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Abstract

Currently, a shift of paradigm from sequential to distributed com-
puting can be observed. Great efforts are needed to cope with the
challenging demands that are inherent to this transition. The most
important issues and requirements concern two main areas. First, pro-
gramming of distributed applications should be significantly simplified
by hiding as many details of the underlying physical distribution of
the hardware configurations as possible. Second, the performance of
distributed systems has to be enhanced by providing an efficient re-
source management for distributed systems that is completely trans-
parent to the application level. The research project SFB #324/A8
dealt with a novel language- and object-based approach called MoDiS
to cope with these demands. Distributed systems are developed and
transformed into executables following a systematic, top-down driven
method. Language-based is intended to mean that a high-level pro-
gramming language is used to develop operating system services as
well as user-level applications. The language-level concepts employed
are based on objects and support advanced structuring features and
incremental system construction in a controlled manner. Structural
dependencies between objects are implicitly determined at the appli-
cation level and exploited by the distributed resource management
system to transform applications into efficient executables.
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1 Introduction

Currently, a shift of paradigm from sequential to distributed computing can
be observed. Great efforts are needed to cope with the challenging demands
that are inherent to this transition. The most important issues and require-
ments concern two main areas. First, programming of distributed appli-
cations should be significantly simplified by hiding as many details of the
underlying physical distribution of the hardware configurations as possible.
Second, the performance of distributed systems has to be enhanced by pro-
viding an efficient resource management for distributed systems that is com-
pletely transparent to the application level.

From the developers point of view, a programming environment that offers
concepts, features and tools to ease the development of large-scale distributed
applications is a requirement. The developer should not be explicitly con-
cerned with the realization of details, such as using socket addresses or port
numbers of services to implement distributed object communication, binding
object names or keeping track of the current load situation. Details of the un-
derlying hardware configuration and the operating system being used should
be hidden from programmers. Moreover, application developers should not
be forced to handle new concepts (e.g. different RPC semantics) and tools
(e.g. interface definition languages). Hence, homogeneity of concepts offered
by the programming environment is required.

Object technology seems to provide promising features to cope with these
demands. Among other advantages, object orientation supports component
reuse, object interaction via well-defined interfaces, inheritance, and encap-
sulation. The object paradigm supports the modeling of real world problems
in a natural way. Moreover, objects define appropriate units to be managed
by the underlying distributed resource management system (e.g. distribution
of single objects or replication of objects). Hence, object technology is and
will be widely used to develop large-scale applications as well as operating
systems.

Complex application systems like multi-media applications or parallel nu-
meric algorithms occupy large amounts of system resources and claim individ-
ual operating system support like security, fast context switching or real-time
processing. Therefore, the underlying distributed operating system should
offer a distributed object management that can be customized to application-
specific requirements in a transparent way. Moreover, to cope with varying
requirements of applications the resource management system must be able
to dynamically adapt its strategies (for instance scheduling policy), depend-
ing on changes in overall resource utilization and application-specific needs.

To fulfill these requirements the resource management system needs ap-



propriate information about application-level objects. We claim that the
majority of this information can be extracted from structural dependencies
between objects provided that such relationships can be expressed by the
programmer. Structural dependencies like object nesting or communication
patterns can be exploited, for instance, to cluster objects into units which
can be placed on the same computing node, or to migrate single objects if
the number of remote accesses to the object exceeds a given limit.

Obviously, we require that the distributed management provides for scal-
ability and introduces only low overall management overhead. The perfor-
mance has to be reasonable compared to sequential and centralized software
solutions, as well as it should provide relevant speed-ups if additional com-
puting resources are available.

Within the project A8 as part of the SFB 342 we have developed a new
top-down driven and language based approach, called MoDiS [EP99], to meet
the requirements stated above. MoDiS provides abstract concepts to con-
struct an object-based, distributed operating system for a cluster of loosely-
coupled workstations. The resulting system (MoDiS-OS) integrates applica-
tions as well as tools and classical OS features.

The approach is centered around our object-based, high-level program-
ming language called INSEL which offers advanced structuring features and
language concepts allowing the programmer to specify parallel and cooper-
ative applications on a high level of abstraction. Structural dependencies
between objects are determined at the application-level. Hence, the top-
down approach brings ease to the task of programming distributed systems.
The programmer is able to specify the distributed system with a homoge-
neous repertoire of language concepts without having to cope with the details
of the physical realization such as making decisions about the placement of
a specific object.

The MoDiS approach is characterized by a tight coupling of all trans-
formational steps (e.g. compiler, linker, resource management) involved.
This allows the preservation of application-specific structuring information
throughout all of these steps. That is, information gathered by the compiler,
for instance, is passed to the resource management system and is enhanced
with information that is gathered dynamically at runtime. This informa-
tion flow provides a basis for improving resource management for distributed
systems.

The top-down orientation combined with a language-based approach leads
to a single system spanning operating system functionalities and user-level
applications. This integrated view together with structuring concepts of-
fers new opportunities for system-wide resource management. To start new



applications and to enhance the system with new functionalities MoDiS pro-
vides the ability to dynamically modify the running system. Within MoDiS
we have elaborated concepts to construct the system in an incremental, but
nevertheless controlled, manner. We are able to dynamically extend the sys-
tem functionalities as well as dynamically remove services that are no longer
required.

Both, the dynamic modification of the running system and the selection
between alternative realizations are supported by the flexible and incremental
linker and loader FLink which is an essential part of the overall management
in MoDiS. In addition to classical linker and loader tasks , FLink provides the
ability for incremental and dynamic system construction and offers extended
flexibility using different policies for symbol resolution. Using FLink enables
the management to choose from different techniques to resolve symbol ref-
erences, to change symbol references and even to reverse the decisions for a
program in execution without stopping and restarting it.

The remainder of the paper is organized as follows. Section 2 investi-
gates related work in the area of distributed object-based systems. Section
3 introduces the top-down driven approach that aims to overcome some of
the deficiencies revealed. Sections 4 and 5 elaborate on the main language
concepts and structuring facilities of the approach. An overview on the new
adaptive and scalable distributed resource management system is presented
in section 6. Section 7 discusses incremental system construction which is
an important aspect in MoDiS due to the single system approach. Closely
related to incremental system construction is the extended management flex-
ibility presented in section 8 as both are realized in MoDiS using the linking
concepts and techniques of section 9. Section 10 reports on implementations
of the MoDiS concepts before the main results of the paper are summarized.

