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Summary. We describe the Temporal Logic of Actions (TLA) from a logical per-
spective. After giving the syntax and semantics of TLA, we discuss some methods
for representing reactive systems in TLA and study verification rules.

1 The L in TLA

The Temporal Logic of Actions (TLA) is a variant of temporal logic, de-
signed for the specification and verification of reactive systems in terms of
their actions. In this paper we describe TLA from a logical perspective; our
description of TLA has three aspects:

1. As a logic, TLA has a precise syntax and semantics. We define these in
the next section. Our intent is not to develop a new TLA, but rather to
explain and to refine Lamport’s definition of TLA [19].

2. Like HOL [13] and other logics, TLA can serve for representing reac-
tive systems in several styles. In particular, a specification may describe
concurrent steps as interleaved or simultaneous; communication between
components may be synchronous or asynchronous. We discuss a few styles
in section 3.

3. Proofs in TLA rely on basic rules of temporal logic, rules for refinement,
and rules for composition. We state the principal rules in sections 4 and 5.
Following [7, 8], we show that some of them arise from general logical (or
algebraic) considerations, largely independent of the details of TLA

This paper is a self-contained presentation of TLA. It is however not
a survey, in that it includes technical novelties and in that it is far from
comprehensive.

Lamport’s original work on TLA [19] provides much additional, useful
material, and in particular some motivation for the TLA approach and a proof
system for TLA. Other papers discuss mechanical verification in TLA [11, 16],
refinement and composition [6, 4], real-time systems and hybrid systems [5,
18, 12], and medium-size examples [20]. There are also works on PTLA [1, 29],
a propositional logic based on a preliminary version of TLA. Finally, the logic
TLR has many similarities with TLA [28].
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2 A Definition of TLA

In this section we define a syntax and a semantics for TLA. The definition is
rather precise; it is intended to answer questions of detail, such as:

— what are the rules for substitution of terms for variables?
— what is stuttering equivalence?

With this goal in mind, we may err on the side of dotting too many i’s.

Lamport has described TLA in fairly informal terms, leaving open some
questions of this sort. These questions are often boring, but often necessary.
They have come up frequently: they have been asked by confused TLA be-
ginners, by meticulous referees, and by experienced colleagues who wished to
mechanize TLA.

Lamport has also introduced a specification language based on TLA,
named TLA+ [18, 20]. The definition of TLA+ is precise, and in fact includes
a concrete syntax. Some advantages of TLA+ over TLA are that TLA+ pro-
vides a module system, abundant syntactic sugar, and a built-in set theory.
The principal disadvantage of TLA+ may be its complexity: it is a complete
language rather than a core logic.

2.1 Syntax and Informal Semantics

TLA has four tiers:

1. In one tier, we find formulas whose meaning is state-independent. They
are called constant. Rigid variables, whose value is state-independent,
may occur in constant formulas.

2. The second tier is concerned with reasoning about particular states. The
formulas of this tier are called state formulas; they comprise state func-
tions and state predicates (or actions). Both rigid variables and flexible
variables, whose value is state-dependent, may occur in state formulas.

3. The third tier is concerned with reasoning about pairs of states. The for-
mulas of this tier are called transition formulas; they comprise transition
functions and transition predicates. Flexible variables may occur primed
in transition formulas; the primed occurrences are evaluated at a different
state than the others.

4. The fourth tier is concerned with reasoning about behaviors, which are
infinite sequences of states. The formulas of this tier are called temporal
formulas (or behavior predicates). They are built from formulas of the
other tiers using temporal operators.

Next we cover some syntactic preliminaries, and then define the syntax of the
third and fourth tiers in turn. We obtain the first and second tiers as special
cases of the third. We also sketch an informal semantics; a possible-world
semantics appears in section 2.2.
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2.1.1 Basics TLA formulas are built from predicate and function symbols,
variable symbols, and the special symbols =, A, O, 3,3, ', and =. (In addition,
TLA formulas include parentheses, which we use rather loosely.) We assume
given:

— An infinite set of variables V. These are partitioned into an infinite set Vg
of rigid variables and an infinite set Vp of flexible variables.

— A sequence of symbols £, partitioned into a sequence Lp of predicate sym-
bols and a sequence Lz of function symbols. To each of the symbols in £
is assigned a natural number, its arity.

These sets of symbols should be disjoint from each other and from the set of
special symbols —, A, .... Moreover, no symbol in V should be of the form z'.

When writing TLA specifications, one usually does not present these sets
of symbols explicitly. For example, it is common to assume without mention
that x is a variable, that @ is a function symbol of arity 0, and that + is a
function symbol of arity 2. We make such assumptions below, in our examples.
On the other hand, we cannot afford such informality in the definition of TLA.

2.1.2 Transition Formulas Let Vp = {2’ | # € Vr} be the set of primed
flexible variables, and Vg = VrUVp UV be the set of rigid variables, flexible
variables, and primed flexible variables.

A transition function is a first-order expression over the predicate and
function symbols of £ and over the variables of Vg. A transition predicate is
a first-order predicate over the predicate and function symbols of £ and over
the variables of Vg. Transition predicates are commonly called actions. For
example, if f € Lp is a function symbol of arity 3, p € Lp is a predicate
symbol of arity 1, x € Vg, and y € Vg, then f(x,y,y’) is a transition function
and Jy".(p(f(z,y,y')) A ~(z = y')) is a transition predicate.

The following inductive definitions are more explicit (but equivalent). The
set of transition functions is the smallest set such that:

— If x € Vg then z is a transition function.
— If f € Lr is an n-ary function symbol and vy, ..., v, are transition func-
tions then f(v1,...,v,) is a transition function.

The set of transition predicates is the smallest set such that:

— If v; and v, are transition functions then v; = v, is a transition predicate.

— If p € Lp is an n-ary predicate symbol and vy, ..., v, are transition func-
tions then p(v1,...,v,) is a transition predicate.

— If A is a transition predicate then so is - A.

— If A and B are transition predicates then so is (A A B).

— If z € Vg and A is a transition predicate then so is Jx. A.

The definitions of free variables and substitution are the usual ones for
first-order logic (over the set of variables Vg). We write FVians(v) and
FVirans(A) for the sets of free variables of v and A, respectively; these are
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subsets of Vg. Given a variable ¢ € Vg, we write v{a/z} and A{a/x} for
the results of substituting the transition function a for the free occurrences
of 2 in v and A, respectively. For example, FVy, (2 = 2') is {z,2'} and the
substitution (z = 2’'){y/x'} yields z = y.

A state function is a transition function with no free primed variables
(that is, the transition function v is a state function iff FVians(v) N Vr = 0).
Analogously, a state predicate is a transition predicate with no free primed
variables. If v is a state function then v’ is an abbreviation for the result of
priming the free flexible variables of v: if FVians(v)N Ve = {x1,...,2,} then
vis o{al fz ... /.. H{a!,/xn}. I P is a state predicate then P’ is defined
similarly.

Further, a constant function is a state function with no free flexible vari-
ables, and a constant predicate is a state predicate with no free flexible vari-
ables. If v is a constant function then v’ equals v.

2.1.3 Temporal Formulas Behavior predicates are the only temporal for-
mulas. At present, TLA has no corresponding notion of behavior function.
The set of behavior predicates is the smallest set such that:

— If P is a state predicate then P is a behavior predicate.

— If A is a transition predicate and v is a state function then O[A], is a
behavior predicate.

— If Fis a behavior predicate then so is = F'.

— If F and G are behavior predicates then so is (F A G).

— If Fis a behavior predicate then so is OIF'.

— If z € Vg and F is a behavior predicate then so is Jz.F.

— If x € Vg and F is a behavior predicate then so is 3z.F'.

Thus, if A is a transition predicate, then (A is a behavior predicate only if
A is in fact a state predicate. This restriction is designed to make possible
the proof of Proposition 2.1, given below.

We write FViemp(F') for the set of free variables of the behavior predi-
cate F'; this is a subset of V. We define:

themp(P) = thrans(P)
FViemp(O[Al,) = {2 €V |2 € FVyans(A4) or 2’ € FVians(A)}
U FVirans(v)
FViemp(=F) = FViemp(F)
FViemp(FAG) = FViemp(F) UFViemp(G)
FViemp(OF) = FViemp(F)
FViemp(32.F) = FViemp(F) — {2}
FViemp(32.F) = FViemp(F) — {2z}

This definition is somewhat ambiguous (and so are several others below). In
particular, if P is a state predicate, then FViemp(—P) is defined in two ways,
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as FViemp(P) and as FVians(P). Fortunately, the two definitions coincide.
This slight problem can be avoided altogether by making explicit the coercion
from the set of state formulas to the set of behavior predicates.

