
Mathematical Methods
in
System and Software Engineering*

Manfred Broy
Institut für Informatik, Technische Universität München
80290 München, Germany

Abstract

Today, there is still a remarkable gap between the techniques and methods used in
practice in software engineering and the formal techniques worked out and advocated
by academics. Our goal is to close that gap and to bring together the pragmatic and
mostly informal ideas in systems and software engineering used in practice and the
mathematical techniques for the formal specification, refinement and verification of
software systems. In practice, software engineers are used to work with

• a development method that describes the development process in detail and
• description formalisms that describe the system under development; these

descriptions are often annotated diagrams.

The development process is often supported by CASE (Computer Aided Software
Engineering) tools.

We present a mathematical, scientific basis for system and software engineering.
In its core, there is a mathematical model of a system and formal techniques to
describe it. We outline representative examples of diagrammatic description
techniques as they are used in software engineering approaches in practice and show
how they are formally related to the system model. These description techniques
include in particular

• data models,
• process models,
• structure and distribution models,
• state transition models,
• interface models.

We define a translation of the description techniques into predicate logic. This allows
us to combine techniques of formal specification and verification with pragmatic
system description techniques. We show how to develop systems with the help of
these description techniques in refinement steps. By this, we demonstrate how
software engineering methods can be backed up by mathematics. We discuss the
benefits of such a mathematical and scientific foundation. These benefits go far
beyond the benefits of the formal methods for the specification and verification of
software.

*) This work was partially sponsored by the Sonderforschungsbereich 342 "Werkzeuge und Methoden
für die Nutzung paralleler Rechnerarchitekturen", the BMBF-project ARCUS and the industrial
research project SysLab sponsored by Siemens Nixdorf and by the DFG under the Leibniz program

2

1. Introduction

It is widely accepted by now that the development of software is an engineering
discipline. To underline this we speak of software engineering and also of system
engineering in cases where the software is embedded into a system context.
Typically, all engineering disciplines of today are based on theoretical and, in
particular, on mathematical foundations. These theoretical foundations are used as a
basis for a deeper understanding of the engineering task, for a body of rules,
procedures and engineering processes. There cannot be any doubts that software
engineering has and needs its own theoretical and mathematical foundation like any
other engineering discipline.

Software engineering, in practice, deals with the development of large and often
complex information processing systems. This includes techniques for the
description of requirements and systems in the disparate development phases. The
main goals of software engineering are a good quality of the engineering process and
its results, the timely delivery of the end procuct, and high productivity. In this paper
we ignore most of the economical aspects and sketch how a mathematical basis of the
technical aspects of system and software engineering may look like.

1.1 Formal Methods

Starting with the pioneering work of Backus, Bauer, Samelson, McCarthy, Petri,
Strachey, Scott, Dijkstra, Floyd, Hoare, deBakker, Reynolds, Milner, the VDM
group and many others formal methods in software development have been
extensively investigated over the last 25 years. Today formal methods are a well-
established subject in academia.

After denotational semantics, axiomatic specifications and numerous logical
calculi are available, many of the theoretical problems for modelling software
engineering concepts by mathematical and logical techniques are solved (see also
[Abrial 92]). More work is needed, however, along the lines of [Jones 86] and
[Guttag, Horning 93] to make the theoretical work better accessible to software
engineers working in practice. The fact that theoretical foundations are sufficient
already today to cover the foundations of pragmatic methods is demonstrated, for
instance, by [Hußmann 95] which provides a complete formalization of the method
SSADM by translating it into SPECTRUM. SSADM is a pragmatic requirement
engineering method used as the UK government’s standard method for carrying out
systems analysis and design stages of information technology development projects.
SPECTRUM is an axiomatic specification language (cf. [SPECTRUM 93]).

How many basic problems still have to be studied and how much foundational
work is still needed and stimulated by practical problems can be seen, for instance,
by the concept of state charts (see [Beeck 94] for a long list of open problems) for
describing embedded process control systems. Statecharts (see [Harel 87]) are - also
due to the fact that they are supported by a commercial CASE tool - by now widely
used in industry.

3

1.2 From Theory to Practice

Thirty years ago, for many concepts used in computing practice, a theoretical
foundation was completely missing. This is no longer true today. A solid body of
foundational work is available by now, giving principal answers to many of the
demanding questions of theoretical foundations of software engineering. We have
denotational semantics, axiomatic specification techniques for handling data
structures, functions and statements, we have assertion calculi, logical calculi for
parallel and distributed systems and various logical concepts for dealing with
interactive systems.

The next consequent step is to increase the experimentation and the transfer of
these theoretical results to engineering practice. Yet, this needs the good will and
professional attitude of both the practical software engineers and the theoreticians.
This means that also the theoreticians are requested to undertake serious efforts to get
a better understanding of the needs of software engineers working in practice and of
their advanced engineering concepts.

Development needs methodological guidance. In addition to the specification
notation and logical calculi and maybe a few small, hopefully illustrative case
studies, more methodological guidance is required to bring theoretical ideas closer to
practical use. It is not realistic that everyone in practice develops her own ideas how
to use the methods provided by theoreticians in a systematic appropriate manner.

1.3 Elements of Software Engineering

The development of large software systems involves a large number of people with
quite different skills. Its goal is the construction of a technical solution to a client's
problem. Accordingly, software engineering is a discipline that involves
organisational and management aspects as well as technical aspects. A decisive issue
is the cost management.

Software engineering, like many other engineering disciplines in their early
phases, has developed a rich and often confusing plenty of proposals for overcoming
the difficulties of organising large development processes. Here a major issue are
economical aspects. These include among others

• team organisation and management,
• cost and schedule prediction, statistical models to evaluate the quality of

software,
• development process organisation and integration (phases, mile stones,

documentation),
• integration with existing software components,
• tool support.

It is naive to assume that managers responsible for large projects would switch to
new more formal development methods for which these questions are not
convincingly answered.

Of course, it is a long way to provide a complete mathematically well-founded
software development method, but only when we start to work in this direction there
might be a chance to transfer theoretical results more effectively into practice. When
working towards such a method, we will discover many challenging theoretical
problems. Examples are the mathematical capture of the concepts of software

4

architectures, design patterns, and the formalization of existing pragmatic description
methods.

We do not treat economical aspects in the following at all and concentrate only on
technical aspects. These comprise:

• development process organisation (phases, mile stones, documentation),
• formulation of strategic goals and of constraints,
• modelling, description, specification,
• quality guarantee,
• integration with existing software components, reuse,
• documentation,
• tool support.

Although we will concentrate in the following mainly on the technical aspects, we
should keep in mind that there is a close relationship between the technical and the
management aspects. The best technical solution is worthless if it is too costly or if
the product cannot be finished in time when working with it. Moreover, most of the
management and planing cannot be carried out without a deep understanding of the
technical tasks.

Whenever it is necessary to assess the role of technical aspects with respect to
management aspects, we will refer to them. We find the closest connection between
management and technical issues in the organisation of the development process,
being part of what is called process model. A central notion in software engineering
is the development method1. A method in software engineering comprises
description techniques in its syntax, semantics and pragmatics, rules for working
with these techniques, development techniques and general principles.

1.4 Overall Organisation of the Paper

A software system is represented by a set of descriptions in the form of textual or
graphical documents, and, at the same time, it is a product that can be brought to life
and then show a complex dynamic behaviour. The goal of the software development
process is a model of the application described by formalisms for which an efficient
execution is available. Therefore, like no other engineering discipline, software
engineering deals with models, description formalisms and modelling techniques. In
the following we want to carefully distinguish between

• mathematical models: the mathematical structures forming the semantical
conceptual model associated with a system or a software description formalism,

• description techniques: the notations of the descriptions, given by the syntax,
graphics, or tables used in the documentation of a software system,

• modelling techniques: the activities and methods mapping, representing, and
relating real life aspects of applications by using software description techniques.

Of course, these three aspects are closely related. Nevertheless, we want to carefully
perceive these distinctions in the following, since they are of major relevance for the
understanding and foundation of software engineering. It is, in particular, important
to distinguish between the description formalisms and the modelling idea for
systems.

1 We distinguish between method and methodology. Methodology is the systematic study of methods.

5

This paper is an attempt to give a comprehensive mathematical foundation to
software engineering formalisms and methods in the form of mathematical models
and relations between them. These particular mathematical models should be
understood rather as an instance of what we are aiming at and not as the only way to
provide a mathematical foundation. We want to demonstrate, however, that a
comprehensive family of models and well-founded description techniques for
software engineering can be provided.

The paper is organised as follows. In section 2 we give a survey of the most
important notions we deal with. In section 3 - 7 we then deal with the notions of a
data model, a process, a component, a state machine and a distributed system and
give mathematical denotations for them. In section 8 we deal with development
methods, with refinement, and development process models. We conclude after a
short section on implementation issues and tools.

Throughout this paper we use as our running example a simple adaptation of
[Broy, Lamport 93] (see also [Broy, Merz, Spies 96]). It deals with a simple
memory and a component to access it. The storage is faulty. This means that we can
read or write the storage but as a result of reading or writing we may get failures. We
assume that those failures are indicated by failure messages which allow us to do
some exception handling either by indicating to the environment that something went
has gone wrong or by retrying. We specify such an unreliable memory and
components that organise the access to the unreliable memory. We use the faulty
store as a running example for the specification of the data models, the process
models, the component models and the distributed system as well as the state
machines.

2. Mathematical Models and System Description

In the following sections we define mathematical models and description techniques
for systems and system aspects. In this section we disucuss the role of formal
methods and mathematics in systems engineering.

2.1 System Aspects and Views

A complex information processing system cannot be described in a monolithic way if
understandability is an issue. It is better to structure its description into a number of
complementing views. These include:

• data models,
• system component models,
• distributed system models,
• state transition models,
• process models.

For each of these aspects of a system a mathematical model is defined in the
following, consisting of a syntactic and a semantic part. We use these models as a
basis for giving meaning to more pragmatic description formalisms.

6

2.2 Description Formalisms in Software Engineering

In software engineering it is necessary to describe large information processing
systems and their properties. Of course, this cannot be done by only providing one
description formalism or one single document. Therefore software engineering
methods suggest several complementing description formalisms and documents.
Each of these documents describes particular views on the system. Putting these
views together should lead to a consistent comprehensive system model. We speak
of view integration.