2 Related Work

This section first investigates existing distributed environments to elaborate
their benefits and deficiencies with respect to the requirements stated above.
Since adaptive and transparent resource management is the intrinsic task of
a distributed operating system, current research activities in this area are
discussed afterwards.

2.1 Distributed Programming Environments

Computing environments for distributed applications like OSF’s Distributed
Computing Environment (DCE) [OSF92] or ANSA [ANS89] offer tools and
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services to support a procedural programming paradigm providing an RPC
mechanism. Products based on the Common Object Request Broker Archi-
tecture (CORBA) [OMG95] specification of the Object Management Group
(OMG) aim to support the development and integration of object-oriented
software in heterogeneous environments, emphasizing interoperability of
application-level objects as well as reuse of components.

The construction of client-server-style applications benefits from these
computing environments, because client-side code can basically deal with
application-specific issues rather than with low-level mechanisms, like socket
addresses and TCP/IP details. Facilities such as late binding as well as the
separation of interface specification and object implementation in CORBA
reduce the efforts needed to extend and adapt existing applications to chang-
ing functional requirements. Undoubtedly, CORBA and DCE mark impor-
tant milestones on the way to comfortable and simplified distributed pro-
gramming.

But Programming within these software environments is not as simple as
it should be. New concepts are introduced by each of these environments.
CORBA introduces, for instance, the notion of object references or an ex-
ception handling feature and DCE introduces, for example, a thread concept
to enhance passive entities with an activity. Synchronization problems stem-
ming from these enhancements must be solved by the programmer himself. In
addition, the software developer is burdened with name servers (e.g. traders
in ANSA or directory servers in OSF/DCE) to search available services or
to register his/her own services. The programmer has to cope with interface
definition languages (e.g. DCE-IDL, OMG-IDL) to specify interfaces. Access
to remote objects must be handled in a different way than local objects, by
first binding client-stubs.

Hence, these distributed computing environments still load a heavy bur-
den on the programmer. Due to the heterogeneity of the concepts, the pro-
grammer has to spend a considerable amount of time to learn how to handle
these concepts and tools correctly and how to combine them as far as possible
with his well-known programming language concepts and paradigms. Het-
erogeneity seems to be an unwanted source for bugs that could be avoided by
supporting a conceptual homogeneous environment instead. Such an envi-
ronment should offer adequate object models and programming paradigms,
as well as structuring concepts, to cope with the complexity of large-scale
applications.



2.2 Language-based Environments

Several research projects, such as COMANDOS [Con92|, GUIDE [BLR94],
or Emerald [SEJ95] — to name only few — tried to provide homogeneous
distributed programming environments by following a language-based ap-
proach. The employed languages offer high-level concepts to develop dis-
tributed object-oriented programs. Unfortunately, all of them lack appropri-
ate structuring features. Though specific runtime systems are implemented
on top of existing operating systems, these runtime systems are not able to
gain information about structural dependencies between application objects
in order to enhance resource management. Hence, neither the development
of structured large-scale applications, nor their application-adapted efficient
execution is supported with these approaches.

With ORCA [Bal94] major steps towards application-specific resource
management were taken. Tools, such as the compiler are tailored to ORCA
and enable static and dynamic analysis. The results of these analysis are used
by the resource management system to optimize accesses to shared objects.
Unfortunately, to ease these tasks, the language is burdened with restrictions
like missing support for pointers.

2.3 Distributed Operating Systems

Performance issues with respect to efficient resource management have not
been a major issue in the design and implementation of existing distributed
programming environments. Consider the CORBA environment. Transpar-
ent resource management is the task of the Object Request Brokers (ORBs),
but actually the existing ORBs limit their services to locating objects and
performing parameter marshaling. If, for instance, an ORB is able to exploit
application-specific information, like access patterns, the realization of these
accesses may be optimized by using the available resources more efficiently.
Because efficient resource management is the task of operating systems re-
search activities in this field are investigated in the following paragraphs.

Object-oriented technology provides appropriate means to configure op-
erating systems at a pre-execution time. That is, operating systems can be
statically customized to application needs (e.g. Choices [CIRM93]) with low
overhead. However, an application-specific resource management capable of
dynamically adapting its management decisions to the changing requirements
of various applications demands for more flexibility.

Current research performed within the area of reflective architectures
[Yok92, CHJ*"94, LYI95, CAK'96] pursues promising ideas to solve the
problem of adaption. Reflective operating systems offer different policies to



perform resource management, for instance, different scheduling algorithms.
Each application is enabled to select a policy which matches its specific needs.
This selection is performed dynamically at runtime using ”Meta-level” proto-
cols [KdRB91, WS095]. Appropriate information about the application itself
concerning, for instance, its access behavior, is needed to optimize these
decisions. Such information can be gained by analyzing structural depen-
dencies between application-level objects. Unfortunately, due to the lack of
structuring facilities offered by the underlying object-oriented programming
languages only very restricted analysis can be performed. Hence, only a small
bit of information can be extracted from the application-level to support an
efficient application-specific resource management. Moreover, selections of
proper strategies has to be done by the application programmer explicitly,
which is contrary to the required transparency.

Kernel-based systems currently devote a lot of attention to satisfy the
requirement of adaptability and extensibility of operating system services.
Approaches like SPIN [BSP195], Paramecium [vDHT95] and VINO [SESS94]
are characterized by specific features that allow dynamic integration of
application-level code into the protection domain of the kernel. To ex-
ploit adaptability features programmers are burdened with performing re-
source management tasks explicitly. This aggravates the programming of
distributed application considerably.

These observations of related research activities can be summarized in
following results. A programming environment that offers appropriate con-
cepts to develop well-structured distributed systems on a high level of ab-
straction is a requirement. In addition, these distributed systems should be
executed on top of interconnected workstation clusters where all required
resource management actions (e.g. load distribution, migration, distributed
memory management) are automatically performed by the underlying oper-
ating system. The management must be adaptable to dynamically changing
requirements of distributed applications and fully be transparent to the ap-
plication programmer. To meet these requirements a new top-down oriented,
language-based and integrated approach — the MoDiS approach — is proposed.

3 The MoDiS Approach

The acronym MoDiS stands for Model oriented Distributed Systems and
emphasizes that abstract concepts and models [Spi96] are the foundation of
this project.