We also define a form of substitution. Given a rigid or flexible variable
y € V, a state function b, and a behavior predicate F', we write F[b/y] for
the result of substituting b for the free occurrences of y in F. When v is rigid
(y € Vg), the substitution F[b/y] is useful to us only when b is in fact a
constant function. However, the definitions of F[b/y] for y € Vg and y € Vg
are mostly identical, so we treat them together:

Pb/yl = P{b/y}

OBy = O[A{/YyHupyyy iy € Vr
(O[A])[b/y] = O[A{b/yHY /Y Hugryyy ify € VE
(=F)[b/y] = ~(F[b/y])
(FAG)b/y] = FDb/y]AGb/Y]

(@r)b/yl = OFb/y)

(Fz.F)b/y] = Fa(F[b/y]) if & € FVirans(b) U {y}
(Fy.F)b/y] = Fy.F

(Fz.F)b/y] = Fo.(F[b/y]) if 2 € FVirans(b) U {y}
(Fy.F)b/y] = 3Fy.F

The definition is partial because the two clauses for existential quantification
require & & FVirans(b). In other words, F[b/y] is defined only when b is free for
y in F' (and some renaming is needed otherwise). This simplifies the definition
while preventing the capture of variables.

These definitions should be contrasted with the corresponding definitions
for transition formulas. According to these definitions, if x € Vr is a flexible
variable, then the x in z’ is treated as an occurrence of x; in the definitions
for transition formulas, ' is viewed as a separate variable, unrelated to x.
For example, FViemp(Olz = 2'];) is {z}, while FVipans(z = 2') is {z,2'}.
Similarly, (O[z = 2'],)[b/z] yields (O[b = b'],), while (z = z'){b/x} yields
b=2a.

2.1.4 Informal semantics The meaning of a constant formula is its usual
first-order meaning. A constant formula is like a constant expression in a
programming language, hence the name (borrowed from TLA+).

A state function is like an expression in a programming language. Seman-
tically, a state is a mapping from the set of flexible variables to a set of values;
the value of rigid variables is state-independent. A state function has a value
at each state. Similarly, a state predicate is either true or false at each state.

Unlike a state formula, a transition formula is not evaluated at a state,
but at a pair of states. Given a pair of states, the primed variables refer to
the second state and the unprimed variables to the first. For example, p(x,y’)
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is true at a pair of states (s, ¢) iff p holds for the value of x in s and the value
of yin . An A step is a pair of states satisfying A.

A behavior is an infinite sequence of states. A behavior predicate is true
or false of a behavior:

— A state predicate is true of a behavior iff it is true of its first state.

— The Boolean connectives = and A are standard. So is quantification over
rigid variables: 3z.F means that there is some way of choosing a value for
x such that F holds.

— The O operator is the “always” operator of temporal logic. As usual, OF
means that F' is true always in the future.

— Similarly, O[A], means that, in the future, every pair of consecutive states
satisfies A or v' = v.

— The formula dx.F roughly means that there is some way of choosing a
sequence of values for x such that F' holds. We call z an internal or a
hidden variable of 3z.F'.

2.1.5 Abbreviations Many abbreviations are commonly used in TLA. We
introduce some of the essential ones.

The Boolean abbreviations true, false, V, =, and = are the usual ones,
and so is the definition of Vz.F as —Jx.—F. Analogously, Vz.F stands for
-3z ~F.

By far the most delicate abbreviation is the one for writing “enabled”
predicates:

— If Ais a transition predicate then Enabled A is an abbreviation for the state
predicate obtained by existentially quantifying the free primed variables of
A (in any order): if FVians(A) N Ve = {af,..., 2!} then Enabled A is
Az, ... 32! A,

We say that A is enabled in state s iff Enabled A is true at s. Thus, A is
enabled in s iff there exists a state ¢ such that (s,¢) is an A step.

In defining the remaining abbreviations, we assume that v, vy, ..., v, are
state functions, that A is a transition predicate, and that F' is a behavior
predicate. Under these assumptions:

— O[A4]w,,....v, stands for the behavior predicate O[A],, A ... AO[A],,. This
predicate is a generalization of [J[A],; it means that, in the future, every
pair of consecutive states satisfies A or v = vy A... A v, = v,.

— O(A)ws,... 0, stands for = O [-A],, .., and means that some future pair
of consecutive states satisfies A and v] # vy V...V v, # v,.

— QF stands for the behavior predicate ~—F'. The ¢ operator is the “some-
time” operator of temporal logic. As usual, O F' means that F is true some-
time in the future.

— WF.,, ., (A) stands for the behavior predicate

O O (Enabled (AN (V] o1 V...VUl, #v,)) =00 (A)o, v

n
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This is a weak fairness formula; it holds for a behavior if either there are
infinitely many A steps where at least one of vy,..., v, changes, or there
are infinitely many states from which such a step is impossible.

— Similarly, SF, ., (A) stands for the behavior predicate

OO (Enabled (AN (V] o1 V...V U, #v,)) =00 (A)o, . »

n

This is a strong fairness formula; it holds for a behavior if either there are
infinitely many A steps where at least one of vq,...,v, changes, or there
are only finitely many states from which such a step is possible.

2.2 Possible-World Semantics

We formalize the semantics of TLA in terms of possible worlds, much as
usual for modal logics. The sequence of definitions for the semantics mostly
parallels that for the syntax.

2.2.1 Basics Just as the sequence of symbols £ is usually not given explic-
itly, the first-order structure that underlies the meaning of a TLA formula is
usually taken for granted. A structure M is a non-empty set U together with
a sequence of relations on U and a sequence of functions on U. Each relation
and each function has a natural number as arity.

The structure M is a structure for £ if the number of relations and the
number of functions in M are equal to the number of predicate symbols and
the number of function symbols in £, and if the sequences of arities for M and
L are identical. When M is a structure for £, there is an evident bijection C
from the symbols in £ to relations and functions. In the following definitions,
M and C are fixed.

An interpretation over a set of variables W is a mapping from W to U. A
state is simply an interpretation over Vp. If a is an interpretation over W,
x € W, and e € U, then a{z «— e} equals a except that it maps = to e. If
a and 3 are both interpretations over W, then « and 3 are similar up to z,
written a ~, 3, iff § = a{x « e} for some e.

Next we define the semantics of TLA expressions. When ¢ is a classical,
first-order expression, we write [t] , for the meaning of ¢ under interpretation
a. We use the same notation independently of the sort of ¢; the meaning of
t may be either a truth value or an element of the universe {/. In general,
when ¢ is an arbitrary TLA expression, we write [t],, , for the meaning of ¢
with interpretation «, and state, pair of states, or behavior . We rely on the
type of 8 to resolve ambiguities.

2.2.2 Transition Formulas The semantics of first-order expressions is the
usual one:

— If x € Vg then [z], is a(x).
= [f 1, 0], 18 CF([01] s - -5 [onl)-

and
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— [v1 = v2],, is true iff [v1], and [v,], are equal.

— [p(v1,...,v0)], is true iff C(p)([vi],,,. .., [va],,) is true.
— [—A4],, is true iff [A] is not.

— [A A B], is true iff both [A], and [B], are.

— [32.4], is true iff [A]; is true for some 3 ~, a.

Given an interpretation a over Vg and a pair of states (s, t), we define an
interpretation E(a, s,t) over Vg by:

E(a,s,t)(z) = afz) ifxeVp
E(a,s,t)(z) = s(z) ifzeVp
E(a,s,t)(z') = t(x) ifxeVp

The semantics [...],, (s,t) Of a transition formula under o at a pair of states
(s,1) is its first-order semantics [.. ] p(, ;) under E(a, s, t):

[[’U]]a,(s,t) = [[’U]]E(a,s,t)
[[A]]a7(s,t) = [[A]]E‘(ms,t)

The semantics of a state formula at a pair of states does not depend on
the second state of the pair. Hence, when P and b are state formulas, we may
shorten [P]; .y and [b]5 ;) to [Pls, and [b]5 ;. Similarly, the semantics
of a constant %ormula at a pair of states does not depend on the states at all.

2.2.3 Temporal Formulas A behavior is an infinite sequence of states. If
o i8 $o, 81, .., then o, is its suffix s,, $p41,.... The result of prefixing the
finite sequence p to ¢ is p o o. The finite sequence consisting of g, t1,...,tm
is (to,tl, . ,tm>.

Stuttering equivalence is the finest equivalence relation on behaviors such
that any two behaviors p o (¢,t) o o and p o (t) o o are stuttering equivalent.
Two behaviors o = sq, s1,... and 7 = tg, t1,... are equal up to x iff s; ~, t;
for all ¢. They are similar up to x, written o ~, 7, iff there exists ¢’ and 7/
such that:

— ¢’ and 7' are equal up to z;
— o and ¢’ are stuttering equivalent;
— 7 and 7' are stuttering equivalent.

Given an interpretation a over Vg and a behavior ¢ = s¢,51,..., we
extend the semantics to behavior predicates:

[Pl s [P,

- [O[A4].],,, is true iff [AV (v = v)]
— [=F], , is true iff [F]_ _ is not.

- [FA G]]a , is true iff both [F], ., and [G],, , are.

- [OF], , is true iff [Fl., 18 true for all n > 0.