Integration of description formalisms and their mathematics is an indispensable
requisite for more advanced software development methods. In the following, we
discuss some of the more widely used description formalisms in software
engineering and their mathematics.

Description formalisms are used to represent models like programming languages
are used to represent algorithms. It is helpful therefore to distinguish between
description formalisms and modelling techniques. A description formalism is a
textual or graphical formalism, such as for instance a diagram or a table, for
describing systems, system parts, system views and system aspects. A model is a
mathematical structure to be used as an image of certain aspects of a real life system.
Description formalisms allow us to represent such models and views as well as their
properties by concrete syntactic means. Mathematical semantic models are
mathematical structures that are used to give a precise meaning to description
techniques.

Practical software engineers tend to overemphasise the importance of description
formalisms in terms of syntax while theoreticians often underestimate the
significance of the notation they use. In the engineering process, notation, be it
graphics, tables, or texts, serves as a vehicle for expressing ideas, for analysis,
communication, and documentation. To provide optimal support for these purposes
both the presentation of the descriptions and the mathematical models behind them
have to be well chosen. Since, depending on the purpose of the modelling and the
education and experience of the user, the effectiveness of the presentations may be
quite different, it is generally wise to have several presentations for the same
description. Examples are text, diagrams, and tables.

When analysing and describing systems, we distinguish between static and
dynamic aspects. Static aspects of an information processing system are those that do
not change over the life time of a system. Dynamic aspects have to do with
behaviour. We can often use the same description formalisms for the static and for
the dynamic aspects.

Dynamic aspects of components can be described either axiomatically, property-
oriented, or in operational terms. Operational descriptions tend to be less abstract.
Therefore, nonoperational description often are better suited in the early phases of
development. Both property-oriented descriptions as well as operational descriptions
can rigorously based on logic, of course. To improve the redability, we can also give
graphical as more illustrative formalisms for describing properties of systems. For
such descriptions, a translation into logical formulas should be provided.

2.3 The Role of Description Formalisms in the Development Process

Description formalisms and the underlying semantic models form the basis for
formulating and documenting of the results of the development process. We may

7

understand the development process as the working out of documents describing the
requirements and the design decision of the system in more and more details, adding
implementation aspects until a desired implementation level is reached.

In the development process the various description formalisms serve mainly the
following purposes:

• means for the analysis and requirement capture for the developer,
• basis for the validation of development results,
• communication between the engineers and the application experts,
• documentation of development results and input for further development steps.

Of course, the usefulness of a description formalism has always to be evaluated with
respect to these goals. Software engineering has provided many different description
techniques for each of the various aspects of a system. A proper relationship between
these description techniques and a foundation of them are one of the goals of the
mathematics of software engineering.

2.4 The Role of Logic

A very universal and precise discipline for the description of all kinds of properties
and aspects of a system is mathematical logic. A logical formalism provides a formal
syntax, its mathematical semantics and a calculus in terms of a set of deduction rules.
The later can be used to derive further properties from a set of given properties.

Properly defined description formalisms also have a formal syntax and a
mathematical semantics. Often, however, deduction rules are not provided.
Nevertheless, for most description formalisms we may define transformation rules
for manipulating them. In contrast to logical formalisms, the description formalisms
of software engineering are not especially designed for the formal manipulation by
deduction and transformation rules.

Description techniques used in practice often do not have a mathematical
semantics and not even a proper informal description of their meaning.

In any case, there is a close relationship between description formalisms and
mathematical logic. Strictly speaking, a description formalism formulates a property
of a system. So it can be understood as a predicate. Consequently, we may look for
rules that allow us to translate description formalisms into logical formulas. This
allows us to use pragmatic description techniques without having to give up the
preciseness of mathematical logic and its possibilities of formal reasoning.

3. Data Models and their Specification

In this section we introduce a mathematical model for data structures on which
specification techniques can be based. Then we introduce perceptual description
techniques for data structures and relate them to the mathematical model.

8

3.1 Mathematical Data Models

Data models are needed to represent the information and data structures involved in
an application domain. They are also used to provide computing structures for
representing the internal data of information processing systems. In general, data
models capture mainly the structure of the data and their relationship, but not their
characteristic operations. These, of course, should by an integral part of every data
model. Therefore we understand a data model always as family of data sets named
by sorts together with their relationships and the basic characteristic operations and
functions.

Families of sets and according operations are treated in mathematics in algebra.
From a mathematical point of view, a data model is a heterogeneous algebra. Such an
algebra is given by a family of carrier sets and a family of functions. More
technically, we assume a set S of sorts2) (often also called types or modes) and a set
F of constants including function symbols with a fixed functionality

fct : F → S
The function fct associates with every function symbol in F its domain sorts and its
range sort. We assume that the set of sorts S contains besides basic sorts (such as
Bool, Nat, etc.) also tuples of sorts as well as functional sorts and even polymorphic
sorts (see [SPECTRUM 93] for details). Both sets S and F provide only names. The
pair (S, F) together with function fct that assigns functionalities to the identifiers in
F is often called the signature of the algebra. The signature is the static part of a data
model and provides a syntactic view on a data model.

In every algebra A of the signature (S, F) we associate with every sort s ∈ S a
carrier set sA (a set of data elements) and with every function symbol f ∈ F a constant
or function fA of the requested sort or functionality. An algebra gives meaning to a
signature and can be seen as the semantics of a data model. It is typical for
mathematical structures modelling information processing concepts that they include
static (syntactic) parts such as name spaces (in the algebraic case the signature) and
semantic parts (in the algebraic case carrier sets and functions).

Data models are used to capture various aspects of software systems which often
go much beyond pure data and information structure aspects. In other words, they
may be used also to represent dynamic aspects of system behaviours or system
structures and not only the static structures of data sets and selector functions. That
such aspects can also be captured by data models is not surprising. Following our
definitions, data models can be seen as algebras and algebras are a very general
mathematical concept. All kinds of mathematical structures and mathematical models
of systems can be understood as heterogeneous algebras. Nevertheless, we suggest
to use the general concept of algebras for data models only. In the following we give
more specific mathematical structures for other system aspects.

3.2 Description of Data Models by Sort Declarations

In the data view, we fix the relevant sorts and their characteristic functions for the
system we want to describe or implement. In addition, we can describe the system
states. This can be done by sort declarations as we find them in programming

2) We believe, like many other computing scientists and software engineers that data sorts (typing) is a

very helpful concept in modelling application and software structures.

9

languages, by axiomatic data structure specifications, and/or by E/R-diagrams,
especially when our system processes mass data. Often data models are used to
describe the state of systems and their components.

In our example we use a sort CalMem and fix the data attributes of it by giving
their sorts. The sort CalMem is described by the following sort declaration:

Sort CalMem = put (i: Location, d: MemVals) | get (i: Location)

In a sort declaration we introduce a sort (in the example above the sort CalMem) and
describe it by a sort expression. The sort expression is formed of enumeration sorts,
records and variants. An enumeration sort is given by an expression of the form

{a1, ..., an}

and introduces the identifiers a1, ..., an as constants, which are the constructors of
the enumeration sort.

A record sort has the form

con (sel1: M1, ..., seln: Mn)

where M1, ..., Mn are sorts. It introduces con as a constructor function and sel1, . . . ,
seln as selector functions. Here, we assume the convention that we use the sort
identifiers as selectors, if no selectors are mentioned explicitly.

A variant sort has the form

R1 ... Rn

where R1, ..., Rn are record or enumeration sorts. The constructors for these sorts
are used as constructors and discriminators for the variant sort.

3.3 Description of Data Models by Logic

Data models can be described by the logical properties of the functions involved.
Then we speak of the axiomatic or of the algebraic specification of data structures.
The techniques of algebraic specification is in the meanwhile well-understood.
Therefore we just give a simple example and refer to [Wirsing 90] for an overview
and to [SPECTRUM 93] for an instance of a particular algebraic specification
language.

We only give two simple examples. We start with the polymorphic specification
of the algebra of finite sets.

SPEC SET =

{ sort Set α ,

ø : Set α,
∪ {}, _\{_}: Set α, α → Set α,
_=ø : Set α → Bool,
_∈ _ : α, Set α → Bool,

Set α generated_by ø, ∪ ,

ø =ø,
¬(s∪ {x} =ø),

10

¬(x ∈ ø),
x ∈ s∪ {x},
x ∈ s ⇒ x ∈ s∪ {y},
x ≠ y ⇒ x ∈ s∪ {y} = x ∈ s,

ø\{x} = ø,
(s∪ {x})\{x} = s\{x},
x ≠ y ⇒ (s∪ {y})\{x} = (s\{x})∪ {y},

(s∪ {x})∪ {y} = (s∪ {y})∪ {x},
x ∈ s ⇒ s∪ {x} = s }

The sorts such as enumeration sorts, records and variants used in sort declarations
given above can be schematically translated into algebraic specifications.

As a second example we define a simple object model by algebraic techniques.
The object model describes for given classes α and given attributes for each class the
object model in a polymorphic style. The sort Store denotes the set of object stores
and the set Obj α denotes the set of object identifiers for the class α . More precisely,
α is a record sort of the attributes of the class.

OBJECT_MODEL = {

sort Store, Obj α,

emptyStore : Store, empty store

update : Store, Obj α, α → Store, update of an object

newObj : Store, α → Obj α , creation of an object

newObjstore : Store, α → Store, allocation of storage for a new object

valid : Store, Obj α → Bool, test, if object id is declared for a store

deref : Store, Obj α → α, dereferencing

Axioms:

For the empty store:

valid(emptyStore, r) = false,

For selective update:

valid(σ, v) ⇒ valid(update(σ, v, a), r) = valid(σ, r) ∧
deref(update(σ, v, a), r) = if r = v then a else deref(σ, r) fi

For object storage allocation:

valid(σ, newObj(σ, a)) = false,

valid(newObjstore(σ, a), r) = (valid(σ, r) ∨ r = newObj(σ, a)),

valid(newObjstore(σ, a), r) ⇒
deref(newObjstore(σ, a), r) = if r = newObj(σ, a) then a else deref(σ, r) fi

}

Here Obj α is a polymorphic sort. This means that for every sort M we may form the
sort Obj M.