3.1 Top-Down driven

Existing operating systems are characterized by the bottom-up construction
of their services and programming interfaces. They aim at enhancing the
simple functionality provided by the hardware to more powerful services of-
fered to the application-level. Due to the bottom-up oriented construction,
the properties of the application-level and the language-level are not taken
into account. For instance, language-level concepts may require efficient sup-
port for fine-grained persistent data objects instead of coarse-grained files.
Bottom-up orientation usually leads to general purpose resource management
features and some basic services that do not match the needs of applications.
For example, UNIX systems offer heavy-weight processes to the application
level, which are inadequate to realize fine-grain parallelism. To overcome
this lack of flexibility, systems like Mach [Acc86] introduced threads. But
again, this is another fixed and general purpose abstraction. For example, in
Mach 3.0 it is not possible to create a really light-weight activity that only
executes a short computation in parallel without having the overhead of a
relatively large, fixed size stack portion and a predefined port name space for
communication.

To overcome these deficiencies we follow a top-down oriented approach,
deriving low-level facilities from requirements of the application level. Within
the MoDiS project, abstract concepts to construct structured distributed
systems are developed. Top-down orientation in this sense means that the
construction of a distributed system starts with the specification of the sys-
tem at a high level of abstraction. The programming language used, IN-
SEL [Win96a], provides language concepts that are well adapted to the ab-
stract concepts. A system specified in this manner consists of a structured
set of objects with conceptionally well defined properties. The structures
within the system describe the dependencies between the different objects
of the system. The top-down approach brings ease to the task of program-
ming distributed systems. The programmer is able to specify the distributed
system at a high level of abstraction with a homogeneous repertoire of lan-
guage concepts. He does not have to cope with the details of the physical
realization such as making decisions about the placement of a specific object
or explicitly using operating system services like threads and semaphores.

Realization of a specified system on a given hardware platform is done by
stepwise refinement of the abstract properties towards more concrete ones.
The more concrete the properties are the more they are influenced by exist-
ing physical resources like storage capacities and available processors. With
each transition from one level of abstraction n to a lower level of abstraction



n — 1, mappings from more abstract properties to more concrete ones have
to be found [Gro96]. The facilities of the target abstraction levels determine
different realization alternatives for these transitions. For example, to realize
the creation of a large passive object with a huge amount of data at certain
levels of abstraction, the resource management system has to choose between
different alternatives, as e.g. storing information locally or remotely, in main
or secondary memory, or a mixed solution. Each of these different realiza-
tion techniques would have advantages and disadvantages, depending on the
context in which they are used. Since the process of realization started with
an abstract model of the system consisting of abstract objects and structural
dependencies, these structures can now be used by the resource management
to make appropriate decisions.

Some of these transformation steps are performed statically at compile-
time, whereas others have to be done dynamically at runtime. Hence, the
process of refinement encloses the complete life-cycle of a distributed sys-
tem. The resource management in MoDiS provides the opportunity to adapt
refinement decisions according to the dynamically changing demands of the
software system. This is a significant difference to common systems which
for instance, often separate the compilation from lower levels of resource
management (e.g. scheduling decisions). By tightly coupling these steps of
transformations we are able to preserve application-specific information for
all levels of abstraction to enable efficient resource management and macer-
ate the usually hard separation of statics and dynamics. The top (high level
of abstraction) to down (low level of abstraction) approach allows efficient
performance of application specific resource management because important
high-level structuring information such as access behavior or life-time depen-
dencies gathered statically or dynamically is available.

3.2 Single system Approach

The top-down orientation is combined with a language-based approach
[EW95a] that leads to a single system spanning the operating system func-
tionalities and user-level applications. With the notion of ‘system’ we refer
to a structured set of objects that realizes the operating system functionali-
ties and user-level applications. Figure 1 illustrates this integrated view of a
distributed system. Applications hook into the running system by connect-
ing to interface objects (il to i3). Different interface objects provide different
capabilities to utilize operating system services.

The programming language INSEL (see Section 4) is used to develop
operating system (OS) services as well as user-level applications. This has
important consequences:
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Figure 1: Single system view of a distributed system

1. No additional heterogeneous concepts are introduced by OS services.
2. User-level objects and OS services are accessed in a uniform manner.

3. OS services for themselves are structured according to the formal con-
cepts.

4. Well-defined structural dependencies among all objects of the system
are recorded and can be considered for global resource management
decisions. This encloses dependencies between objects of a single appli-
cation as well as inter-application dependencies and even dependencies
between applications and objects at the OS level.

This integrated view together with structuring concepts offers new opportu-
nities for system-wide resource management.

4 Programming language INSEL

According to the formal concepts [Spi96], language concepts for distributed
programming have been derived. INSEL (Integration and Separation
Language) is an imperative, object-based and type-safe high-level program-
ming language with an Ada-like syntax [Ada83]. An object-based style of
programming was chosen since objects support reusability, structuring of
complex systems and modeling real world problems in a natural way. At
the operating system level, objects can serve as units of management and
distribution and therefore facilitate global resource management.
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INSEL provides language concepts to explicitly determine sequential and
parallel computations on a high level of abstraction without any references
to the operating system or the physical execution environment such as the
number of processors. This transparency enables adaptability of INSEL ap-
plications to varying hardware configurations.

All INSEL objects are created as instances of class describing compo-
nents, called generators. The interface and implementation of an object is
fully determined by its generator. INSEL does not yet differentiate between
interface and implementation of objects as it is done for example in CORBA.

INSEL generators can be compared to classes in C++ [Str91]. The dif-
ference is that generators are integrated in the system just like any other
object. The structuring of generators in INSEL predetermines dependencies
between object instances. This is a contrast to other object-oriented lan-
guages, where classes are static components that are organized separately
from the flat hierarchy of the objects. INSEL is object-based in the sense
that it supports encapsulation but no inheritance.

INSEL objects can either be passive or active. Active INSEL objects are
called actors. Objects of both kinds can be created dynamically at runtime.
Each compound object has a declaration and a possibly empty statement
part, both determined by its generator. The declaration part may contain
declarations of local objects, methods, or nested generators. The statement
part can be compared with a constructor in common object-oriented lan-
guages. Both active and passive objects encapsulate data and services to
access the data. The interface of an object is determined by ezported access
methods.

