
From Scenarios to Aspects: Exploring Product Lines

Ingolf H. Krüger, Reena Mathew
Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0114, USA

{ikrueger,rmathew}@cs.ucsd.edu

Michael Meisinger
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

meisinge@in.tum.de

ABSTRACT
Software product lines are gaining importance because they
allow improvements in time to market, cost, productivity
and quality of software products. Architecture evaluation is
one important aspect in the development of product lines
for large-scale distributed systems. It is desirable to evalu-
ate and compare architectures for functionality and quality
attributes before implementing or changing the whole sys-
tem. Often, the effort required for the thorough evaluation
of alternatives using prototypes is prohibitive. In this pa-
per, we present an approach for cost-efficient software ar-
chitecture evaluation, based on scenario-oriented software
specifications, modeling the system services. We show how
to map the same set of services to several possible target
architectures and give a procedure to generate evaluation
prototypes using aspect-oriented programming techniques.
This significantly reduces the effort required to explore ar-
chitectural alternatives. We explain our approach using the
Center TRACON Automation System as an example.

1. INTRODUCTION
As stated by the SEI, software product lines are rapidly

emerging as a viable and important software development
paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality,
and other business drivers. A software product line (SPL)
is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed
from a common set of core assets in a prescribed way [20].

Designing product line software architectures for complex
distributed systems is a difficult task. One of its difficul-
ties, the exploration of different architectural alternatives
often falls victim to time pressure and lack of resources: it
typically involves writing large parts of the code for each
product line alternative upfront to support the evaluation –
this binds people, time and financial resources.

1.1 Problem Definition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
4th Int. Workshop on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM’05) 21 May 2005, St. Louis, MO, USA.
Copyright 2005 ACM 1-59593-130-9 ...$5.00.

Building prototypes and running simulations complements
and provides input for architecture evaluation techniques
based on reviews and estimation [2]. However, building
multiple prototypes to explore different architectural alter-
natives is costly.

One way to address this problem is to separate an overall
software architecture into abstract models (sometimes called
domain models [3]) and implementation models; approaches
advocating this separation are architecture-centric software
development [22] and model-driven architecture [15].

This separation is often difficult to achieve – especially
in situations where requirements including performance and
other Quality-of-Service properties suggest a tight coupling
between the two types of models. Then, exploring multi-
ple architectural alternatives is often not an option, because
writing “throw-away” prototypes is too costly: large parts
of the deployment infrastructure have to be written and re-
written for each prototype. Besides that, the mapping be-
tween abstract and implementation model is non-trivial in
general; there is likely more than one mapping that makes
sense. Multiple explorative hand-crafted mappings between
the different models quickly also become costly.

The core of the problem is that the scenarios supported by
the system typically involve a multitude of collaborating en-
tities within each of the two types of models. The interplay
of these entities in the abstract model needs to be mapped to
a corresponding setup within the implementation model; for
multiple architecture alternatives of a product line this leads
to re-implementing the same interplay over and over again.
Our goal is to provide a solution where one unchanged spec-
ification can be reused across all implementation models (or
target-architectures) to be evaluated.

1.2 Service-Oriented Development
In this paper, we propose an approach to architecture eval-

uation and exploration that establishes a clean separation
between the services provided by the system under consid-
eration, and the architecture – comprised of components and
their relationships – implementing the services.

We use the notion of service to decouple abstract behavior
from implementation architectures supporting it. The term
“service” is used in multiple different meanings and on mul-
tiple different levels of abstraction throughout the Software
Engineering community [21]. We view services as special-
izations of use cases to specify scenarios; they “orchestrate”
the interaction among certain entities of the system under
consideration to achieve a certain goal [3]. In contrast to
“use cases”, which describe functionality typically in prose

and on a coarse level of detail, we define a service via the
interaction pattern among a set of collaborators required to
deliver the functionality.

Figure 1: Service-Oriented Development Process

We employ a two-phase, iterative development process as
shown in Fig. 1. Phase (1), Service Elicitation, consists of
defining the set of services of interest – we call this set the
service repository. Phase (2), Architecture Definition, con-
sists of mapping the services to component configurations
to define deployments of the architecture.

