A Different Approach to Resource Management for
Distributed Systems *

S. Groh
Munich University of Technology
Department of Computer Science
80290 Munich (Germany)

Abstract This paper presents a new concept for
a distributed resource management. The manage-
ment is performed by a multi agent system and
based on a graph rewriting system. FEvery activity
in the distributed system is managed by one agent,
which is the basis for a management that adapts to
each application. The cooperation among all agents
achieves the management of the whole system and
is the foundation for a fair and efficient resource
mapping for all applications, regardless of whether
the applications are executed in parallel or not. The
management overhead is reduced by many differ-
ent realizations for the agents and the possibility to
transform an agent from one realization to another
which is formally described by a graph rewriting sys-
tem.

Keywords: resource management, multi agent
system, application adapted management, graph
rewriting system

1 Distributed Resource Man-
agements

In the past years the computing power of work-
stations has grown enormously. But also the
demand on computing power rises. One main
problem is, that the demand rises in some areas
faster than the development. Therefore paral-
lel programs are necessary to use more than
one CPU at the same time. The drawback
of parallel programs are the very high costs

*This work is sponsored by the German Research
Council (DFG)

M. Pizka,
Munich University of Technology
Department of Computer Science
80290 Munich (Germany)

for parallel hardwares. A solution to minimize
these costs are the Intranets of the companies,
which are set up in many companies with high
throughput rates. Upon closer examination it
is obviously, that most time a workstation in
a cluster is idle. Therefore the goal should be
to use these available computation power for
high computing parallel application. The con-
sequences for the resource management is to
support all services, which are needed by ex-
isting software, to support new services for dis-
tributed systems, like file sharing, and in addi-
tion to that support efficient services for paral-
lel systems, like distributed shared memory or
load balancing.

In many existing operating systems for
workstations, like Solaris and HP-UX, the first
steps are taken. All of them support network
file systems (NFS) or network information ser-
vices (NIS). Additional services are added by
servers like distributed shared memory servers
(DSM) or distributed light weight processes
(activities) servers [1, 2, 3, 4].

The remaining question is which services
should be added to these servers to reach the
goal of a distributed resource management.
Many strategies are known for mapping or for
load balancing. Also many different strategies
for distributed shared memory are developed.
But not all strategies are usable with all ap-
plications. A strategy may be efficient for one
application, but for another it is absolutely in-
efficient [5, 6]. One way to answer this question
is to integrate the resource management into
the application. This means the programmer

of an parallel application has to take care about
the distributed system and optimize the appli-
cation for a specific workstation cluster. The
disadvantage of this approach is the increasing
cost for software development because of the
necessary hardware knowledge and the lacking
portability. Another way is to have strategies
in the servers, which are efficient for the aver-
age application. The consequence is the pos-
sible lack of performance for certain applica-
tions. The aim is to have a resource manage-
ment that adapts to a application, but which
is nevertheless portable and usable in cooper-
ation with other applications.

2 The basic concept

A parallel application is in this context an ap-
plication which is made of many light weight
processes (activities) using shared memory.
The number of activities changes during run-
time and the communication among the ac-
tivities is high. The applications are fully
portable, which means, that no explicit defi-
nitions for mapping is included in the applica-
tion.

This approach tries to delete the bound-
ary between application and resource manage-
ment, without making the system unportable.
The key is a high level programming language,
that allows to describe the parallel problem
without considering a certain hardware. Every
job which can be done in parallel is marked.
The communication is done via shared objects
or via method invocations. Based on this in-
formation the compiler tries to find the best
realization for each parallel part. This is done
according to the distributed hardware on which
the system should run. The information, how
the realization should or could be, is given
to special managers, later on called manager
agents. A manager is responsible for the reali-
zation and uses the information from the com-
piler to do its job.

In order to get the necessary knowledge
about the system the manager cooperates with
other managers. The functionality of a mana-

ger is determinized by a graph rewriting sys-
tem. As described in section 3 a manager has
a couple of rewriting rules to manage a set of
objects. The information about the system
is stored distributed in all managers and ex-
changed via cooperation.

3 The formal background

A graph rewriting system is a powerful tool to
describe the distributed system and the behav-
ior of the management system. This is done
by representing all objects by nodes and de-
pendency information by edges. Additional in-
formation is included by attributes, which are
added to the nodes and to the edges. The
management functionality is represented by
rewriting rules and additional strategies. A de-
tailed description of the graph rewriting system
can be found in [7].

The next step is to build a running manage-
ment system on the base of the formal descrip-
tion. The management system adopts from the
distributed environment the distributed reali-
zation. Every management decision has to be
made distributed and not centralized to avoid a
possible bottleneck. With this in mind a com-
munication and cooperation between the now
distributed management units has to be estab-
lished. The information included in the graph
has to be distributed among all management
units and reduced to the important points (de-
pending on the management units) to avoid the
duplication of information and by this to save
resources. All this can be done by building
management agents as described in the next
sections.