— If z € Vg then [32.F], , is true iff [F]; , is true for some 8 ~, a.
— If x € Vp then [Ax.F], , is true iff [F],, . is true for some 7 ~, o.

o (5my5mit) is true for all n > 0.

a,o «,T
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A logic is invariant under stuttering when none of its formulas can dis-
tinguish between two stuttering-equivalent behaviors. Invariance under stut-
tering is important in connection with refinement [17]. A fundamental result
about TLA is that it is invariant under stuttering, namely:

Proposition 2.1 (Invariance under stuttering). If F' is a behavior pred-
icate, « s an interpretation over Vg, and o and T are two stuttering-
equivalent behaviors, then [F],, = [F],.,.

PRrOOF: We use the following simple facts:
1. If 0 and 7 are stuttering equivalent, then for every n > 0 there exists
m > 0 such that o|, and 7|, are stuttering equivalent.
2. If 0 = s9,51,... and T = tg, 1, ... are stuttering equivalent then
a. t() = S0, and
b. t1 = S1 Or tl = S0-
3. For any x € Vp, similarity up to x (=) is an equivalence relation on the
set of behaviors.
The proof is by induction on the structure of F"
1. CAsEe: F'is a state predicate.
PROOF: Since ¢ and 7 are stuttering equivalent, Fact 2a implies so = to.
Therefore, [F], , = [F], ., = [Fl.., = [Fl. .-
2. CasE: F'is O[A], where A is a transition predicate and v is a state func-
tion.
PROOF: Since stuttering equivalence is an equivalence relation, by the def-
inition of [O[A],],, , it suffices to:
AssuME: 1. [O[A],], , is true.
2.n>0
Prove: [AV (V' =0)], (5, s0rn)
2.1. Choose m > 0 such that o|, and 7|, are stuttering equivalent.
PROOF: Such m exists by the assumption that ¢ and 7 are stuttering
equivalent, and Fact 1.
22, 8, =tm
PROOF: By the choice of m in Step 2.1, and Fact 2a.
2.3. CASE: S$pq1 = timy1
PROOF: Step 2.2 and the case assumption imply (s, $n+1) = (Em, tmt1),
and hence .[[A V(v = U)]]a,(sv,.,svl+1) = [Av (v = ,U)]]ay(tm.ztm.+1); since
[O[A].], , is true by assumption, [AV (v" = v)], (. . ., is true.
2.4. CASE: Spy1 =ty
PROOF: Step 2.2 and the case assumption imply s, = s,,41. Therefore,
[v' =], (s, 500,) 18 true, and hence [A v (v" = )] ) is true.
2.5. Q.E.D.
PROOF: The choice of m in Step 2.1 and Fact 2b ensure that s, 41 = t;41
or $p+1 = tn,. The assertion follows by Steps 2.3 and 2.4.

is true.

a,(SnsSn+1
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3. CASE: F is =G for some behavior predicate G.
PRrROOF: By the induction hypothesis, [G], . = [G],, ,, and this immedi-
ately implies the assertion. 7 7
4. CASE: F is G A H for some behavior predicates G, H.
PROOF: [F],,, is true
iff [G],, and [H], , are true
if [G],, and [H], , are true (by induction hypothesis)
it [F], , is true
5. CAsE: F is OG for some behavior predicate G.

PROOF: Since stuttering equivalence is an equivalence relation, by the def-

inition of [OG],, , it suffices to:

ASSUME: 1. [[EIG‘]]QJ is true.

2.n>0

Prove: [G], ,. is true.

5.1. Choose m > 0 such that o|, and 7|, are stuttering equivalent.
PROOF: Such m exists by the assumption that ¢ and 7 are stuttering
equivalent, and Fact 1.

5.2. Q.E.D.

Proor: The assumption that [G], . is true implies that [G], | ~is
true for all m > 0. Step 5.1 and the induction hypothesis imply that
[Gl. ), is true.
6. CASE: F is dz.G for some behavior predicate G and = € Vg.
ProoF: [F],,, is true
ff [G];, is true for some 8 ~, a
f  [G];, is true for some 3 ~, a (by induction hypothesis)
it [F], , is true
7. CASE: F'is 3z.G for some behavior predicate G and x € Vp.
ProoF: [F],,, is true
if [G],,, is true for some p ~, o
iff [G],,, is true for some p =, 7, by the assumption that
o and 7 are stuttering equivalent (and therefore o ~, 7),
since ~, is transitive (Fact 3)
it [F], , is true

8. Q.E.D.
PROOF: From Steps 1-7 by induction on the definition of behavior predi-
cates. a

2.2.4 Validity Given a structure M for £, the state predicate P is M-valid
iff [P],, is true for all interpretations a and states s. Similarly, a transition
predicate A is M-valid iff [[A]]a,(s,t) is true for all interpretations o and states
s and t. Finally, a behavior predicate F' is M-valid iff [F]_  is true for all
interpretations o and behaviors o. 7

More generally, given a class of structures S (for example, the models of
a first-order theory), a formula is S-valid iff it is M-valid for all M in S.
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Often, the class of structures of interest is clear from context, and then we
say that the formula is valid.

There can be a slight ambiguity, since “P is valid” may mean “P is a
valid state predicate” or “P is a valid temporal formula”; fortunately, these
two readings are equivalent.

2.3 Notes

Other presentations of TLA are possible. The following are some notes on the
choices that we made consciously in our presentation, and on alternatives.

2.3.1 TLA and “Ordinary Logic” Throughout, we have chosen to exploit
the syntax and semantics of ordinary, first-order logic in defining those of
TLA. In particular, our transition formulas are simply first-order formulas
over a large set of variables (Vg). To obtain this, it is important that ' be
applied only to variables.

In an alternative definition, we could have taken ' to be an operator that
can be applied to any state function. With that definition, ” would be treated
much like the “next” operator (o) of temporal logic.

2.3.2 Subscripts Invariance under stuttering is part of the essence of TLA.
Syntactically, this means that subscripts are part of the essence of TLA. The
use of subscripts has given rise to many abbreviations, and to many different
conventions.

Traditionally O[A],, ..., is not an abbreviation for O[A],, A ... ADO[A]., .
Instead, one writes O[A](,, .. ,) where (v1,...,v,) is the tuple of the state
functions vy, ..., v,. If the underlying first-order language is sufficiently rich,
tupling is definable, so (v1,...,v,) is in fact a state function. We have taken
O[A]s,,... v, as an abbreviation in order to avoid assumptions on the first-
order language. In particular, we can reason about finite domains, where
tupling is not available.

Another common convention is to take [A], as an abbreviation for A Vv
(v" = v). This convention can be useful, but we avoid it in order to simplify
the parsing of formulas.

2.3.3 TLA+ From a logical point of view, TLA+ is essentially a special
case of TLA, with many added definable constructs.

The main differences between TLA as we have described it and its for-
malization in TLA+ are syntactic. In TLA+, £ consists of a single predicate
symbol € with arity 2. In addition, TLA+ includes Hilbert’s choice opera-
tor €. More importantly, TLA+ provides some syntactic sugar and a module
system, both useful for writing specifications in practice.

In TLA+, the structures of interest are models of a set theory; they are
equipped with one binary membership relation and no functions.
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3 Representing a Component

Like other logics, TLA supports several different styles for modelling a com-
ponent. We now discuss, by means of an example, some of these styles. Which
style is most appropriate depends on the problem at hand.

All the styles we describe have some common logical aspects:

— Temporal formulas are used both for describing components and for spec-
ifying their properties.

— Variable hiding is represented by existential quantification.

— The composition of two components is represented by the conjunction of
their specifications: composition means logical conjunction.

— A component implements a property if the formula for the component
implies the formula for the property: implementation means logical impli-
cation.

For simplicity, we explain how to describe a component with one input
(“environment”) variable e, one output (“module”) variable m, and one in-
ternal variable z. Correspondingly, we use three flexible variables, e, m, and
x. Other situations are discussed in [4], and in particular the important spe-
cial case where the component is a complete system, with no input from the
outside.

3.1 The Standard Interleaving Style

An interleaving representation of a component is one that disallows simul-
taneous steps by the component and its environment. Interleaving repre-
sentations are studied in some detail in [4]. We call standard the style of
specification developed there.

3.1.1 The Form of a Specification In the standard interleaving style, a
specification has the form

Az.(Init AO[N]m,e AN L)
where:

Init is a state predicate describing the initial values of m and x.

N is a transition predicate describing the component steps. Since the com-
ponent does not change its input variable, N should imply ¢’ = e.

m,x appears as the subscript for N because O[N], . allows any state change
that leaves m and x unchanged. Such a state change can affect only e
and variables not mentioned in the specification, so we think of it as an
environment step. Thus, according to O[N], ., the environment may do
anything but change m and x.

L is the conjunction of fairness conditions, each of the form WF,, ,(A) or
SF,,2(A). It is common that NV is a disjunction, and that each A is one
of N’s disjuncts.
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The specification disallows simultaneous changes of the input variable and
the output variable. In fact, the specification without the quantifier (that is,
Init AO[N]m,« A L) also disallows simultaneous changes of the input variable
and the internal variable. More precisely, if

N = e =c¢
is a valid transition formula then
Az.(Init AO[N)m AL) = O =evm' =mlem
and
(Init AO[N]m o AL) = O =eV(m' =mAz" =2)]eme
are valid temporal formulas.