11

3.4 Data Models of Component States

Data models can be used to model the state of a component. A mathematical notion of
a component will be given in the following section.

Given a signature (S, F) as a basis, we define a state space by a signature (S, F ∪
V). The symbols in V are called the variables or the attributes of a state. They have,
as well as the symbols in F, a sort.

A widely used technique to describe state spaces are entity/relationship-diagrams.
In an entity/relationship diagram we find notations and symbols as shown in Fig. 1.

x: M1 r y: M2

Fig. 1 Two Entities x and y Connected by One Relationship

The diagram as given in Fig 1 is used to express that x, r, y are state attributes. The
shape of the graphical symbols indicates that x and y are entities with the sorts as
shown. These nodes are equivalent to the declarations

x: Set M1

y: Set M2

The shape of the symbol of r indicates that r is a relationship. This corresponds to the
declaration

r: Rel[M1, M2]

where Rel[M1, M2] is a polymorphic sort declared by:

sort Rel[α, β] = Set Pair(c1: α, c2: β)

Of course, we have to add invariants such that the relation r contains in every state
only pairs (a, b) with elements a that are in x and elements b that are in y,
respectively.

Formally, this is expressed by

(a, b) ∈ r ⇒ a ∈ x ∧ b ∈ y

We also allow to include simple attributes in the state space that correspond to
program variables.

y: M2fv: M1

Fig. 2 Functional Relationship

We write the diagram shown in Fig. 2 to express that v is an attribute

v: M1

and f is a function attribute (a program variable)

f: M1 → M2

that maps v onto an element of the entity y: Set M2. If we replace the attribute by an
entity, this expresses that every element in the set is mapped by f onto an element of
y. Again we assume an invariant:

f(v) ∈ y

12

Data models can thus be used to describe the information structure of an application
and the state space of components. In our example system, we use a component
Store. The data view is described by an E/R-model. It is based on the sorts given in a
table of sort declarations in Tab. 1. Fig 3 gives a simple example of a data structure
diagram and an E/R-diagram.

MemLocs a MemVals

Returns MemValsm

{MemFail, Ack}

Calls
 c

Fig. 3 Data Sort Diagram

With this data view of the state of the component Store the behaviour of the
component Store can be made more precise later. Each action of a component may
change some of its attributes. We come back to this issue in section 5 on the
description of behaviours.

Tab. 1 Table of Data Sorts and Their Declaration

MemLocs memory locations,

MemVals memory values,

PrIds identifiers for processes,

CalMem = put (i: MemLocs, d: MemVals) | get (i: MemLocs) memory calls

RetVals = MemVals | {MemFail, Ack} return values,

RetMem = ret (c: CalMem, rv: RetVals) return messages of memory,

Returns = ren (c: Calls, m: RetVals) return messages of the driver,

Calls = ca (pi: PrIds, mc: CalMem) calls for the driver.

Graphical representations and diagrams can be used as an illustrative, but
nevertheless fully formal description technique, if a formal syntax and a mathematical
semantics are provided. A useful form to do this is a translation into axiomatic
specifications. This allows us to integrate formal axiomatic data description
techniques and pragmatic graphical description techniques into one homogenous
software engineering method. A careful translation of E/R-concepts into axiomatic
specifications is given by [Hettler 94]. Hettler distinguishes between E/R-techniques
for modelling static aspects (the static data model) and dynamic aspects of systems
(such as the states of a data base). The sort MemLocs is described by a record sort
listing its attributes. In the dynamic view, a program variable of sort Set MemLocs is
associated with the entity MemLocs.

Axiomatic and algebraic specification techniques as well as E/R-diagrams provide
powerful and very general description formalisms. They allow us to describe data

13

sorts and their characteristic operations in an abstract way not biased by the choice of
a concrete representation. They follow the principle of information hiding of
implementation information in a consequent manner.

4. System Components

In this section we introduce a mathematical concept of a system component and
techniques for describing components. A component is considered in practice as a
black box that is an encapsulation of related services according to a published
specification. Our mathematical model of a component is consistent with this
informal description.

4.1 Component Models: Interface Models by Stream Processing
Functions

We are interested in system models that allow us to represent systems in a modular
way. We think of a system as being composed of a number of subsystems that we
call components. Moreover, a system itself is a component again which can be part
of a larger system. A component is a self-contained unit with a clear cut interface.
Through its interface it is connected with its environment. In this section we
introduce a simple, very abstract mathematical notion of a system component.

For us, a (system) component is an information processing unit that
communicates with its environment through a set of input and output channels. This
communication takes place in a (discrete) time frame.

x1: M1

xn: Mn

 y1: M’1

ym: M’m

F

Fig. 4 Graphical Representation of a Component as a Data Flow Node with Input Channels x1,
..., xn and Output Channels y1, ... , ym and their Respective Sorts M1, ... , Mn and M’1, ..., M’n

In software engineering, it is helpful to work with a black box view and a glass box
view of a component. In a black box view we are only interested in the interface of a
component with its environment. For this we have to describe the causal
dependencies between the input and the output messages. In a glass box view we are
interested in the internal structure of a component, which can either be given by its
local state space together with a state transition relation or by its decomposition into
subcomponents. We first give a model for the black box view.

Let I be the set of input channels and O be the set of output channels. With every
channel in the set I ∪ O we associate a data sort indicating the sort of messages sent
on that channel. Then by (I, O) the syntactic interface of a system component is
given. For simplicity, we use just one set M of data sorts for messages on the
channels in the sequel in order to keep the presentation simple. A graphical
representation of a component with its syntactic interface is shown in Fig. 4.

14

Let M be a sort of messages and signals. By M* we denote the set of finite
sequences over the set of messages M, by M∞ we denote the set of infinite sequences
over the set of messages M. By ˆ we denote the concatenation of sequences. The set
M∞ can be understood to be represented by the total mappings from the natural
numbers N into M. Formally we define the set of timed streams by (we write S∞ for
the function space N+ → S and N+ for N \ {0})

Mℵ =def (M
*)∞ .

For every set of channels C, every mapping x: C → Mℵ provides a complete
communication history. Note that (C → M*)∞ and C → (M*)∞ are isomorphic.
Moreover, the set Mℵ is isomorphic to the set of streams over the set M ∪ {√}
which contain an infinite number of time ticks (here √ denotes a time tick; we assume
√ ∉ M).

We denote the set of valuations of the channels C by sequences

C → M∗

by

 C
r
*

We denote the set of the valuations of the channels in C by infinite timed streams

C → Mℵ

by

r
C

We denote for every number i ∈ N and every stream x ∈ Mℵ by

x↓i

the sequence of the first i sequences in the stream x. It represents the observation for
the communication over the first i time intervals. By

 x
_
 ∈ M* ∪ M∞

we denote the finite or infinite stream that is the result of concatenating all the finite
sequences in the stream x. x

_
 is a finite sequence if and only if only a finite number of

sequences in x are nonempty. Going from the stream x to x
_

 provides a time
abstraction. In the stream x we can find out in which time interval a certain message
arrives, while in x

_
 we see only the messages in their order of communication without

any indication of their timing.
We use both notations x↓ and x

_
 as well as the concatenation introduced for

streams x also for tuples and sets of timed streams by applying them pointwise.
Fig. 4 describes the syntactic interface of a component with the input channels x1,

..., xn of the sorts M1, ..., Mn and the input channels y1, ..., ym of sorts M'1, . . . ,
M'm. In the theoretical treatment we assume for simplicity always the same sort M.

We represent the behaviour of a component with the set of input channels I and
the set of output channels O by a set-valued function:

F:
r
I → ℘(

r
O)

This function yields the set of output histories F.x for each input history x. Given the
input history x a component with the behaviour F produces one of the output
histories in F.x. We write F.x for F(x) to save brackets.

 Only if a set-valued function on streams fulfils certain properties we accept it as a
representation of a behaviour of a component. To give a precise definition of these
requested properties we introduce a number of notions for set-valued functions on
streams. A function

15

F:
r
I → ℘(

r
O)

is called

• timed, if for all i ∈ N we have

x↓i = z↓i ⇒ F(x)↓ i = F(z)↓ i

Then the output in the time interval i only depends on the input received till the
i´th time interval. In the literature then F is called a causal function, too.

• time guarded, if for all i ∈ N we have

x↓ i = z↓ i ⇒ F(x)↓ i+1 = F(z)↓ i+1

Time guardedness assumes in addition to timedness that reaction to input is
delayed by at least one time unit.

• realizable, if there exists a time guarded function3) f:
r
I →

r
O, such that for all

input histories x we have:

f.x ∈ F.x

By [F] we denote the set of time guarded functions f with f.x ∈ F.x for all x.

• fully realizable , if for all input histories x we have:

F.x = {f.x: f ∈ [F]}

We assume in the following that stream processing functions that represent the
behaviour of components are always time guarded and fully realizable. For the set of
functions

F:
r
I → ℘(

r
O)

that are time guarded and fully realizable we write

Ç[I, O]

Ç[I, O] denotes the set of all behaviours with the syntactic interface consisting of the
input channels I and the output channels O. By Ç we denote the set of all behaviours
with arbitrary syntactic interfaces.

4.2 The Logical Specification of System Components

We describe components by set-valued functions on communication histories. Set-
valued functions are isomorphic to relations. A set-valued function or a relation on
streams can be described by logical means with the help of logical formulas
describing the relationship between the input and output streams.

Example: A simple Store
We follow always the same scheme to describe a component. We describe the
syntactic interface of the component Store by the data flow node given in Fig. 5. A
store consists of a set of memory locations. For each memory location a value is
stored. The values can be read and updated. Both reading or updating a value can be
successfull or it can fail.

3) Since functions can be seen as a special case of set valued functions where the result sets contain
exactly one element, the notion of time guardedness extends to functions.