In phase (1) we identify the relevant use cases and their
relationships in the form of a use case graph. This gives us
a relatively large scale scenario-based view on the system.
From the use cases, we derive sets of roles and services as
interaction patterns among roles. This decouples from in-
teraction details, because roles abstract from components
or objects. Roles describe the contribution of an entity to a
particular service independently of what concrete implemen-
tation component will deliver this contribution. An object
or component of the implementation typically will play mul-
tiple roles at the same time. The relationships between the
roles, including aggregations and multiplicities, develop into
the role domain model.

In phase (2) the role domain model is refined into a compo-
nent configuration, onto which the set of services is mapped
to yield an architectural configuration. These architectural
configurations can be readily implemented and evaluated as
target architectures for the system under consideration.

The process is iterative both within the two phases, and
across: Role and service elicitation feeds back into the defi-
nition of the use case graph; architectures can be refined and
refactored to yield new architectural configurations, which
may lead to further refinement of the use cases.

1.3 Architecture Exploration and Aspects
Our service notion is based on interaction patterns that

cross-cut the entities implementing them; services emerge as
cross-cutting aspects of both abstract and concrete models.
This observation motivates our use of aspect-oriented pro-
gramming to capture services as aspects and to use weaving
techniques [8] to establish the mapping between one abstract
model and multiple concrete models.

This ability to effectively and efficiently generate multi-
ple candidate architectures for execution is critical to ren-
der architecture evaluation practical; it allows us to support
architectural review and analysis techniques [2] with data
gathered from prototypic implementations and simulation
runs.

AspectJ [7] provides the infrastructure we need to trans-
late services into aspects. In Sect. 3 we explain this mapping
in detail, and show how the combination of services and as-
pects helps us to solve the problems explained above for

architecture implementation, evaluation and improvement
of software product lines.

1.4 Contributions and Outline
The major contribution of this work is to introduce an

approach for exploring software architectures based on the
notions of services and aspects. We give a translation proce-
dure from service models to AspectJ implementations. Be-
cause we disentangle the specification of functionality (the
services) from the infrastructure on which they are imple-
mented we can build and evaluate different target architec-
tures without having to rewrite large portions of the code,
resulting in reduced effort and time for performing an archi-
tecture evaluation.

In Section 2 we introduce the Center Tracon Automation
System (CTAS) as our running example and show how it is
modeled in terms of services. In Section 3, we explain how
to translate the architecture definition to aspects for im-
plementing the system. In Section 4 we present experiences
with applying our approach to evaluate various architectures
for CTAS and in section 5 we discuss it in the context of re-
lated work. Section 6 contains conclusions and an outlook.

2. SERVICE-ORIENTED MODEL OF CTAS
To demonstrate our approach, we use the Center TRA-

CON Automation System (CTAS), a case study from the
air-traffic control domain, as an example of a realistic dis-
tributed system [17]. CTAS is a set of tools and processes de-
signed to help air traffic controllers manage the increasingly
complex air traffic flows at large airports. An important
part of this system is the distribution of weather updates to
interested clients; this is the part we concentrate on in our
case study.

The main component of the CTAS weather update system
is the communications manager CM; other processes, includ-
ing route analysis (RA), and the plan-view GUI (PGUI), are
clients to CM. Clients are distinguished as aware or unaware
depending on whether they participate in the weather up-
date process. The CTAS requirements [17] explain how the
clients initialize with CM, and how CM subsequently relays
the latest weather information to all aware clients. For this
paper, we design and implement various architectures for
the weather update functionality of the CTAS system. CM
continuously checks if a new weather report is available. If
so, the CM sends a message to all aware clients. Each client
responds, indicating whether it can process the weather up-
date successfully. If all clients indicate success, the CM asks
all the clients to use the latest weather information. If at
least one of the clients indicates failure, the CM informs all
clients to use the old weather information, to prevent incon-
sistent use of weather data across the different clients.