3.1.2 A Lossy Queue As an illustration of the standard interleaving style,
we specify a simple, lossy queue. Figure 1 shows a picture of this lossy queue.
The lossy queue’s interface consists of two “wires”, ¢ for input and o for
output. Because there is no acknowledgment protocol, inputs may be lost.
Similarly, an input may be added to the lossy queue several times.

— eI

Fig. 1. A simple queue.

The specification of the lossy queue is shown in Figure 2. In the specifi-
cation, a list of formulas, each prefaced by A, denotes the conjunction of the
formulas, and indentation is used to eliminate parentheses.

The specification is a temporal formula that mentions the flexible vari-
ables 7 and o, as well as the flexible variable ¢, which equals the sequence
of messages received but not yet output; ¢ is hidden by quantification. The
specification uses standard predicate and function symbols for sequences; in
particular, Head(q) denotes the first element of ¢, and Tail(q) denotes the
sequence obtained by removing the first element of g.

The state predicate Initg describes the initial state. It asserts that the
values of 7 and o are equal, and the value of ¢ is the empty sequence.

The action Eng represents the receipt of a message by the lossy queue.
This action is always enabled. The action Deg represents the operation of
removing a message from the head of ¢ and sending it on the output wire.
This action is enabled iff the value of ¢ is not the empty sequence. The action
Ng is the specification’s complete next-state relation.
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Initg e

ANo=1
Nag=()
A ’

Eng = Aq =qo(i)

ANi =1

Ao =o
Deg = Aq#)

A o' = Head(q)

A ¢ = Tail(q)

ANi'=i
Ng = Eng V Deq
Lo = WF..(Enqg) A WF, ,(Deq)
Ig = Initg A ONgloy A Lo
do = 3dqllg

Fig. 2. A specification of a lossy queue.

The formula L is the fairness specification of the lossy queue. It consists
of fairness conditions for Eng and Deg.

The formula I1g is the complete specification of the lossy queue before ¢
is quantified. The first conjunct, Initg, describes the initial state. The second
conjunct, O[Ng]o,q, asserts that every step is either an Ng step or leaves o
and ¢ unchanged. The third conjunct is Lg.

The formula @ is the actual specification. The free flexible variables of
@¢ are only ¢ and o, while ¢ is existentially quantified.

Writing this TLA specification of the lossy queue is not much different
from writing a corresponding piece of code, except that a TLA formula has
a precise meaning and can be manipulated with logical rules, while a piece
of code can be executed.

The same TLA is used for expressing the properties expected of the lossy
queue. For example, the temporal formula

Vu. (0O (i =u) = 00 (0 =u))

expresses that if eventually ¢ settles to a value u then eventually o settles to
the same value u. The lossy queue implements this property. More precisely,
for structures where the queue operations have the expected meaning, the
temporal formula $g = Yu.(0 O (i = u) = ¢ O (0 = u)) is valid.

3.1.3 The Lossy Queue, da Capo The specification of the lossy queue is
simple, but peculiar. (In the terminology of [2], the specification is neither fin
nor internally continuous.) For example, consider a behavior where i remains
constant. In this case, an implementation of the lossy queue could simply do
nothing, leaving o equal to ¢. Curiously, however, the weak fairness condition
on the Eng action implies that Eng has to take place infinitely often.
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>

Initg ANo=1
Ag=)
Engt 2 Ai# Last({o) o q)
A q' =qo i)
ANi' =i
Ao =o
Deg = Aq#)
A o' = Head(q)
A ¢ = Tail(q)
AN =1
N;r_, 2 Eng" V Deq
L, = WF,,(fng') A WF, 4(Deq)
mh, 2 Initg AO[Nlog A L
i a T
P4 = Hq.HQ

Fig. 3. An alternative specification of a lossy queue.

We reformulate the specification of the lossy queue in Figure 3. The en-
queuing action is new; it is enabled iff i # Last({o) o q) where Last({(o) o q)
denotes the last element of (0) o g. Hence, the queue cannot enqueue the same
input twice in a row. Furthermore, when the lossy queue is empty and the
input is equal to the output, an enqueue cannot take place.

Despite these changes, the resulting specification is logically equivalent to
the original one, so the two specifications implement one another. We discuss
how to prove this equivalence in section 4.

3.2 An Interleaving Style with Synchronous Communication

Specifications in the standard interleaving style describe components that
communicate asynchronously; all synchronization relies on handshakes. In
this section we describe another style for writing interleaving specifications
which models a form of synchronous communication.

In this style, a specification still does not allow behaviors where an input
variable and an output variable of a component change value simultaneously;
the visible steps of component and environment are interleaved. However, a
specification may allow behaviors where an input variable and an internal
variable change value simultaneously.

This possibility is useful in modelling a sort of synchronous communica-
tion, where the component can record in its internal variable every step of
the environment, as it happens. This sort of communication is less laborious
(but perhaps less realistic) than an explicit handshake between component
and environment.
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3.2.1 The Form of a Specification In this style, a specification has the
form
Az.(Init AO[N]emo A L)

where:

Init is the usual state predicate.

N is no longer expected to imply ¢’ = e. Instead, N should be expressible as
the digjunction of an action N,,,q that implies ¢’ = e and an action N,
that implies m' = m. Intuitively, the former describes the component
steps, while the latter describes the environment steps and the resulting
changes to z.

e,m,x appears as the subscript in O[N]¢ . in order to guarantee that N
accounts for every state change that modifies any of the variables of
interest.

L is the conjunction of fairness conditions, each of the form WF, ,, »(A) or
SFe,m,z(A). Now Nyoq may be a disjunction, and each A may be one of
the disjuncts of Nyoq.

The specification disallows simultaneous changes of e and m. More pre-
cisely, if the transition formulas

N = (Nmod V Neno) Npod = (¢ =€) Neno = (m' =m)
are valid then the temporal formula
z.(Init AO[N]e,m,e AL) = O =evm' =mlem

is valid. However, Init A O[N]. m.» A L may allow simultaneous changes of e
and z.

3.2.2 A Queue with Synchronous Input We can take advantage of the
synchronous style for writing a simple specification of a (non-lossy) queue.
This queue never misses an input because each change on its input wire ¢ is
simultaneously reflected in its contents g. The specification &7, of the queue
is given in Figure 4.

In this specification, there is no enqueue action. Instead, we find an input
action, Inp. This action asserts that ¢ changes, that the new value of 7 is added
to the queue, and that o does not change. Conversely, Deq implies that ¢ does
not change. The specification includes a fairness condition on Deg. It does
not include a fairness condition on Inp, because we do not require that the
environment produce infinitely many inputs. The queue implements the lossy
queue, as the implication &7, = @ is valid.

While the Inp action is part of the queue specification, it does not restrict
how the input variable ¢ may change. The specification allows arbitrary en-
vironment steps. In section 5 we discuss how to express assumptions about
the environment.
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Initg e

ANo=1
Ng=()
Inp 2 AN #i
Aq =qo (i)
Ao =o
A
Deq = Ag#()
A o' = Head(q)
A q’ = Tail(q)
ANi' =1
* A
Ng = Inp V Deq
* A
Q = WFi,o,q(Deq)
5 2 Initg AONGliew A L
* A *

Fig. 4. A synchronous specification of a queue.

It would be easy to restrict the Inp action. For example, we could add
that the length of ¢ is at most 8 as a conjunct to Inp, with the effect that
an input step would be disallowed when the queue contains 8 elements. We
would obtain a component specification that also imposes conditions on the
component’s environment. Such a specification is interestingly reminiscent of
those that can be written in process calculi like CCS [24]; our experience with
this kind of specification is limited.

3.3 A Noninterleaving Style

All of the specifications given so far are interleaving specifications, where com-
ponent and environment do not take steps simultaneously. A noninterleaving
specification, in contrast, allows such simultaneous steps.

In our experience, interleaving specifications are often easier to reason
about than noninterleaving specifications. On the other hand, noninterleaving
specifications lead to a direct treatment of composition; we give an example
below.

3.3.1 The Form of a Specification One appealing way of writing a non-
interleaving specification is “variable by variable”, as:

Jz.(Init AO[Ninple ADO[Nout]m AO[Nine]o A L)

The actions Ninp, Nout, and Ny, are intended to describe changes to one
variable each (to e, m, and x, respectively). The choice of subscripts implies
that a step that changes e, m, or x satisfies Nypnp, Nout, OF Nipe, respectively.

The actions Nipp, Noyt, and Nyp, may be mutually consistent. Therefore,
a behavior may satisfy Init A O[Ninple A O[Nout]m A O[Nint]e A L even if it
contains simultaneous changes to e, m, and z. Therefore, a behavior may
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satisfy Jz.(Init A O[Ninple A O[Nout]m A O[Nintlz A L) even if it contains
simultaneous changes to e and m.
Another style for noninterleaving specifications appears in [4].