16

Store
y: RetMem

x: CalMem

Fig. 5 Data Flow Node Giving the Syntactic Interface of the Store

Let MemLocs be the sort of memory locations and MemVals the sort of values that
can be stored in the memory. The data model consists of the sorts of messages that
are declared as in section 3.4 by Tab. 1. A straightforward formalisation of the
behaviour reads as follows:

y ∈ Store.x ⇔ # x = # y

∧ ∀ i ∈ MemLocs, d ∈ MemVals, k ∈ N:

x.k = p ⇒ y .k ∈ {ret(p, MemFail), ret(p, Ack)}

∧ x .k = g ⇒ y .k ∈ {ret(g, MemFail), ret(g, v)}

where p = put(i, d)

g = get(i)

v = last(y: (k-1), i)

Here v denotes the last successfully written value for the memory location i and

x.k

denotes the k´th element in the stream x. # x denotes the number of elements in x.
x:k denotes the prefix of the stream x of length k. The function last is specified as
follows (let init_val be a given element of sort MemVal):

last(‹›, i) = init_val,

last(zˆ‹ret(get(j), w)›, i) = last(z, i)

last(zˆ‹ret(put(j, d), w)›, i) = if i = j ∧ w = Ack then d

 else last(z, i)

f i

last(z, i) returns the last value written for location i in the result stream z. The logical
specification of components is a very puristic description of the behaviour of
components. A more pragmatic specification of component Store is given in the
following section by state transition diagrams.

5. State Transition Systems

In this section we introduce a mathematical concept of a state transition system and
techniques for describing it. We suggest state transition diagrams (STDs) for the
description of the behaviour of components.

17

5.1 State Transition Models

State machines are a well-known concept of a system model. They are used both in
practice and in theory. We work here with a specific version of state machines that
corresponds well to our notion of a system component. By a state machine some
internal detail of the system in terms of the states is provided. Therefore we say that
state machines provide a glass box view of a system component. In the following
section we provide another type of a glass box view of components described by the
internal structure of a component.

A communication pattern for a set of channels C is given by a mapping p ∈ C
r
*

which assigns a finite sequence of messages to every channel in C. A mathematical
state based system model uses state transitions. It includes in addition to the sets of
the syntactic interface above a set

State

which denotes the set of states (the state space) of the component. We define a state
transition machine by a state transition function

∆: State × I
r
* → (State × O

r
* → Bool)

and a set

State0 ⊆ State

of initial states.
A state transition machine is nondeterministic, in general. In each transition step it

takes a state and a communication pattern of its input streams and produces a
successor state and a communication pattern for its output streams. For this kind of
state transition machines, we represent the set of possible updated states and outputs
of a transition with the help of a predicate. Of course, sets of pairs of states and
output patterns can be used here directly. A state machine models the behaviour of an
information processing unit with input channels from the set I and output channels
from the set O in a time frame as follows. Given a family of finite sequences x ∈ I

r
*

representing the sequence of input message x(c) received in a time interval on the
channel c ∈ I of the component in state σ ∈ State, every pair (σ ', y) in the set δ(σ,
x) represents a possible successor state and the sequence of output messages y(c)
produced on channel c ∈ O in the next time interval.

We associate a stream processing function with a state machine that is given by
the transition function ∆ using the following definition. More precisely, we associate
a time guarded function Fσ with every state σ ∈ State as defined by the following
equation:

Fσ(x) = {y ∈
r
O:

(∃ i ∈ I
r
*, o ∈ O

r
*, σ' ∈ State, x' ∈

r
I , y' ∈

r
O:

y
_
 = oˆy '

__
 ∧ x

_
 = iˆx '

__
 ∧ ∆ (σ, i).(σ', o) ∧ y' ∈ Fσ'(x')) ∨

(∀ i ∈ I
r
*: i Æ x

_
 ⇒ ∀ ο ∈ O

r
*, σ' ∈ State: ¬∆(σ, i).(σ', o))}

If the state transition relation contains cycles then the definition of Fσ is recursive. In
this case, we cannot be sure that by the equation above the behaviour Fσ is uniquely
specified. Therefore we define Fσ by the largest (in the sense of pointwise set
inclusion) time guarded function that fulfils this equation.

The first (existentially quantified) part of the left-hand side of this defining
equation handles the case where at least one of the input patterns applies. The second
part treats the case where for the input stream x none of the input patterns applies.

18

This case is mapped onto arbitrary output called chaos4) . This definition is justified
by the principle that, if nothing is specified for an input pattern, the system may react
by arbitrary output. This definition, moreover, guarantees that the function Fσ is
always fully realizable.

If we do not want to associate a chaotic, but a more specific behaviour with input
situations where no input pattern applies, we can work with default transitions (for
instance time ticks) or simply drop the second clause in the definition. Working with
chaos, however, has the advantage that adding input patterns for input for which no
pattern applied so far is a correct refinement step in the development process.

Our model of the behaviour of a component works with timed input and output
streams. Since the input and output patterns as introduced above do not refer to the
timing of the messages, in the definition we work with time abstractions of the input
and output streams. Of course, we may also work with input patterns that refer to
time. The explicit time concept in the behaviour model of a component allows us also
to deal with priorities in transitions.

We even permit transitions with empty input patterns called spontaneous
transitions. If we work with our assumption that for a transition on every channel
there is at least one time tick, then a spontaneous transition is only enabled if there
are no messages but only time ticks on the input channels.

Note that we can give along these lines a precise treatment for sophisticated
concepts like priorities and spontaneous transitions due to our carefully chosen
semantic model that includes time. Without an explicit notion (at least on the semantic
level) of time a proper semantical treatment of priorities or of spontaneous reactions
is difficult or even impossible.

5.2 Description of State Transition Systems

We describe state transition systems by state transition diagrams. To demonstrate the
use of state transition diagrams (STDs) for the description of the behaviour of
components we give a first simple example.

Example: A simple store
The state space of the state machine contains only one attribute declared by

a: MemLocs → Data

Initially all memory cells have the initial value init_val which is a distinguished
element of MemVals

Initial: a(i) = init_val

In the case of the store we work only with one node in the state transition diagram.
Then, we might better not use a state transition diagram at all, but work with a set of
transitions very similar to TLA (see [Abadi, Lamport 90]). Ÿ

We do not give a formal translation of STDs to state transition systems. It is rather
technical, but quite straightforward.

4) If no input pattern applies we assume that a specific behaviour is not required.

19

5.3 Description of the Behaviour of System Components

We have shown that state transition systems can be used to describe the behaviour of
system components. A state transition system can be described by a state transition
diagram or equivalently by a state transition table. Such descriptions receive much
more acceptance in practice than purely logical representations of state transition
systems. However, without much overhead we may describe state transition systems
by tables or diagrams and translate these into logic.

x:put(i, d) / y:ret(put(i, d), Ack) {a'(i) = d ∧ ∀ j, j ≠ i: a'(j) = a(j)}
x:put(i, d) / y: ret(put(i, d), MemFail) {a' = a}

x:get(i) / y:ret(get(i), a(i)) {a' = a}
x:get(i) / y:ret(get(i), MemFail) {a' = a}

Fig. 6 State Transition Diagram

The transition rules can be gathered into a table. This is shown for our example of
Fig. 6 by Tab. 2. This way we avoid long formulas in the state transition diagrams.

Tab. 2 Transition Table

name input output postcondition

Write x:put(i, d) y:ret(put(i, d), Ack) a'(i) = d ∧ ∀ j, j ≠ i : a'(j) = a(j)
WriteFail x:put(i, d) y: ret(put(i, d), MemFail) a' = a

Read x:get(i) y:ret(get(i), a(i)) a' = a
ReadFail x:get(i) y:ret(get(i), MemFail) a' = a

We can use the table in connection with a state transition diagram as given by Fig. 7
which only refers to labels included in the table.

Write
WriteFail

Read
ReadFail

Fig. 7 State Transition Diagram with Abbreviations for Transitions

20

The state transition diagram of Fig. 7 contains only one node. So, as pointed out, it
is an overkill to work with a state transition diagram at all. However, we may replace
the state transition diagram by one that contains two nodes. We may also work with
a state transition diagram where each transition is split into two, one that accepts the
input and the next one which produces the output. Then we need a more detailed
state space to store the location (and the value) for which reading or writing is
required. So the state space is given by the declaration of the attributes

a: MemLocs → Data, c: CalMem

The table Tab. 3 lists all the transitions and Fig. 8 gives the state transition diagram.

Tab. 3 Transition Table for the Decoupled State Transition Diagram

name condition input output postcondition
Com x:e - c' = e ∧ a' = a
Write c = put(i, d) - y:ret(put(i, d), Ack) a'(i) = d ∧

∀ j, j ≠ i : a'(j) = a(j)
WriteFail c = put(i, d) - y: ret(put(i, d), MemFail) a' = a

Read c = get(i) - y:ret(get(i), a(i)) a' = a
ReadFail c = get(i) - y:ret(get(i), MemFail) a' = a

Waiting Executing

Com

Write
WriteFail
Read
ReadFail

Fig. 8 State Transition Diagram for the Store with Transition Rules Separated into Input and
Output

This refined version of the store has the same behaviour as the store described by the
diagram above. Ÿ

The example above shows a technique for detailing a state transition diagram by
splitting its nodes and transition rules. If all nodes have only transition rules where
either the input pattern or the output pattern is empty the state transition diagram is
called decoupled. They correspond closely to the I/O-machines of [Lynch, Stark 89]
where each state transition is labeled by exactly one input or output action.

So far, we have shown examples only for the description of components. In the
next section we show how to put together components into a network such that they
cooperate. Since state transition diagrams describe data flow components, for which
a composition by data flow nets is well-understood, we can use this concept of
composition immediately for state transition descriptions. We demonstrate this by a
simple driver component that cooperates with the memory.

Example: Store Driver
A driver is a component that controls the access to the memory for many processes.
It receives calls and forwards them to the memory. It may try again if a memory call
fails. However, it may stop trying at any time, even if before it tried at all. We use
our general specification scheme again.

21

The syntactic interface of the component Driver is described by a data flow node
as it is given in Fig. 9.

r: Returns y: RetMem

s: Calls x: CalMem

Driver

z: Calls
a: RetMem

Fig. 9 Data Flow Node Giving the Syntactic Interface and the State Attributes of the Driver

The state space of the Driver with its attributes is described as follows:

z: Calls, a: RetMem

The state transition diagram given in Fig. 10 specifies the behaviour of the
component Driver.

s:b /- {z' = b ∧ a' = ret(mc(b), MemFail)} {rv(a) = MemFail}- / x:mc(z)

Standby Trying Waiting

- / r:ren(z, rv(a)) y:d / - {a' = d}

Fig. 10 State Transition Diagram for the Driver

The driver is designed to cooperate with the store. The driver may try forever in the
case of memory failures, if we do not assume any fairness assumptions. To get rid
of this "unfair" behaviour, we may add the liveness condition

r = # s

to the component specification that expresses that every input leads to an output
under the assumption

x = # y

that expresses that all calls transmitted on x get eventually served. It is very helpful
that the state transition description can be combined with logical equations to express
liveness properties. Ÿ

The technique of state transition diagrams gets more flexible by working with sets of
such parameterized diagrams.