4 Multi Agent Systems

The concept of agents was first mentioned in
the 80-ties. Afterwards more and more dis-
ciplines of computer science used this term,
like artificial intelligence, cooperation between
two humans with the help of agents, or dis-
tributed systems in general. Because of these
many fields of applications no common defi-

nition exists, but the following attributes are
nearly common for all fields [8, 9]. The first re-
quirement for agents is the mobility. The multi
agent system defines an environment in which
an agent is able to move nearly free and is not
bound to one specific location. The second re-
quirement is its autonomy. It is able to decide
things regarding its functionality on its own.
Other requirements are its flexibility, the pos-
sibility to cooperate and communicate as well
as its scalability.

The term flexibility means, that the agent
is able to flexibly react to its environment. It
has to adapt to the situation in order to ful-
fill its function in the best way by the help
of the environment. To be able to do so, it
has to cooperate and communicate with the en-
vironment, especially with other agents. The
autonomous decisions are made by communi-
cating and trading with other agents and by
trying to find the best solution for all agents.
Special strategies exist to solve possible con-
flicts during the trading process. The scalabil-
ity is necessary to have the possibility to in-
crease and decrease the number of agents dur-
ing a period of time, to be able to adapt the
number of agents to the unprocessed jobs.

5 Resource Management
based on Manager Agents

5.1 Task of a Manager Agent

The graph rewriting system describes the state
of the distributed system. Each manager agent
is responsible for a part of this graph. The dis-
tribution is done according to the activities of
the system. Each manager agent is responsi-
ble for only one activity. It is generated before
the activity is generated. During the genera-
tion, information is passed from the generating
manager agent to the new manager agent con-
cerning the activity, that has to be generated
as well as the status of the system. This means
the new manager agent gets all information it
needs from the complete graph. After its gen-
eration the newly created manager is respon-

sible for all resource needs of its activity or in
other words, it is primely responsible for the
management of a subgraph, which includes its
activity. This means in detail, that one of its
jobs is to organize the hardware resources, like
memory and CPU time for the activity. This
includes the task to look for better resources for
the activity in the system. Another of its jobs
is to manage the higher level resources of its ac-
tivity. A higher level resource is for example a
shared memory object. Because of the distri-
bution many management decision about the
realization of such objects have to be made. To
manage the communication between another
activity and its own activity is also the task
of the manager agent. The complete definition
of its task is as follows: the agent is responsi-
ble for all resources on all levels of abstraction
which are needed by the agent’s activity to ful-
fill its job.

As mentioned above the manger agent is cus-
tomized for its activity. It is the only mana-
ger agent, which has the complete subgraph
with all attributes. Therefore it is a special-
ist for the resource demands of its activity. It
knows exactly how often its activity will use
shared objects, how much CPU power it will
need and how important its activity really is
for the whole application. During the runtime
the agent collects information about the behav-
ior of the activity and updates the attributed
in its subgraph.

The manager agent tries to find the best rea-
lization for its activity with the help of its infor-
mation. This is done by evaluation strategies
given with each rewriting rules. The intensity
of its efforts to find the best rewriting rule de-
pends on the activity. Maybe it tries to make
its efforts by saving resources for its own rea-
lization and therefore only tries to find a less
than optimal rule (for example for very small
activities), or it makes more efforts and uses
more resources for the finding process in order
to find a optimal solution. A more detailed
description is given in section 5.3.

5.2 Cooperation among Manager
Agents

Beside of the information included in the sub-
graph, the manager agent also needs informa-
tion about the environment of the subgraph.
Therefore it has to communicate with other
manager agent to get an overview about the
rest of the graph. To minimize the communi-
cation costs a special communication protocol
is established between the agents. The foun-
dation for these protocol is a force model. A
more detail description can be found in [10].

Beside of the information flow also a cooper-
ation between the manager agents is necessary.
Each manager agent tries to find a optimal re-
alization for its thread. The result of this effort
is an executable rewriting rule. But in many
cases this rule involves objects which are un-
der control of other manager agents. Therefore
each manager agent has to cooperate and ne-
gotiate with other manager agents. To avoid
conflicts between the manager agents a hierar-
chy is defined on them. The root of the whole
system is the manager agent of the first activ-
ity in the system. One of its first tasks is to
collect necessary information about the system
to be able to build the starting graph. Further-
more it is responsible for all following manager
agents and for all hardware resources in the
system. This sounds, as if the problem of the
information bottle neck of the servers is now
concentrated in this manager agent, but the
responsibility does not mean that this agent
really has all the information. It only means
that in the case of conflicts it has the last word,
or in other words, it is able to solve every pos-
sible conflict in the system by deciding which
rewriting rule has to be performed.