3.3.2 A Noninterleaving Queue A noninterleaving specification of the
queue appears in Figure 5. Its actions are defined in terms of auxiliary tran-
sition functions di and do that represent the values enqueued or dequeued in
a transition, if any.

A

Initg ANo=1

Ag={)
di 2 ifi' =i then () else (i')
do 2 if o' = o then () else (0')
Inp* 2 Adi'#£i

A qodi=dooq
Deg® = Aq#()

A o' = Head(q)

A gqodi=dooq
Ly = WFo(Deg®)
I3 2 Initq A O[Inp®];i A O[Deq®lo A O[Inp® V Deq®ly A Lg
oy = 3q.I1y

Fig. 5. A noninterleaving specification of a queue.

The specification allows simultaneous input and output steps when the
queue is not empty. The conjunct ¢ odi = doo ¢' appears in the input action
to relate the old value of the queue with the new one, whether there has been
an output or not. The conjunct g o di = do o ¢’ appears in the output action
with an analogous purpose. This conjunct implies that any change to ¢ is
reflected in the queue, so that the queue never misses an input, and that any
change to o comes from the queue.

The specification allows but does not require simultaneous input and out-
put steps. Therefore, a behavior where input and output never coincide may
satisfy the specification. In particular, the interleaving queue implements the
noninterleaving queue: the implication &7, = &, is valid.

3.3.3 Composing Queues We may want to prove that two queues @1 and
Q- in series implement a single queue @. This proof may not be possible if @
has an interleaving specification, and we represent the composition of @)1 and
Q@2 by the conjunction of their specifications. In particular, 1 may receive
an input at the same time as ()2 produces an output, so the specification of
the composite queue would allow simultaneous input and output steps, while
an interleaving specification of ) would not. We may avoid this problem
by simply assuming that input and output do not happen simultaneously
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(as in [4]). In contrast, this problem does not even arise for noninterleaving
specifications, as we show next.

Consider two queues with noninterleaving specifications g, and &3, .
Suppose that the first queue has input variable ¢, the second queue has output
variable o, and the two queues are connected by the variable c. Thus, 7, is
Py [c/o] and 7, is P [c/i]. The composition of the queues with ¢ exposed is
represented by the conjunction @¢, A &7, . It implements a single queue, as
(23, N 9p,) = D7 is valid. The composition of the queues with ¢ hidden is
represented by Jc.(07), A ®p,). Since ¢ does not occur free in @3, it follows
that Ic.(, A Pp,) = Py is valid as well.

4 Proof Rules

So far we have explained TLA formulas in terms of their semantics. This
semantics is sufficient for writing specifications, and sometimes for informal
reasoning, but the proof of TLA formulas requires precise rules of inference. In
this section, we give some rules for TLA and discuss their use in verification.

4.1 Logical Rules

We describe some basic rules of temporal logic and rules for existential quan-
tification. We adapt the rules from Lamport’s work, with some attention to
logical details. The rules that we present are quite incomplete; our purpose
is only to illustrate an approach.

To understand the rules, it is useful to keep in mind an overall proof
strategy that underlies the TLA approach (but is certainly not unique to
it). The meaning of a temporal formula is given in terms of behaviors, and
in principle one has to reason about sets of behaviors to prove a temporal
formula. Unfortunately, reasoning about sets of behaviors can be hard. The
rules of TLA have as objective reducing that hard, temporal reasoning to
easier reasoning about actions. We do not give rules for reasoning about
actions, since no new rules are needed—actions are first-order formulas.

Other proof systems for temporal logics (for example, that of Manna
and Pnueli [22]) include rules for relating programs and logical formulas.
TLA does not include such rules: in the TLA approach, formulas represent
programs, and the rules used for verification are purely logical.

4.1.1 Invariants for O Most verifications require proving an invariant, as
a starting point. A basic proof rule for proving an invariant is:
PAN(NVY =v) = P

(Inv-proofl)
P A O[N], = OP

where P is a state predicate, N an action, and v a state function. This rule
is sound, in the following sense:
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— take any sets of symbols (£, Vg, Vr), and take any class of structures for
L (possibly a single structure);

— take any state predicate P, action IV, and state function wv;

— assume that P A (N Vo' =wv) = P’ is valid, as a transition formula;

— then P A O[N], = OP is valid, as a temporal formula.

The proof of soundness is by a straightforward induction on behaviors.

Whenever we state a rule, from now on, we implicitly adopt the same
reading. We assume given a set of symbols and a class of structures. A rule
is sound when, if its antecedents are valid for the given class of structures,
then so is its conclusion. Similarly, an axiom is sound if it is valid for the
given class of structures. Clearly, not every useful axiom and rule is sound
for every class of structures (consider z +0 = x); however, all the axioms and
rules listed here are valid for every class of structures.

Once an invariant is proved, it can be used. The following rule allows that:

PAP ANVY =v) = (MVu =u)
OP A D[N]v = D[M]u

(Inv-usel)

In particular, this rule yields:
OpP A O[N], = ONAPAP,

Note that the converse of this implication does not always hold. The for-
mula on the right-hand side is true of any behavior where v never changes,
independently of the value of P.

The rules for invariants have straightforward generalizations that handle
several transition formulas at once:

PANiVop=v) A A (NyVo, =v,) = P
P A O[N]o, A...AO[Ng,, = OP

(Inv-proof2)

PAP' ANtV =v1)A ... ANV =vg) = (MVau' =u)
OP A O[N]y, A.e.AONglo, = OM],

4.1.2 Lattices for ¢ The TLA method for proving fairness properties is
based on a common lattice rule [26, 21]. The lattice rule relies on a well-
founded relation > (a binary relation such that there is no infinite chain
Xy > X1 > X2 > ...). In our formalization, we assume that x = y is a constant
predicate with free variables x and y, and a > b stands for (z > y){a/x}{b/y}.
For now (following Lamport) we express that > is well-founded by “> is well-
founded”, as if this were a logical formula.
In logical form, the lattice rule reads:

(Inv-use2)

(Lattice)

> is well-founded x,y € Vg
HAQVz.(H = O(GV Iy.(x = y) A H[y/z])) = 0G T & FViemp(G)
) g themp(H)
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where x and y are rigid variables such that © € FVienp(G) and y &
FViemp(H). For emphasis, let us write H(z) for H, and H(y) for H[y/z].
This rule gives a way of proving that G is eventually true, from the assump-
tions:

— H(x) is true initially, for some z, and
— always, for every x, H(z) implies that eventually G is true or H(y) is true
for some y such that z = y.

The assumption that > is well-founded can be formalized in several ways.
It can be written as a nontemporal formula, such as:

Vf.3i.(i € Nat A=(f(i) = f(i + 1))

provided the underlying language is rich enough. Interestingly, it can also be
written as a temporal formula:

Ve.a(z = x) A Vu.(Ou = u'], = ¢ O|[false],)

The first conjunct of this formula expresses antireflexivity. For each particular
behavior, the second conjunct says only that if always u = ' or v = u' then
after some point v = u'. If this temporal formula is valid for a structure,
then > is well-founded for that structure. This temporal formula may be a
fine way of formalizing the assumption that a relation > is well-founded. On
the other hand, it may be hard to prove this formula from more elementary
ones, should that be desirable.

In addition to the lattice rule, TLA includes specialized rules for reason-
ing about fairness; according to Lamport [19], those are not necessary for
completeness, but important in practice.

4.1.3 Quantification The rules for 3 are familiar from first-order logic:

G= F (3-left)
_ x € VR
(E'l‘G) = F T Q/ themp(F)
G = Flb/a] (3-right)
_ r € Vg
G = (3z.F) b a constant function

The rules for 3 are similar:

o (3-left)
_— r € Vg

(z2.G) = F 3 themp(F)
G = Flb/a] (3-right)
_— r € Vp

G = (z.F) b a state function

Since existential quantification over flexible variables corresponds to hiding,
these rules play a central role in proofs of refinement for reactive systems.
However, the rules are the standard, logical ones.
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4.1.4 Auxiliary Variables Unfortunately, it is not always possible to prove
a formula of the form Jz.F using (I-right). Additional principles are needed
for completeness. Consider for example the trivial formula:

dx. WF, (true)

This formula states that if there exist at least two different values there is a
sequence of values for x such that eventually 2’ # x. Although this formula
is valid, we cannot exhibit any state function b such that WF,(true) is valid.
For any state function b, there are behaviors where all the flexible variables
that occur in b remain constant, and hence b remains constant too. Therefore,
32 WF,(true) cannot be derived directly using (3-right).

One approach to solving this problem consists in adding auziliary vari-
ables. History variables are the most common auxiliary variables, but there
are other sorts too [2]. In this approach, we reduce a proof that G = (Jz.F)
to a proof that Guu. = (Ix.F), where Guue is G plus an auxiliary vari-
able. The proof that G .., = (3z.F) is performed with (3-right). The proof
that G .4, is equivalent to G relies on special rules for auxiliary variables.
For simple auxiliary variables, like history variables, this latter proof is often
routine.

