of Dynamical Systems, 6(1):71-89, March 2000.

I. Péter, A. Pretschner, and T. Stauner. ROOM for Hybrid Systems: A Formal Grasp,
2000. Submitted to Integrated Formal Methods (IFM’00).

J. Philipps and O. Slotosch. The quest for correct systems: Model checking of diagrams
and datatypes. In Proc. IEEE Asian Pacific Software Engineering Conference (APSEC’99),
pages 449-458, 1999.

A. Pretschner, O. Slotosch, and T. Stauner. Developing Correct Safety Critical, Hybrid,
Embedded Systems. In Proc. New Information Processing Techniques for Military Systems,
Istanbul, October 2000. NATO Research and Technology Organization. To appear.

L. Urbina. Analysis of Hybrid Systems in CLP(R). In E. C. Freuder, editor, Proc. 2nd Intl.
Conf. on Principles and Practice of Constraint Programming, LNCS 1118, pages 451-467,
Cambridge, Massachusetts, USA, 1996. Springer Verlag.

G. Wimmel, H. Lotzbeyer, A. Pretschner, and O. Slotosch. Specification Based Test Se-
quence Generation with Propositional Logic, 2000. Submitted to Software Testing, Verifi-
cation & Reliability (STVR): Special Issue on Specification Based Testing.

15

