
Design and Implementation

of the GNU INSEL�Compiler gic

Markus Pizka

Technische Universit�at M�unchen

Institut f�ur Informatik

pizka�informatik�tu�muenchen�de

Abstract

The syntax of the object�based language INSEL is derivated from abstract and
formal concepts developed in a language�based and top�down oriented approach
to construct distributed systems� The concepts of INSEL serve as the starting
point for all resource management steps required to transform the source code
into an e�cient running systems� A language�based approach allows to tailor the
resource management system to the language concepts� This in turn allows to
automatically exploit application speci�c properties based on the language con�
cepts and therefore improves e�ciency� Obviously� the success of such an approach
highly depends on the abilities of the compiler to extract language�level properties
and exploit the analyzed information to transform source code into an e�cient
target representation�
In contrast to comparable projects and due to experiences with prototypes� the
INSEL compiler gic does not use an existing high�level language such as C as an
intermediate language but interfaces with a modi�ed version of the well�known
GNU C compiler gcc� This report describes the architecture of the compiler and
provides important information on the interfaces of gcc� Syntax processing and
most parts of semantic checking is accomplished by a well structured INSEL front�
end� The internal representations ��RTL� and �trees� of the GNU C compiler are
used to transform abstract INSEL syntax trees in a structured and 	exible way
into the target representation�
This strategy allows the construction of a fast� portable and optimizing compiler�
provides reusability of existing tools such as debuggers and allows for the 	exibility
needed in our research project without the necessity to reinvent and re�implement
existing and successful techniques�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

Contents

� Introduction �

�
 Programming Language INSEL �

�� Particular Advantages of the INSEL Concepts � � � � � � � � � � � � � � �

�� Rede�nition of the Term �Operating System� � � � � � � � � � � � � � � � �

�� Goals of the gic Project �

�
 Terminology and Typography �

�� Outline �

� Design of gic ��

��
 Choosing the Target Representation �
�

��
�
 C�C�� as a Portable Intermediate Representation � � � � � � � � � � �
�

��
�� gcc as a Retargetable Code�Generator � � � � � � � � � � � � � � � � � �

��� Attributed Abstract Syntax Trees � MAX � � � � � � � � � � � � � � � � �
�

��� Structure of the Compilation Process �

��� Information Interchange �
�

� Implementation ��

��
 Interfacing with gcc �
�

��
�
 Directory Structure and Files �
�

��
�� Front�End Interface � The Tree Data Structure � � � � � � � � � � � �
�

��� The INSEL Front�End �
�

����
 Scanner and Parser �
�

����� Abstract Syntax Tree Representation � � � � � � � � � � � � � � � � � �
�

����� Symbol Table ��

����� Synthesis� AST to tree Transformation � � � � � � � � � � � � � � � � � �

��� Modi�cations to the Back�End �

����
 Non�Contiguous Stacks ��

����� Trampoline ��

��� Interoperability ��

� Installing and Using gic ��

��
 Portability and Tested Platforms ��

��� Installation ��

��� Using gic ��

� Conclusion ��

�
 Distributed and Parallel Processing �

�� Current State and Future Work �

�� Contacting the Author ��

�� Acknowledgment ��

A INSEL � Syntax ��

A�
 Keywords ��

A�� INSEL Syntax ��

A�� Abstract INSEL Grammar ��

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

CONTENTS

B INSEL Example Programs ��
B�
 Nested Function ��
B�� Primes ��

C Interface of the gcc Back�End ��
C�
 Important Files �

C�� Symbols Front�Ends Have to De�ne �

C�� Important Functions Provided by gcc � � � � � � � � � � � � � � � � � � �
�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Introduction

Currently� a broad spectrum of research activities is focusing on the transition
from sequential and centralized processing to distributed� parallel and cooperative
computing� To support the construction of complex but high�quality and e�cient
distributed systems� appropriate software environments have to be provided� These
environments have to ful�ll at least two somehow contradictory goals� On the one
hand� they should signi�cantly ease distributed programming by hiding as many
details of the distributed nature of the hardware con�guration as possible� On
the other hand� performance has to be enhanced by providing adaptability and
scalability without introducing distinct management overhead�
New resource management systems� comprising languages and software such

as compiler� linker and operating system �OS� kernels are required to meet these
requirements� We argue that the implementation of these tools does not have to
start from scratch� Existing software can be modi�ed to meet the demands of
distributed computing �PE��a��
To provide the desired simplicity of distributed programming we chose a language�

based approach� The programming language INSEL provides concepts �SEL���� to
construct parallel and cooperative applications on a high�level of abstraction� The
distributed nature of the execution environment is completely hidden for the pro�
grammer� The development of a new programming language supporting parallelism
and cooperation eases distributed computing signi�cantly by transferring the task
of resource management completely to the system level encompassing the OS and
management tools�
Therefore� the importance of the construction of software tools is twofold� First�

their implementation demands tremendous e�orts� Second� the quality of the tools
determines the success of the system� This report demonstrates� that by modifying
but basically reusing an existing compiler both aspects can be addressed to develop
a high�quality compiler with acceptable e�ort�

��� Programming Language INSEL

INSEL �RW��� Win��� provides language concepts to develop distributed applica�
tions without knowledge about details of the underlying distributed hardware con�
�guration� It is a high�level� type�safe� imperative and object�based programming
language� supporting explicit task parallelism�
INSEL objects support encapsulation and can dynamically be created during

program execution as instances of class describing objects� called �generators�� To
prevent dangling pointers� objects are automatically deleted according to a concep�
tually de�ned life�time �PE��b�� In contrast to class concepts known� as for instance
in C�� �Str�
� generators are integrated into the system in the same way as other
objects and can be nested within other generators or instances and vice versa�
The generator also de�nes whether objects created as instances of this generator

are active� called �actors� or passive ones� An actor de�nes a separate 	ow of control
and performs concurrently to its creator� Actors are dynamically and explicitly
created in the path of computation just like any other �passive� object without
any references to the execution environment� such as a speci�c node or virtual
memory address� Concurrency being a language and class property has important
advantages relative to pure OS or runtime concepts such as multi�threading� It

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Particular Advantages of the INSEL Concepts

eases the task of static analyzes of the 	ow graphs and allows the compiler to
generate dedicated code for actor classes to support concurrency at runtime�
INSEL objects may communicate directly in a client�server style �message pass�

ing paradigm� as well as indirectly by accessing shared passive objects �shared
memory paradigm�� All requests to objects are served synchronously� In addition
to the concepts listed in table
�
� INSEL also provides common building blocks
known from other imperative languages� such as loops� case statements and blocks�

concept performs comment
m�actor active concurrent yet synchronized subprogram
c�actor active object performing its canonic operation concurrently
c�order passive procedure performed synchronously by two actors in

a rendezvous
ps�fs�order passive procedure�function
depot passive containers that might serve as typed modules or data

objects with �a�synchronized access orders

Table
�
� Major concepts of INSEL

Arguments are passed either IN� OUT or transient INOUT� The semantic of IN
is �copy�in� �ASU��a� and OUT determines to �copy�out� the results to the caller
on return of the subprogram� INOUT therefore determines �copy�restore� seman�
tics� In contrast to �call�by�reference� the concept of OUT parameters warrants�
that the values of arguments passed between sequential and concurrently executing
computations are always well�de�ned either holding the value before or after the
call� Furthermore� concurrent computations do not interfere unexpectedly because
of OUT parameters being passed�
All components �actors� orders� depots� simple data objects and generators� of

an INSEL system are �elaborated� at the time computation reaches their declara�
tion� Elaboration can be regarded as �xing the properties of the component and
has to be prepared by the compiler and completed at runtime� For example� the
elaboration of an array generator with statically unknown boundaries is completed
by determining the layout of this generator at runtime as soon as the computation
reaches its declaration� Furthermore all components of an INSEL system perform a
�canonic operation� that consists of elaborating the declaration part and executing
the statement part inherited from the generator� Naturally� simple data objects
such as integers do not have a declaration or statement part resulting in an empty
canonic operation�

��� Particular Advantages of the INSEL Concepts

The speci�c properties of the language concepts� such as nesting� argument passing�
cooperation and the conceptually de�ned lifetime of all objects� implicitly establish
strong dependencies between the objects of an INSEL system� This kind of struc�
turing information has several bene�ts� First� it re	ects application�level properties
and can therefore be exploited to enforce automated application�speci�c resource
management� Second� it is implicitly determined by the programmer by employing
the language concepts without the burden of having to specify hints to the resource
management system� And third� since most of these dependencies are based on class
properties� they are easy to predetermine by software tools such as the compiler�
Most important of these structures is the termination dependency de�ning a

partial order on the termination and deletion of objects� The lifetime of each INSEL�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Introduction

object depends conceptually on exactly one other object in a way ensuring� that no
object is deleted as long as it is accessible� In particular� a component of either kind
can only be deleted as soon as its termination dependent objects are terminated�
Among others� it has the consequence� that created actors have to terminate before
the creating component can be deleted� In practice this does not impose a major
restriction for the programmer but has major bene�cial aspects for the OS�

��� Rede�nition of the Term �Operating System�

To enforce transparent� scalable and adaptable distributed resource management�
we developed the architecture of a cooperative distributed management system
�Gro��� GP���� Based on the termination dependency� INSEL objects are clus�
tered to actor�contexts �ACs� forming essential units of resource management� An
AC comprises exactly one actor and all its termination dependent passive objects�
With each AC� exactly one abstract manager is associated� being responsible for
performing AC�speci�c resource management� that is to ful�ll all requirements of
the actor�context� Besides fundamental tasks such as allocating memory for the
stack� heap and code of the objects within the AC� the manager might also have
to provide facilities to maintain consistency of replicated objects� enforce access re�
strictions or perform load balancing� Con	icts� such as stack collisions� arising from
di�erent managers performing their tasks in parallel are solved by communication
between managers according to application�level structural dependencies between
the ACs� This management scheme is scalable as it does not have a potential central
bottleneck and is adaptable because resource management is performed based on
characteristics of application�level objects� For instance� the resource management
system implements actors in a non�uniform manner� There is no single mapping of
actors to for example UNIX processes or threads with a �xed size stack portion�

De	nition �
�
� �Cooperating Managers� The management of the distributed
system splits up into multiple actor�context managers performing the task of global
resource management cooperatively�

generating

manager
inform

ation interchange

linker dedicated

runtime

compiler shared

distributed node-specific
M M

c b
M

n

Mg

d

dc

Mrt

MM

Figure
�
� Software instances used to implement AC managers

It should be evident� that the straight forward approach of a rigid implementa�
tion of managers as objects de�ned in a runtime library would lead to an unaccept�
able overhead at runtime� In fact� the result of this idea would be closely related

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Redefinition of the Term �Operating System�

with an interpreter for INSEL �Wei��� with very similar performance characteris�
tics� Instead� all software tools involved in management must be considered in an
integrated way as the means to implement the abstract managers� The approach
taken is to systematically incorporate manager functionality into software instances
related with management� Each manager may individually be constructed by com�
binations of the capabilities of the software instances used� Hence� an implemented
manager might solely consist of stack managing code inlined by the compiler or it
may itself be a complex object comprising further activities� The functionality and
granularity of the manager is tailored to the requirements of its AC�
Figure
�
 illustrates software instances used to implement management facilities

as well as it emphasizes the tight integration of all implementation techniques� Ded�
icated management instances �Mdc� are created speci�cally for one AC or eventually
even for a single component� A common but not single implementation technique
for Mdc instances is inlining� Md denotes management functionality that is itself
implemented as part of distributed system and jointly usable by more than one
AC manager� Finally� Mn is used to classify node speci�c management �e�g� TLB
management� mostly implemented in some kind of an OS kernel�
Of major importance among these implementation alternatives are naturally the

compiler and the OS kernel� as the goal of the resource management system is to
improve execution speed while reducing the size of the target representation� Hence�
the basic strategy is to incorporate management functionalities into the compiler
or the OS kernel instead of employing inlining techniques or runtime libraries�

De	nition �
�
� �Management Instances� The management functionality of
abstract managers is implemented by several instances of an integrated management
tool set�

A main issue of the approach taken is to exploit information concerning overall
system behavior as well as application�speci�c information gained from static and
dynamic analysis to achieve adaptive resource management� Information is system�
atically exchanged between the managers �GR��� of the system and interchanged
between the management instances�

C

M4M1 M2 M3

M
an

ag
em

en
t

operating system

L KE

Figure
��� Structure of the operating system

As illustrated in �gure
��� the �operating system� splits up into two dimen�
sions� First the architecture of AC speci�c managers �M��M� in the example� and
second� their implementation techniques �e�g� compiler� linker� runtime environment
and kernel�� Cooperation and coordination among all management units is needed
to achieve holistic distributed resource management� The crucial issues of this ap�
proach is the correct mapping of management tasks to the software instances and
to establish information exchange and interchange�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Introduction

De	nition �
�
� �Operating System� The operating system is the management
of the computing system� It consists of cooperating actor context managers that are
implemented by an integrated tool set�

As a consequence of this approach� distributed and parallel processing �DPP� will
be fully integrated into the architecture of this OS instead of consisting of adap�
tional layers that inherently introduce overhead� The accumulated overhead of all
management instances due to support for DPP determines a lower bound for the
e�ectiveness of the distributed OS� Scalability of all management techniques de�
termines the upper bound for the e�ectiveness of the distributed OS� To extract
the chance of performance bene�ts due to the utilization of distributed hardware
resources� the overhead of runtime management has to be kept as low as possible
which can only be reached by a thorough design of �static� management � the
compiler�

��� Goals of the gic Project

Respective the above explained OS architecture� the compiler dominates the re�
source management system� First� it is the most important instance to analyze
application�speci�c properties by reading the source code� Second� decisions made
by the compiler are of major impact on the decisions made by the resource man�
agement in general� The role of the compiler as part of the targeted cooperative
OS architecture is de�ned as producing suitable resources for further processing� A
�resource� in this general sense is either information or executable code�
As the context of the project gic is the construction of a distributed OS� the

methods investigated in theory of language design and compiler construction are of
secondary interest� Instead� the goals of gic derivate from the dominant role of the
compiler for the management system� Most relevant is�

� Establishing e�ective information interchange between the compiler and other
management instances�

� Maximum 	exibility to adapt the management to the requirements of INSEL�
including decisions such as ordering of machine instructions� register allocation
and stack management�

� Performance of executable code produced by the INSEL compiler has to be
comparable to the e�ciency of an existing language and an existing industrial
strength compiler�

Besides these goals� it has to be reconsidered� that INSEL as part of a research
project is still an experimental language� Some concepts might change while others
will be added or removed� Hence� maintainability of the INSEL compiler has strong
in	uences on the implementation techniques to choose� Some other aspects� such
as portability� the performance of the compiler itself are respected but not the
objective target of the project gic� Furthermore� it can not be neglected that the
availability of a development environment is of major importance for the success
of a new language� Hence� tools such as a debugger and a pro�ler either have to
be developed in addition to the compiler or some means to enforce reusability of
existing tools are mandatory�

��� Terminology and Typography

In this report� several terms meaning di�erent things to di�erent readers will be
used frequently� Following de�nitions should be respected to avoid confusion�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Outline

gcc� The �GNU C compiler� distribution consists of numerous header �les� li�
braries� executables and their source �les� With �GNU C compiler� or �gcc�
in emphasized letters we refer to the entire distribution�

gcc�based compiler� Such a compiler is constructed using the concepts and
source codes of gcc� Well�known examples are the compilers for C� C�� and
Objective�C�

front�end� With �front�end� we denote the part of the compiler that performs
syntactic and semantic analyzes�

back�end� A generic �back�end� performing optimization and generating assem�
bler output is shipped with gcc and linked to gcc�based compilers�

gic� The term �gic� is used to identify the project with the goal to develop a
gcc�based compiler for INSEL�

RTL� This acronym stands for �Register Transfer Language� that is the most
important intermediate representation of gcc�based compilers�

tree� With �tree� or �tree node� in emphasized font the data structure provided
by gcc as the interface for language front�ends is denoted�

Terms printed in typewriter font� such as �IN���gperf���gic�� or �i�init�c� are
either names of executable programs or source �les or keywords of INSEL�

��	 Outline

The rest of this report is organized as follows� In chapter � important questions
about the design of gic are discussed� Section ��
 compares the alternative ap�
proaches of developing an INSEL compiler using an existing language as interme�
diate representation or writing a complete source to assembler compiler� These
considerations are followed by an overview of gcc in section ��
�� and an explana�
tion of the structure of the INSEL compiler in section ���� Chapter � elaborates
details of the implementation of gic and is intended to serve as a starting point for
developers of gic and might also be helpful to implement other gcc�based compilers�
Afterwards� information on how to obtain� install and use gic is given in chapter
�� The report will conclude in chapter
 with the reconsideration of results of the
gic project� information about the current state and future objectives� Technical
information about gcc� gic and INSEL such as important �les� function� grammar�
etc� is listed in the appendix�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Design of gic

Driven by the goals stated in
��� the design of the INSEL compiler focuses on
maximum 	exibility of management decisions� advanced analysis techniques� infor�
mation interchange and maintainability� Although its design is based on the GNU
C compiler consisting in total of more than half a million lines of code� it is well
structured into mostly pipelined passes with well�de�ned functionality and inter�
faces� The most discriminative design issue compared to other gcc�based compilers
is its additional abstract syntax tree �AST� representation and attribute evaluation
method encompassing the handling of the symbol table�

��� Choosing the Target Representation

A question that has to be answered when constructing a compiler for a new lan�
guage is the selection of the target representation� It is not obvious that the target
representation must equal executable binary code� Numerous other intermediate
representations for further processing are conceivable� Analyzing the bene�ts and
de�ciencies of the choices is a prerequisite and will be sketched in the following
paragraphs�

����� C�C�� as a Portable Intermediate Representation

An often performed simpli�cation in the development of the compiler in a language�
based approach is to choose an existing language as intermediate representation and
use an unmodi�ed compiler to generate target code� Examples for this approach
using C or C�� are the compilers constructed in the project Diamonds �NC���
and our own prototypical INSEL implementations EVA �Rad�
� and AdaM �Win�
��
The compiler for Napier �Dea��� goes a few steps beyond this translation scheme
by exploiting extensions of GNU C� to for example place certain data in �xed
hardware registers� The inherent de�ciencies common to these approaches is� that
overall management is not integrated due to a lack of 	exibility to tune decisions
made by the compiler� Eventually even with the result of inconsistencies but at
least either limiting the success of static optimization or of runtime management�
Calling conventions� register and stack allocation and optimization techniques have
strong interferences with management techniques such as distributed shared mem�
ory �DSM� �Li��� or mapping of the virtual address space� Lacking coordination of
the capabilities of the compiler and other management instances leads to consid�
erable performance degradations that can hardly be compensated with distributed
execution�
In the project EVA we experienced a drastical performance degradation of ����

for INSEL relative to C� The reason is� that the level of abstraction of the interme�
diate C�� code produced is too high to serve as a good starting point to produce
an e�cient executable� Similar performance experiences were gained with compi�
lation via low�level C in AdaM� Here� the reason is� that the low�level of the code
produced � integrated stack management� etc� � spoils the potentialities of the C
optimizer�
Besides these performance experiences� it is also worth noticing that existing

developing tools such as source level debugger or pro�lers can not be reused without
major modi�cations in these approaches� Although it is possible to insert line

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Choosing the Target Representation

number information into C�C�� code� complete associations between the code
generated by the C�C�� compiler and the primary INSEL source code can hardly
be established as needed to allow advanced handling of the running program� such
as source level investigation of stack frames�
The obvious solution to these problems is to write a complete optimizing native

source to binary compiler� But� the e�ort required to ful�ll this task is unacceptable
in a research project that is concerned with the development of distributed OS
technology� A promising compromise is to choose an existing compiler available in
source code and adapt it to INSEL�

����� gcc as a Retargetable Code�Generator

Due to its outstanding properties concerning portability� documentation� optimiza�
tion and most of all support for more than a single language� the GNU C compiler
was selected as the foundation for the INSEL compiler�

assembler

Inputfile

compiler

pre-
processor

[temporary]
intermediate
file

[temporary]
assembler file

[temporary]

binary file

library,
executable

linker

gcc

Figure ��
� Source to target transformation using gcc

GNU is a Unix�compatible operating system� being developed by the Free Soft�
ware Foundation and distributed under the GNU Public License �GPL�� GNU soft�
ware is always distributed with its sources� and the GPL enjoys anyone who modi�es
GNU software and redistributes the modi�ed product to supply the sources for the
modi�cations as well� In this fashion� enhancements to the original software bene�t
the software community in large� The GNU C compiler is the centerpiece of the
GNU software� It is a retargetable and rehostable compiler system with multiple
front�ends and a large number of hardware targets� The crucial asset of gcc is its
mostly independency from languages and targets� It produces excellent code for
both CISC and RISC machines� The machine dependent source code represents

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Design of gic

only
�� of the total� New targets can be added by giving an algebraic description
of each machine instruction� The leverage of constructing a front�end for gcc is thus
enormous� currently� more than ��� con�gurations of hardware architectures and
OSs are supported� Optimization techniques developed and integrated by a large
community are reused by all front�ends without additional e�ort and most of the
tools of the GNU development environment such as the debugger gdb can be fully
reused with hardly any modi�cations�
Best known of gcc is the �compiler�driver� gcc� As shown in �gure ��
 the user

usually starts the compiler�driver to request a source to target transformation in�
stead of directly calling a compiler� In fact� the program gcc analyzes command
line options and calls various other executables to perform the translation� Based
on the su�x of the input �le names� language speci�c processing usually consist�
ing of preprocessing and source to assembler translation is performed by calls of
the language speci�c compilers� If not excluded with command line options� gcc
afterwards calls an assembler and the linker to produce an executable�
Compilers based on gcc are structured into a �front�end� for language�speci�c

processing and a generic �back�end� for optimization and target code generation�
Both parts have to be statically linked to build a source to assembler compiler for
one language�

Front�Ends

Language�speci�c processing is the transformation of source text into the machine�
independent tree representation accepted as input by the gcc back�end� Hence� the
front�end usually encompasses scanning� parsing� semantic analyzes and �nishes
with the synthesis of gcc trees� Table ��
 lists some of the known languages for
which front�ends are available and the name of the respective compilers� Other

language compiler
C cc�

C�� cc�plus

Objective�C cc�obj

Fortran �� f��

Pascal gpas

Ada gnat�

Table ��
� Front�ends and compiler based on the GNU C compiler

front�ends for languages such as for Java are currently under development� Due
to similarities of the language INSEL with Ada� work performed in the context of
the Ada compiler gnat �CGS� stimulated the project gic� Ada also provides explicit
tasking parallelism but lacks support for transparent distributed execution�

Back�End

Generation of optimized assembler output is performed by a generic back�end com�
mon to all gcc�based compilers� The front�end passes trees to the back�end and
steers the compilation by calling procedures� The trees received are �rst translated
into the machine�dependent lisp�like internal representation RTL �Sta�
� �Register
Transfer Language�� All further optimization steps operate on RTL code before
it is translated into the �nal assembler output� The features of the back�end are
not limited to the concepts of C� Instead� it already o�ers special support for nest�
ing� dynamic arrays� objects and other concepts not existing in C� Further support
is added with the integration of new front�ends� As a result� the expressiveness

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Attributed Abstract Syntax Trees � MAX

of the back�end outclasses the alternative of using C as intermediate� We com�
pared the performance of back�end support for nesting with the solution used in
the PASCAL to C compiler p�c� Basic tests with a loop calling a nested function
that accesses non�local variables demonstrated� that the gcc back�end integrated
support for nesting outperforms the alternative most e�cient solution using C by
considerable ���� although the back�end does not yet use �displays� but a chain
of static predecessors� This simple experiment already demonstrates the signi�cant
bene�t of extended management 	exibility�

��� Attributed Abstract Syntax Trees
 MAX

To be able to provide the desired advanced analysis and information interchange
facilities while still preserving maintainability� an intermediate representation sup�
porting 	exible attribute evaluation in a separate compilation pass was inserted
between the parser and the gcc back�end� Usually gcc�based compilers such as the
C compiler directly call procedures of the gcc back�end in the semantic actions of
the parser speci�cation to construct trees and steer code generation� Although it
might deliver peak performance this approach has several disadvantages�

� The design of the grammar in	uences attribute evaluation and vice versa�

�a� Some syntactical errors have to be treated as if they were semantic errors�

�b� Tendency to decline analyzes due to di�cult integration into the parser�

�� Re�evaluation of the attributes due to new information collected by runtime
monitoring is not possible without parsing the source code�

�� Maintainability of both� the grammar and attribute evaluation is distinctively
aggravated�

Besides these inherent disadvantages it is also debatable whether hand�code syntax�
driven semantic analyzes with complex symbol table handling and attribute evalu�
ation realized with cumbersome techniques like �back�patching� �ASU��b� delivers
performance bene�ts� Attribute evaluation created by a well designed compiler com�
piler can be expected to outperform hand�coded versions if they are not optimized
with strong e�ort�
Compilers developed as part of research projects in the �eld of distributed pro�

cessing often create a separate abstract syntax tree �AST� as a tree of C�� ob�
jects �NC���� Compared to a hand�coded tree of C�� objects� tool supported gen�
eration of such an AST representation in general reduces memory consumption�
provides better performance and eases this task considerably� Nowadays� several
compiler construction toolkits such as ELI �Gro��� and the Cocktail tool box �GE���
o�er tools that allow to specify AST properties and attribute evaluation on a high
level of abstraction� Because of its simplicity� integrated support for concrete to
abstract syntax tree transformation and automatic attribute evaluation we decided
to use the tool MAX �PH��� PH���� Among its major concepts are�

� A tuple� alternatives and list notation to specify the abstract grammar�

� a functional language augmented with pattern matching and an interface to
C to operate on the AST and

� a predicate logic to specify context conditions for semantic checking�

MAX does not impose any restrictions on the order attributes have to be evaluated�
Furthermore� AST nodes can itself be referenced by attribute values� Therefore�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Design of gic

Figure ���� Part of a MAX browser screen shot

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Structure of the Compilation Process

maximum 	exibility for static analyzes of the source code is achieved� Understand�
ing and debugging of the decorated AST is supported by an interactive browser�
that visualizes the AST with its evaluated attributes �see �gure �����

The decomposition of our prototypical compiler� that used to employ syntax�
driven semantic analyzes� into separate functional units for syntax checking and
semantic analyzes using MAX� proofed to tremendously reduce the amount and
complexity of source code as well as increased 	exibility and speed�

��� Structure of the Compilation Process

The INSEL front�end is decomposed into units with well�de�ned tasks and inter�
faces� Tool support is deployed where possible� Figure ��� illustrates the internal

((())((())()))

(INSEL AST)

-

represent.
term abstract

syntax-tree

transform.
concrete

abstract
syntaxtokens

stream of
characters
stream of

- attributed, abstract
INSEL syntax-tree

input file

INSEL

synthesis 1

static analyzes

synthesis 2 - target code generation (GCC back-end)

tree transformation

INSEL abstract syntax

GCC abstract syntax

(GCC trees)
in RTL in RTL

AST
to

RTL

RTL-RTL

Opt, usw.
to

Assembl.

optimization steps

abstract
syntax-trees

programm

representation

programm

representation

stream of
characters

assembler
output

GCC SYMBOLTABLE

attribute

evaluator
scanner parser

RTL

front-end

back-end

Figure ���� GIC Compilation Process

structure of the GNU INSEL compiler gic as a result of the decisions explained
above� The INSEL front�end parses the input �le using common syntax checking
techniques� With procedures generated by MAX� based on the AST speci�cation� a
�term� representation is produced by the parser and passed to the �term to AST�
transformer also generated by MAX� The AST representation is decorated with at�
tributes representing compile�time as well as run�time properties� The �nal task of
the INSEL front�end is to transform the decorated AST into the GNU tree repre�
sentation by traversing the AST and calling procedures of the generic back�end of
gcc� The GNU back�end manages an own symbol table and performs several RTL
to RTL transformations before producing the �nal assembler code�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Design of gic