We discuss auxiliary variables again in section 4.2.3, in the context of
an example. That example is both larger and conceptually clearer than
Az WF, (true).

An alternative approach has been explored for other formalisms, but not
for TLA (e.g., [23]). In that approach, the notion of state function is extended
to that of state relation. The use of appropriate state relations removes the
need for auxiliary variables. On the other hand, the rules for quantification
become more complicated (and perhaps less logical).

4.2 Verification

The rules of TLA are designed to be used in proving that one reactive system
implements another. Next we explain the overall strategy for their use, and
then consider examples.

4.2.1 The Strategy As we have seen in section 3, there are several reason-
able ways to represent systems by formulas; however, all the formulas that
we have examined have the form:

Axy ... 3x,.(Init AO[N1]o, A ... A ONglo, AL)

Simplifying matters, first we consider only formulas of the modest form
Init A O[N],. If we represent two systems Sy and S¢ by two such formulas,

1=

F IAO[M].
G = JAO[N],
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then the validity of G = F means that Sg implements Sp. The rules given
above, together with propositional logic, yield the following method for prov-
ing G = F:

1. prove J = I,

pick a state predicate P, and prove J = P and PA (N Vv’ =v) = P';
using (Inv-proofl) and (2), derive G = OP;

prove PAP' A(NVv =v) = (M Vu =u);

using (Inv-usel), (1), and (4), derive OP A G = F;

obtain G = F from (3) and (5).

O Gtk W

To extend this method to deal with multiple transition formulas, it suf-
fices to replace (Inv-proofl) with (Inv-proof2) and (Inv-usel) with (Inv-use2).
Handling fairness properties requires use of (Lattice) and other rules; see [19]
for details and examples.

The quantifier 3 can be treated with (3-left) and (3-right). When we
have two specifications F = 3z.F! and G = y.G', with y & FViemp(F),
we can prove that G = F by finding a state function b such that G =
F1[b/x], then applying (3-right) and (3-left) in sequence. The state function
b is called an abstraction function, or a refinement mapping (e.g, [14, 2] and
the references therein). A refinement mapping gives a value (an instantiation)
for the variable z in terms of the other variables, including y.

Refinement mappings are an important tool for proving that one spec-
ification implements another one. However, they do not always suffice; in
practice, verifications sometimes require auxiliary variables. Section 4.2.3,
below, illustrates this.

4.2.2 A Simple Example As a simple example of a verification, we argue
that the specification @ of the lossy queue of section 3.1.2 implements the
alternative specification @Z) of section 3.1.3. That is, we prove that ¢ = @Z)
is valid.

The formulas ¢¢ and QSZ) are A¢.II and Elq.Hé, respectively, so they both
have ¢ as an internal variable. Informally, we call ¢ the low-level queue or the
high-level queue, depending on whether we refer to ®¢ or @Z). According to
the specifications given above, the low-level queue may contain an element
several times in sequence, while the high-level queue does not have any such
repetitions.

Finding a refinement mapping means finding an expression for the high-
level queue in terms of i, o, and the low-level queue. According to our rules,
it suffices to check that

I = I1}[7/q]
for some state function §. We choose:

g = Tail(3({o) © q))

where §({0) o ¢) is the sequence obtained by removing all repetitions from
(0) o ¢; in general, ip is defined inductively by:
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1a,b)ep) = aoy({b)op) ifa#b
1{a,a) o p) = aoi(p)

Once this refinement mapping is given, it remains to prove:

1) =
(@) = (a)
)
)

(Initq A O[Nglog A Lg) = (Initq A O[Nloq A L)[g/d]

The first step is checking an invariant: simply the type invariant that ¢ is
always a finite queue, which we write Queue(q). By propositional logic, it
suffices to prove:

Queue(q) N Eng = Queue(q)
Queue(q) N Deq = Queue(q')
Queue(q) N o' =0 A ¢ =q = Queue(q)

and then (Inv-proof2) yields Queue(q) A IIg = OQueue(q); since Initg =
Queue(q), it also follows that [Ty = OQueue(q).
Now it remains to prove:

Queue(q) A Initg = (Initg)[d/q]
OQueue(q) A O[Nglo,y = (O[Nlo,0)la/d]
OQueue(q) A g = (L})[a/d]

The first of these formulas is easy to prove directly in first-order logic. The
second one can be proved by (Inv-use2). The third one is more difficult—we
would not expect to handle it with (Lattice), but to use specialized rules for
reasoning about fairness.

4.2.3 A Harder Example The proof of the converse implication, (1522 =
P, is more difficult. The natural refinement mapping (defining g as ¢) does
not work. To use this mapping, we would have to prove in particular

I, = WF;,,(Enqg)

This formula is not valid, because II Z) is true for a behavior where ¢ and o
never change and the high-level queue remains empty, while WF, ,, ,(Eng) is
false for such a behavior.

In fact, the proof that SPZ) = & requires more than a refinement mapping.
If 2 and o remain constant and ¢ remains empty throughout a behavior, any
state function ¢ defined from i, o, and ¢ remains constant too; Hg) is true for
this behavior but II[§/q] cannot be.

The proof can be performed by adding a dummy, auxiliary variable s to
9522. This variable may be set to 1 when ¢ is empty and ¢ equals o. Then s is
decremented to 0. The other variables (i, o, ¢) remain unchanged whenever s
is set; to the observer of these variables, these transitions look like stutters.



On TLA as a Logic 25

A fairness condition guarantees that if 7 and o remain constant and equal,
and ¢ remains empty, then s is set infinitely often.

The specification with the auxiliary variable is QSZ) g» given in Figure 6. It
is obtained by conjoining a formula @5 with the internal variable s to the
formula IT}, that describes ¢, and then hiding ¢ as usual. In ®g, the formula
O[Pass)i,0,q means that, whenever 4, o, or ¢ change, s equals 0 and s does not
change; the formula O[Set]; means that, whenever s changes, ¢ equals (), i
equals o, and s" is if (s = 0) then 1 else 0.

The specification @g is written in a regular form, as an instance of a
general template for auxiliary variables. Using general results, it is easy to
derive that &g is valid. Hence, Hé is equivalent to Hés, and 455 to SPZ)S.

Inits = s=0
Pass = (s=0) A (s'=s)
set 2 n(g=()Ali=0
A s' =if (s =0) then 1 else 0
IIs = Inits A O[Pass)ie,q A O[Set]ls A WF,(Set)
b5 = As.dls
IIhy = IIh A ®s
ohe = gl

Fig. 6. A lossy queue with an auxiliary variable.

A refinement mapping can be given in terms of ¢ and s:
g = if s # 1 then ¢ else (i)

The auxiliary variable s has enabled us to “fake” an Eng immediately followed

by a Deg, in a circumstance when ¢ is empty and ¢ and o are equal. These

actions have no externally observable effect because i and o stay unchanged.
Using this refinement mapping, we can prove that

I, A s = Iglg/q]

From this it follows that

ol = O
and finally that

of, = &g

as desired.
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5 Assumption/Guarantee Specifications

Few components can be expected to work as intended in arbitrary environ-
ments. Usually, the specification of a component must describe the environ-
ment in which the component is supposed to operate. There are at least two
different methods for this:

— A closed system specification constrains both the environment and the
component. It may be written in the form E A M, where E describes the
environment and M the component. A behavior satisfies this specification
iff it satisfies both E and M.

— An open system specification does not constrain the environment. Instead,
it states an assumption about the environment and a guarantee by the
component (e.g., [15, 25, 27, 3, 10]). It may be written in the form E = M,
where F is the assumption and M the guarantee. A behavior that does not
satisfy E does satisfy E = M. (We refine this form in section 5.2.)

The proof rules of section 4 are adequate for reasoning about closed system
specifications. On the other hand, reasoning about assumptions and guaran-
tees requires new rules. We give an account of compositional reasoning about
assumption/guarantee specifications in a rather general algebraic setting. Re-
turning to TLA, we obtain a proof rule that reduces reasoning about open
system specifications to reasoning about closed system specifications.

5.1 Safety Properties

As a preliminary, we extend the semantics of temporal formulas to finite
sequences of states:

- [[F]]a,<to,...7tn> is true iff either (to,...,t,) is empty or there exists some
(infinite) behavior 6 that extends (to,...,t,) such that [F]_ , is true.

This definition implies that if F' is true for a behavior then it is true for every
prefix of the behavior.

It is customary to classify properties as safety or liveness properties [9].
A safety property is true for an infinite behavior ¢ iff it is true for all finite
prefixes of ¢. In particular, if P is a state predicate, A a transition formula,
and v a state function, then OP and P A O[A], are safety properties. A
liveness property is true for every finite behavior. For example, ¢P, ¢ O P,
and O ¢ P are all liveness properties if P is a satisfiable state predicate.
Manna and Pnueli give a more detailed classification of properties in their
temporal logic [22].