Actors serve as the explicit specification of parallelism on a high level of
abstraction. The actor concept defines abstract properties of active objects.
The programmer does not specify any properties referring to the physical
realization of an actor such as a specific machine, specific thread, or tasking
concept. By creating an actor, a new flow of control is established that
executes the statement part of the new actor in parallel to the flow of control
of its creator. An actor terminates if it has reached the end of its statement
part and all its dependent objects have terminated.

Semantics of passive INSEL-objects are similar to those of other object-
oriented languages. By creating a passive object, the flow of control of the
creator switches to the newly created passive object in order to execute its
statement part. When the end of this computation is reached, the passive
object terminates, the flow of control switches back to the creator, which can
interact later with the terminated object via its access methods.

INSEL distinguishes between named and anonymous objects. Named ob-
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jects are known at compile-time. Anonymous objects are dynamically created
in the path of a computation using a NEW operator. Pointers to anonymous
objects can be duplicated or passed between objects in the system, which
makes resource management difficult and less efficient. To reduce these awk-
ward properties, INSEL does not support the creation of a reference to a
named object as it is possible in C++ or Ada. Furthermore, explicit dele-
tion of objects is not supported in INSEL. An INSEL object is automatically
deleted if its computation has ended and it is no longer accessible by any
other object.

Active objects may cooperate directly in a client-server style by syn-
chronous rendezvous or indirectly by using shared passive objects. Hence,
INSEL supports message passing as well as the shared memory paradigm,
which is a contrast to platforms like ORCA [Bal94] or CORBA which only al-
low for message passing style of programming. We found that both paradigms
are necessary to enable a natural style of distributed and parallel program-
ming.

Figure 2 illustrates some of the concepts, described in this section. Line 1
starts the definition of a generator for actors of class system. The generator
for passive objects of class D_t which comprises a declaration of the variable v
(3), a declaration of the access method generator get (5) and a statement part
(8) starts on line 2. Line 10 declares a generator for pointers to anonymous
objects of class D_t. Line 12 starts the definition of the generator for actors
of class T_t, which offer the service coop. The statement part of objects of
class system starts on line 33.

5 Language-Level Structuring Concepts

The following subsections present the main concepts to structure distributed
object-based systems. These structures characterize the dependencies among
the objects of a system and serve as the knowledge basis for resource man-
agement decisions.

Structural dependencies within an INSEL program are implicitly deter-
mined by the programmer himself. For instance, nesting of generators, or-
dering of declarations or definitions of pointer generators express specific de-
pendencies which can be analyzed and exploited by the underlying resource
management.
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1 MACTOR system IS -- actor generator

2 DEPOT D_t(z:IN INTEGER) IS -- passive object generator
3 v:array [l..x] OF INTEGER,; -- object declaration
4

5 FUNCTION get ... -- access method generator
6 RETURN uz;

7

s BEGIN ... END D _t; -- statement part
9
10 TYPE D_t ptr IS ACCESS D_t; -- pointer generator declaration
11
12 CACTOR T t1IS -- actor generator
13 c: INTEGER;
14 e: D_t;
15 dp : D_t_ptr;
16
17 PROCEDURE coop IS  -- rendezvous operation generator
18 BEGIN
19 . count :=count +1; ...
20 END coop;
21
22  BEGIN
23 dp := NEW D _t(42);
2/ SELECT
25 ACCEPT coop;
26 END SELECT;
27 -
28 END Tt
29
30 d:D_t(8);
81 t:T;
32
323 BEGIN -- statement part of system
34 WriteLn(d.get);
35  t.coop; ...

36 END system;

Figure 2: Sample INSEL program

5.1 Definition Structure

Nesting of generators and objects establishes a hierarchical name space. For
each INSEL object O, the set of visible and accessible objects and generators
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is determined by the ezecution environment — U(O). The definition structure
serves as a base to compute U(O).

Definition 1 (0 — structure)
An object O is definition dependent on object P — 6(O, P) < the generator
for O is contained in the declaration part of object P.

U(O) is calculated by tracing levels of nesting, which is done by transitively
following the definition structure and collecting information about visible
objects and generators on each level of nesting. Given a certain object O,
the 0 structure is first investigated to locate the generator G of O, which is a
local component of an object P. All components of P that are declared before
G, according to the sequence of declarations at the same level of nesting, are
visible to G and added to U(O). The computation of U(O) is continued by
recursively descending the d-structure, e.g. next step would be, to analyze
object H, which is given by §(P, H). The computation ends when an object
is reached that is not definition dependent on any other object (the root
object).

5.2 Execution Structure

The execution structure is composed of three relations that describe depen-
dencies among the parallel and sequential flow of controls within the system.
This delivers important information to the load managing system and the
scheduler.

Along with the creation of a new actor A, a new flow of control is estab-
lished that executes the statement part of A in parallel to the computation
of its creator. This relationship is recorded by the w-structure.

Definition 2 (7 — structure)
Object A operates in parallel to object O — (A, O) < A is an actor and
was created by O.

The execution of the statement part of a newly created passive object
is sequentially embedded in the flow of control of the creator. Requests to
passive objects are also executed by sequentially embedded operations of
the requested service into the flow of control of the caller. These sequential
relationships are recorded by the o-structure.

Definition 3 (0 — structure)
An object O is sequentially dependent on an object P — o(O, P) < the flow
of control has moved from object P to object O.
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The third component of the execution structure is the x-dependency. It
describes communication dependencies between actors that synchronize to
realize requests of services with rendezvous semantics.

Definition 4 (k — structure)

Actor A communicates with another actor B — k(A, B) < A requested a ser-
vice from B, B has accepted the service and both, A and B are synchronized
to perform the requested service.

5.3 Locality Structure

Actors or passive objects, which are declared in the declaration part of an
object O, can be expected to be mostly used by O and its nested objects.
Therefore, this kind of location dependency gives hints to the runtime and
the operating system to co-locate objects on either the same node or at least
close to each other.

Definition 5 (A — structure)
An object O is local to an object P — \(O, P) < O is a named object and
is declared in the declaration part of P.

5.4 Structure of Pointer Generators

Efficient memory management of objects that are dynamically created in the
path of a computation using the NEW-Operator is difficult. This is due to the
fact that pointers can be passed around and even duplicated, which disables
an easy stack-like memory management. We try to facilitate the management
of such anonymous objects by tracking the location of generators for pointers.

Definition 6 (7 — structure)

Object O is y-dependent on object P — ~v(O, P) < O is an anonymous
object and P is the location where the generator that is needed to create
pointers to O is declared.