Example: RPC
Our driver in the example above can handle only one request at a time. To be able to
handle more than one request at a time (more precisely one request for each
processor) we introduce a set PrIds of processors and define the state space as
follows

v : PrIds → state(z: Calls, a: RetMem)

We work with a multithreaded diagram (or more precisely with a family of single
threaded diagrams). For all process identifiers p ∈ PrIds we give one transition
diagram.

We use the following straightforward abbreviation. For a record r of sort

22

cons(sel1: M1, ..., seln: Mn)

we use the convention that

with r: E

stands for

E[sel1(r)/sel1, ..., seln(r)/seln]

Fig. 11 shows the state transition diagram of the multithreaded driver. Initially, all
default outputs are memory failures:

Initial: rv(a(v(p))) = MemFail

Note that the syntactic interface of the multithreaded Driver coincides with that of the
single-threaded driver. Ÿ

In a multithreaded state transition diagram a set of nodes is active. Each transition
moves the control of one of these nodes to another one. Chaotic default transitions
are only allowed if for none of the active nodes a transition is enabled.

For every p ∈ PrIds: with v(p):

{rv(a) = MemFail}-/ x:mc(z)

Standby Trying Waiting

- / r:ren(z, rv(a)) y:d / - {a' = d}

{pi(z) = p} s:b/ - {z' = b, a' = ret(mc(b), MemFail)}

Fig. 11 State Transition Diagram for the Multithreaded Driver

Note: If we use a set of nonconnected state transition diagrams which work with
disjoint sets of channels we can decompose the data flow node in a set of data flow
nodes that work in parallel. Vice versa, a data flow diagram where we have a
transition diagram for each node is a multithreaded state transition system. Ÿ

More research is needed, however, to work out concepts that allow us to encode
more powerful logical descriptions into tables and diagrams in a readable way (see
[Parnas, Madley 91]).

active: PrIds has_activity calls: CalMem

rvl RetVals

MemLocs a MemVals

Fig. 12 Data Model for the State of the Multituser Memory

For many applications it is appropriate to distinguish between regular and exceptional
system activities. What is called regular and what is called exceptional has to be

23

decided by application considerations. Often it is helpful to separate regular cases
from exceptional cases when describing system behaviours.

For the memory only one reader or writer can be active in the memory at a time. A
memory where several readers/writers are active simultaneously is specified with the
help of a more complex data model. It is given in Fig. 12.
Every member in active is related to a call by the function has-activity.

Multi
User
Store

r: Returns

s: Calls

Fig. 13 Data Flow Node Giving the Syntactic Interface of the Store

Now we can describe the behaviour of the multiuser memory by the state transition
diagram. Fig. 13 gives this transition diagram. The transition rules are gathered in
Tab. 4.

Tab. 4 Transition Table for Fig. 14

name precondition input output postcondition
Write has_activity.p = put(i, d) - - rvl(p) := Ack, a(i) := d

WriteFail has_activity.p = put(i, d) - - rvl(p) := MemFail
Read has_activity.p = get(i) - - rvl(p) := a(i)

ReadFail has_activity.p = get(i) - - rvl(p) := MemFail
ComIn ¬p ∈ active r:ca(p, c) - has_activity(p) := c,

rvl(p) := MemFail
ComOut p ∈ active ∧ has_activity.p = c - s:ren(c, val(p)) ¬p ∈ active’

We can use the table in connection with a state transition diagram as given by Fig. 6
which only refers to labels included in the table.

Write
WriteFail

Read
ReadFail
ComIn
ComOut

Fig. 14 State Transition Diagram for the Multi-User Store with Abbreviations for Transitions

Again we may addlivesness conditions such as fairness requirements that make sure
that every call eventually returns. If we assume that the store is fair and returns a
positive acknowledgement eventually if the Driver tries long enough. Another

24

possibility is to work without such a fairness assumption and let the driver retry until
it receives a positive acknowledgement.

6. Distributed Systems and Their Description

In this section we introduce a mathematical notion of distributed systems and
techniques for their description. Our notion is based on a data flow model of
distributed systems.

6.1 Mathematical Models of Distributed Systems

An interactive distributed system consists of a family of interacting components often
also called agents or objects. These components interact by exchanging messages on
channels by which they are connected. A structural view onto a distributed system
consists of a network of communicating components. Its nodes model components
and its arcs communication lines (channels) on which streams of messages are sent.
A glass box view of a system component can be represented by a distributed system
or by a state machine. In the first case we speak of a composed distributed system
and in the later case we speak of a nondistributed system. Fig. 12 shows the data
flow representation of a simple example of a distributed system.

We model distributed systems by data flow nets. Let N be a set of identifiers for
components (each of which is represented by a data flow node) and O be a set of
output channels. A distributed system (ν, O) with syntactic interface (I, O) is
described by the mapping

ν: N → Ç

that associates with every node a component representing a behaviour (an interface
behaviour). As a well-formedness condition we require that for all component
identifiers i, j ∈ N (with i ≠ j) the sets of output channels of the components ν(i) and
ν(j) are disjoint:

Out(ν(i)) ∩ Out(ν(j)) = Ø

In other words there are no name clashes for the output channels and thus, each
channel has a unique source. We denote the set of nodes of the net by

Nodes((ν, O)) = N

We denote the set of channels of the net by Chan((ν, 0)). It is defined as follows:

Chan((ν, O)) = O ∪ {In(ν(i)): i ∈ N} ∪ {Out(ν(i)): i ∈ N}

The set I of input channels of the net is defined as follows:

I = {In(ν(i)): i ∈ N}\{Out(ν(i)): i ∈ N}

The channels in the set

{Out(ν(i)): i ∈ N}\O

are called internal. By these definitions, every channel is either internal, an output
channel, or an input channel.

25

According to this definition a distributed system has like all other description
techniques a static (syntactic) part and a dynamic (semantic) part. The set of
component identifiers, the channels and the way how they connect components form
the static part of the distributed system while the function ν, which assigns
behaviours to the components represents the semantic part of a distributed system.

In recent years the theoretical and practical interest in distributed dynamic systems
increased. Dynamic systems are also called systems with mobile communication or
mobile systems for short. In a dynamic system the set of components and channels
changes over its lifetime. Such systems can also be described by the type of system
models introduced above. However, more refined models are needed where either
the net is used as a state of the system that changes over time or possibly infinite nets
are considered that comprise all components that may be created over the lifetime of
the system. In the case of dynamic channel creation similar ideas can be used (see
[Grosu 94], [Broy 95a], [Grosu et al. 95]).

6.2 Black Box Views onto Distributed Systems

Given a distributed system in the form of a data flow net with the set I of input
channels we get an abstraction of it (which we call its black box view) by mapping
the distributed system onto a component behaviour F ∈ Ç[I, O].

Every data flow net defines a black box view given by a component behaviour F
via the following specification:

F(x) = {y|O: y|I = x ∧ ∀ i ∈ N: y|Out(ν(i)) ∈ ν(i)(y|In(ν(i))) }

For a function g: D → R and a set T ⊆ D we denote by g|T: T → R the restriction of
the function g to the domain T. The formula above essentially is based on the idea
that the output of the net is the restriction of a fixpoint5) for all equations on the
streams induced by the channel of the network.

6.3 The Description of Distributed Systems

A distributed system, as we defined it in the previous section, can be described
graphically by a data flow network (called CD for communication diagram in
GRAPES, see [Grapes 90], called block diagram in SDL, see [SDL 88]). A data
flow network is a labeled directed graph. This way the structure of distributed
systems can be represented.

Data flow nets are illustrative diagrams (see Fig. 12) that give a structural view
onto information processing systems. Their weak points are that they only describe
the static, syntactic properties and do not indicate any semantic properties. They are
only helpful as long as the set of the components of a system is static. As soon as the
sets of components get dynamic, it is impossible to provide a static structural view of
systems by data flow nets. Nevertheless, even for object oriented techniques that
include the dynamic creation and deletion of objects, data flow models can be useful.

5) According to the fact that we only consider delayed timed behaviours it can be shown that in the
deterministic case for each input there is always a unique fixpoint. In the nondeterministic case,
there may be several fixpoints, of course, each of which corresponds to a computation of the net.
Therefore a sophisticated logic of least fixponts is not needed.

26

We can represent a complete class of objects in object oriented programming by a
single data flow node. Each such node represents the set of objects of that class
operating in parallel. It is not very helpful, of course, to represent the structure of a
class itself by a data flow diagram, in general.

A data flow net graphically represents the components of a system and their
communication interconnections by the channels. Thus a data flow net provides a
static view on a set of components and their connections. For systems with a more
dynamic structure as mentioned above, where the set of components as well as their
interconnection by communication links do change over the lifetime of a system, a
classical data flow net can only provide a snapshot. However, we can also use (even
infinite) data flow models that incorporate all components (or classes of components)
that may exist over the lifetime of the system. Then each component goes through
three phases. In the beginning it is inactive. Then it gets active (in the slang of object
orientation „it gets created“). After a while it may become inactive again.

The exact meaning of data flow diagrams is not always described precisely for the
software engineering methods used in practice, although most of these methods
advocate versions of data flow diagrams as part of their description techniques.
Nevertheless, as well known, we can formalise the meaning of data flow nets by
stream processing functions (see also [Broy 95b]).

As mentioned above, the weak side of data flow nets are their limited possibilities
to describe the behaviour of systems. They indicate which components exist and may
exchange messages, however, this does not say much about the causal relationships
between the exchanged messages.

Of course, we can annotate data flow diagrams with information about the sorts of
the messages exchanged on a data link. This provides a description of the syntactic
interfaces of the components of a system.

The driver can be combined with the component Store. This composition is
asynchronous as it is defined in asynchronous data flow. By combining the driver
and the store, we obtain a component which again can be described by a state
transition machine. Its state space consists of the product of all the state spaces of the
subcomponents. In addition, we need buffers to store the messages sent on internal
channels until they are received.