In the following we given an overview how to define, imple-
ment and evaluate architectures for supporting this process
using services and aspects. For more detailed information
refer to [11].

2.1 Scenario-Oriented Specification: Services
Analyzing the requirements leads to a number of use cases

and roles. The roles relevant for our example are Aware-
Client (weather-aware clients), Manager (drives the update
process), Broadcaster (broadcasts messages to a group of
clients) and Arbiter (collects responses from groups of clients).

msc broadcast

Manager

*
AwareClientBroadcaster

broadcast

(Msg,Param)
Msg(Param)

(a) (b)

role domain model CTAS Roles

Manager

Broadcaster

Arbiter

AwareClients

1

1

1

1 1

1

1..*

1..*

(c)

Figure 2: Services, and Role Domain Model

We specify the services of the CTAS weather update sys-
tem using a notation based on Message Sequence Charts
(MSC) [5, 9, 22]. An MSC defines the relevant sequences of
messages (represented by labeled arrows) among the inter-
acting roles. Roles are represented as vertical axes in our
MSC notation. Fig. 2(a) and 2(b) show the specification of
several services as interaction patterns.

In the following, we briefly describe a subset of the rel-
evant services for the CTAS weather update cycle without
giving their precise MSC specifications – the full set of ser-
vice specifications is available at [14].

• Broadcast: The Manager commands the Broadcaster
role to broadcast a message to all AwareClients. The
Broadcaster relays this message to all AwareClients.

• Client Get New Weather: The Manager role noti-
fies an AwareClient role that new weather information
is available. The AwareClient reacts by performing a
local action to get the new information. The outcome
of this local action (success or failure) is submitted
back to the Manager.

• Client Use Weather: The Manager role informs an
AwareClient role whether the new weather information
should be used subsequently, or whether the Aware-
Client should continue to use the old data.

• Arbiter Collect: The Arbiter role collects replies
from all AwareClients and determines an overall re-
sponse. If at least one of the AwareClients replies with
a failure flag, the Manager will get a failure response;
otherwise the Manager receives a successful response.

• Check For Weather Update: When the Manager
role detects new weather information locally, it trig-
gers the weather update process: it informs the Aware-
Clients by using the Broadcast service.

System behavior can be specified in terms of the services
listed above. Using high-level MSCs that reference and com-
bine the separate system services allows to specify the full
system behavior. We make use of powerful techniques to
combine separate service specifications, for instance by se-
quential and parallel composition, and interleaving [9].

2.2 Architecture Definition
The next step after eliciting the services is to define a suit-

able component architecture onto which these services can
be mapped. Our goal is to explore multiple such architec-
tures for their adequacy in supporting the elicited services.

For our example, we define four architectures that differ in
the component configurations and the roles played by the
components; see Fig. 3, rows 1–4.

Arch CTASMgr CTASBroadcaster CTASArbiter CTASClient

Manager, Arbiter, Broadcaster1

Manager, Broadcaster2

3

4

5

Manager, Arbiter

Manager

Manager, Forwarder Broadcaster

Broadcaster

Broadcaster

Arbiter

Arbiter

Arbiter

AwareClient

AwareClient

AwareClient

AwareClient

AwareClient

Figure 3: Component Role Mappings

The table shows the roles played by the components in
the various architectures. A blank cell means that the cor-
responding component does not exist for that architecture.
CTASClient plays the role of an AwareClient in all architec-
tures. CTASMgr also exists in all architectures, but the roles
it plays differ. The components CTASArbiter and CTAS-
Broadcaster are present depending on whether CTASMgr
will play the role of Arbiter or Broadcaster, respectively.

component configuration CTAS2

CM :

CTASMgr

PGUIClient :

CTASClient0..*

CMArbiter :

CTASArbiter

1

0..*

1

1

1

Figure 4: CTAS Architecture 2

To define an architecture we first capture the different
types of components that occur in the system under consid-
eration. For each component type we identify what roles
it plays in the system. In Architecture 2 of Fig. 4, for
instance, the CTASMgr component type plays two roles:
Manager and Broadcaster. We also identify the component
types CTASArbiter and CTASClient, playing the Arbiter
and AwareClient role, respectively.