After the creation of an anonymous object it can be referenced and iden-
tified by a pointer value. This is recorded by the zeta-structure.

Definition 7 ({ — structure)
An anonymous object O is (-dependent on object P — (O, P) < a pointer
V' exist which references O and V is declared in the declaration part of P.
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5.5 Termination Structure

Combining the A and the ~ structures described above, a termination de-
pendency for passive and active INSEL-objects is defined, which simplifies
memory management considerably [EW95b, Win95].

Definition 8 (¢ — structure)
Object O is termination dependent on object P —

MO, P) A O is a named object

(0, P) = { v(O,P) A O is an anonymous object

The termination dependency is basically used to ensure that no object is
deleted as long as it could potentially be accessed by another object. For ex-
ample: €(O, P) determines that object P must have terminated its computa-
tion before object O can be deleted. It also determines that the prerequisite
condition to delete object P is the termination and deletion of object O.

actor context T actor context R

O actor that does not
offer any services

actor that
O offers services

[ ] passive object

» | anonymous
class D_t

! actor context

—— structural dependency

root actor

Figure 3: Snapshot of an INSEL system

Figure 3 illustrates some of the structural dependencies. It shows a snap-
shot of a simple INSEL system at runtime that evolved from the execution
of the program listed in figure 2. By starting the execution of the program, a
root actor r was created, which is of class system. r elaborated its declara-
tion part and created object d and actor t. Both are location and termination
dependent on r. In turn, t has created object e and an anonymous object a’
of class D_t, which is termination dependent on r because of its y-dependency
on r. Currently r and t are synchronized that means r requested a service
from t and t has accepted to serve this request.
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The structural dependencies introduced reflect application-level proper-
ties. These dependencies are implicitly determined by the programmer em-
ploying the INSEL language concepts. The structural information can be
exploited to enforce automated application-adapted resource management.
Hence, the programmer is not burdened with having to specify hints to the
resource management system in addition to writing his application program.
Furthermore, as most of the explained structural dependencies are based on
properties of INSEL generators, they are easy to analyze by software tools
such as a compiler.

6 Resource Management Model

The INSEL resource management system aims at transforming an abstract
distributed system given as an INSEL program into a low-level representation
that can efficiently be executed on a distributed hardware configuration.

The following subsections will present the basic approach and imple-
mentation issues to develop a distributed resource management system that
adapts to changing requirements and provides scalability to varying sizes of
the distributed system and of the underlying hardware configuration.

6.1 Management Architecture

To enforce transparent, scalable, and adaptable distributed resource man-
agement, a model of a reflective resource management architecture [EW95b]
was developed. Based on the termination dependency (e-structure), objects
are clustered into actor conterts (see figure 3), which are essential units of
management. An actor context comprises exactly one actor and all its ter-
mination dependent passive objects. By associating an abstract manager
with each actor context, a reflective distributed manager architecture is con-
structed. Just as objects in INSEL can be created and deleted dynamically,
managers are created and deleted dynamically as well. The task of each
manager is to enforce actor context-specific resource management. Besides
fundamental tasks like allocating appropriate memory for all objects within
its associated actor context the manager might also enforce context-specific
access restrictions, maintain the consistency of replicated objects, or perform
load-balancing.

Managers cooperate to enforce global resource management or to solve
conflicting situations. For instance, stack overflows resulting from parallel
allocations by different managers are handled by communication and coop-
eration between the managers. The set of managers is structured as well,
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because the application-level structural dependencies between the actor con-
texts (the pi-structure) is transfered to the manager. This tree-structure
determines cooperation and communication links between managers. That
is, to handle conflicting situations, a manager will contact its parent man-
ager or its children, according to the tree-structure induced by the underlying
pi-structure between actor contexts.

It is obvious that managers need application-level information to adapt
to the requirements of actor contexts. This information is provided by ana-
lyzing the structural relationships at compile-time as well as at runtime. The
interaction between the application and management layer is accomplished
completely transparent to the application.

It is important to notice that these managers are abstract in that they are
not objects that are linked to actor contexts. Such a rigid implementation
of managers would introduce an enormous management overhead that would
disable a flexible realization of fine-grained parallelism. Instead, a manager
might just be given by a simple data structure, or it might itself be a rather
complex object, comprising its own activities and objects. For example, if
an actor A does not contain any local (analyzing the A-structure) generators
for pointers, then the associated manager does not have to be prepared for
heap management. Another technique is to predetermine the k-structure at
compile-time based on an analysis of the execution environment U(A). If
the analysis shows that A will not cooperate with other actors, then com-
munication facilities are omitted which in turn leads to a more light-weight
manager implementation. A minimal manager is completely realized as in-
line code generated by the INSEL compiler and only supports stack handling
for its associated actor context. More advanced managers provide services
to maintain consistency of replicated objects or to perform specific access
controls.

Hence, the associated abstract managers have to be implemented using
alternatives adapted to the specific requirements of the managers.

6.2 Implementation Issues

The key idea of the MoDiS approach is to systematically incorporate manage-
ment functionalities into the software tools involved in the implementation
like compiler, linker, loader and the operating system kernel. Figure 4 de-
picts basic alternatives to implement management facilities. To improve the
execution speed and to reduce the size of the target representation, we incor-
porate management functionalities into the compiler or the operating system
kernel instead of employing layering techniques or runtime libraries.

The implementation alternatives can roughly be classified as static or
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Figure 4: Implementation of the distributed manager architecture

dynamic. The static part is mainly concerned with the generation of man-
ageable entities and comprises compiler as well as linker functionalities. Ad-
vanced linking techniques (see Section 9) are used in the linker to support
adaptability and extensibility. This technique requires appropriate compiler
support. For the INSEL front-end [Piz97] the GNU compiler system gcc was
also modified to omit the generation of so called trampoline code [PEG97]
for references to nested functions. At the same time, the code generator was
extended to arrange stack frame specific linkage tables. The linker may in-
dependently decide either to bind open references with immediate addresses
of code modules or to produce intermediate trampoline code and bind its
address instead for enhanced flexibility. Execution of the latter results in a
jump to the actual representation of the linked object. Hence, adaption and
exchange of object representations can easily be handled using this linking
technique.