Such buffers can be avoided, of course, if we work with decoupled state
transition diagrams defining state machines that do all their transitions with input
from internal channels in two steps. In the first step the input is received and in a
successive step without input the output is produced. By such a refinement of state
machines into decoupled state machines the buffers have to become part of the state
space.

Example: Composing the Driver and the Store into a Data Flow Net
The interface of the driver and the store fit together such that we may compose them
as shown in Fig. 15. In cases where the channel identifiers do not match we have to
rename them.

Store
r: Returns y: RetMem

s: Calls x: CalMem

Driver

z: Calls
a: Returns

Fig. 15 Composition of the Driver and the Store

This composition can also be described by a textual syntax. As the diagram suggests,
the channels x and y are hidden and not part of the interface of the black box view.

27

The driver and the second version of the memory component of section 5.3 are
already in the form that allows us to work without buffers when combining their
state spaces into a state space for the state transition description of the composed
system. Ÿ

Of course, the buffer can only be completely avoided, if the decoupling is broken
down onto the level of singular steps and in every node every input can be accepted.
Only then no additional buffers are needed to store messages on input channels
provided the system runs fast enough to process all inputs immediately.

6.4 State Views onto Distributed Systems

If all components of a distributed system are described by state machines we easily
may obtain a state view of a distributed system. To keep our presentation simple we
assume that for all components their sets of attributes are pairwise distinct and that
their state transition description is decoupled and in every state every input can be
immediately processed. Then we obtain a state view of a distributed system simply
by joining the state views of all its components. The state transitions are triggered by
the state transitions of the components and the exchange of messages. Independent
machines can carry out transitions in parallel.

7. Processes

In this section we introduce the mathematical concept of a process and in addition
techniques for describing processes. Processes are a concept describing the internal
communication behaviour of distributed systems.

7.1 Mathematical Models of Processes

The notion of a process is crucial in software engineering. This can be seen by the
term information processing. The notion of a process is very general and used in
many different ways in computer science. We understand a (discrete) process as a
model of the flow of causally related activities in a distributed interactive system. It is
represented by a mathematical model consisting of the actions and their causal
relationships. A process is a family of actions that are in some causal relationship. In
the case of interacting systems, an action is triggered by a number of messages that
have been received. When it is carried out, it results in sending a number of
messages that may cause further actions. If in a process an action a1 is directly causal
for an action a2 there must exist a message sent from action a1 to action a2.

Each instance of sending or receiving a message is called an event. Each event is
caused by the sender of the respective message. Events that are caused by the
environment are called external events. All other events are called internal events. An
internal event the receiver of which is the environment is called an output event.
Special events are time events. They can be understood as messages that are sent by
a timer.

28

Pioneering work on the notion of a process was done by Carl Adam Petri who
suggested by the so-called Petri nets a fundamental technique for describing
concurrent processes. Strictly speaking Petri nets are a kind of automata that describe
concurrent processes. An explicit description of processes is obtained by the so-
called occurrence nets (see [Reisig 86]) which are Petri nets without cycles and
conflicts.

In our model of a distributed system, a process is represented by an acyclic data
flow net (νp, Op) and a valuation function

η: Chan((νp, Op)) → M

that associates with all of the arcs of the net exactly one message. Then an action is
represented by a behaviour relation that relates the messages in its input lines to the
messages in its output lines.

As a result of our definition, a process is a special case of a data flow net. In
contrast to general data flow diagrams, however, through each of its channels exactly
one message is sent. So arcs correspond in process nets to communication events
(message transmission) and nodes correspond to action events (receiving and
sending of messages).

There are many variations of mathematical models for processes including trace
sets and action structures (see [Broy 91]). We do not introduce a more explicit
mathematical model of a process here but consider processes as a special form of
distributed systems. The relationship of our notion of process to data flow nets is
explained in detail in section 9.4.

7.2 The Description of Processes

An individual history of a system behaviour (also called a run of a system) can be
described by the set of events (exchanged messages) and their causal relationship. It
is represented by a process. In software engineering, the concept of a process for
illustrating individual cases of interaction is found for instance as a spin off of SDL
(see [SDL 88]) called message sequence charts (see [MSC 96]) or in objectory (see
[Booch 91]) called use cases.

A sequence chart defines a trace of communication events for the system and for
its components that take part in the interaction. Fig. 16 provides an example of a
sequence chart. It provides the same information as the process diagram given by
Fig. 17.

Processes of interactive systems can be represented by acyclic data flow graphs
where each node stands for exactly one action and each arc stands for one event of a
message or a signal transfer from one action to another. So each action in the process
is represented by exactly one node and each event is represented by exactly one arc.

Graphically each event can be represented by an arc and by the two involved
actions (components) (sender and receiver). Since causality between events is always
realised through the actions (components), an event e1 can only be directly causal
(triggering) for an event e2 of another component, if the sender of e2 is the receiver
of e1.

This way we get component-based process views. Our kind of processes are
obtained as specific subprocesses of the behaviours of structural system views. Of
course, in a structural view several processes and several tasks may be carried out in
an interleaved manner.

29

 r:ren(ca(p,c),Ack)
y:ret(c,Ack)

x:c

y:ret(c,MemFail)

x:c
s:ca(p,c)

Environment Driver Store

Fig. 16 Sequence Chart of a Case of Interaction between the Driver and the Store for c = put(...)

In the processes we do not always explicitly include the data flow between the
different activities of one component. This may, however, be necessary if the
process view is to be refined into a structural system view during the system
development. Similarly, the access to a common data base may not be modelled
explicitly in a first development step. However, later such a modelling is necessary
to obtain a correct representation of the data dependencies between the involved
actions. Fig. 17 gives a process view of a standard process for our example
application.

The behaviour of a component connecting a number of input events with a
number of output events occuring in a process view can be described again by a data
flow network or by a state machine (called PD in [Grapes 90]). A formal definition
of the interpretation of processes as runs of systems described by data flow graphs is
given in section 8.4.

8. Modelling Techniques

Description formalisms give - similar to programming languages for describing
algorithms - a solid basis for representing models. There is as much freedom in how
to use a description formalism as there is freedom in using a programming language
to provide an algorithm for a problem.

For the development of information processing systems we have to develop an
adequate model of the information processing task. Since it is difficult or even
impossible to describe a complex systems in full detail in one document, we structure
the description by providing models and abstractions. An abstraction is a simplified
description of the system. A useful abstraction allows us to concentrate on significant
aspects of the system reducing the overall complexity of the modelling task.

A view shows us the system under an individual perspective highlighting specific
aspects. So a view is always an abstraction. However, since we generally work with
a fixed collection of views, each of the views provides a uniform type of abstraction.
Certain views are well accepted in software engineering. For instance, data views,
which provide a view on the data aspects of an information processing system, are

30

well received and can be found in terms of E/R-models in most development
methods. Process modelling techniques are used in many methods, too. Recently,
they have gained more attention. It is widely recognised by now that process views
can help significantly in understanding an application problem and properties of
solutions, especially in the communication between the software engineer, the
application expert, and the client.

h

Initiate
Update

r:ren(ca(p,c),Ack)

y:ret(c,Ack)

x:c

y:ret(c,MemFail)

x:c

s:ca(p,c)

Environment Driver Store

Try

Failure

Retry

Success

Acknowledge

End

Fig. 17 Process Description of a Case of Interaction for a Call c = put(...)

Nevertheless, how to make a systematic use of process modelling techniques in the
software and system development is still not fully understood. A process represents
the history of the run of a system in terms of the actions performed by a system and
their causal relationship. Since often the processes of a system are too large to show
them in full details the behaviour of a system is illustrated by sample subprocesses
(called use cases) handling individual cases. There is a general agreement that
besides data views and structural views this modelling of processes is essential for
the development of interactive systems.

31

Process modelling techniques can be used in many application areas. In
telecommunication, for instance, message sequence charts are advocated (see [MSC
96]). Object oriented techniques provide use cases, too. We agree that process
modelling is a helpful concept in most application areas of information processing.
We believe, too, that a systematic use of process modelling techniques can be
helpful, in principle, both in technical and in business applications.

In the early phases of system development often called system analysis or
requirement engineering, we work out the following five complementary system
views:

• data view (also called information model),
• process view (dynamic view),
• structural view (also called organisational or architectural model),
• behaviour view (interface model, behaviour history model, black box view),
• state view (state transition model).

Software engineering has provided many different description techniques for all
these modelling aspects (see above). What is lacking in many methods is the well-
worked out semantical and methodological integration of these views (see below). In
particular, it is not always clear what the role of process views is in system and
software engineering from a methodological point of view.

In the following, we sketch the role of the data view, the behaviour view, and the
process view in the course of development of a system. Structuring descriptions is
one of the most important goals when we try to keep the description of large systems
comprehensible. This is also supported by levels of abstractions. Ideas, how the
levels of abstractions are connected by refinement notions, are shown in section 9 on
the development method.

8.1 Building the Data View and the State View

We suggest to use data views mainly for modelling static aspects of the data relevant
for a system. There are strictly object-oriented approaches that suggest to mix static
and dynamic aspects of a system into one E/R-diagram. They suggest also to model
each business case by an object. This object includes all the attributes needed to
represent the state of the individual business case and all the methods needed to
change the business case attributes. This is suggestive as long as such an object is
modelled as being passive. It becomes questionable as soon as such an object gets
active and calls methods of other objects. This contradicts the principle of object
orientation that has the goal to represent reality as "naturally" as possible.

We can also give a data view of the state of a distributed system (ν, O) by an E/R-
diagram that defines a number of components in terms of the set of components N
and provides a state space for each of these components by a number of attributes
with their sorts.

8.2 Process Modelling

In this section we discuss shortly how to use process modelling techniques in system
development. We model actions in a process by a data flow node that formally
represents a component. However, a component representing an action has an

32

especially simple structure. On each of its input arcs it receives exactly one message
and on each of its output arcs it issues exactly one message.

Note that we do not require a strict behaviour where all input messages have to be
available before all the output messages are generated. Some output messages may
require only a subset of the input messages. In a complete modelling of an action all
the information an action needs is provided by its input messages. Since an action is
represented formally by a data flow component we can describe it by the same
techniques that we use to describe components.