Another possibility is to generate or use an
existing helping manager agent. A helping
manager agent is a special form of a manager,
which has no own activity for which it is re-
sponsible. It only has delegated tasks. The aim
is to concentrate the informations of several
subgraphs, which does not fit directly together
in one manager agent. A very simple exam-
ple for helping manager agents is a load facil-

ity. According to the hierarchy of the manager
agents it is possible, that two manager agents
are realized on one workstation, which only
shares the root manager as their parent, but
are themself located far away from the root of
the graph. In such a case the communication
and cooperation among these manager agents
is optimized by establishing a helping manager
agent, which is responsible for both subgraphs
and therefore is able to make decision concern-
ing both manager agents without involving all
manager agents of the whole hierarchy.

With the help of the hierarchy the conflict
solving strategy is very simple. If a conflict oc-
curs, the manager agent who is responsible for
the conflict resource has to solve it. All other
manager agent have to agree to this decision
and make their decisions according to this new
situation. If a manager agent is not able to
solve a conflict, its parent manager agent is re-
sponsible to solve the conflict.

5.3 The Realization of Manager
Agents

Finally there is the question of how to realize a
manager agent. The task of a manager agent is
to manage all resources of a activity, by eval-
uation rewriting rules. As mentioned in sec-
tion 2 the number of activities in a distributed
environment with many parallel applications
is very high. In consequence the number of
manager agents is also very high. Therefore
the realization of the manager agents is a crit-
ical point. If we assume that every manager
agent is also an active thread, the system would
spend more time for managing the resources
than for solving problems of the applications.
But this is not necessary. The customization
of the manager agents makes it possible to re-
alize them in many different ways. As already
mentioned in section 5.1 it depends on the ap-
plication and activity how extensive a manager
agent tries to find the best solution. There-
fore the realization range for manager agents
is wide. Very small manager agents may just
be realized as small function calls or additional
commands added to the application. On the

other end of the realization range there is the
possibility to implement a manager agent as
a thread. Which kind of realization is chosen
depends on the rewriting rules.

As mentioned in section 3 the basis for
the management is a graph rewriting system.
Every manager agent represents a subset of
rewriting rules. The size and the abilities of the
manager agent depend on the subset. Further-
more every single rule requires resources from
the system in two ways: on the one hand re-
sources for the evaluation of the strategy and
on the other hand resources for the transfor-
mation, i.e. the execution of the rule. The
subset of rules which is given to a manager
agent at generation fixes the amount of re-
sources needed by the manager agent. The de-
cision which real hardware resources are given
to the manager agent is made by the gener-
ating manager agent. In order to make the
whole management process flexible and to re-
duce the management overhead it is also pos-
sible to change a manager agent during run-
time. This includes changing its realization
and its rule subset. This can be done by the
parent manager agent, according to the hier-
archy. The precondition for a transformation
of a manager agent is that the parent manager
agent has the possibility to do such a transfor-
mation or, in other words, has a rewriting rule
for the transformation.

6 Conclusion

The main focus of this paper was the pre-
sentation of a manager agent system for the
resource management in distributed systems.
The advantage of manager agents over servers
in current distributed operating systems is the
knowledge about the running application. The
manager agents are customized to the applica-
tion but not restricted to the application. Each
manager agent is able to get all information
about the system including information about
other applications that it needs for the best
possible management of the resources. To re-
duce the management overhead it is possible to

reduce the resource requirements of the mana-
ger agents, but this reduction is reversible. If a
more detailed management is needed, a mana-
ger agent can be transformed by giving it more
resources. The whole resource management
consists of a set of cooperating manager agents.

References

[1] B. Bryant et. al. An Introduction to Mach
3.0’s XMM Subsystem. Technical report, OSF
Research Institute, June 1993.

[2] Bryan Ford and Jay Lepreau. Evolving Mach
3.0 to a migrating thread model. In Proceed-
ings of the Winter 1994 USENIX Technical
Conference and Ezhibition, pages 97-114, Jan-
uary 1994.

[3] Paul J. Roy. Unix file access and caching in a
multicomputer environment. In Proceedings of
the Usenix Mach III Symposium, pages 21-37,
1993.

[4] Andrew S. Tanenbaum. Distributed Operating
Systems. Prentice—Hall International, 1995.

[5] John B. Charter, Dilip Khandekar, and Linus
Kamb. Distributed Shared Memory: Where
We Are and Where We Should Be Headed. In
Proceedings of the HotOS-V, May 1995.

[6] K.Murray et. al. Experiences with Dis-
tributed Shared Memory. Technical Re-
port TCU/SARC/1993/3, City University,
September 1993.

[7] Sascha Groh. Designing an efficient resource
management for parallel distributed systems
by the use of a graph replacement system. In
Proceedings of the PDPTA’96, pages 215-225,
August 1996.

[8] M. Wooldridge and N. R. Jennings. Intelligent
agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115-152, 1995.

[9] C. G. Harrison, D. M. Chess, and A. Ker-
shenbaum. Mobile agents: Are they a good
idea? Technical report, IBM Research Divi-
sion, 1996.

[10] Sascha Groh and Jiirgen Rudolph. On the effi-
cient distribution of a flexible resource mana-
gement. In Proc. of EuroPDS’97, June 1997.