The dynamic part is concerned with the execution and management of
distributed applications at runtime. It splits up into an inline part com-
prising management functionality especially generated by the compiler for a
specific set of objects. The shared part comprises usual operating system and
runtime library services. For example the management of the virtual single
address space [Reh00] has mainly been implemented as part of the runtime
system. Basic facilities of hardware nodes are provided by the kernel part
which manages resources associated with the local node. Moreover, the ker-
nel enables communication with other nodes.

Figure 4 illustrates the tight integration of all management facilities in-
volved in resource management. Based on this integration all management
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facilities cooperate and exchange information to achieve a distributed and
efficient global management. Here the benefits of the top-down approach
together with the structuring features of the programming language INSEL
become evident. Structural information about overall system behavior as well
as application-specific information is gained from static and dynamic anal-
ysis. In contrast to usual approaches, attributes of compile-time analysis
are preserved and made usable for the dynamic resource management part.
We use an extended attributed syntax tree in the compiler where attributes
representing runtime properties of applications are stored and analyzed as
well.

7 Incremental System Construction

Due to the single system approach (see Section 3.2) a MoDiS system is de-
scribed by a single program specifying INSEL components which depend on
each other according to the language-level structures introduced in section
5. In order to create a long-lasting system the user must be able to hook
applications into the running system and also remove them later if necessary.
Traditional systems facilitate the starting of applications at the system-call
interface. A running program is not fully integrated into the operating system
but has very limited relations to other applications in execution as structural
dependencies are restricted in non language-based systems. Relationship be-
tween applications is neither specified nor known to the resource manage-
ment and therefore can not be exploited for decision-making. In addition,
the extension of a running system is limited to coarse-grained units. Fine-
grained adaption of applications already in execution is not possible. Without
the knowledge of global dependencies, a distributed operating system has to
choose between two possible resource management strategies. First, it could
try to optimize the realization of certain applications regardless of influences
on other applications that are running simultaneously which could violate
fairness requirements. Second, it could concentrate on balancing workloads.
This does not take any application-specific requirements into account which
might lead to considerably weak performance of specific applications. Since
neither of these strategies is satisfactory, a combination of both is required.
This can be achieved by combining a top-down and a language-based ap-
proach with the concepts elaborated in this section, allowing a fine-grained
and dynamic adaption and evolution of a MoDiS system.

On the one hand the single-program approach provides flexibility and
structuring information describing dependencies between all components of
the distributed system. On the other hand it necessitates the incremental
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extensibility of the system. Therefore concepts have been elaborated in the
MoDiS project which make the dynamic system modification easy to handle
for the user and at the same time controllable for the integrated management.

To demonstrate the abilities of incremental system construction in MoDiS
figure 5 shows a sample INSEL program. The source code of an INSEL
component, for example of procedure b, determines the properties of all b-
generators and b-incarnations. We denote the set of generators (incarnations)
specified by the source code of a component b by Gy, (1).

1 MACTOR system IS -- actor generator
2 PROCEDURE «(] : IN INTEGER) 1S

3 PROCEDURE 4(J : IN INTEGER) IS - nested in a
4 BEGIN

5 e

6 END b;

7 BEGIN

8 b(I); -- create b incarnation
9 IF I > 0 THEN

10 a(l —1); -- recursive call
11 END IF;

12 END q;

13 BEGIN -- statement part of root actor
14 a(42);

15 END system;

Figure 5: Dynamics of generator recursion

Definition 9 (Abstract properties of a component)

The abstract properties P(b) of a component b of a MoDiS system are sub-
stantially determined by its signature, declaration and statement part which
are described by the INSEL source code of b.

When executing this example program a generator A € GG, is created in the
declaration part of actor system. In the statement part of actor system an
incarnation a; € I, is generated from this generator A. The generator B, €
GGy is created in the declaration part of incarnation a; and an incarnation
by, € Ip, of By is generated in the statement part of a;. In line 10 there
is a recursive call to procedure a, so an incarnation ay € I, is generated
from generator A. This results in the creation of a new generator B, € Gy,
By # By in the declaration part of as.
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Definition 10 (Extension/reduction of properties)

Let b be a component of a MoDiS system with properties P(b). We call
the modification of b to b’ an extension (reduction) of the properties of b if
P(b) C P(V') (P(b) D P(b')).

When modifying the program of figure 5 dynamically, the exten-
sion/reduction of a b-incarnation (e.g. by,), a b-generator (e.g. Bs) or all
b-generators B, which are created in recursive calls of function a would be
reasonable. Therefore generators and incarnations are not sufficient to de-
scribe all candidates for modification. This leads to the introduction of an
additional component category, the generatorfamily. The effect of a modi-
fication (extension/reduction) of the generatorfamily of procedure b in line
3 results in a modification of all b-generators B, € (G} created each time
the recursive procedure a incarnates. This observation leads to the following
definition to distinguish different kinds of component categories in a MoDiS
system.

Definition 11 (Component categories)
Let S be a system. S consists of components which belong to one of the
following categories:

e (Generatorfamily
G denotes the set of generatorfamilies in S.

e (Generator
G denotes the set of generators in S.

e Incarnation
I denotes the set of incarnations in S.

As we have seen in the example above, properties of a generatorfamily, a
generator or an incarnation in MoDiS may at first be specified incompletely
and be completed at a later point in time when the system is already in
execution. Therefore all components posses an attribute which stores their
state of completeness. In the following this attribute is written as an upper
index ¢ for a completely and ¢ for an incompletely specified component.

Definition 12 (Completeness of components)
A component of a MoDiS system is called complete if all abstract properties
of it have been specified or incomplete otherwise.

Definition 13 (Completion of properties)
A completion of properties is an extension which results in a complete com-
ponent.
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In the following we abstract from incremental extension of a component and
combine multiple extension steps leading to a complete specification of ab-
stract properties in a single completion step.

Depending on the component category and the type of modification we
can distinguish the following modifications of abstract properties:

e Generatorfamily completion (GFC)

Generatorfamily reduction (GFR)

Generator completion (GC)

Generator reduction (GR)

Incarnation completion (IC)

Incarnation reduction (IR)

A relationship of dependence between properties of components belonging
to different categories exist which provides a framework for completion and
reduction. These relationships must be well-founded to reduce the large
number of possible modifications and make incremental system construction
controllable. Therefore the modification of INSEL components is restricted
according to the following dependency requirement:

Let A € G, be a generatorfamily.

VA€ Gy a;€1,: P(A) C P(A) C P(a) !