There is a rich body of research on the topic (Petri nets, process algebras like
CCS and CSP, event structures, etc.) how to describe systems by sets of processes.
However, most of this work can only be used as a theoretical foundation and does
not help much in concrete description tasks. So more work needs to be done to make
these theoretical approaches practically useful.

8.3 Structural System Views

In a structural system view the structural decomposition of a system into a family of
components is shown. A complete description of a structural system view by a data
flow net where for each of its data flow nodes black box behaviours are given
contains enough information to simulate system behaviours, provided the behaviour
of all components is described by means for which an operational interpretation is
given. Structural system views are easily provided by data flow diagrams as shown
in Fig. 12.

In a system development there may be several structural views, for instance,
indicating the logical structure and the physical structure of a system. Building a
structural view for a component for which we only have a black box view is a
difficult task. This is why the importance of architectures is so much recognized,
today. We have to decide upon the set of subcomponents, how they are connected
and how they interact. For this process views may help. Finally we have to give the
black box views of the subcomponents.

8.4 Behaviour Views of Components

A structural system view on a system providse a description of the overall system
architecture. It also provides a description of the system behaviour if for each
component a behaviour is fixed. We distinguish between a black box view and a
glass box view of a component. In a black box view the behaviour of a component
of an interactive system can be represented either by a trace set or by a stream
processing function. In a glass box view the behaviour can either be represented by a
state machine or by an interactive distributed system.

Often, it is advisable, first to take into consideration only the regular aspects of
the behaviour of components. We call this the behaviour in nonexceptional cases.
Only in a second step we consider the exceptional cases. In other words, the
behaviour is refined to nonexceptional cases in a second step. We distinguish the
following classes of exceptional cases:

• external input events that are expected, but do not occur (within certain time
bounds),

33

• external input events that occur unexpectedly,
• external output events are expected that cannot be generated by the system

because of lack of information.

The same distinctions can be made for the internal events of distributed systems. In
any case, it is advisable for complex components to start with a simplified version
and then to refine it to a more sophisticated one.

9. Development Method

A development method gives hints and suggestions, how to use the description and
modelling techniques in a systematic way to develop a computer-based information
processing system. In software engineering, the development is carried out by going
through several development phases. We speak of a development process model
when these phases and the documents are fixed.

9.1 Development Process Model

In software engineering the discussion of the development process model plays a
central role. This has clear reasons. The development process model governs the
whole development process and is therefore decisive for the structure, the economy,
and the quality of the development.

Often religious fights are fought in software engineering whether the waterfall
model, the spiral model, the experimental or the evolutionary prototyping model, or
object oriented development methods provide the best development process models.
Not enough practical data are available and not enough theoretical work has been
invested to analyse, evaluate, discuss, characterise, relate, and formally specify these
different development models.

Mathematical techniques can help to relate the various views and documents in a
development process. They help to understand whether a particular proceeding is
appropriate and how the interaction between the various documents and views can be
formalised and supported by methods and tools.

A more rigorous formalization of the development process is suggestive.
Development processes are instances of processes as they are discussed in theoretical
computer science. So we can apply all our notions from process theory here, too. In
the discussions about development process models, it is often not recognised that we
have to distinguish between the overall structure of the development documents and
how they are related on one hand and the temporal order in which they are produced
on the other hand. So we can talk about the statics (the logical dependencies between
the documents) and the dynamics (the order in which the documents are produced) of
the development method and the involved activities.

34

9.2 Refinement

In software engineering, systems are described by a number of complementary
views and on different levels of abstractions. Of course, we need to integrate these
views. Furthermore we need clear mathematical relations between the different levels
of abstraction. This is closely related to refinement notions. View integration is dealt
with in section 9.4. In this section we treat refinement.

Much theoretical work has been devoted towards the refinement notion. After the
more pragmatic and informal ideas of stepwise refinement developed by Dahl, Wirth
and many others in the seventies, much formalization has taken place converging
essentially into the following two concepts:

• property refinement: In property refinement a system is developed by adding
further properties (requirements) and further system parts (enriching the
signature). The basic mathematical notion of property refinement is logical
implication (with respect to the logical properties) or set inclusion (with respect to
the set of models). This allows us also to replace component specifications by
logically equivalent component implementations.

• representation refinement (a special case is data refinement): In representation
refinement we change the representation of a data model or of the states and
messages of a system model. This can be done with the help of a function
relating the two models.

For data models representation refinement was studied extensively over the last 25
years after stimulating papers by Hoare. For models of system components such
studies have emerged only more recently.

9.2.1 Data Refinement

For data structure descriptions, property refinement is quite simple. Given a
signature (S, F) and a set of algebras Alg, by property refinement we add further
requirements to our specification. This way, the set of models Alg is reduced to a
subset Alg´ ⊆ Alg.

More sophisticated is the idea of the refinement of the data representation.
However, this is also well-understood by now. To refine the representation of a sort
Asort we need a representation sort Rsort and functions

α: Rsort → Asort abstraction function

ρ: Asort → Rsort representation function

that relate the elements of these two sorts. The function ρ provides a representation
for each element in Asort. In general, we work with relations ρ or with sets of
representation functions to be able to allow many representations for one abstract
data element. For our purpose it is sufficient to work with one instance of a
representation function.

The function α maps the elements in Rsort that are used as representations onto
their abstractions in Asort. The functions α and ρ have to fit together to define a
proper idea of abstraction and representation. This is expressed by the following
equation:

α.ρ.x = x

35

Moreover for all functions on the sort Asort we have to provide representations. For
instance for a function

f: Asort → Αsort

we have to find a function

f': Rsort → Rsort

such that for all elements x in Asort we obtain

f.x = α .f'.ρ.x

This requirement can be generalised to functions with more complex functionalities.

9.2.2 State Transition System Refinement

Since state spaces are only special cases of data models, the refinement concepts for
data models carry over to state spaces immediately. As long as the sorts of the input
and output channels are not refined we can simply work with property refinement. If
not only the state space is to be refined but also the sorts of the messages and the
number of input and output channels we should use the concepts of component
refinement as introduced in the following section.

9.2.3 Component Refinement

There are with three fundamental concepts of the refinement of the interface view of
system components

• property refinement,
• interface refinement,
• glass box refinement.

By property refinement we do not change the syntactic interface of a component but
add properties to its specification. This reduces the set of possible outputs.

In interface refinement we may change the syntactic interface, but insist on a well-
specified relationship between the behaviour of the refined component and the
original one.

In glass box refinement we replace the black box view by a glass box view,
which is provided either by a state machine or by a distributed system. The black box
behaviour associated with the glass box view is requiired to be a property refinement
of the original black box view.

For our concept of a system model property refinement is very simple. A
component with interface view

f̂ : Ç[I, O]

is called a refinement of a component:

f: Ç[I, O]

if for all input streams x ∈
r
I we have:

f̂(x) ⊆ f(x)

36

We write then

f̂ ⊆ f

Of course, this refinement notion can be carried over to state machines. For a
systematic use of refinement concepts, compositionality (which is the mathematical
version of modularity) of refinement is essential. Compositionality guarantees that, if
we replace a component of a system by its refinement, we obtain a refinement of the
overall system.

Property refinement does not change the syntactic interface of a component. An
interface refinement changes the syntactic interface of a component, but provides a
precise interpretation of the behaviour of the refined component as behaviours of the
given one. We introduce what is called an upwards simulation in the literature. We
consider two components with different syntactic interfaces:

F ∈ Ç[I, O],

F̂ ∈ Ç[Î ,Ô] .

If we want to consider the behaviour F̂ as an interface refinement of the behaviour F
we have to interpret all computations of F̂ as behaviours of F Therefore we introduce
the concept of a channel history refinement. Let Z and Ẑ be sets of channels. A pair
of functions

A ∈ Ç[Ẑ , Z], R ∈ Ç[Z, Ẑ],

is called a channel history refinement if

R ; A = Id

where Id is the identity function and „;“ is the usual functional composition
(relational product). For an interface refinement we need two channel history
refinements:

AI ∈ Ç[Î , I], RI ∈ Ç[I, Î],

AO ∈ Ç[Ô , O], RO ∈ Ç[O, Ô],

such that

RI ; F̂ ; AO ⊆ F

So for every input of the component F a computation of f is represented by a
computation of F̂ .

We do not have to say much about glass box refinement. In the sections on state
transition systems and distributed systems we have specified how to derive a black
box view from a state transition description or a description of a distributed system.
In glass box refinement we simply use this definition and reverse the direction of
development. Starting from a black box description we work out a state transition
description or a description of a distributed system whereby the black box view of
these is a property refinement of the original black box description.

9.2.4 Refinement of Distributed Systems

A distributed system is refined by refining its components. For each of its
component we may use a property refinement. It is shown in [Broy 92] that a
refinement of individual conponets of a network is guaranteed to lead to a property
refinement of the overall distributed system. We may refine each component either

37

into a state transition machine or into a distributed system. Also this leads into the
hierachical refinement of the distributed system.

Of course, we may also refine the communication histories for the internal
channels of a distributed system by an interaction refinement. It is shown in [Broy
92] that this can be done in a modular way, too.

9.2.5 Process Refinement

Since in our approach, processes are only a special case of distributed systems the
concepts of distributed system refinement can be used for process refinement, as
well. We can apply all three concepts of refinement of data flow nets such as
property refinement for actions, interface refinement and the glass box refinement for
the refinement of processes. Glass box refinement allows us to replace an action by a
process or to describe an action by a state machine.

A central notion of refinement is decomposition. We can use static or dynamic
notions of decomposition of components, states, or processes.

9.3 The Modelling Universe

In the development of a system, we fix the above-mentioned five views and work
out respective models for representing them:

• information (data),
• interface,
• subsystem behaviour by state change (state transitions),
• structure (organisation, distribution),
• process (business cases, use cases, message sequence charts).

These views have to provide a consistent integrated view of the systems.
For all applications the details to be described by the corresponding modelling

notions have to be agreed on and to be worked out during the development process.
This means that the five complementary views are refined through several levels of
abstaction.

9.4 View Integration: Processes and the Structural System View

Given a complete system description, say by a structural system view (a hierarchical
data flow graph), and a state transition description for each atomic component (a data
flow node) the overall behaviour of a system is fixed. Then we can associate
processes with such a system by unravelling the cycles of the data flow graph. This
leads, in general, to infinite acyclic data flow graphs corresponding to a set of
processes each representing a run of the system. In this unrolling of the data flow
nodes the information flow between the actions of one component is made explicit.