Since TLA is invariant under stuttering (by Proposition 2.1), if a formula
F is true of (o, ...,t,) then it is also true of (to, ..., ¢y, t,). Hence, any safety
property F'is true of the finite state sequence (to,...,t,) iff it is true of the
behavior (tg,...,tn,tn,tn,...). In turn, this implies that a conjunction of
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safety properties is again a safety property, and is true of (¢, ..., t,) iff every
conjunct is true of (tg,...,¢,). Similarly, a finite disjunction of safety prop-
erties is again a safety property, and is true of (tq, ..., t,) iff some disjunct
is true of (to,...,tn).

For any property G, there is a strongest safety property C(G), called the
closure of G, such that G = C(G) is valid. The property C(G) has a syntactic
definition in TLA, in terms of the TLA primitives (see section 5.3). However,
in practice, we do not use that definition, but instead rely on the following
semantics. Let ¢ be a behavior sg, s1,...; then:

— [C(F)],,, is true iff [F], ., ., is true for every n > 0.

5.2 Connectives for Assumption/Guarantee Specifications

The evident way to write an open system specification with assumption E
and guarantee M is as an implication, £ = M, with both £ and M in one
of the forms discussed in section 3. Following [4], we prefer to use a stronger
formula, E *> M. Informally, E *> M is true for a behavior iff:

(a) if E holds, then M holds;
(b) if both E and M are violated, then M is violated later than E.

An intermediate formula, £ —> M, is sometimes useful too; E —> M is true
for a behavior iff:

(a) if E holds, then M holds;
(b) if both E and M are violated, then M is violated no sooner than E.

If no step can violate both E and M, then E > M and E *» M are equiv-
alent. In all cases, E *> M implies E - M, and E - M implies E = M.
Although E — M is strictly stronger than E = M, they are equivalid:

E=M

—_— (while)
E—»>M

An analogous rule is not sound for >: for example, false = false is valid, but
false *» false is not.

Like C, both = and > have complicated syntactic definitions. The follow-
ing semantic definitions are more transparent. Let o be a behavior sg, s1, .. .;
then:

- [F + ], is true iff
1 forall n >0, if [F], ., .y is true, then [G], .~ is true, and
2. if [F], , is true, then [G], , is true.

- [F »d],, is true iff
1. for all n > 0, if [F]
2. if [F]

o (50,.-ysn_y) 18 true then [G],
is true, then [G], , is true.

a7

is true, and

505000y8m)
o,
In particular, these definitions imply that F' —> G and F' *»> G are safety
properties whenever G is a safety property.
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5.3 Syntactic Definitions

We give the definition of C(G) in order to illustrate the expressiveness of TLA,
and in order to clarify that TLA is not an open-ended logic with an ever grow-
ing set of operators. Let z,y,z € Vp and u € Vg be different variables, and
suppose for simplicity that FViemp(G) N Ve C {z}. (The definition of C(G)
when G has several free flexible variables is a straightforward generalization.)
Then:

O[z' # u], A WF, (2" # u)

C(G) = VYz.Vu. =
y.O(u=2z=2=y)AGly/z]

Roughly, the antecedent of the implication, O[z" # u], A WF, (2" # u), says
that z may equal u for some time and then becomes different from u, say
at time n. The consequent, y. O (u = z = & = y) A G[y/z], says that the
sequence of values for x up to time n — 1 can be extended to an infinite
sequence of values for y that satisfies G. The quantifiers Yz and Vu are in
effect quantifying over all n.

The technique used in the definition of C yields a definition of —> for safety
properties. Let x,y,2z € Vp and u € Vg be different variables, and suppose
for simplicity that FViemp(F) N Ve C {z} and that FViemp(G) N Ve C {z}.
Then:

Oz # u], AWF, (2 # u)
=
C(F) —»C(G) = VzVu. y.O(u=z=z=y)AFly/z]
=
Jy.O(u=z=>z=y)AGly/z]

We obtain a definition of F' — G for arbitrary F' and G from the definition
of C(F) = C(G), through the equivalence:

F+>G = (C(F)>C(Q) ANM(F=GqG)
Finally, we obtain a definition of %>, through:
C(F) % C(G) = ((C(G) - C(F)) - C(@))

and
F*%G = (C(F) % C(G)) A(F=G)

This definition of 4> in terms of —> has an important counterpart in sec-
tion 5.5 below.
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5.4 Composing Assumption/Guarantee Specifications

If we have two systems with specifications E; &> M; and E> > M, their
composition is described by (E; > M) A (Ey %> M,). To show that the
composite system implements a specification £ > M, we would have to

prove:
(El iDMl) A (E2 iDMQ)j(EiDM)

A natural but unsound rule for proving this formula is:
E/\Ml/\MgiEl/\EQ

ENM NMy=M
(E1 iDMl)/\(EQ i>M2):>(Ei'>M)

The first hypothesis serves to discharge the environment assumptions of the
components. For example, when FE is true, it expresses that the component
guarantees M; and M, imply the component assumptions E; and E,. The
second hypothesis expresses that the final guarantee follows from the envi-
ronment assumption E and the component guarantees M; and M.

The literature contains a number of sound approximations and variants of
the unsound rule. We give one below. In the meantime, we illustrate the use
of the unsound rule, because reasoning with the unsound rule is similar to
reasoning with its sound variants, and in order to justify later restrictions to
the unsound rule. We consider two components X and Y that communicate
through the variables z and y as shown in Figure 7.

Component Component

X Y

A

Fig. 7. A simple example of composition.

As a first example, we let:
Mx 20" > 2], and My =0}y >y,

and specify X by My &> My, and Y by Mx %> My . That is, each component
guarantees that the value of its output variable does not decrease, provided
the value of its input variable does not decrease. According to the rule, we
can derive Mx A My from the conjunction of Mx > My and My *» Mx.
That is, the composition of X and Y guarantees that the values of z and y
do not decrease. This conclusion is correct.
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As a second example, we let:
Mx =00 odd(z) and My 260 odd(y)

and specify X by My > My, and Y by Mx *»> My. That is, each compo-
nent guarantees that its output variable eventually becomes odd, provided
its input variable eventually becomes odd. Again, the rule would allow us to
deduce Mx A My . This conclusion is incorrect. To see this, consider the spec-
ifications #x and Py that imply My > My and My > My, respectively:

Py = (x=0)A0 =y+2. AN WF.(2/ =y +2)
¢y = (y=0) A0y =2+2], N WF,(y =2+ 2)

Both z and y remain even throughout any behavior that satisfies &x A @y,
so @ x A Py does not imply Mx A My . As this example illustrates, reasoning
about assumption/guarantee specifications is more problematic for liveness
properties than for safety properties.

5.5 A Logic of Inductive Orderings

We now study the problem of composition formally, first in an algebraic
framework, and later in the context of TLA. We take the algebraic detour
because of its generality, and because it makes proofs more transparent. Con-
tinuing some of the work of [8], we obtain an explanation of composition in
a general intuitionistic logic of specifications.

We assume given a set Y, together with a well-founded pre-order C on
Y. Wewritec C7if 0o CE7and 0 # 7. A set S C X is downward closed if
7 € S whenever 0 € S and 7 C 0.

For P,Q C ¥, we define the sets P — Q C ¥ and P 5 Q C ¥ by:

ceP—Q iff forall7Co:7€ P implies 7€ Q
ceP5HQ iff forall7Co:(pe Pforall pC 7)implies 7 € Q

By definition, P — @ and P & Q are downward closed.

Let S be a set of downward closed subsets of X' such that S is closed under
arbitrary intersections and unions, and under —. For example, we may take
S to be the set of all downward closed subsets of X.

Any such set § supports a natural style of reasoning where — acts as
implication, and intersection and union as conjunction and disjunction. This
follows from Proposition 5.1 below, which shows that S forms a complete
Heyting algebra. A complete Heyting algebra (A4, <, A,V,—) is a complete
distributive lattice A, with a partial order <, with a meet operation A and
a join operation \/, and an implication operation — such that (P A Q) < R
iff P < (@ — R) [31]. In fact, — can be defined from A and \/, by Q@ — R =
V{P | PAQ < R}. The meet and join operations apply to arbitrary (possibly
infinite) sets; we write P A @ for A{P,Q}. Any complete Heyting algebra is
a model of propositional intuitionistic logic [30, pp. 702-706].
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Proposition 5.1. (S§,C,N,U, —) is a complete Heyting algebra.

The set S does not yield a Boolean algebra, because the complement of
a downward closed set need not be downward closed. In other words, it is
essential to use intuitionistic logic rather than classical logic to reason in S.

Somewhat surprisingly, = can be defined from —. The proof of the fol-
lowing proposition proceeds by induction, and thus relies on the assumption
that C is well-founded.

Proposition 5.2. For any P,Q € S, (P 5 Q)= ((Q — P) = Q).