This requirement implies that in a MoDiS system a generator created from an
incomplete generatorfamily may be complete or incomplete, an incarnation
generated from an incomplete generator may be complete or incomplete but
the generatorfamily of an incomplete generator must be incomplete and the
generatorfamily and generator of an incomplete incarnation both must be
incomplete.

The following conditions ensure that modifications of components pre-
serve the restriction of relationships between properties:

o GFC: A “9' pe = AA € G4
o GFR: A° "% Ai = AA € G4
o GC: A" 4 fge = Ag € I,

o GR: A° "% 41 = Ag € 1,

Hfor the exact definition of the C relation on component properties see [Reh98]
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The extension and reduction of components presented so far is summa-
rized in the state transition diagram in figure 6. In the diagram b denotes
a component which creates the generator A € G4 from the generatorfamily
A and an incarnation a € I, from the generator A. The vertices represent
cartesian products of component categories with the attribute complete or
incomplete. Vertical arrows denote extensions or reductions of components
and horizontal arrows stand for the creation or deletion of generators and
incarnations.

b creates A generate a

b terminates a terminates : i
i 1 c
— = A andAanda >
f«‘"’ i V i c \ O\
A and Aand a
\ IR/IC

»
[ \
GR| JGC GR
N
i i i i e #
Q AI and A and a
GFR( ') GFC GFR GFR
] C G c
6 Aand A Aand Aand &
Generatorfamiliy Generator Incarnation
A or prefix GF: Generatorfamily Index ' : incomplete Suffix C: Completion

A or prefix G:  Generator Index : complete Suffix R: Reduction
a or prefix I:  Inkarnation

Figure 6: State transition of component evolution

The dynamic modification of component properties presented in this sec-
tion is realized by the linker and loader FLink which is part of the overall
management in MoDiS. The concepts and binding techniques used by FLink
are described in section 9.

8 Extended Management Flexibility

The flexibility of resource management in traditional systems is usually lim-
ited to the runtime system and kernel. Decisions made by the compiler,
linker and loader can not be revised dynamically. For example the mapping
of virtual to physical memory may change dynamically but the decision of
the compiler whether to create a thread of execution for a component or
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not can not be revised at runtime. Likewise symbol references resolved by
the linker usually do not change while a program is executed although tech-
niques introduced for dynamic linking [Lev00] available in modern operating
systems provide the potential to increase flexibility.

In MoDiS flexibility of the resource management covers the complete span
from compiler through linker, loader and runtime system to the operating
system kernel. Decisions of the compiler or linker based on static analy-
sis only are improved due to information gathered dynamically at runtime.
Based on the additional information, the compiler may generate alternative
implementations of components which can be integrated in the running sys-
tem. Alternative implementations are managed by the linker and loader
transparently to the application level.

To avoid the overhead of uniform and maladjusted implementations in a
distributed system multiple alternative implementations for a single INSEL
component may exist simultaneously. According to the execution environ-
ment the resource management chooses an implementation which seems best
suited in a given situation or may even restart the compiler to generate an
additional implementation.

An example for the use of alternative implementations in the context of
distributed systems is the realization of access to remote passive objects by
dynamic replication, migration and RPC [Win96b]. Figure 7 shows another
example to exploit the flexibility of alternative implementations for a local
and remote method call. A, B and C represent objects of the distributed
system. A and B are realized on node R1 whereas C' is realized on node
R2. The call of method X of object B may be implemented as a local func-
tion call for A but as a RPC call for C'. In a MoDiS system two alternative

I\ B - C

R1 R2

Figure 7: Example for the use of alternative implementations

implementations for B.X may exist simultaneously. The integrated manage-
ment makes sure that a proper implementation is chosen for local and remote
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method calls.
To structure the possible uses of alternative implementations MoDiS dis-
tinguishes three different kinds of alternatives:

e Standard alternative which is the default implementation

e Node alternative to replace an implementation on a special node of the
system

e Actor context alternative to replace an implementation of a component
for all references from a special actor context.

A detailed description of flexible management in MoDiS using alternative
implementations can be found in [Jek99].

9 Linking and Loading

Both, dynamic modification of the running system presented in section 7
and the choice between alternative realizations described in section 8 are
supported by the flexible and incremental linker and loader FLink which is
an essential part of the overall management in MoDiS. In addition to classical
tasks of the linker and loader, FLink provides the ability for incremental and
dynamic system construction and extended flexibility using different binding
techniques with varying advantages and drawbacks. Using FLink enables the
management to choose from different alternatives to resolve symbol refer-
ences, change symbol references and even reverse the decisions for a program
in execution without stopping and restarting it.

9.1 Binding Techniques

The INSEL compiler generates implementations of INSEL components which
may have symbol references to other components of the system on the source
code level. In order to resolve the references on the assembler level the
linker uses different techniques. The use of these techniques is transparent
to other parts of the resource management which allows easy composition of
management functionality and maximum flexibility. The choice of a binding
technique has effects on the performance and flexibility. Figure 8 shows a
part of a sample INSEL program together with source code level references
which is used to demonstrate the effects of choosing a particular binding
technique below.

To resolve symbol references FLink uses the four alternatives described
in the following subsubsections.
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PROCEDURE B (:IN INT) IS , PROCEDURE D (:IN INT) IS PROCEDURE C (LIN INT) IS

PROCEDURE A (EIN INT) IS
BEGIN BEGIN BEGIN BEGIN
IFI=0THEN IF1=0THEN OUTPUT I, IF1=0THEN
AQL); D(1) END D; D(9)
D(1) ELSIF | =1 THEN ELSE
ELSIF I =1 THEN B(l)
A(2); END IF;
D) -1); D();
END IF; ; END C;
B():
D();
END A
D 2
/
() e
2 | T X
B 1

Figure 8: Example source code and references

9.1.1 Direct Binding

When using direct binding, symbol references are directly bound to the vir-
tual address of the referenced component. Figure 9 shows the assembler level
bindings between components when using only direct binding to link the IN-
SEL program in figure 8. The advantage of direct binding is efficiency. The

X
—= Number of dereferencings

. Implementation

Figure 9: Direct binding

number of references on the assembler level is kept to a minimum and equals
the number of references in the INSEL source code. The drawback of this al-
ternative is the lack of flexibility. For example to replace the implementation
of component d (of figure 9) by an implementation d’, 34242 symbol deref-
erencings have to be corrected?. Due to the high efficiency direct binding is
often used in popular linkers.