In this section we have shown how to specify a system
in terms of services and roles, and how to model a sys-
tem architecture with a concrete component configuration.
Our models can be used to create executable prototypes for
architecture exploration. In the next section, we provide
a translation procedure using aspect-oriented programming
techniques.

3. TRANSLATING ARCHITECTURES TO
ASPECTS

We now show how to translate architecture definitions
into aspect-oriented programs. The basic idea is that we
translate the interaction patterns defining the services into
aspects such that they can be weaved into any given compo-
nent configuration using AspectJ’s weaving capability. Us-
ing AspectJ, we are able to implement structure (roles), be-
havior (services) and their mapping to a specific compo-
nent architecture separately and combine them very easily
as needed for exploring multiple different architectures im-
plementing the same functionality.

3.1 Aspect-Oriented Programming: AspectJ
AspectJ [7, 1] is a general-purpose aspect-oriented exten-

sion to the Java programming language; its language con-
structs facilitate clean modularization of crosscutting con-
cerns. Commonly cited examples for crosscutting concerns
are logging, tracing, error handling, synchronization and
performance monitoring. AspectJ provides a compiler that
weaves aspects at well-specified locations into Java classes.
We make use of AspectJ to translate services into executable
code. In the following, we briefly introduce the AspectJ
concepts we will use in our translation procedure that is
explained in detail in the subsequent sections.

We translate services into executable code using AspectJ’s
join points, pointcuts, advice, aspects, and intertype dec-
larations [1]. Examples of join points are method calls,
method executions, object instantiations, constructor exe-
cutions, field references and handler executions. Pointcuts
are used for selecting these join points; an example of a
pointcut is “all invocations of method xyz”. Advice defines
code that executes before, after or around a pointcut. An
aspect can be the combination of a pointcut and the corre-
sponding advice. In other words, using pointcuts, an aspect
can specify at what points in the execution – or under what
circumstances – a particular piece of code, represented as
an advice, should be called. An intertype declaration, an-
other form of aspect, can be used to specify a set of mem-
bers (attributes, methods) that should be present in multiple
classes. We use pointcuts and advice to translate patterns of
interactions defining a service as an aspect; we use aspects
describing intertype declarations to implement associations
between roles and components.

3.2 Translation Process and Artifacts
The translation process has two phases (cf. Fig. 5, within

the dashed boundary): (1) implementing a common service
repository based on a set of identified roles, and (2) im-
plementing multiple architectures for the service repository.
In (1) we use a build file to weave together the following
artifacts: classes for roles, aspects implementing the asso-
ciations in the role domain model, aspects introducing the
methods and local operations that each role needs to sup-
port, and aspects that implement the interaction pattern of
each service. In (2) we weave together the output of (1) with
classes for the components and aspects implementing the as-
sociations of the component configuration. These steps are
explained, in detail, below.

3.3 Translating Roles
Define classes for roles: For each role appearing in a

service definition we create a class. All specific role classes

Architecture Build File

Role Classes

Component Classes

Role Interaction Aspects

Role Configuration Aspects

Role Local Operation Aspects

Service Aspects

Service Repository Build File

Component Configuration Aspects

Evaluation Classes

Evaluation Service Aspects

Evaluation Architecture Build File

Architecture

Evaluation

Figure 5: Implementation Process Artifacts

are derived from a base “role” class, which has attributes
representing the role’s state and parent component name.
The parent component will capture the name of the compo-
nent for which the role instance is playing the role.

Define aspects for the role domain model: We cap-
ture the interconnection of roles as specified in the role do-
main model in form of attributes of the created role classes.
Fig. 2(c) for instance indicates that the Manager role needs
to have a reference to a Broadcaster role. Thus, a new
attribute of type Broadcaster and corresponding accessor
methods are introduced to the Manager role class with the
help of an intertype declaration. All these relationships are
captured in one aspect representing the configuration for
the roles. Using an intertype declaration to weave the role
associations into the role classes instead of directly adding
this information there allows for much easier refactoring of
the role model later. Role dependencies are only captured
within the role configuration aspect.