ASSUME: P,Q € S
ProvE: P5Q=(Q—P)—Q
1.PSQC(Q—P) —Q
ProOF: Using induction on C, it suffices to:
ASSUME: 1.o e P 5 Q
2. Forall pC o, p € P35 Q implies p € (Q — P) — Q.
3.7Co
4. 7€e@Q—P
PROVE: T7€Q
1.1. ForallpC 7, p€ P.
1.1.1. Forall pC 7, pe P 5 Q.
Proor: This follows from the assumptions that o € P & @ and
7 C o, since P 5 Q is downward closed.
1.1.2. ForallpC 7, pe (Q — P) — Q.
ProOF: From Step 1.1.1 by the induction hypothesis (Assumption 2),
the assumption that 7 C ¢, and the transitivity of C.
1.13. ForallpC 7, pe @ — P.
ProOF: From the assumption that 7 € Q — P, since Q — P is
downward closed.
1.14. ForallpC 7, p € Q.
PROOF: From Steps 1.1.2 and 1.1.3, by the definition of —.
1.1.5. Q.E.D.
PROOF: Steps 1.1.3 and 1.1.4, by the definition of —.
1.2.7eP5Q
PROOF: From the assumptions that 0 € P 5 Q and 7 C ¢, since P 5 Q
is downward closed.
1.3. Q.E.D.
PROOF: From Steps 1.1 and 1.2, by the definition of .
2. (Q—>P)—>Q§Pi>Q
PROOF: By the definition of =, it suffices to:
ASSUME: 1.0 € (Q — P) = Q
2.7TCo
3. ForallpC 7, pe€P.
PROVE: T€Q
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21. If7¢ @, then €@ — P.
PROOF: By the definition of —, it suffices to:
ASSUME: 1.7 ¢ Q

2.pC71

3.peQ
ProvE: peP
2.1.1. pC T

ProoF: The assumptions that p € @ and 7 ¢ @ imply p # 7. The
assertion follows from the assumption that p C 7.
2.1.2. Q.ED.
PROOF: Step 2.1.1, and the assumption that p € P for all p C 7.
22.7€e(Q—P)—Q
PRrOOF: From the assumptions that ¢ € (Q — P) — @ and 7 C o, since
(Q — P) — @ is downward closed.
23. If re@ — P, then 7 € Q.
PROOF: From Step 2.2 by the definition of —, since C is reflexive.
24. QED.
PRrOOF: By Steps 2.1, 2.3, and propositional reasoning.
3. Q.E.D.
PROOF: Steps 1 and 2. U

Propositions 5.1 and 5.2 open the door to purely syntactic reasoning about
— and 5. In this syntactic reasoning, we write /\ for (); we also write P - @
for P C @, and simply @ for ¥ C Q.

Simple intuitionistic reasoning yields:

Proposition 5.3. Let I be some index set, and assume that P, P;,Q,Q;, R €
S fori e I. Then:

Q F PLQ (1)
PLXQ + P-Q (2)
PSP + P (3)
(P-QANQER) +F PER (4)
(PS5 (Q—R)A(P=Q) F PSR (5)
(P,5Q) - AP A\Q (6)

i€l el el

Theorem 5.1. For P,Q,R€ S:
(PAQ)—=RF (R5Q)—(P5Q)

PRrROOF: By Proposition 5.1 and simple intuitionistic logic, it suffices to:
AssUME: 1. PAQ — R

2.R5Q
PrOVE: P 5 Q
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L. P—-(Q5Q)
ProOF: It suffices to:
ASSUME: P
PrOVE: Q 5 Q
1.1. @ - R
PROOF: From the assumptions that P A Q — R and P, by simple intu-
itionistic logic.
1.2. Q.E.D.
PROOF: Step 1.1, the assumption that R -5 @, and Proposition 5.3(4).
2. P—Q
PRrOOF: Step 1, Proposition 5.3(3), and simple intuitionistic logic.
3. P> R
PROOF: Step 2, the assumption that P A Q — R, and simple intuitionistic
logic.
4. Q.E.D.
PROOF: From Step 3 and the assumption that R = @Q, by Proposition
5.3(4).

As Corollary 5.1, we obtain a rule for composition in S§. The composition
rule of this corollary is similar in shape to the unsound rule considered in
section 5.4.

Corollary 5.1. Let I be some index set, and assume that P,Q,P;,Q; € S
forv e I. Then:

P A /\iEI Qi — /\iEI P

P> (/\ie[ Qi — Q)
/\ie[(Pi = Qi) — (P 5 Q)

PROOF: Theorem 5.1, with the substitutions R = A,c; P and Q@ = A\,c; Q;
yields

(/\Pii> /\Qi) — (P /\Qi)

iel el il
The assertion follows by Proposition 5.3(5) and (6), and simple intuitionistic
reasoning. [

5.6 Compositional Reasoning in TLA

We apply the algebraic framework of section 5.5 to infer a composition rule
for TLA. More precisely, we show that Corollary 5.1 yields a composition
rule for safety properties, and then extend this rule to arbitrary properties.

Let X' denote the set of finite sequences of states over some fixed structure
M. The prefix ordering, which we write C, is a well-founded pre-order on Y.
Let S be the set of sets of finite sequences of states closed under C and under
stuttering equivalence. The results of section 5.5 immediately apply to S. In
particular, Corollary 5.1 is a semantic composition rule for S.
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To obtain a syntactic composition rule, we reinterpret the results of sec-
tion 5.5 in terms of temporal formulas. Logical conjunction and disjunction
correspond to finite intersection and union over §. Similarly, for safety proper-
ties, the logical operators —> and %> of section 5.2 correspond to the semantic
operators — and -5, respectively. Thus, we obtain:

Theorem 5.2. Let I be some finite index set, and assume that E, E;, M, M;
are safety properties. Then:

ENNier Mi = Ny Ei
Eib(/\iE[Mi — M)
/\ieI(Ei il>.Z\4—Z) = (E il>]\4')

Here the index set [ is required to be finite simply because TLA offers only
finite conjunctions and disjunctions. An infinitary form of Theorem 5.2 would
be sound.

For safety properties, this rule is a sound variant of the rule discussed in
section 5.4. It suffices to treat the first example of section 5.4, since there
Mx and My are safety properties. For that example, we take I = {X,Y},
E = true, Ex = My, Ey = Mx, and M = Mx A My, and observe that
true *> F' is equivalent to F.

Looking beyond safety properties, we recall that the following equivalence
is valid for arbitrary temporal formulas ' and G:

F%G = (C(F)%CG)A(F=G) (7)

We obtain the following composition rule, which is essentially the same as
that of [4]:

Theorem 5.3. Let I be some finite index set, and assume that E, E;, M, M;
are temporal formulas. Then:

C(E) A /\iEI C(Ml) = /\iEI l’jZ
C(E) *» (Njes C(M;) = C(M))
EA /\iel M; = M

Nie(E: > M;) = (E % M)

PROOF:
L Nier(C(E;) = C(M;)) = (C(E) *» C(M))
PROOF: The first hypothesis implies that
C(E)yA \ (M) = N\ C(E)
is valid, since E; = C(E;) is vla%llid. The assleerltion follows by Theorem 5.2,
since C(E), C(E;), C(M;), and C(M) are all safety properties.
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2. Nies(Ei > M;) = (E= M)
PROOF: Theorem 5.2, with the substitution M = Nic1 C(M;), yields
N(C(E:) *>C(My) = (C(E) %> A\ C(M)
iel iel
from which we obtain
N(C(E:) *>C(My) = (C(E) = [\ C(M))
by (7). The ﬁrséeﬁypothesis implies <!
N(C(E) = () = (C(B) = )\ Ei)
Using (7) and théi/{alidity of E = C(E), we infer !
N(E: %> M) = (E= N\ E)
il il
Using (7) again, we infer
N\(E: & M) = (E= \ M)
il 3
The assertion follows by the third hypothesis.
3. Q.E.D.
From Steps 1 and 2 by the equivalence (7). a

To apply this composition rule, the low-level assumptions E; have to be
deduced from a conjunction of safety properties. Hence, in practice, they com-
monly are safety properties themselves; this restriction to safety properties
is consistent with the informal discussion and the examples of section 5.4.
When FE; is not a safety property, we can use the equivalence (7) to apply
the composition rule to the safety part of the specification, and use ordinary
temporal reasoning for the liveness part.

The first and third hypotheses of the composition rule can be established
using standard TLA proof rules, such as those of section 4, and some aux-
iliary rules to deal with closures. A strategy for reducing the proof of the
second hypothesis to the proof of ordinary implications is discussed in [4].
An alternative strategy consists in using the following rule:

FAG=0OP
0P|, AG = H
F % (G —+H)

where P is a state predicate, v a state function, and F', G, and H arbitrary
temporal formulas. This rule enables us to derive a formula with — and
*» from two classical implications. The state predicate P plays the role of
an invariant, guaranteed by F' and G according to the first hypothesis. The
second hypothesis says, roughly, that H follows from G together with the
invariant.

Thus, the techniques for verifying the hypotheses of the composition rule
are rather specific to TLA. On the other hand, the composition rule is general,
and follows fairly directly from the algebraic arguments of section 5.5.
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