9.1.2 Indirect Binding

The second binding technique supported by FLink is indirect binding. Symbol
references are bound to the virtual address of trampolines. A trampoline
consists of a small number of assembler instructions resulting in a jump
to the virtual address of the component referenced on the source code level.
The linker generates a trampoline ¢r(z) for each component x which is bound

Zprovided that d’ can not be placed at the same virtual address as d
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indirectly. This is illustrated in figure 10 where all components are bound
indirectly. The disadvantage of indirect binding is the loss of efficiency due

X
— Number of referencdereferencings

D Trampoline
. Implementation

Figure 10: Indirect binding

to the indirection introduced by the trampoline code. The advantage of this
binding technique is the increase of flexibility compared to direct binding.
All references to an implementation of a component, e.g. d in figure 10,
are bundled at the assembler level in a trampoline, tr(d). To replace the
implementation d by d’ only the trampoline ¢r(d) has to be replaced by a
trampoline ¢r(d’). This is possible as all trampoline codes have the identical
number of assembler instructions and therefore occupy the same amount of
memory.

9.1.3 Weak Binding

Weak binding is the most flexible binding alternative supported by FLink. A
broker consisting of a table and a search method is used to find a referenced
component. To replace an implementation the linker only has to adapt the
corresponding position in the table. In addition the broker can keep account
of the number of referencings or be used for access control in order to tem-
porary block the reference to a particular component. The gain of flexibility
correlates with a heavy loss of performance as the search method used in the
broker is much more complex than the trampoline code of indirect bindings.

d-ref O

X___ Number of dereferencings Broker }é c-ref O
o]

ol

b-ref
. Implementation

a-ref

Weak binding

Figure 11: Weak binding
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9.1.4 Fail-safe Binding

The last variant supported by FLink, called fail-safe binding, is a special
form of weak binding. Fail-safe bindings are marked in the broker table
and mainly used to reference unknown components. When calling a fail-safe
bound component the user is asked to solve the problem interactively by
completing the component’s properties according to the concepts introduced
in section 7.

9.1.5 Costs and gains of alternative binding techniques

The choice of a particular binding technique depends on the required flex-
ibility and efficiency. To compare the advantages and drawbacks we have
measured the costs of function calls to a very simple function which just
returns its incremented integer argument using the binding techniques de-
scribed above. The results are summarized in table 1

Time for n function calls in ps
n direct | indirect | weak | fail-safe
100 25 38 2380 4400

1000 230 360 24000 | 44100

10000 | 2400 3500 | 242000 | 440000

Table 1: Performance differences of binding techniques

10 MoDiS Implementations

10.1 Prototypes

Currently three prototype implementations of the programming language
INSEL exist. One is an interpreter integrated in an analyzing and visual-
ization tool, called DAViT. It is capable of visualizing all of the structures
of a distributed INSEL application at runtime. It serves as a learning tool
for collecting practical experiences with our structuring and programming
concepts.

DAViT runs on top of a HP-UX workstation cluster, interconnected
through a 10 MBit Ethernet network. For the same platform we realized an-
other implementation, called EVA [Rad96], which concentrates on load distri-
bution. EFVA translates INSEL programs into semantic equivalent C++ code,
which in turn is being compiled and linked with additional C++ libraries
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for runtime support. Our third implementation, AdaM [Win96a]| performs
a translation of INSEL into C. It focuses on distributed memory manage-
ment techniques and strategies, such as migration and replication of passive
objects.

AdaM and EVA themselves are written in C and C++4. They are experi-
mental implementations, in that they translate complete INSEL applications,
link them with runtime support libraries and execute them. Those prototype
implementations enabled us to collect first experiences with our concepts and
their implementation. Naturally they are missing important operating sys-
tem features, as management of users, I/O-system, accounting and so on.

10.2 INSEL Operating System

The prototypical INSEL implementations demonstrated that existing tools
to construct software systems do not match our requirements, since they are
mostly tailored for UNIX environments. We have implemented a native IN-
SEL to machine-code compiler [Piz97] and a new dynamic linker as sketched
in section 9. As a base for the implementation of the INSEL compiler the
freely available GNU compiler gcc was chosen.

Using these new compiler and linker facilities, some basic services of a dis-
tributed operating system in INSEL (distributed scheduling, dynamic loader,
etc.) have been implemented. One of the main task of this base system is to
support the dynamical extension of the running system at runtime.

This system is currently implemented on a cluster of 16 PCs, intercon-
nected by a 100 MBit/s Fast-Ethernet running a modified Linux kernel.

To visualize the structural dependencies described in section 5 a Java
visualization front-end has been programmed.

11 Conclusion

This paper presented the MoDiS approach to cope with the challenges coming
along with the shift of paradigm from sequential to parallel and distributed
computing. The required homogeneous programming environment is estab-
lished by following a language-based approach using the object-based, high-
level programming language INSEL. The language concepts introduced allow
the programmer to solely concentrate on specifying algorithms without be-
ing concerned with resource management tasks, as for instance implementing
communication facilities or requesting addresses of objects. Key features of
the approach are the language-level structuring concepts that were presented
in detail.
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It was demonstrated that well-structured, distributed applications speci-
fied on such a high level of abstraction can efficiently be executed. This task is
accomplished by consequently exploiting structural dependencies for resource
management. According to the top-down oriented approach INSEL-programs
are systematically transformed into executables by stepwise refinement. A
main characteristic of MoDiS is the integration of all resource management
activities involved into a integrated system-wide distributed resource man-
agement. The tight coupling of compiler, linker, operating system as well as
low-level services offered by the kernel enables to exchange information be-
tween resource management parts primarily concerned with static manage-
ment tasks (e.g. compiler) and those parts performing dynamic management
tasks (e.g. operating system kernel).

Incremental system construction and extended management flexibility are
of prime importance in MoDiS. Necessitated by the single program approach,
MoDiS allows fine grained extension of a system in execution. In order to
adapt management decisions to the dynamically changing requirements of
the distributed system alternative implementations of components can be
integrated. The concepts and techniques to realize both, the incremental
system construction and the extension of management flexibility have been
presented.

Though we demonstrated the benefits of language-level structuring con-
cepts by means of a specific programming language and the adapted resource
management system, we want to emphasize that the underlying concepts and
the developed techniques are not unique to this approach. For instance, the
dynamic linking techniques can be transfered to other multi-threaded and
distributed systems to improve resource management in these systems as
well.
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