A process is represented by an acyclic data flow net (νp, Op) and a valuation
function

η: Chan((νp, Op)) → M

38

that associates with each of its arcs exactly one message.
In the view integration we have to relate the process view to the structural view of

a distributed system. This means that we have to define when a process is a
consistent view of a data flow net. To formalize this motive, we define what it means
to call a process a run of a data flow net (ν, O) with input history x ∈

r
I . We require

that there is a function

κ: Nodes((νp, Op)) → Nodes((ν, O))

that associates with every action of the process a data flow component. Intuitively
κ(a) yields the component that models (carries out) the behaviour of the action a.

Every arc in the process corresponds to communiction event. Each of these events
occurs for one of the channels of the data flow node. To model this correspondence,
we require that there exists a function

χ: Chan((νp, Op)) → Chan((ν, O))

that associates with every arc in the process a channel in the data flow net such that
for every action represented by a node i ∈ Nodes((νp, Op)) each channel in its set of
input channels is mapped onto an input channel of the node onto which the node i is
mapped. The analogous condition is required for the output channel:

{χ(c): c ∈ In(i)} ⊆ In(κ(i))

{χ(c): c ∈ Out(i)} ⊆ Out(κ(i))

Since several channels (representing communication events) in the process are
mapped onto the channel in the data flow network we assume that for each channel c
∈ Chan((ν, O)) a linear order on the sets of channels (arcs)

{c‘: χ(c‘) = c}

in the process is defined. This order is used to determine in which order the
messages in the process are sent on the channels on the system. Of course, this order
has to be consistent with the causality order in the process. This way we can
associate a finite stream υ(c) of message s with each channel c ∈ Chan((ν, O)) of the
data flow net. It consists of the messages in the process associated with that channel.

The process (νp, Op) is called a run of the system (ν, O) for input x, if there exists
a valuation function

y: Chan((ν, O)) → Mϖ

such that

y|I = x ∧ ∀ i ∈ N: y|Out(ν(i)) = ν(i)(y|In(ν(i)))

and

υ(c)|In(ν(i)) Æ y(c)

In words, the process provides communication histories that form a prefix of a
computation of the net.

In many cases, processes are not used to model initial segments of system
computations. Then a process may consist of all messages of a particular subset M'
of the set of messages M. Then we require

υ(c)|In(ν(i)) Æ M'© y(c)

where M'©y denotes the family of streams obtained from y by filtering out all
messages in the set M'. This allows us to model transactions by processes.

39

9.5 The Role of Process Views in the Development

In the development, process views are used as a means for documentation and
analysis for the following purposes:

• In the early development phases instances of processes and process views can
help in the requirement capture. They are helpful to illustrate representative use
cases. They can be a valuable means for the communication between an
application expert and the system analysis expert.

• As soon as a complete structural system view is provided, process views can be
used to illustrate the system behaviour by simulations. One may also think of a
model checking tool that checks whether only the required processes are possible
behaviours of the structural system view.

We can associate a set of states with every process. Formally, the set of states can be
represented by the set of prefixes that, in fact, represent all partial executions
(snapshots) of a run of the system. Of course, such a representation of the states of a
process is much too abstract and therefore not very helpful. However, by
introducing appropriate names and representations for the states we can gain
additional views on a process and relate them to the state transition view.

As we have seen, a component can be described by a state machine. The state
machine can be systematically derived from the process view. For every component
we can construct a local view onto the process and represent this by a set of states. It
can be understood as the projection of the state view of a process onto a component.
Then we can describe the behaviour of the component concerning the process by a
state machine.

9.6 View Integration by Axiomatic Specifications

The different views developed in systems modelling finally have to be integrated into
a consistent system description. View integration can be made on a purely
mathematical level by joining together all the mathematical structures which are given
by the various description methods.

Another possibility is to understand every description method as a logical
statement about the system. Then all the logical statements provided by the
description can be composed into one big axiomatic specification. Then consistency
of a description coincides with logical consistency. Here axiomatic specification
techniques are extremely helpful. They allow to translate all views of a system into a
set of axioms about a system. This technique is successfully applied in [Hußmann
95]. There a widely used practical software development method is defined by
translating it into axiomatic specifications.

10. Conclusions
To work out a pragmatic, practically usable method for the development of large
software systems that is properly founded on a scientific, mathematical basis is one
of the challenges for computer scientist and software engineers. Such a method
would allow to include in a flexible way formal methods for the specification,

40

refinement, and verification of system parts. It would be the key for a deep tool
support that goes beyond the pure preparation, storage, and retrieval of development
documents.

We are at an exciting stage in software engineering and the integration of formal
methods. A lot of the theoretical work required for the foundations has been done.
What is needed is an experimental integration and application.

In the SysLab project at the Technical University of Munich we try to follow this
line and make a significant effort to gain a closer relationship between formal
methods and pragmatic software engineering.

Acknowledgement

The thoughts presented above have benefited greatly from discussions within the
SysLab team, the IFIP working group 2.3, with software engineers from BMW,
ESG, Siemens, Siemens Nixdorf, Digital and many others. I thank Herbert Ehler
and Ursula Hinkel for a careful reading and a number of comments.

References

[Abadi, Lamport 90]
M. Abadi, L. Lamport: Composing Specifications. Digital Systems Research Center,
SRC Report 66, October 1990

[Abrial 92]
J.R. Abrial: On Constructing Large Software Systems. In: J. van Leeuwen (ed.):
Algorithms, Software, Architecture, Information Processing 92, Vol. I, 103-119

[Beeck 95]
M. v. d. Beeck: A Comparison of State Charts Variants. In: H. Langmaack, W.-P.
de Roever, J. Vytopil (eds): Formal Techniques in Real Time and Fault-Tolereant
Systems. Lecture Notes in Computer Science 863, 1994, 128-148

[Booch 91]
G. Booch: Object Oriented Design with Applications. Benjamin Cummings,
Redwood City, CA, 1991

[Broy 91]
M. Broy: Formalisation of distributed, concurrent, reactive systems. In: E.J.
Neuhold, M. Paul (eds.): Formal Description of Programming Concepts. IFIP W.G.
2.2 advanced seminar, Rio de Janeiro 1989. Berlin: Springer, 1991, 319-361

[Broy 92]
M. Broy: Compositional Refinement of Interactive Systems. DIGITAL Systems
Research Center, SRC 89, 1992

[Broy 95a]
M. Broy: Equations for Describing Dynamic Nets of Communicating Systems. In:
E. Astesiano, G. Reggio, A. Tarlecki (eds): Recent Trends in Data Types
Specification, 10th Workshop on Specification of Abstract Data Types joint with the

41

5th COMPASS Workshop, S.Margherita, Italy, May/June 1994 Lecture Notes in
Computer Science 906, Springer 1995

[Broy 95b]
M. Broy: Advanced Component Interface Specification. In: Takayasu Ito, Akinori
Yonezawa (Eds.). Theory and Practice of Parallel Programming, International
Workshop TPPP'94, Sendai, Japan, November 7-9, 1994, Proceedings, Lecture
Notes in Computer Science 907, Springer 1995

[Broy, Lamport 93]
M. Broy, L. Lamport: Specification Problem. http://www.research.digital.com/SRC/
personal/Leslie_Lamport/dagstuhl/all.html

[Broy, Merz, Spies 96]
M. Broy, S. Merz, K. Spies (ed.): Formal Systems Specification. The RPC-
Memory Specification Case Study. Lecture Notes in Computer Science 1169, 1996

[Grapes 90]
GRAPES-Referenzmanual, DOMINO, Integrierte Verfahrenstechnik. Siemens AG,
Bereich Daten-und Informationstechnik 1990

[Grosu 94]
R. Grosu: A formal foundation for concurrent object-oriented programming.
Dissertation, Fakultät für Informatik, Technische Universität München, December 94

[Grosu et al. 95]
R. Grosu, K. Stølen, M. Broy: A Denotational Model for Mobile Data Flow
Networks. To appear

[Guttag, Horning 93]
J.V. Guttag, J.J. Horning: A Larch Shared Language Handbook. Springer 1993

[Harel 87]
D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8, 1987, 231-274

[Hettler 94]
R. Hettler: Zur Übersetzung von E/R-Schemata nach SPECTRUM. Technischer
Bericht TUM-I9409, TU München, 1994

[Hußmann 94]
H. Hußmann: Formal foundation of pragmatic software engineering methods. In: B.
Wolfinger(ed.): Innovationen bei Rechen- und Kommunikationssystemen,
Informatik aktuell, Berlin: Springer, 1994, 27-34

[Hußmann 95]
H. Hußmann: Formal Foundations for SSADM. Technische Universität München,
Fakultät für Informatik, Habilitationsschrift 1995

[Jones 86]
C.B. Jones: Systematic Program Development Using VDM. Prentice Hall 1986

[Lynch, Stark 89]
N. Lynch, E. Stark: A proof of the Kahn principle for input/output automata.
Information and Computation 82, 1989, 81-92

[MSC 96]
Message Sequence Charts (MSC), Recommendation Z.120. Technical report, ITU-
T, 1996

[Parnas, Madey 91]
D. L. Parnas, J. Madey: Functional Documentation for Computer Systems

42

Engineering (Version 2). CRL Report 237. McMaster University, Hamilton Ontario,
Canada 1991

[Reisig 86]
W. Reisig: Petrinetze - Eine Einführung. Studienreihe Informatik; 2. Überarbeitete
Auflage (1986).

[SDL 88]
Specification and Description Language (SDL), Recommendation Z.100. Technical
report, CCITT, 1988

[SPECTRUM 93]
M. Broy, C. Facchi, R. Hettler, H. Hußmann, D. Nazareth, F. Regensburger, O.
Slotosch, K. Stølen: The Requirement and Design Specification Language
SPECTRUM. An Informal Introduction. Version 1.0. Part I/II Technische Universität
München, Institut für Informatik, TUM-I9311 / TUM-I9312, May 1993

[Wirsing 90]
M. Wirsing: Algebraic Specification. Handbook of Theoretical Computer Science,
Vol. B, Amsterdam: North Holland 1990, 675-788