3.4 Service Repository
For each service to be supported by the architecture, we

follow the steps described below.
Define aspects for role interactions and local oper-

ations: For each possible interaction of a role we introduce
a method for that role using an intertype declaration. For
the service shown in Fig. 2(b), we introduce the method
CTAS GET NEW WTHR for the role AwareClient. We do
this for all interactions of the service and for all local oper-
ations of a role.

public aspect ServiceClientGetNewWeather {

 pointcut Interaction1(AwareClient ac):

 target(ac) && (call(void CTAS_GET_NEW_WTHR()));

 after(AwareClient ac) :Interaction1(ac){

ac.GetNewWeather();

 }

 pointcut LocalOperation1(AwareClient ac):

target(ac) && (call(boolean GetNewWeather()));

 after(AwareClient ac) returning(boolean flag): LocalOperation1(ac)

{

 ac.getManager().CTAS_WTHR_RECEIVED(ac,flag);

 }

}

Figure 6: Service to Aspect

Define aspects for services: So far we have defined
classes for all roles and connected them as specified in the

role domain model. We have provided methods within each
role class for all possible role interactions and local actions.
Now, we make use of these role classes and define each
service as an aspect and use pointcuts and advice to con-
nect interactions and local actions. A series of these defi-
nitions enables us to coordinate the interactions in the im-
plementation. In essence, this corresponds to capturing a
“global” state machine for each service in terms of an as-
pect definition. Consider, for instance, the service shown in
Fig. 2(b). We have to define a pointcut for the receipt of a
CTAS GET NEW WTHR message by an AwareClient role
and an advice for the pointcut just defined for executing the
local operation of Get New Weather. The aspect defined for
this service is shown in Fig. 6. This step projects the speci-
fied service behavior onto a specific role. The role implemen-
tation basically provides a state machine. The projection
step can be automated by applying a synthesis algorithm,
for instance the one described in [10].

Define build file for service repository: Based on the
roles and services we created, we now define a build file that
selects all classes and aspects for building a role implemen-
tation of the service repository. Note that at this point of
time, there are still no concrete components involved. The
build file for the service repository will be reused by multiple
architecture configurations as we will show in the following
sections.

3.5 Translating Components
We can now easily define multiple configurations for the

system under consideration. We do this by creating different
components based on the roles they play in an architecture.

Define classes for component types: We define one
class for each component type in a specific configuration.
We can reuse these classes across multiple different configu-
rations that make use of the same component types.

Define aspects for each component configuration:

We establish a specific mapping of roles to a component type
by introducing attributes into the component type classes.
Wo do this again with the help of intertype declarations.
We define one aspect for each component configuration to
reflect the roles the components play in that configuration.

3.6 Defining the Architecture
To finally establish a specific architecture, we create a

build file that selects the build file for the service reposi-
tory and the classes and aspects for a specific component
configuration. As a consequence, we can create multiple
configurations by defining multiple architecture build files
which differ only in the classes and aspects selected for a
component configuration. The code for the services remains
unchanged.

In this section we have defined a procedure for translating
a service-based system model into executable prototypes for
specific architecture configurations. We used AspectJ be-
cause it nicely allows to decouple the common service def-
initions from the mapping to specific architectures. Fig. 7
depicts in an overview the translation of the different ele-
ments of the service model into classes and aspects. We will
present experiences with applying our approach for archi-
tecture exploration in the next section.

4. EXPERIENCES
We have applied our approach extensively by evaluating

Figure 7: Service Model to Implementation

and optimizing different architectures for the CTAS case
study, as documented in [13]. Our architecture exploration
included several steps. First, we’ve evaluated the first four
architecture alternatives shown in Fig. 3 by applying our
scenario-to-aspects approach to create executable prototypes.
We have defined new services to perform performance mea-
surements of the running prototypes. Our approach was
very effective in weaving these services as aspects into the
existing functionality without changing any of the existing
services.

The previous exploration lead to the assumption that a
different role set, incorporating a Forwarder role between
Manager and Broadcaster, is more effective in reducing the
time required to perform a weather update cycle – a critical
part of the system. We followed our process of Fig. 1 and
iteratively evolved the architecture, role and service spec-
ifications. This was very simple and fast given using our
service model and AspectJ implementation artifacts. This
architecture variant turned out to be most efficient. We fi-
nally explored systematically multiple instantiations of this
architecture with different numbers of Forwarder compo-
nents. By measuring the performance of different prototypes
we could optimize the component configuration to find the
“sweet spot”.

For performance evaluation, we measured absolute elapsed
time as well as logical communication latency using the no-
tion of logical clocks [12]. Evaluating absolute times as well
as relative latency values allowed us to abstract from the
used communication infrastructures. We could select archi-
tecture configurations that are optimized in terms of com-
munications overhead and that perform similarly well in
concrete deployments on specific messaging infrastructures.
Details, statistics and performance charts are documented
in [13].

The beforementioned findings show how our approach im-
proves architecture exploration for product lines. First, it
is easy to generate prototypes for different archtecture vari-
ants. Second, a selection of different services for different
products of a product line is very easy to achieve with our
approach. Certainly, the full thinkable genericity that might
occur with software product lines is not addressed by our
approach. Our approach requires certain fixed elements,

such as the selection of roles or the definition of the services
within the service repository. However, because we provide
a high degree of decoupling between logical structure, be-
havior and architecture mapping, exploring relatively simi-
lar product line alternatives in many different configurations
and environments is very cost and time-effective. The same
is true for service repository refactorings and architecture
reexploration. In this paper, we put the focus on architec-
ture exploration of software product line alternatives. There
are many more related problems and open research areas
surrounding software product lines that we cannot address
here, such as configuration management, requirements trac-
ing and software evolution, to just name a few.

5. DISCUSSION AND RELATED WORK
Our approach is related to the Model-Driven Architecture

(MDA) [15] and architecture-centric software development
(ACD) [22]; similar to MDA and ACD we also separate the
software architecture into abstract and concrete models. In
constrast to these two, however, we consider services and
their defining interaction patterns as first-class modeling el-
ements of both the abstract and the concrete models. We
consider services as aspects in the sense of AOP [8] at the
modeling level, by focusing on cross-cutting interaction pat-
terns. In Aspect-Oriented Modeling [4], the cross-cutting
concerns are captured as design aspects, while our approach
models these concerns as services. In the tradition of [23]
the role concept is also adopted in [4] to define aspects ab-
stractly; both of these approaches, however, lack the “join
operator” we use to describe overlapping services sharing
messages in an interaction pattern.

Often the notion of service-oriented architectures is identi-
fied with technical infrastructures for implementing services,
including the popular web-services infrastructure [19]. Our
work, in contrast, supports finding the services that can
later be exposed either as web-services, or implemented as
“internal” services of the system under consideration.

The approach we present here improves upon our earlier
work in [11], by using pointcuts and advice to represent in-
teraction patterns. This provides better decoupling between
the roles and the interaction patterns they participate in as
compared to the class-based approaches in [16] and [6].

6. CONCLUSIONS AND OUTLOOK
Thorough exploration of architectural alternatives is par-

ticularly important to support product lines for complex
distributed and reactive systems. However, tight coupling
between the domain logic and the implementation infras-
tructure, as well as prohibitive costs for building prototypes
needed to evaluate multiple architectures often are stum-
bling blocks for architecture exploration.

In this paper we have shown how to define software ar-
chitectures and explore architecture alternatives using the
notion of services and their embodiment as aspects in As-
pectJ. We have decoupled the services provided by the sys-
tem from the many target architectures that can implement
the same set of services. We have introduced a translation
process turning service-oriented architecture specifications
into AspectJ aspects. This process exploits AspectJ’s weav-
ing capability to map service specifications to target archi-
tectures.

Resulting experience with our approach shows how easy

it is to iteratively change a given architecture; only a subset
of the service repository needed to be modified to funda-
mentally change an architecture for the CTAS case study.
Performing changes and subsequent exploration was a mat-
ter of minutes in the given system.

Future work will include automating the translation from
MSCs to aspects, and investigation of the relationship be-
tween our technique for architecture exploration with run-
time verification techniques, such as [18].

7. ACKNOWLEDGMENTS
Our work was partially supported by the UC Discovery

Grant and the Industry-University Cooperative Research
Program, as well as by funds from the California Institute for
Telecommunications and Information Technology (Calit2).
Further funds were provided by the Deutsche Forschungsge-
meinschaft (DFG) within the project InServe. We are grate-
ful to the anonymous reviewers for insightful comments.

8. REFERENCES
[1] AspectJ Team. The AspectJ programming guide.

http://eclipse.org/aspectj/, 2004.

[2] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures-Methods and Case Studies.
Addison-Wesley, 2002.

[3] E. Evans. Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley
Pub Co; 1st edition, 2003.

[4] R. France, G. Georg, and I. Ray. Supporting
multi-dimensional separation of design concerns. In
OSD Workshop on AOM: Aspect-Oriented Modeling
with UML, 2003.

[5] ITU-TS. Recommendation Z.120 : Message Sequence
Chart (MSC). Geneva, 1996.

[6] E. Kendall. Aspect oriented programming for role
models. International Workshop on Aspect Oriented
Programming at ECOOP, 1999.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ.
Proceedings of the 15th European Conference on
Object-Oriented Programming, number 2072 in Lecture
Notes in Computer Science, pages 327-353, 2001.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect oriented
programming. 1997.

[9] I. Krüger. Distributed system design with message
sequence charts. PhD Thesis, Technische Universität,
2000.

[10] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to statecharts. In F. J. Rammig, editor,
Distributed and Parallel Embedded Systems, pages
61–71. Kluwer Academic Publishers, 1999.

[11] I. Krüger and R. Mathew. Systematic development
and exploration of service-oriented software
architectures. Proceedings of the 4th Working
IEEE/IFIP Conference on Software Architecture
(WICSA 2004), 2004.

[12] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
Vol. 27, No. 7, July 1978, pp. 558-565, 1978.

[13] R. Mathew. Systematic definition, implementation
and evaluation of service-oriented software

architectures. Master thesis, University of California,
San Diego, 2004.

[14] R. Mathew and I. H. Krüger. Full service specification
for CTAS system, 2004.
http://sosa.ucsd.edu/publications/icse2005/

CTASServiceSpecification.pdf.

[15] OMG Model Driven Architecture.
http://www.omg.org/mda.

[16] B. Paech. A framework for interaction description
with roles. Technical Report TUM-I0731, Technische
Universität München, München, 1997.

[17] SCSEM 2003 Case Study. 2nd International Workshop
on Scenarios and State Machines: Models, Algorithms,
and Tools. CTAS Casestudy Overview, Requirements.
http://www.doc.ic.ac.uk/∼su2/SCESM/CS/

requirements.pdf, 2002.

[18] K. Sen, G. Rosu, and G. Agha. Runtime safety
analysis of multithreaded programs. Proceedings of the
10th European Software Engineering Conference and
the 11th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2003.

[19] J. Snell, D. Tidwell, and P. Kulchenko. Programming
Web Services with SOAP. O’Reilly, 2002.

[20] Software product lines. Software Engineering Institute.
http://www.sei.cmu.edu/productlines/index.html.

[21] D. Trowbridge, U. Roxburgh, G. Hohpe,
D. Manolescu, and E. Nadhan. Integration Patterns.
Patterns & Practices. Available at
http://www.microsoft.com.

[22] UML 2.0. http://www.omg.org/uml.

[23] M. VanHilst and D. Notkin. Using role components to
implement collaboration-based designs. In Proceedings
of OOPSLA’96. ACM, 1996.