��� Information Interchange

The decisions to on the one hand use gcc�s back�end for code generation and there�
fore gaining the possibility to completely control the code produced and on the other
to �t the AST in between parsing and semantic analyzes� deliver a sound foundation
to establish information interchange between the compiler and other management
instances�
In the path of semantic checking performed by MAX generated code� attributes

of the AST re	ecting application level properties are evaluated� These attributes
are �rst used as usual in the synthesis step to decide about target representations to
produce� In contrast to common compilation techniques� relevant attribute values
are later on not annihilated but forwarded to the linker and the runtime management
system in one of two ways� In most cases information is forwarded by �inlining� data
into dedicated management code� A simple example are inlined argument values
determining the required stack size being used in calls to stack allocating code
to support the creation of actors with adequate stack portions� Besides inlining�
attribute values are passed as extensions of the symbol information created with
the assembler code� Hence� no additional �les and associations between attribute
data and target code has to be managed� neither by the compiler nor the linker�
The basic approach to establish the reverse 	ow of information from runtime

monitoring to the compiler is based on attribute rereading and dynamic reevalu�
ation in the AST representation� Values are either transfered via the augmented
symbol information if they re	ect class properties or directly transfered from the
stack frames of components in execution if instance speci�c management has to
be performed� The exploitation of reverse 	ow of information is subject to future
research�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Implementation

Due to its complexity� a complete documentation of the implementation would ex�
ceed the length of this report� Instead� the subsequent sections plot signi�cant
aspects of gic�s implementation� The issues addressed below are intended to sketch
the e�ort that has to be invested to implement a gcc�based compiler and to punc�
tuate the results gained�

��� Interfacing with gcc

To be able to interface with the gcc back�end� several data structures as well as
conventions comprising naming of �les and functions have to be respected� Un�
fortunately� the otherwise excellent guide �Using and Porting GNU GCC� �Sta�
�
consisting of more than
�� pages of detailed information on gcc� does not describe
how to add a new language�speci�c front�end� In fact� there seems to be no docu�
ment elaborating this capability of gcc besides a collection of
�� slides �Ken�
��

RTL

TREE

 ASSEMBLER

Figure ��
� Intermediate representation in the GNU C compiler

As shown in �gure ��
� the GNU C compiler uses internally two intermediate
representations� an abstract syntax tree �short �tree�� data structure and the �Reg�
ister Transfer Language� RTL� The interface between a language speci�c front�end
and the back�end is mostly de�ned by the tree data structure� The RTL layer is not
completely hidden by the tree representation� In fact� constructing a front�end that
omits the tree representation is feasible but would contradict the objectives of the
front�end�back�end architecture resulting in awkward properties such as increased
complexity� lack of portability and compatibility� Instead� RTL is reasonably ac�
cessed and generated in front�ends as a short cut to� for example emit library calls
or implement new language�speci�c tree nodes� Because RTL is described in de�
tail in �Sta�
� the rest of the explanations of the front�end�back�end interface will
concentrate on trees�

����� Directory Structure and Files

Except for C� the source code of a language�speci�c front�end is kept in a separate
subdirectory of the gcc source tree� e�g� subdirectory �cp� for the C�� front�end�
Hence� to integrate a new front�end into gcc�s build process� a subdirectory with
preferably the name of the language has to be created� The �les listed in table
��
 must exist within this directory to allow gcc�s build process to recognize and
compile the new front�end� Calling configure in the gcc root directory calls the
config�lang�in �les of all front�ends� creates all Make�les and C header �les which
include the language�speci�c header �les listed in the table�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Implementation

File Content
Makefile�in Make�le to compile the front�end�
Make�lang�in Make�le fragment copied into the parent Make�le� It de�

scribes how to call the Make�le of the front�end�
config�lang�in Called during con�guration of gcc and used to prepare com�

pilation� For example� announcing the name of the lan�
guage and the compiler� applying patches or setting of plat�
form speci�c options�

lang�options�h De�nes a list of strings of language�speci�c options to be
added to existing options�

lang�specs�h Speci�cation of the �le name su�x for this language and
how to compile such �les including calls of the assembler
and linker� Documentation is only inlined in the source
code of the compiler driver �gcc�c��

Table ��
� Files expected by gcc

����� Front�End Interface � The Tree Data Structure

Most important for the compiler writer but poorly documented is the gcc internal
tree data structure� It consists of multiply linked tree nodes and access macros
to operate with these nodes� It is a common misconception that gcc would build
trees for entire functions or even �les� In reality� the front�end interface is mostly
procedural and trees only exist for�

� types �or INSEL� generators��

� variables�

� expressions and

� blocks�

The data structure tree is a C union type consisting of �elds common to all kinds
of nodes and extensions for the di�erent possible kinds� such as a reference to
the string name in case of an identi�er node or a �eld describing the size of the
frame for function nodes� Furthermore� the tree structure can be extended for
language�speci�c processing� The kind of a tree node is determined in the �eld
TREE�CODE in its common area� About
�� di�erent codes currently exist �see
tree�def� comprising codes for all constructs available in C and additionals needed
in other languages� front�ends were already implemented for� such as C�� and
PASCAL� Many of the bits of the tree structure are used for di�erent purposes
depending on the tree code� Therefore� it is a strong recommendation to use the
macros provided for convenient and e�cient access of a tree node�
A front�end constructs trees by calling a small subset of the procedures of the

back�end �see tree�h�� It �lls important �elds� eventually performs simple opti�
mization such as constant folding� passes the tree back to the back�end and requests
its immediate expansion or to �nish the compilation of the current declaration� The
back�end then creates RTL code� optimizes the RTL code and outputs assembler
code augmented with additional information for debugging or pro�ling� if activated�
Besides the interface to code generation� gcc also facilitates standard tasks as a

convenience and to standardize behavior of development environments� Among the
services o�ered are for example� error reporting functions graded into error� warning
and sorry �not implemented� messages� With these services error reporting is alle�
viated with automatic counting of messages� a message layout that is understood
by GNU development environments and automatic tracking of include stacks�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� The INSEL Front�End

��� The INSEL Front
End

As explained in section ���� the INSEL front�end does not use the tree representation
for its own purposes but solely for code generation� Although the tree framework
is powerful enough to support all semantic actions we decided to clearly separate
language�speci�c processing from code�generation� In the following paragraphs we
will �rst discuss issues of syntactic and semantic analyzes before focusing on some
special aspects of code generation to support parallel and distributed processing�

����� Scanner and Parser

Because maximum performance of the compiler is not our primary interest� syntac�
tical analyzes are constructed using table generated keyword hashing� scanning and
parsing by utilizing the GNU tools gperf� flex and bison� The INSEL grammar
complies to LALR�
� and consists of �

 rules and �� keywords� Experiences so far
demonstrate� that performance of the constructed syntactic analyzes is su�cient to
compile large units of source code�

����� Abstract Syntax Tree Representation

INSEL�s abstract grammar is derivated from its concrete syntax by removing �syn�
tactical sugar� �keywords� etc�� and further making adjustments to simplify at�
tribute evaluation and code generation� Since the AST is not analyzed but con�
structed by calling procedures� it must not comply to LALR�
� and is therefore
easier to specify and handle relative to the pars tree� The abstract grammar is
de�ned with a high�level speci�cation serving as input to MAX� which produces
C code to construct and traverse the AST� The code generated by MAX is �rst
used in the semantic actions of the parser to construct a �term��representation�
After parsing is �nished� the resulting bracketed term is transformed into the AST
representation by MAX generated code� In contrast to terms� ASTs can be freely
traversed and decorated with attributes� This property is exploited in the project
gic to perform all semantic actions on the INSEL AST� A MAX speci�cation in
general and INSEL�s in particular consists of three parts�

� De�nition of the abstract grammar using tuple� list and variant productions�

�� Attribute part and

�� predicates and context conditions to de�ne semantic rules�

Supplementary functions� written in MAX�s functional language or imported from
other languages can be added to support attribute evaluation and semantic checking�
The concept of logical predicates and context conditions eases the task of seman�

tic checking signi�cantly� Example ��� is taken from the INSEL AST speci�cation
and illustrates some of the concepts mentioned� Each AST node of sort UsedId is
decorated with the attribute DefId referencing the node within the AST that de�
�nes this identi�er� By using MAX�s powerful pattern matching feature� the node
of sort Name containing the UID node searched is retrieved and analyzed� Evaluation
of this attribute commences with the nodes matched� the value of further attributes
�e�g� encl�scope� and supplemental functions �e�g� lookup�DefId�� Notice� that
the required order of attribute evaluation is determined by MAX� In the context
condition UsedId� attribute def is used in the predicate to check that no node
of sort UsedId without a de�nition of the corresponding identi�er exists� If the
predicate fails� the supplementary function IC�error is called which in turn calls
error reporting functions of gcc� Again� the order of checking context conditions is
determined by MAX�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Implementation

�� def evaluates the DefId�node �either SpecId or DeclId�

�� that defines the used id within the syntax tree�

�� For the distinction of whether the used id is within a

�� name or not� see explanation above ��decl���

ATT def� UsedId� UID � DefId� �

IF Name�	
� NameItem� NI� UsedId� UID�
� �

lookup�DefId� id�UID�� local�DefIds� encl�scope � basic�gen�

type� NI � � � � �

ELSE lookup�DefId� id�UID�� env�encl�scope�UID�� �

�� This condition checks whether an used id has been defined before

CND UsedId� UID � def�UID�
 nil��

� LET E��IC�Error�file�UID�� line� UID ���

��Identifier ��� namepartstr� UID � ��� not defined���

Figure ���� Example of a MAX attribute and context condition

The approach� to specify target code generation �gcc trees� as an automatically
evaluated attribute was aborted� because the otherwise most pleasant property of
automatic determination of the order attributes are evaluated is awkward in this
case� Naturally� the order to evaluate the code attribute is most important� Addi�
tionally� importing and exporting all required interfaces between gcc and the MAX
speci�cation proofed to be too complicated� Instead� it was decided to construct
the AST and evaluate all attributes within MAX and traverse the AST separately
in C to steer synthesis using the gcc back�end�
The combination of MAX with gcc further required to redirect MAX�s standard

error reporting method using �stderr� to calls of error reporting services provided
by the gcc back�end�

����� Symbol Table

All information about symbols of the source code referring to abstract properties
is kept in the AST and its attributes� The front�end does not maintain a separate
symbol table besides the AST� In contrast to the front�end� the gcc back�end main�
tains separate symbol information with its tree representation� The technique used
in the back�end to record trees forms a symbol table holding all information about
the properties of symbols needed to generate target code� such as the assembler
name of a declaration or the sizes of stack frames� In addition to this target code
related information� the gcc symbol table is also capable of storing all other semantic
properties needed for compilation� As elaborated above� this feature is not used by
the INSEL front�end� But� since other front�ends make extensive use of the symbol
table features provided by gcc and each front�end at least has to support it with
procedures called by the back�end� understanding its basic structure is mandatory�
Figure ��� illustrates the organization of the symbol table as maintained by the

back�end� The gcc tree nodes are organized in linked lists and �binding levels��
The links plotted in the �gure are the TREE CHAIN links chaining nodes in the same
binding level�� Fast access to the tree nodes and their �elds is achieved by a hashing
mechanism that associates identi�ers with their corresponding nodes� With the
service get�identifier an identi�er tree node is retrieved or newly allocated if not

�In INSEL� binding levels represent lexical scopes�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� The INSEL Front�End

b

a

g

j

i

h

i j

i ha b

gbinding level fct f

binding level fct g

hash table

Figure ���� gcc symbol handling

yet existent� Each block� function and aggregate generator de�nes a new binding
level temporarily shading the meaning of the identi�ers on previous binding levels�
Actions to take when entering or leaving a binding level vary between languages
and must therefore be implemented with each front�end�

����� Synthesis	 AST to tree Transformation

Final task of the front�end compiling an INSEL source text into optimized assem�
bler output is to traverse the decorated AST and call procedures of the back�end
to generate� pass and expand gcc trees� The concepts of the GNU C compiler of�
fer a broad spectrum of alternatives for this transition� Some of the less trivial
transformational actions are explained in the following paragraphs�

Creation of Actors Similar to the common nomenclature of �caller� and �callee�
used for subprograms� we will use �creator� and �createe� to designate a creating
component �actor� order� depot� etc�� and the newly created actor� Naturally� gcc
does not yet o�er support for �Create�Statements� similar as for �Call�Statements�
since its concepts are still bound to languages that do not o�er parallelism as a
language concept� This shortage is currently compensated by techniques integrated
into the INSEL front�end that may later on be moved to the back�end�
At least two assembler level functions are generated for each actor generator� a

stub function implementing the functionality to prepare the createe and a compute
function that performs the statement part of the actor generator� To be able to
distinguish both functions at the assembler level� the su�x ��T�� is added to the
assembler name of the compute function� The signature of the stub function is
equivalent to the signature of the actor generator on the abstract level� Hence� actors
are created by calling their stub function in the same way ordinary subprograms
are called� The signature of the compute function complies to the interface of the
call to create new threads on the selected platform�
The stub function of an actor generator is interspersed with two calls of the

INSEL supportive environment� First� ACTOR�ALLOCATE is called to have the run�

�The su�x ��T� stands for �thread�� The dot was selected to avoid con�icts with user de�nable

symbols�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Implementation

value

dest. addr

size

previous

value

pagestart

m. IN

n. [IN] OUT

1. [IN] OUT

1. IN

manager data

actor arguments

actor object data

thread library data

thread stack

dedicated runtime

Figure ���� Initial memory layout of an actor

time manager provide initial virtual memory for the createe� The arguments passed
in this call are the sizes of�

� the new manager�

� the arguments of the createe and

� the initial stack frame needed to start the computation�

After allocation of memory� control returns to the dedicated management portion
inlined into the stub function by the compiler� The current arguments are passed to
the createe �see below� and important �elds of its manager� such as the address of
the compute function and the size of its arguments are initialized� At the end of the
stub function� ACTOR�VITALIZE is called to �nish local initialization of the createe
and to create a new 	ow of control �thread� involving load balancing and network
communication� If a new thread is created� the only argument passed to the compute
function via pthread�create �currently used thread interface� is the address of the
manager holding all other relevant information� If the load management system
decides to initiate the new 	ow of control on a remote node� initial virtual memory
pages depending on the size of arguments and initial frame are transfered to the
selected node�

Argument Passing To implement INSEL�s IN and OUT parameter modes in a
uniform way� all values of aggregate types� are passed by reference� Solely IN

arguments of simple types such as INTEGER or CHARACTER are directly passed by
value� In case of an order �subprogram� being called with arguments of a non�
trivial type� the callee creates itself local place�holders for the arguments and uses
these place�holders for its computation� For arguments passed with IN semantics the
callee copies the values to its local place�holders before starting its computation� For
OUT arguments the callee copies the values of the place�holders to their destination
de�ned by the caller after �nishing its computation� Naturally� for INOUT arguments�
both copy steps are performed� This uniform method sometimes designated as

�used as a synonym for generators

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� The INSEL Front�End

�callee�copies� provides similar performance to the more common �caller�copies�
method� In case of �callee�copies� the callee can itself optimize argument passing
by omitting the creation of copies for unused objects� �Caller�copies� on the other
hand would improve register utilization in the context of argument passing�

Argument passing to actors is more complex �see �gure ����� Actors are essential
units of management with an own separate stack and are often executed on a remote
node wherefore costs for communications between the createe and the creator have
to be kept as low as possible� Furthermore� the service used to create the new
	ow of control for an actor often only allows to pass a single argument of a pointer
type� As a result� gic�s support for the creation of actors aims to reduce network
communication and page faults� minimizes local copying and accommodates to the
thread currently used� The creator of a new actor allocates virtual memory for
all arguments of the actor within the initial stack of the createe� It further copies
the values of IN arguments directly into the allocated space� Handling of OUT

additionally requires that the destination address is stored with each OUT argument
inside the createe� To correctly and e�ciently implement INSEL�s conceptually
de�ned �nish synchronization in combination with OUT arguments of actors� the
createe must not copy back the values of OUT arguments by itself� Instead� with
each OUT argument� two additional �elds size and previous are stored and used
by the creator to fetch the results during �nish synchronization from the createe�
INOUT arguments are passed in the same way as OUT arguments with the di�erence�
that the creator also copies the input value to the space allocated for the OUT value
of the argument� It is important to notice� that the computation of the createe
directly operates on the space allocated for the arguments by the creator and no
additional copies are made� As a bene�cial e�ect of this compiler supported method
to create actors� expensive heap management techniques to pass arguments to actors
are omitted�

Arguments of �depots� or �c�actors� � objects encapsulating data � are han�
dled similar to �eld components of the object� The component comprising the
parameterized depot or c�actor simply copies the argument values to and from ar�
gument �elds of the object�

It is worth mentioning� that the gcc back�end also has built�in support for
�callee�copies� using �invisible references� to implement call�by�value� In fact� it
should be su�cient to de�ne the macros FUNCTION�ARG�PASS�BY�REFERENCE and
FUNCTION�ARG�CALLEE�COPIES in the machine depended part of gcc to activate
the �callee�copies� alternative without any changes to the front�end� We decided
to integrate this technique into the front�end for two reasons� First� IN and OUT

parameters need di�erent handling and second� not to confuse other front�ends�

Start and Finish�Synchronization The INSEL concept of start and �nish syn�
chronization de�nes regulations for the creation�call and the deletion of an INSEL
component� Basic regulations are for example the semantics for argument passing�
In case of actors� �start�sync� and ��nish�sync� must additionally ensure that a
creator is not deleted before its createes� Hence� the management system has to
keep track of all concurrently performing actors� First� for scalable decentralized
management� the task of globally recording parallelism ���structure� is split among
the managers of actor contexts �AC�� Each manager only keeps track of the ac�
tors created within its AC� Second� the synchronization concept enables to perform
start and �nish�sync for actors stack alike with the di�erence� that createes may
terminate at any time� Figure ��
 illustrates an e�cient solution implemented in
the context of gic� The path of computation of AC
 managed by manager
 has
reached a certain call level and performs a sequential computation on the current
stack frame� By incrementing and decrementing the �eld current�comp�id� the

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Implementation

comp-id
manager

next
finished

comp-id
manager

next
finished

comp-id
manager

next
finished

comp-id
manager

next
finished

comp-id
manager

next
finished

logical association

reference

MANAGER 1

MANAGER 2

Π

current comp id

-stack

my pi item

further fields
arguments

function
frame of compute

Π

current comp id

-stack

my pi item

further fields
arguments

current frame

function
frame of compute

frame of a block

comp-id = cur_comp_id

comp-id = cur_comp_id - 1

comp-id = 0

Figure ��
� Organization of ��stacks

AC manager keeps track of the sequential call levels and blocks entered and left� If
a component creates an actor� a new ��item is pushed on top of the ��stack main�
tained by the manager� The createe noti�es the creator about its termination with
setting the finished 	ag in its � item� Before leaving a call level or block� the AC
manager is requested to perform �nish�sync with all actors created by the current
component� It in turn uses current�comp�id to wait on all ��items in the ��stack
having the same value in comp�id to be finished� Since� all �nished ��items of a
component are deleted in the order of termination to reduce memory consumption�
the organization of ��items is not truly a stack�

This strategy is itself mostly implemented in INSEL� The compiler simply emits
calls to PI�START�SYNC and PI�FINISH�SYNC into the prologue and epilogue of rele�
vant components� To not introduce in�nite recursion these calls have to be omitted
when compiling their INSEL de�nition� In fact� any INSEL component involved
in start or �nish�sync makes such an exception� A sound solution to this general
problem of recursive de�nition is in this case reached with the attribute needs�sync
determining the necessity to synchronize with createes� It is set in the AST rep�
resentation based on the property whether a component creates actors� and used
in the synthesis step to omit ��synchronization at runtime if the compiler already
knows� that no createes will exist� With this strategy the problem of recursion

�Note� that only local knowledge is necessary for this decision�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

���� Modifications to the Back�End

in case of start and �nish�sync is solved because� naturally PI�START�SYNC and
PI�FINISH�SYNC do not create actors� Additionally� the performance of the system
in general is enhanced� since many more unneeded calls are avoided�

Symbol Code of gcc tree node Size�Value
CHARACTER CHAR TYPE HOST BITS PER CHAR

INTEGER INTEGER TYPE HOST BITS PER INT

REAL REAL TYPE HOST BITS PER WORD

MANAGER T RECORD TYPE runtime

STRING T RECORD TYPE runtime

TRUE INTEGER CST

FALSE INTEGER CST �
NULL INTEGER CST �

Table ���� Built�in and joint symbols

Built�in Generators and Constants
Fundamental prede�ned generators and constants are handled as �built�in� by the
compiler� The constants HOST�BITS�PER�CHAR and HOST�BITS�PER�INT are usually
set to � and ��� A new data type for �� bit �LONG� will be added as soon as full
hardware and OS support is available�

The integration of the generators MANAGER T and STRING T into the compiler
di�ers from the technique used to de�ne the rest of the symbols listed in table ����
The corresponding generator de�nitions are not hard�coded into the compiler but
written in INSEL for themselves and read by the compiler in a certain order ensuring
that none of these is used before it was compiled� The only information hard�coded
into the compiler are the names of identi�ers used to denote these generators and
�elds that are to be accessed by the compiler� The advantage of this strategy is
twofold� First� the 	exible integration of these types allows for rapid and frequent
changes that are due to the progress of the research project� Second� manager
records are intensively accessed by INSEL management code outside the compiler
and string operations are also written in INSEL� Hence� both generators have to
be de�ned in the runtime environment� anyway� Additionally� hard�coding these
generators in the compiler would introduce the risk of inconsistencies while hardly
improve the performance of the compiler� Symbols agreed between the compiler
and other mainly management instances of the system are called joint symbols�
The concept of joint data structures further emphasizes the tight integration of the
compiler into the resource management system� Other joint symbols are functions
de�ned in INSEL and called by the compiler to perform complex management tasks
as for example the creation of actors explained above�

��� Modi�cations to the Back�End

In order to meet the requirements of the new concepts of INSEL and the aim to
support distributed processing� some parts of the back�end of gcc had to be adapted�
Although most tasks could also be performed in the front�end� modifying the back�
end is advantageous wherever the task would be awkward or ine�cient to perform
in the front�end� As a bene�cial side�e�ect� compilers for other languages also
pro�t from these changes that mainly re	ect necessities of parallel and distributed
processing�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

�� Implementation

����� Non�Contiguous Stacks

Due to its well�known advantages concerning persistency and mobility of objects� we
employ a single �� bit virtual address space for our system� A major problem in such
parallel computing environments with �ne�grain parallelism is adequate memory
management for multiple activities within the single non�segmented address space�
First� the management has to be performed decentralized to avoid bottlenecks and
second� the stack size required for a parallel activity can not be statically predicted�
A mechanism is needed that automatically handles stack growths� collisions and
over	ows�
In fact� hardware should provide advanced means to monitor stack evolution of

multiple threads and the OS has to be prepared to expand and shrink stack sizes
transparently� Since hardware support is not available� we have to integrate stack
checks into the compiler� Whenever stack space is �de��allocated� the stack�pointer
has to be checked against upper and lower bounds of the current stack segment� If
these limits are exceeded� the runtime manager has to �de��allocate stack segments
by splitting or merging free segments� To avoid expensive reorganizations of the
stack space� the newly allocated stack segment does not have to be contiguous
with existing ones� establishing a fragmented stack organization� According to the
fragmentation of stack space the addressing scheme of the gcc back�end had to be
changed� For example on a SUN Sparc arguments are addressed via a constant
o�set from the frame�pointer ��fp�� We modi�ed the addressing scheme to use
local register �l� as an explicit argument pointer� For further details on virtual
memory management for INSEL see �GPR����

����� Trampoline

For compatibility reasons� gcc implements pointers to nested subprograms via a
trampolining technique� If the address of a nested function g is taken within function
f � a portion of code� that sets up information about static predecessors before
branching to g is inserted in the stack frame of f and the address of the trampoline is
used in place of the address of g� This technique allows to use existing libraries� such
as pthreads �OSF��� without modi�cations together with languages that support
nesting�
Unfortunately� since trampoline code is statically produced by the compiler� this

strategy hampers dynamic extensibility� Trampolines can not be dynamically placed
on stack frames of existing functions at the time new functionality is to be integrated
into the running system� To overcome this de�ciency we replaced the trampolining
mechanism with a customized addressing scheme for nested functions��

��� Interoperability

The INSEL compiler allows to inter�operate with functionality written in languages
other than INSEL� This section will elaborate on interfacing between INSEL and C
although most predications also comply to other languages� Except for union types
and bit �elds� INSEL allows to construct most of the types available in C� Direct
exchange of global data between INSEL and C is not supported�
As long as the calling conventions of INSEL �see
�
� are considered� global

INSEL orders can be called from C� Orders are global if they are de�ned either
on the outermost nesting level or in a not nested depot� When calling orders of
a depot� the �rst argument has to be a pointer to the depot data� Calling of C
functions from INSEL is possible by de�ning their interfaces in the INSEL system�

�These changes a�ect gcc�s �les expr�c and function�c

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

��	� Interoperability

The method of creating new actors as explained in ����� allows to create new
actors from within C� Currently neither start nor �nish synchronization is automat�
ically performed for functions written in other languages than INSEL� wherefore
synchronization of the created actors is performed with the INSEL component that
called the C component� PI�START�SYNC and PI�FINISH�SYNC may be explicitly
called from within C to provide synchronization of created actors with the creating
C function�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Installing and Using gic

The compiler and its source code is available for interested readers� Please contact
the author �see
��� to obtain an up to date snapshot�

��� Portability and Tested Platforms

Currently� the only platform dependent code of gic is the selection of hardwired
registers for the argument pointer and to hold the address of the current runtime
manager which is done in the machine dependent part of the back�end� Besides
the selection of these registers� the front�end of gic itself does not impose further
portability restrictions� Therefore� the compiler should be portable to most of
the more than ��� con�gurations supported by gcc� More important portability
issues are determined by the INSEL supportive environment� It strongly relies
on pthreads� TCP�IP sockets� signal handling and the possibility to compute the
manager register in the signal handler� Additionally� the integrated browser for the
AST and its evaluated attributes can only be compiled and used on platforms with
a X

 window system� On other platforms� this feature must be omitted�
Implementation of gic started on HP PA�RISC workstations running HP�UX

��x� Later on� due to the requirement of the runtime system� the project migrated to
the SUN UltraSparc architecture with SUN Solaris ��
�
� This is the only platform
currently tested� As the project advances� gic will be ported to Linux on x��
processors� UltraLinux and back to HP�UX on PA�RISC processors� As the goal of
the MoDiS and INSEL approach is to develop a stand alone distributed operating
system we are also working on a new micro�kernel called DyCoS �Cze���� The long
term target is to port gic and its supportive environment to DyCoS which will
together with other tools such as an incremental linker form the distributed OS as
explained in
���

��� Installation

To compile gic from source� several tools besides a C compiler� linker and make have
to be installed on the build platform�

� The perfect hash generator gperf to generate the hash table for keyword
hashing�

� To generate the scanner� flex has to be available although lex should be
su�cient with minor adaptions of the scanner speci�cation�

� The parser generator bison� with adaptions of the parser speci�cation yacc

will work but was not tested� yet�

Modi�cation of the keyword list� parser� abstract grammar or attribute evaluator
is only possible� if noweave is installed� too� All �les related in the de�nition of
the INSEL syntax are written using WEB to allow automatic generation of syntax
documentations� MAX and its X

 browser will be made available together with
gic�
The process of installation of gic is straight forward� First� a gcc source dis�

tribution has to be obtained and unpacked� Next step is to unpack the gic source

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

	��� Using gic

distribution inside the gcc root directory� After this� the steps described in the �le
INSTALL shipped with gcc have to be performed to build and install the compilers
and supportive applications for the selected languages�
Simultaneous development of a gcc�based compiler by multiple developers tends

to utilize tremendous amounts of disk space� Instead of every developer using an
own dedicated version of the gcc build tree ��
��MB�� it is advisable to con�gure
and compile gcc with the gic patches applied once and to create local working copies
using links for all gcc �les that are not part of the INSEL front�end�

��� Using gic

After compilation and installation of gcc and gic� INSEL �les can be compiled using
the compiler driver gcc� The compiler driver recognizes the language of source �les
according to the su�x of the �le name� For ��insel� �les� the INSEL compiler
gic� is called to produce assembler code�
Besides language independent options of gcc that can be used for INSEL �les as

well� gic adds two new options to the command line�

�	v is a debugging option that produces line number information as well as output
about the AST node currently processed on stdout�

�	b activates the INSEL browser� After successful parsing and attribute evaluation�
the X

 AST browser is started as a separate process�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Conclusion

To support the development of complex but high�quality distributed systems� new
programming environments are required� The foundation of the environment pre�
sented are high�level language concepts o�ered by INSEL� Concepts and techniques
for an innovative distributed resource management system that tightly integrates
compiler� linker and OS functionalities are derivated from the language concepts
in a top�down oriented manner� We argue� that the complete set of software tools
involved in the transformation of a parallel program into an e�cient distributed
executable� has to be tailored to the requirements of distributed computing� The
alternative to construct layers above existing unmodi�ed tools inherently introduces
overhead and even con	icts� limiting the potential e�ciency of distributed process�
ing�
Although new tools have to be constructed� existing and successful techniques

integrated and implemented in available software can and should be reused� Mod�
i�cations instead of re�inventions are necessary to decrease the development e�ort
and at the same time increase the success of distributed and parallel processing�
We elaborated on the construction of the INSEL compiler gic which is based on the
GNU C compiler gcc to demonstrate our general strategy� The tight integration
of the modi�ed gcc into our resource management system eliminated the expensive
need to implement a new code�generator while still preserving full 	exibility for
the source to target transformation and the opportunity to make use of a large
collection of advanced compilation techniques�
Several features of the INSEL compiler constructed would either not be possible

without the approach taken or extremely awkward and costly to realize� Following
is a incomplete list of some important features described in the text�

� The exact frame size needed for the compute function of an actor is deliv�
ered as a bene�cial side�e�ect� Optimized register allocation and eliminations
of unused expressions are automatically considered� Hence� adaptive mem�
ory management for concurrent actors is supported in a way hardly possible
without the unique design of gic�

�� Sound starting point for extended management 	exibility with dynamic
attribute re�evaluation and dynamic re�compilation�

�� Full control over the assembler output produced which is important to con�
struct the incremental linker�

�� The already existing method to forward application�speci�c information as
symbol information to tools such as the linker and debugger can easily be
extended to enforce information interchange between the compiler and other
management instances of the cooperative management system�

� Support for source level debugging and pro�ling without hardly any additional
e�ort�

The compiler clearly separates di�erent steps of compilation to gain 	exibility
for techniques such as dynamic re�compilation and increase maintainability signi��
cantly to meet the requirements of our research project� The utilization of compiler
compilers and most of all interfacing with the GNU C compiler reduced the e�ort
invested by some orders of magnitude�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

��� Distributed and Parallel Processing

��� Distributed and Parallel Processing

Several details of code generation were discussed� Some important changes and
sanctions explained� directly re	ect necessities of the distributed and parallel nature
of the execution environment and account for the integration of the compiler gic in
the cooperative manager architecture presented in
���

The selection of a hardwired global register to hold the address of the associated
runtime manager was only possible by modifying the machine�dependent code of
the compiler� It greatly simpli�es the handling of the manager in the compiler and
the runtime system� provides compatibility with other front�ends and enhances
the performance of the system relative to otherwise required passing of a manager
argument� Using a hardware register determines a well�de�ned interface for the
kernel to operate with managers as well as it allows to communicate the concerning
manager between the kernel and runtime system using signals� It serves as a good
example for a minor sanction with the major e�ect of an e�cient integration of all
management instances�

Of major impact is also the automatic creation of stub functions and in general�
the method used to create actors� By interfering compiler and runtime functionality
it is possible to create concurrently and remotely executing actors in a way that
minimizes page faults and supports migration due to a packed implementation of
an actor� its arguments and its manager� Integration of this method directly into
the code generator further ensures advantageous symbiosis with existing techniques
like register allocation�
Other important particularities are decisions to integrate management facilities

such as dynamic stack checking as much as possible into the prologue and epilogue of
functions to support incremental extensibility of the distributed system at runtime�
New attributes such as non�local and needs�sync are used to steer and en�

hance optimization according to the changed execution environment that comprises
multiple threads and distributed shared memory�

��� Current State and Future Work

Currently� gic supports about ��� of the INSEL syntax� The runtime environment
is partially written in C and INSEL because INSEL does not support system pro�
gramming� Distributed execution is currently supported on SUN UltraSprac with
Solaris ��
�
� Experiences so far are promising as on the one hand INSEL programs
proof to be far less complex than multi�threaded applications written in C with
explicit message passing and on the other hand� overall management overhead is
still low ��
��� comparing sequential performance of INSEL and C�
Besides the necessity to support the complete INSEL syntax� several other major

development steps are objected� Of course� further modi�cations to the back�end of
gcc will be made re	ecting the change of paradigm from centralized and sequential
to distributed and parallel processing� An important example is the integration of
displays �ASU��b� to implement access to non�local data for languages that support
nesting� Currently� the GNU C compiler only uses a chain of static predecessors�
Assuming that levels of nesting are low and program execution is centralized� this
scheme delivers su�cient performance� In case of distributed execution� perfor�
mance is unacceptable� because tracing the chain might result in memory violations
of the distributed shared memory and messages being sent for each level of nesting�

Although gic does and will run as a UNIX process� it is planed to further inte�
grate the compiler into the INSEL system and support the incremental construction
of the system with some kind of incremental compilation� An important milestone
will be to use INSEL depots as input and output for gic instead of UNIX �les�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

� Conclusion

Another important step will be to enhance interoperability of INSEL with other
languages by providing tools to automatically convert interface de�nitions from
one language to the other� INSEL will form the common ground for all other
languages and serve as a sort of interface de�nition language to avoid the necessity
to implement O�n�� converters�
Furthermore� advanced methods to establish reverse 	ow of information from

runtime to the compiler will be developed and its capabilities investigated� It is
aimed to use the information returned also to recompile existing instances of objects
if runtime monitoring indicates its necessity�
Finally� we are aware� that in the �eld of parallel programming� numerous new

languages and compilers �e�g� PSather �MFLS���� with speci�c optimizations for
parallel processing are developed� We aim to incorporate major results of work
performed in this �eld into our general approach to resource management�

��� Contacting the Author

Feel free to contact the author of this report if you have questions� suggestions or
want to join the project�

email� pizka informatik�tu�muenchen�de
WWW� http���www�informatik�tu�muenchen�de��pizka

��� Acknowledgment

This project is sponsored by the DFG �german research council� as part of the
project SFB ���� �Tools and Methods for the Utilization of Parallel Architectures��
Without the help and commitment of several people� the design and the current

state of the project would be far from where it is� Many thanks go to Richard
Kenner who helped us to get started with his collection of
�� slides on �Targetting
and Retargetting the GNU C Compiler� �Ken�
�� At the time of writing� these slides
seem to be the only written information on how to add front�ends for new languages
to gcc� besides inlined comments� Arnd Poetzsch�He�ter greatly simpli�ed and
speeded�up the development of semantic processing including attribute evaluation
by providing his tool MAX� J!urgen Rudolph contributed a lot of work in the design
and implementation of syntactic analyzes as well as he integrated the valuable
intermediate representation of abstract syntax trees using MAX� Special thanks
go to Christian Strobl who spent a lot of time in reading huge amounts of inlined
comments in the source code to pave the way for the project and �nally implemented
considerable parts of the compiler� Last but not least� Claudia Eckert deserves
greatest thanks for hours of helpful discussions and also for reading and correcting
this document�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A INSEL � Syntax

A precise explanation of the INSEL syntax is subject to a special report on using
INSEL� In contrast to this� the subsequent sections should give insights in the syntax
for the interested reader and compiler writers� As the project advances� the syntax
will change�

A�� Keywords

ACCEPT ACCESS AND ARRAY
BEGIN BLOCK CACTOR CASE
CONSTANT DEPOT ELSE ELSIF
END ENTRY ENUM EXIT
EXPORT EXTERN FALSE FOR
FUNCTION GENERIC IMPORT INCOMPLETE
LOOP MACTOR MOD NEW
NONE NOT NULL OTHERS
OUT PROCEDURE RECORD RETURN
RTMANAGER SELECT SPEC TERMINATE
THEN TRUE TYPE WHEN
WHILE WITH XOR

Table A�
� INSEL reserved words

A�� INSEL Syntax

The following list of INSEL grammar rules was directly produced from the bison
parser speci�cation� The semantic actions with calls of functions provided by MAX
to construct the term representation are omitted for better readability�

�� compilation�unit
� declaration�part�

�

�� declaration�part
� �� empty ��
j declaration�part� declaration� ���
j declaration�part� error ���
�

	� declaration
� de�generator��

j da�generator�

j generic�generator��

j generic�generator�incarnation��

j object�declaration��

�

� da�generator
� speci�cation�part�

j implementation�part�

�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

�� speci�cation�part
� interface�speci�cation�

j no�interface�speci�cation�

j function�speci�cation	

�

� interface�speci�cation
� interface�generator�type�� SPEC IDENTIFIER

formal�in�parameter�part��

limitation�part��

interface�part��

�

�� no�interface�speci�cation
� no�interface�generator�type�� SPEC IDENTIFIER

formal�parameter�part��

limitation�part��

�

�� function�speci�cation
� FUNCTION SPEC IDENTIFIER

formal�in�parameter�part��

limitation�part��

RETURN name��

�

�� implementation�part
� interface�implementation��

j no�interface�implementation��

j function�implementation��

�

��� interface�implementation
� interface�generator�type�� IDENTIFIER

formal�in�parameter�part��

limitation�part��

declaration�and�implementation�part��

�

��� no�interface�implementation
� no�interface�generator�type�� IDENTIFIER

formal�parameter�part��

limitation�part��

declaration�and�implementation�part��

�

��� function�implementation
� FUNCTION IDENTIFIER

formal�in�parameter�part��

limitation�part��

RETURN name��

declaration�and�implementation�part��

�

�	� interface�generator�type
� CACTOR
j DEPOT
�

�
� no�interface�generator�type
� MACTOR

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� INSEL Syntax

j PROCEDURE
j ENTRY
�

��� interface�part
� �� empty ��
j IS

declaration�part�

END opt�identi�er��

�

�
� declaration�and�implementation�part
� IS

declaration�part�

BEGIN
statement�part��

END opt�identi�er��

j IS EXTERN STRING�LITERAL
�

��� limitation�part
� import�part�	 export�part��

j limitation�part�� error ���
�

��� import�part
� �� empty ��
j IMPORT NONE ���
j IMPORT name�list�	 ���
�

��� export�part
� �� empty ��
j EXPORT NONE ���
j EXPORT identi�er�list�� ���
�

��� formal�parameter�part
� �� empty ��
j ��� formal�parameter�list�� ���
�

��� formal�parameter�list
� formal�parameter��

j formal�parameter�list�� ��� formal�parameter��

j error ���
�

��� formal�parameter
� identi�er�list�� ��� parameter�mode�� name��

�

�	� parameter�mode
� IN
j OUT
j IN OUT
j �� empty default� IN � ��
�

�
� formal�in�parameter�part
� �� empty ��
j ��� formal�in�parameter�list�� ���
�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

��� formal�in�parameter�list
� formal�in�parameter��

j formal�in�parameter�list�� ��� formal�in�parameter��

j error ���
�

�
� formal�in�parameter
� identi�er�list�� ��� IN name��

j identi�er�list�� ��� name��

�

��� identi�er�list
� IDENTIFIER
j identi�er�list�� ��� IDENTIFIER
�

��� name�list
� name��

j name�list�	 ��� name��

�

��� opt�identi�er
� �� empty ��
j IDENTIFIER
�

	�� generic�generator
� GENERIC

formal�generic�parameter�part��

da�generator�

�

	�� formal�generic�parameter�part
� �� empty ��
j formal�generic�parameter�part�� formal�generic�parametert�� ���
j formal�generic�parameter�part�� error ���
�

	�� formal�generic�parameter
� WITH IDENTIFIER
j WITH FUNCTION IDENTIFIER

formal�parameter�part��

RETURN name��

j WITH PROCEDURE IDENTIFIER
formal�parameter�part��

�

		� generic�generator�incarnation
� NEW interface�generator�type�� IDENTIFIER IS

name�� actual�generic�parameter�part��

�

	
� actual�generic�parameter�part
� �� empty ��
j ��� name�list�	 ���
�

	�� de�generator
� TYPE IDENTIFIER

IS type�part�	

�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� INSEL Syntax

	
� type�constructor
� array�type�constructor��

j enumeration�constructor�	

j pointer�type�constructor��

j range�constructor��

j record�type�constructor��

�

	�� array�type�constructor
� ARRAY ��� range�part�list����� OF type�part�	

�

	�� enumeration�constructor
� ENUM ��� identi�er�list�� ���
�

	�� pointer�type�constructor
� ACCESS type�part�	

�

�� range�constructor
� simple�expression	� RANGE�POINTS simple�expression	�

�

�� range�part�list
� range�part��

j range�part�list�� ��� range�part��

�

�� range�part
� name��

j range�constructor��

�

	� record�type�constructor
� RECORD

�eld�declaration�list��

END RECORD
�

� �eld�declaration�list
� �eld�declaration�� ���
j �eld�declaration�list�� �eld�declaration�� ���
�

�� �eld�declaration
� identi�er�list�� ��� type�part�	

�

� object�declaration
� identi�er�list�� ��� constant�part�� type�part�	 init�part��

�

�� constant�part
� �� empty ��
j CONSTANT

�� type�part
� name�� actual�parameter�part��

j type�constructor��

�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

�� actual�parameter�part
� �� empty ��
j ��� expression�list�� ���
�

��� expression�list
� expression	�

j expression�list�� ��� expression	�

�

��� init�part
� �� empty ��
j ASSIGN�OP expression	�

�

��� statement�part
� �� empty ��
j statement�part�� statement�� ���
j statement�part�� error ���
�

�	� statement
� da�related�statement��

j compound�statement��

j simple�statement��

�

�
� da�related�statement
� call�statement��

j accept�statement�	

j select�statement��

j block�statement��

�

��� compound�statement
� loop�statement��

j if�statement��

j case�statement��

�

�
� simple�statement
� assignment��

j return�statement	�

j exit�statement	�

j incomplete�statement	�

j empty�statement	�

�

��� call�statement
� name�� actual�parameter�part��

�

��� accept�statement
� ACCEPT IDENTIFIER
�

��� select�statement
� SELECT

select�alternatives��

select�else�part��

END SELECT
�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� INSEL Syntax

�� select�alternatives
� select�alternative��

j select�alternatives�� OR select�alternative��

�

�� select�alternative
� when�part�� accept�alternative��

j when�part�� TERMINATE ���
�

�� when�part
� �� empty ��
j WHEN condition	� DO
�

	� accept�alternative
� accept�statement�	 ���

statement�part��

�

� select�else�part
� �� empty ��
j ELSE statement�part��

�

�� block�statement
� BLOCK IDENTIFIER IS

declaration�part�

BEGIN
statement�part��

END opt�identi�er��

�

� loop�statement
� label�part�� for�while�part�	

LOOP
statement�part��

END LOOP opt�identi�er��

�

�� label�part
� �� empty ��
j IDENTIFIER ���
�

�� for�while�part
� ��empty ��
j FOR IDENTIFIER IN range�part��

j WHILE condition	�

�

�� if�statement
� IF condition	� THEN statement�part��

elsif�part��

else�part��

END IF
�

��� elsif�part
� �� empty ��
j elsif�part�� elsif��

�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

��� elsif
� ELSIF condition	� THEN statement�part��

�

��� else�part
� �� empty ��
j ELSE statement�part��

�

�	� case�statement
� CASE expression	� IS

case�alternatives��

END CASE
�

�
� case�alternatives
� case�alternative��

j case�alternatives�� case�alternative��

�

��� case�alternative
� WHEN choices�or�others�� DO statement�part��

�

�
� choices�or�others
� choices��

j OTHERS
�

��� choices
� choice�	

j choices�� choice�	

�

��� choice
� expression	�

j range�constructor��

�

��� assignment
� name�� ASSIGN�OP expression	�

�

��� return�statement
� RETURN expression	�

�

��� exit�statement
� EXIT opt�identi�er��

�

��� incomplete�statement
� INCOMPLETE
�

�	� empty�statement
� NULL
�

�
� condition
� expression	�

�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� INSEL Syntax

��� expression
� relation	�

j expression	� logical�operator�� relation	�

�

�
� relation
� simple�expression	�

j simple�expression	� relational�operator�	 simple�expression	�

�

��� simple�expression
� term		

j simple�expression	� adding�operator�� term		

�

��� term
� factor	�

j term		 multiplying�operator��� factor	�

�

��� factor
� operand��

j factor	� exponentiating�operator��� operand��

�

��� operand
� primary��

j unary�operator��� operand��

�

��� primary
� literal��

j variable�or�function�call��

j generating�expression��

j ��� expression	� ���
�

��� literal
� CHARACTER�LITERAL
j STRING�LITERAL
j INTEGER�LITERAL
j REAL�LITERAL
j boolean�literal��

j NULL
�

�	� boolean�literal
� TRUE
j FALSE
�

�
� variable�or�function�call �� includes type conversion ��
� name�� actual�parameter�part��

�

��� name
� IDENTIFIER
j name�� ��� IDENTIFIER
j name�� DEREF
j name�� ��� expression�list�� ���
j RTMANAGER
�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

�
� generating�expression
� NEW name�� actual�parameter�part��

�

��� logical�operator
� AND
j OR
j XOR
�

��� relational�operator
� ���
j ���
j ���
j NE
j LE
j GE
�

��� adding�operator
� ���
j ���
j ���
�

���� multiplying�operator
� ���
j ���
j MOD
�

���� exponentiating�operator
� EXP
�

���� unary�operator
� ���
j ���
j NOT
�

��	� sign�part
� ���
j ���
j �� empty ��
�

A�� Abstract INSEL Grammar

�� CompUnit � DeclList� �

�� DeclList � Decl�

	� Decl � DaGen� j DeGen�� j GenGen�� j GenGenIncarn�� j ObjectDecl��

� DaGen � DefId��� DaGenType�� ParamList� Import�� Export�� TypePart�� DaBody�

�

�� DaBody � String��� j DeclAndImplPart�

� DeclAndImplPart � DeclList� StatementList�� OptUsedId��	 �

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� Abstract INSEL Grammar

�� ParamList � Param	

�� Param � DeclIdList��� ParamMode� TypeName�� �

�� ParamMode � In�� j Out�� j InOut��

��� In � �

��� Out � �

��� InOut � �

�	� Import � ImportPart�� �

�
� ImportPart � All�	 j TypeNameList��

��� TypeNameList � TypeName��

�
� Export � ExportPart�� �

��� ExportPart � All�	 j DeclIdList���

��� All � �

��� DaGenType � AkteurGen�� j DepotGen�� j OrderGen��

��� AkteurGen � MAkteurGen�� j KAkteurGen��

��� MAkteurGen � �

��� KAkteurGen � �

�	� DepotGen � �

�
� OrderGen � SOrderGen�� j KOrderGen�	

��� SOrderGen � FSOrderGen�� j PSOrderGen��

�
� FSOrderGen � �

��� PSOrderGen � �

��� KOrderGen � �

��� DeGen � DefId��� TypePart�� �

	�� TypePartList � TypePart��

	�� TypePart � TypeName�� j DeGenType��

	�� TypeName � Name��� ExpList�	 �

		� DeGenType � Array�� j Enum�� j Pointer�� j Range�� j Record�	 j Empty���

	
� Array � TypePartList�� TypePart�� �

	�� Enum � DeclIdList��� �

	
� Pointer � TypePart�� �

	�� Range � Exp�� Exp�� �

	�� Record � FieldDecl��

	�� FieldDecl � DeclIdList��� TypePart�� �

�� GenGen � DeclId��� DeclList� DaGen� �

�� GenGenIncarn � DeclId��� DaGenType�� TypeName�� TypeNameList�� �

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

�� ObjectDecl � VarObjectDecl�� j ConstObjectDecl��

	� VarObjectDecl � DeclIdList��� TypePart�� InitPart�� �

� ConstObjectDecl � DeclIdList��� TypePart�� InitPart�� �

�� InitPart � Empty��� j Exp��

� Predeclared � DeclList� �

�� StatementList � Statement�	

�� Statement � CallStatement�� j AcceptStatement�� j SelectStatement��

�� IfStatement � IfRuleList�� ElsePart�� �

��� IfRuleList � IfRule��

��� IfRule � Cond�� StatementList�� �

��� ElsePart � StatementList�� �

�	� Cond � Exp�� �

�
� SelectStatement � SelectList�� ElsePart�� �

��� SelectList � SelectItem��

�
� SelectItem � OptCond�� TermAcceptPart�	 �

��� OptCond � Empty��� j Cond��

��� TermAcceptPart � Terminate�� j AcceptPart��

��� Terminate � �

�� AcceptPart � AcceptStatement�� StatementList�� �

�� AcceptStatement � UsedId��� �

�� BlockStatement � DeclId��� DeclList� StatementList�� OptUsedId��	 �

	� LoopStatement � OptDeclId��� ForWhilePart�� StatementList�� OptUsedId��	 �

� ForWhilePart � Empty��� j For�� j While��

�� For � DeclId��� TypePart�� �

� While � Cond�� �

�� CaseStatement � Exp�� CaseList�	 �

�� CaseList � CaseItem��

�� CaseItem � ChoiceList�� StatementList�� �

��� ChoiceList � ChoiceItem��

��� ChoiceItem � Exp�� j Range��

��� CallStatement � Name��� ExpList�	 �

�	� Assignment � Name��� Exp�� �

�
� ReturnStatement � Exp�� �

��� ExitStatement � OptUsedId��	 �

�
� IncompleteStatement � �

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A��� Abstract INSEL Grammar

��� EmptyStatement � �

��� ExpList � Exp��

��� Exp � Literal	� j VarOrFctAppl	� j Operation		 j GenExp	�

��� Literal � Int��� j Char��� j String��� j Real	� j TrueVal	� j FalseVal	�

��� VarOrFctAppl � Name��� ExpList�	 �

��� GenExp � TypeName�� �

�	� Real � String��� �

�
� TrueVal � �

��� FalseVal � �

�
� NilVal � �

��� ManagerVal � �

��� Operation � Operator	� ExpList�	 �

��� Operator � OpType�� File��� LineNo��� �

��� OpType � LogOpType�� j RelOpType�� j ArithOpType�� j StringOpType��

��� LogOpType � AndOp�� j OrOp�� j XorOp�� j NotOp�	

��� RelOpType� EqOp�� j LessOp��� jGreaterOp��� jNeqOp��� j LeqOp��� jGeqOp���

�	� ArithOpType � AddOp��� j SubOp��� j MultOp��� j DivOp��	 j ModOp���

�
� StringOpType � ConcOp���

��� AndOp � �

�
� OrOp � �

��� XorOp � �

��� NotOp � �

��� EqOp � �

���� LessOp � �

���� GreaterOp � �

���� NeqOp � �

��	� LeqOp � �

��
� GeqOp � �

���� AddOp � �

��
� SubOp � �

���� MultOp � �

���� DivOp � �

���� ModOp � �

���� ExpOp � �

���� PosOp � �

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

A� INSEL � Syntax

���� NegOp � �

��	� ConcOp � �

��
� Name � NameItem���

���� NameItem � UsedId��� j Deref��� j ArrayAppl��� j ManagerVal	�

��
� Deref � �

���� ArrayAppl � ExpList�	 �

���� OptUsedId � Empty��� j UsedId���

���� OptDeclId � Empty��� j DeclId���

���� DeclIdList � DeclId���

���� DefId � SpecId��� j DeclId���

���� SpecId � Ident��� File��� LineNo��� �

��	� DeclId � Ident��� File��� LineNo��� �

��
� UsedId � Ident��� File��� LineNo��� �

���� Empty � �

��
� File � Reference���

���� LineNo � Int���

���� LimitPart � Import�� Export�� �

���� Constant � �

�	�� Ident � �

�	�� Int � �

�	�� Char � �

�		� String � �

�	
� Reference � �

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

B INSEL Example Programs

The following INSEL sample programs are listed to demonstrate some of the con�
cepts of INSEL and the current abilities of the compiler�

B�� Nested Function

�� �Id� function�insel�v ��� ���������� �������� pizka Exp �

MACTOR System IS

PROCEDURE WriteChar�c� IN character� IS EXTERN �putchar��

PROCEDURE WriteInt �c� IN integer� IS EXTERN �WriteInt��

a� integer �� ��

b� integer�

FUNCTION dummy�x�y � IN integer� RETURN integer IS

lokal� integer�

BEGIN

lokal �� x�y�a�

RETURN lokal�

END dummy�

BEGIN

b �� ��

FOR I IN ���������� LOOP

b �� dummy�a�I��

END LOOP�

WriteInt �b��

WriteChar���n���

END System�

Although function�insel is only a simple example� it already demonstrates
some of the capabilities of the INSEL compiler�

� Actors� Based on the source text MACTOR system ��� the actor generator
system is elaborated at runtime� Each instance of an actor created on behalf
of this generator performs its computation concurrently to its creator�

� Nesting of generators� The Order�Generator dummy is nested within actor
instances of generator system�

� Access to non�local variables as done with integer a in dummy�

� Integration of external functions written in other languages such as C is
demonstrated with WriteChar and WriteInt�

B�� Primes

This example of a naive generator for prime numbers illustrates the use of INSEL�s
passive objects called �depots�� dynamic data structures �pointer generators and

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

B� INSEL Example Programs

the NEW operator� and an actor generator PrimeTest to create actors of extremely
�ne granularity� Notice� that the program only determines� that actor incarna�
tions of PrimeTest may perform concurrently to their creator� It is the task of
the distributed cooperative management system including the functionality of the
compiler to enforce e�cient execution of the computation� In the case of the prime
generator� it demands the production of alternative code representations from the
compiler� The alternatives needed for PrimeTest actors allow to perform the com�
putation of PrimeTest as a usual subprogram without a new thread or by one
thread performing the computations of a set of PrimeTest actors�

��

�� primes�naive�insel

��

MACTOR System IS

PROCEDURE OutChar�c� IN CHARACTER� IS EXTERN �putchar��

PROCEDURE OutInt �c� IN INTEGER� IS EXTERN �WriteInt��

isPrim � boolean� �� shared result variable

DEPOT listmanager is �� Passive object generator

TYPE listpointertype IS ACCESS listitem�

TYPE listitem IS

RECORD

next � listpointertype�

item � integer�

END RECORD�

TYPE myrecord IS

RECORD

laenge � integer�

listhead � listpointertype�

END RECORD�

help� helpto� helpact � listpointertype�

counter � integer�

tmp � myrecord�

PROCEDURE PrintList IS

BEGIN

help �� tmp�listhead�

WHILE help �� NULL LOOP

OutInt�help��item��

OutChar������

help �� help��next�

END LOOP�

OutChar���n���

END PrintList�

FUNCTION GetNextItem RETURN INTEGER IS

BEGIN

help �� helpact�

IF helpact��next �� NULL THEN

helpact �� helpact��next�

ELSE

helpact �� tmp�listhead�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

B��� Primes

END IF�

RETURN �help��item��

END GetNextItem�

FUNCTION Count RETURN INTEGER IS

BEGIN

counter �� ��

help �� tmp�listhead�

WHILE help �� NULL LOOP

counter �� counter � ��

help �� help��next�

END LOOP�

tmp�laenge �� counter�

RETURN counter�

END Count�

PROCEDURE Addnext�add � IN integer� IS

BEGIN

helpact �� tmp�listhead�

help �� tmp�listhead�

helpto �� NULL�

WHILE help �� NULL LOOP

helpto �� help�

help �� help��next�

END LOOP�

helpto��next �� NEW listpointertype�

helpto��next��item �� add�

helpto��next��next �� NULL�

tmp�laenge �� tmp�laenge � ��

END Addnext�

PROCEDURE Createfirst IS

BEGIN

tmp�listhead �� NEW listpointertype�

tmp�listhead��item �� ��

tmp�listhead��next �� NULL�

tmp�laenge �� ��

helpact �� tmp�listhead�

END Createfirst�

BEGIN �� Canonic operation of the depot

tmp�laenge �� ��

tmp�listhead �� NULL�

END listmanager�

�� Actor generator �

MACTOR Primtest�c � IN integer� p � IN integer� IS

BEGIN

IF c MOD p � � THEN

isPrim �� false�

END IF�

END Primtest�

prim � listmanager� �� variable local to SYSTEM

length � integer�

cand � integer �� ��

wurzel � integer�

BEGIN

prim�Createfirst�

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

B� INSEL Example Programs

WHILE prim�Count 	� ��� LOOP

isPrim �� true�

BLOCK PrimeTestBlock is �� Block syncing the testers

BEGIN

FOR i IN � �� prim�Count LOOP

wurzel �� prim�GetNextItem�

IF wurzel
 wurzel 	� cand THEN

Primtest�cand� wurzel��

END IF�

END loop�

END PrimeTestBlock� �� end of sync block

IF isPrim THEN

prim�Addnext�cand��

END IF�

cand �� cand � ��

END LOOP�

prim�PrintList�

END System�

Another concept illustrated in this example is the use of a block to synchronize
multiple actors� Block PrimeTestBlock at the end of the source text inside the
statement part of SYSTEM synchronizes all test actors created inside the for�loop�
The computation does not leave the block before all actors created inside the loop
are terminated�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

C Interface of the gcc Back�End

C�� Important Files

File Contents
tree�def Contains the de�nitions and documentation for the di�erent kinds �dis�

tinguished by codes� of tree nodes available and used in the GNU C
compiler�

tree�h Front�end tree de�nitions for GNU compilers� De�nes the union type
tree and access macros� Declarations of functions to create and expand
trees� Incomplete list of symbols that a front�end has to de�ne�

toplev�c Top level of GNU compilers� Comprises main and some
other very useful functions� such as error	 warning	 sorry and
rest�of�decl�compilation�

Table C�
� Important �les of gcc

See insel
gcc�h for other relevant �les and functions that are needed or helpful
to develop a GNU based compiler�

C�� Symbols Front�Ends Have to De�ne

Following functions and variable identi�ers have to be declared and de�ned by each
front�end� Documentation about the expected semantics can partially be found in
tree�h and must otherwise be extracted from the source codes of existing compiler�
e�g� gic�

� Initialization and parsing

� init lex��

� init decl processing��

� lang decode option��

� lang init��

� lang finish��

� lang identyfy��

� yyparse��

� Management of lexical scopes

� pushlevel��

� poplevel��

� insert block��

� set block��

� pushdecl��

� getdecl��

� global bindings p��

� kept level p��

� copy lang decl��

� Handling of types

� incomplete type error��

� type for size��

� type for mode��

� signed type��

� unsigned type��

� signed or unsigned type��

� truthvalue conversion��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

C� Interface of the gcc Back�End

� convert��

� mark addressable��

� Language specific output

� print lang decl��

� print lang type��

� print lang identifier��

� print lang statistics��

� Expected data

� language string

� error mark node

� integer type node

� char type node

� viod type node

� integer zero node

� integer one node

� current function decl

� flag traditional

C�� Important Functions Provided by gcc

Following list of C functions represents a selection of important operations provided
by the generic back�end� For further information consult the source code of gcc�
especially tree�h	 tree�c	 expr�c and stmt�c�

� Access to the symbol table�

� get identifier��

� To start compilation of a function�

� push function context��

� announce function��

� make function rtl��

� init function start��

� expand function start��

� expand start bindings��

� Finishing compilation of a function�

� expand end bindings��

� expand function end��

� rest of compilation��

� pop function context��

� Compilation of declarations

� expand decl��

� Expressions

� expand expr stmt��

� Code generation for loop statements

� expand end loop��

� expand exit loop��

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

C��� Important Functions Provided by gcc

� expand exit loop if false��

� Conditions

� expand start cond��

� expand start elseif��

� expand start else��

� expand end cond��

� Error reporting

� error��

� warning��

� sorry��

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

List of Figures

�
 Software instances used to implement AC managers � � � � � � � � � � � �

�� Structure of the operating system �
��
 Source to target transformation using gcc � � � � � � � � � � � � � � � � �

��� Part of a MAX browser screen shot �
�
��� GIC Compilation Process �

��
 Intermediate representation in the GNU C compiler � � � � � � � � � � �
�
��� Example of a MAX attribute and context condition � � � � � � � � � � � ��
��� gcc symbol handling �

��� Initial memory layout of an actor ��
��
 Organization of ��stacks ��

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

Bibliography

�ASU��a� A� V� Aho� R� Sethi� and J� D� Ullman� Compilerbau �part ��� Addison�
Wesley �Germany� GmbH�
���� �dragon book��

�ASU��b� A� V� Aho� R� Sethi� and J� D� Ullman� Compilerbau �part ��� Addison�
Wesley Verlag �Germany� GmbH�
���� �dragon book��

�CGS� C� Comar� F� Gasperoni� and E� Schonberg� The gnat project� A GNU�
Ada�X compiler� Technical report� Courant Insitute of Mathematical
Science� N�Y� University�

�Cze��� C� B� Czech� Architektur und Konzept des Dycos�Kerns� Technical re�
port� TU M!unchen�
���� SFB�Bericht ����
���� A TUM�I��
� �ger�
man only��

�Dea��� Alan Dearle� Constructing compilers in a persistent environment� In
Proc� of �nd Int� Workshop on Persistent Object Systems� Appin� Scot�
land�
����

�GE��� J� Grosch and H� Emmelmann� A tool box for compiler construction�
Technical Report ��� GMD� University of Karlsruhe� January
����

�GP��� S� Groh and M� Pizka� A di�erent approach to resource management for
distributed systems� In Proc� of PDPTA�	
 � International Conference
on Parallel and Distributed Processing Techniques and Applications� July

����

�GPR��� S� Groh� M� Pizka� and J� Rudolph� Shadow Stacks � a hardware�
supported dsm for objects of any granularity� In Proc� of IEEE �rd
Int� Conf� on Alogrithms and Architectures for Parallel Processing� Mel�
bourne� Australia� December
����

�GR��� S� Groh and J� Rudolph� On the e�cient distribution of a 	exible re�
source management� In Proc� of EuroPDS�	
� June
����

�Gro��� Compiler Tools Group� Guide for New Eli Users� University of Colorado�
Boulder� CO� USA�
����

�Gro��� S� Groh� Designing an e�cient resource management for parallel dis�
tributed systems by the use of a graph replacement system� In Proceed�
ings of the International Conference on Parallel and Distributed Process�
ing Techniques and Applications �PDPTA�	��� pages �

���
� August

����

�Ken�
� Richard Kenner� Targetting and retargetting the GNU C compiler�
slides� November
��
�

�Li��� Kai Li� Shared Virtual Memory on Loosely Coupled Multiprocessors� PhD
thesis� Department of CS� Yale University� New Haven� CT� October

����

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

�MFLS��� S� Murer� J� A� Feldman� Chu�Cheow Lim� and Martina�Maria Seidel�
psather� Layered extensions to an object�oriented language for e�cient
parallel computation� Technical Report TR�������� International Com�
puter Science Institute� Berkeley� CA� June
��� November
����

�NC��� N� Nagaratnam and G� L� Craig� Fuzzy�based dynamic program recon�
�guration� In Florida AI Research Symposium� Mai
����

�OSF��� OSF� Introduction to OSF DCE� Prentice Hall� Englewood Cli�s� NJ�

����

�PE��a� M� Pizka and C� Eckert� Evolving software tools for new distributed
computing environments� In Prof� H� Arabnia� editor� Proc� of the Int�
Conf� on Parallel and Distributed Processing Techniques and Applica�
tions � PDPTA�	
� Las Vegas� NV� July
����

�PE��b� M� Pizka and C� Eckert� A language�based approach to construct struc�
tured and e�cient object�based distributed systems� In Proc� of the �
th
Hawaii Int� Conf� on System Sciences� volume
� pages
���
��� Maui�
Hawai� January
���� IEEE CS Press�

�PH��� A� Poetzsch�He�ter� Programming language speci�cation and prototyp�
ing using the MAX System� In M� Bruynooghe and J� Penjam� editors�
Programming Language Implementation and Logic Programming� LNCS
�
�� pages
���

�� Springer�Verlag�
����

�PH��� A� Poetzsch�He�ter� Prototyping realistic programming languages based
on formal speci�cations� Acta Informatica� ���
����

�Rad�
� R� Radermacher� Eine Ausf�uhrungsumgebung mit integrierter
Lastverteilung f�ur verteilte und parallele Systeme� PhD thesis� Tech�
nische Universit!at M!unchen�
��
�

�RW��� R� Radermacher and F� Weimer� INSEL Syntax�Bericht� Technischer
Bericht TUM�I��
�� Technische Universit!at M!unchen� March
���� ger�
man only�

�SEL���� P�P� Spies� C� Eckert� M� Lange� D� Marek� R� Rader macher� F� Weimer�
and H��M� Windisch� Sprachkonzepte f!ur die Konstruktion Verteil�
ter Systeme� Technischer Bericht TUM�I��
�� Technische Universit!at
M!unchen� M!arz
����

�Sta�
� Richard M� Stallman� Using and Porting GNU CC� Free Software Foun�
dation� November
��
�

�Str�
� Bjarne Stroustrup� The C�� Programming Language� Addison�Wesley�
Reading� MA� �nd edition�
��
�

�Str��� C� Strobl� Integration of the language INSEL into gcc� Thesis� June

���� german only�

�Wei��� Frank Weimer� DAViT� Ein System zur interaktiven Ausf!uhrung und zur
Visualisierung von INSEL�Programmen� Technical report� TUM!unchen�
April
���� SFB�Bericht ����

��� A TUM�I���
�

�Win�
� H��M� Windisch� Improving the e�ciency of object invocations by dy�
namic object replication� In Proc� of the Int� Conf� on Parallel and
Distributed Processing Techniques and Applications � PDPTA� pages
�������� November
��
�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

�Win��� H��M� Windisch� The distributed programming language INSEL � con�
cepts and implementation� In High�Level Programming Models and Sup�
portive Environments� pages
���
� Honolulu� Hawaii� April
���� IEEE
CS Press�

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

SFB ���� Methoden und Werkzeuge f�ur die Nutzung paralleler

Rechnerarchitekturen

bisher erschienen �

Reihe A

	
������ A Robert Gold� Walter Vogler� Quality Criteria for Partial Order Seman�
tics of Place�Transition�Nets� Januar ����

	
������ A Reinhard F�o�meier� Die Rolle der Lastverteilung bei der numerischen
Parallelprogrammierung� Februar ����

	
��	��� A Klaus�J�orn Lange� Peter Rossmanith� Two Results on Unambi�
guous Circuits� Februar ����

	
��
��� A Michael Griebel� Zur L�osung von Finite�Di�erenzen� und Finite�
Element�Gleichungen mittels der Hierarchischen Transformations�
Mehrgitter�Methode

	
������ A Reinhold Letz� Johann Schumann� Stephan Bayerl� Wolfgang Bibel�
SETHEO� A High�Performance Theorem Prover

	
��
��� A Johann Schumann� Reinhold Letz� PARTHEO� A High Performance
Parallel Theorem Prover

	
������ A Johann Schumann� Norbert Trapp� Martin van der Koelen�
SETHEO�PARTHEO Users Manual

	
������ A Christian Suttner� Wolfgang Ertel� Using Connectionist Networks for
Guiding the Search of a Theorem Prover

	
������ A Hans�J�org Beier� Thomas Bemmerl� Arndt Bode� Hubert Ertl� Olav
Hansen� Josef Haunerdinger� Paul Hofstetter� Jaroslav Kremenek�
Robert Lindhof� Thomas Ludwig� Peter Luksch� Thomas Treml� TOP�
SYS� Tools for Parallel Systems �Artikelsammlung�

	
������� A Walter Vogler� Bisimulation and Action Re�nement
	
������� A J�org Desel� Javier Esparza� Reachability in Reversible Free� Choice

Systems
	
������� A Rob van Glabbeek� Ursula Goltz� Equivalences and Re�nement
	
���	��� A Rob van Glabbeek� The Linear Time � Branching Time Spectrum
	
���
��� A Johannes Bauer� Thomas Bemmerl� Thomas Treml� Leistungsanalyse

von verteilten Beobachtungs� und Bewertungswerkzeugen
	
������� A Peter Rossmanith� The Owner Concept for PRAMs
	
���
��� A G� B�ockle� S� Trosch� A Simulator for VLIW�Architectures
	
������� A P� Slavkovsky� U� R�ude� Schnellere Berechnung klassischer Matrix�

Multiplikationen
	
������� A Christoph Zenger� SPARSE GRIDS
	
������� A Michael Griebel� Michael Schneider� Christoph Zenger� A combination

technique for the solution of sparse grid problems
	
������� A Michael Griebel� A Parallelizable and Vectorizable Multi� Level�

Algorithm on Sparse Grids
	
������� A V� Diekert� E� Ochmanski� K� Reinhardt� On con�uent semi�

commutations�decidability and complexity results
	
������� A Manfred Broy� Claus Dendorfer� Functional Modelling of Operat�

ing System Structures by Timed Higher Order Stream Processing
Functions

	
���	��� A Rob van Glabbeek� Ursula Goltz� A Deadlock�sensitive Congruence for
Action Re�nement

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
���
��� A Manfred Broy� On the Design and Veri�cation of a Simple Distributed
Spanning Tree Algorithm

	
������� A Thomas Bemmerl� Arndt Bode� Peter Braun� Olav Hansen� Peter
Luksch� Roland Wism�uller� TOPSYS � Tools for Parallel Systems
�User�s Overview and User�s Manuals�

	
���
��� A Thomas Bemmerl� Arndt Bode� Thomas Ludwig� Stefan Tritscher�
MMK � Multiprocessor Multitasking Kernel �User�s Guide and User�s
Reference Manual�

	
������� A Wolfgang Ertel� Random Competition� A Simple� but E�cient Method
for Parallelizing Inference Systems

	
������� A Rob van Glabbeek� Frits Vaandrager� Modular Speci�cation of Process
Algebras

	
������� A Rob van Glabbeek� Peter Weijland� Branching Time and Abstraction
in Bisimulation Semantics

	
��	���� A Michael Griebel� Parallel Multigrid Methods on Sparse Grids
	
��	���� A Rolf Niedermeier� Peter Rossmanith� Unambiguous Simulations of

Auxiliary Pushdown Automata and Circuits
	
��	���� A Inga Niepel� Peter Rossmanith� Uniform Circuits and Exclusive Read

PRAMs
	
��		��� A Dr� Hermann Hellwagner� A Survey of Virtually Shared Memory

Schemes
	
������ A Walter Vogler� Is Partial Order Semantics Necessary for Action

Re�nement
	
������ A Manfred Broy� Frank Dederichs� Claus Dendorfer� Rainer Weber� Char�

acterizing the Behaviour of Reactive Systems by Trace Sets
	
��	��� A Ulrich Furbach� Christian Suttner� Bertram Fronh�ofer� Massively Par�

allel Inference Systems
	
��
��� A Rudolf Bayer� Non�deterministic Computing� Transactions and Recur�

sive Atomicity
	
������ A Robert Gold� Data�ow semantics for Petri nets
	
��
��� A A� Heise� C� Dimitrovici� Transformation und Komposition von P�T�

Netzen unter Erhaltung wesentlicher Eigenschaften
	
������ A Walter Vogler� Asynchronous Communication of Petri Nets and the

Re�nement of Transitions
	
������ A Walter Vogler� Generalized OM�Bisimulation
	
������ A Christoph Zenger� Klaus Hallatschek� Fouriertransformation auf

d�unnen Gittern mit hierarchischen Basen
	
������� A Erwin Loibl� Hans Obermaier� Markus Pawlowski� Towards Parallelism

in a Relational Database System
	
������� A Michael Werner� Implementierung von Algorithmen zur Kompakti�

�zierung von Programmen f�ur VLIW�Architekturen
	
������� A Reiner M�uller� Implementierung von Algorithmen zur Optimierung von

Schleifen mit Hilfe von Software�Pipelining Techniken
	
���	��� A Sally Baker� Hans�J�org Beier� Thomas Bemmerl� Arndt Bode� Hubert

Ertl� Udo Graf� Olav Hansen� Josef Haunerdinger� Paul Hofstetter�
Rainer Kn�odlseder� Jaroslav Kremenek� Siegfried Langenbuch� Robert
Lindhof� Thomas Ludwig� Peter Luksch� Roy Milner� Bernhard Ries�
Thomas Treml� TOPSYS � Tools for Parallel Systems �Artikelsamm�
lung�� ��� erweiterte Au�age

	
���
��� A Michael Griebel� The combination technique for the sparse grid solution
of PDE�s on multiprocessor machines

	
������� A Thomas F� Gritzner� Manfred Broy� A Link Between Process Algebras
and Abstract Relation Algebras

	
���
��� A Thomas Bemmerl� Arndt Bode� Peter Braun� Olav Hansen� Thomas
Treml� Roland Wism�uller� The Design and Implementation of TOPSYS

	
������� A Ulrich Furbach� Answers for disjunctive logic programs
	
������� A Ulrich Furbach� Splitting as a source of parallelism in disjunctive logic

programs

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
������� A Gerhard W� Zumbusch� Adaptive parallele Multilevel�Methoden zur
L�osung elliptischer Randwertprobleme

	
������� A M� Jobmann� J� Schumann� Modelling and Performance Analysis of a
Parallel Theorem Prover

	
������� A Hans�Joachim Bungartz� An Adaptive Poisson Solver Using Hierarchi�
cal Bases and Sparse Grids

	
������� A Wolfgang Ertel� Theodor Gemenis� Johann M� Ph� Schumann� Chris�
tian B� Suttner� Rainer Weber� Zongyan Qiu� Formalisms and Lan�
guages for Specifying Parallel Inference Systems

	
���	��� A Astrid Kiehn� Local and Global Causes
	
���
��� A Johann M�Ph� Schumann� Parallelization of Inference Systems by using

an Abstract Machine
	
������� A Eike Jessen� Speedup Analysis by Hierarchical Load Decomposition
	
���
��� A Thomas F� Gritzner� A Simple Toy Example of a Distributed System�

On the Design of a Connecting Switch
	
������� A Thomas Schnekenburger� Andreas Weininger� Michael Friedrich� In�

troduction to the Parallel and Distributed Programming Language
ParMod�C

	
������� A Claus Dendorfer� Funktionale Modellierung eines Postsystems
	
������� A Michael Griebel� Multilevel algorithms considered as iterative methods

on inde�nite systems
	
��	���� A W� Reisig� Parallel Composition of Liveness
	
��	���� A Thomas Bemmerl� Christian Kasperbauer� Martin Mairandres� Bern�

hard Ries� Programming Tools for Distributed Multiprocessor Com�
puting Environments

	
��	���� A Frank Le�ke� On constructive speci�cations of abstract data types us�
ing temporal logic

	
������ A L� Kanal� C�B� Suttner �Editors�� Informal Proceedings of the Work�
shop on Parallel Processing for AI

	
������ A Manfred Broy� Frank Dederichs� Claus Dendorfer� Max Fuchs� Thomas
F� Gritzner� Rainer Weber� The Design of Distributed Systems � An
Introduction to FOCUS

	
�������� A Manfred Broy� Frank Dederichs� Claus Dendorfer� Max Fuchs� Thomas
F� Gritzner� Rainer Weber� The Design of Distributed Systems � An
Introduction to FOCUS � Revised Version �erschienen im Januar ���	�

	
��	��� A Manfred Broy� Frank Dederichs� Claus Dendorfer� Max Fuchs� Thomas
F� Gritzner� Rainer Weber� Summary of Case Studies in FOCUS � a
Design Method for Distributed Systems

	
��
��� A Claus Dendorfer� Rainer Weber� Development and Implementation of
a Communication Protocol � An Exercise in FOCUS

	
������ A Michael Friedrich� Sprachmittel und Werkzeuge zur Unterst�ut� zung
paralleler und verteilter Programmierung

	
��
��� A Thomas F� Gritzner� The Action Graph Model as a Link between Ab�
stract Relation Algebras and Process�Algebraic Speci�cations

	
������ A Sergei Gorlatch� Parallel Program Development for a Recursive Nu�
merical Algorithm� a Case Study

	
������ A Henning Spruth� Georg Sigl� Frank Johannes� Parallel Algorithms for
Slicing Based Final Placement

	
������ A Herbert Bauer� Christian Sporrer� Thomas Krodel� On Distributed
Logic Simulation Using Time Warp

	
������� A H� Bungartz� M� Griebel� U� R�ude� Extrapolation� Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

	
������� A M� Griebel� W� Huber� U� R�ude� T� St�ortkuhl� The Combination Tech�
nique for Parallel Sparse�Grid�Preconditioning and �Solution of PDEs
on Multiprocessor Machines and Workstation Networks

	
������� A Rolf Niedermeier� Peter Rossmanith� Optimal Parallel Algorithms for
Computing Recursively De�ned Functions

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
���	��� A Rainer Weber� Eine Methodik f�ur die formale Anforderungsspezifkation
verteilter Systeme

	
���
��� A Michael Griebel� Grid! and point!oriented multilevel algorithms
	
������� A M� Griebel� C� Zenger� S� Zimmer� Improved multilevel algorithms for

full and sparse grid problems
	
���
��� A J� Desel� D� Gomm� E� Kindler� B� Paech� R� Walter� Bausteine eines

kompositionalen Beweiskalk�uls f�ur netzmodellierte Systeme
	
������� A Frank Dederichs� Transformation verteilter Systeme� Von applikativen

zu prozeduralen Darstellungen
	
������� A Andreas Listl� Markus Pawlowski� Parallel Cache Management of a

RDBMS
	
������� A Erwin Loibl� Markus Pawlowski� Christian Roth� PART� A Parallel

Relational Toolbox as Basis for the Optimization and Interpretation of
Parallel Queries

	
������� A J�org Desel� Wolfgang Reisig� The Synthesis Problem of Petri Nets
	
������� A Robert Balder� Christoph Zenger� The d�dimensional Helmholtz equa�

tion on sparse Grids
	
������� A Ilko Michler� Neuronale Netzwerk�Paradigmen zum Erlernen von

Heuristiken
	
���	��� A Wolfgang Reisig� Elements of a Temporal Logic� Coping with

Concurrency
	
���
��� A T� St�ortkuhl� Chr� Zenger� S� Zimmer� An asymptotic solution for the

singularity at the angular point of the lid driven cavity
	
������� A Ekkart Kindler� Invariants� Compositionality and Substitution
	
���
��� A Thomas Bonk� Ulrich R�ude� Performance Analysis and Optimization

of Numerically Intensive Programs
	
�����	 A M� Griebel� V� Thurner� The E�cient Solution of Fluid Dynamics

Problems by the Combination Technique
	
�����	 A Ketil St"len� Frank Dederichs� Rainer Weber� Assumption � Commit�

ment Rules for Networks of Asynchronously Communicating Agents
	
��	��	 A Thomas Schnekenburger� A De�nition of E�ciency of Parallel Pro�

grams in Multi�Tasking Environments
	
��
��	 A Hans�Joachim Bungartz� Michael Griebel� Dierk R�oschke� Christoph

Zenger� A Proof of Convergence for the Combination Technique for
the Laplace Equation Using Tools of Symbolic Computation

	
�����	 A Manfred Kunde� Rolf Niedermeier� Peter Rossmanith� Faster Sorting
and Routing on Grids with Diagonals

	
��
��	 A Michael Griebel� Peter Oswald� Remarks on the Abstract Theory of
Additive and Multiplicative Schwarz Algorithms

	
�����	 A Christian Sporrer� Herbert Bauer� Corolla Partitioning for Distributed
Logic Simulation of VLSI Circuits

	
�����	 A Herbert Bauer� Christian Sporrer� Reducing Rollback Overhead in
Time�Warp Based Distributed Simulation with Optimized Incremen�
tal State Saving

	
�����	 A Peter Slavkovsky� The Visibility Problem for Single�Valued Surface �z
� f�x�y��� The Analysis and the Parallelization of Algorithms

	
������	 A Ulrich R�ude� Multilevel� Extrapolation� and Sparse Grid Methods
	
������	 A Hans Regler� Ulrich R�ude� Layout Optimization with Algebraic Multi�

grid Methods
	
������	 A Dieter Barnard� Angelika Mader� Model Checking for the Modal Mu�

Calculus using Gau� Elimination
	
���	��	 A Christoph P�aum� Ulrich R�ude� Gau�� Adaptive Relaxation for the

Multilevel Solution of Partial Di�erential Equations on Sparse Grids
	
���
��	 A Christoph P�aum� Convergence of the Combination Technique for the

Finite Element Solution of Poisson�s Equation
	
������	 A Michael Luby� Wolfgang Ertel� Optimal Parallelization of Las Vegas

Algorithms

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
���
��	 A Hans�Joachim Bungartz� Michael Griebel� Dierk R�oschke� Christoph
Zenger� Pointwise Convergence of the Combination Technique for
Laplace�s Equation

	
������	 A Georg Stellner� Matthias Schumann� Stefan Lamberts� Thomas Ludwig�
Arndt Bode� Martin Kiehl und Rainer Mehlhorn� Developing Multi�
computer Applications on Networks of Workstations Using NXLib

	
������	 A Max Fuchs� Ketil St"len� Development of a Distributed Min�Max
Component

	
������	 A Johann K� Obermaier� Recovery and Transaction Management in
Write�optimized Database Systems

	
������	 A Sergej Gorlatch� Deriving E�cient Parallel Programs by Systemating
Coarsing Speci�cation Parallelism

	
������
 A Reiner H�uttl� Michael Schneider� Parallel Adaptive Numerical
Simulation

	
������
 A Henning Spruth� Frank Johannes� Parallel Routing of VLSI Circuits
Based on Net Independency

	
���	��
 A Henning Spruth� Frank Johannes� Kurt Antreich� PHIroute� A Parallel
Hierarchical Sea�of�Gates Router

	
���
��
 A Martin Kiehl� Rainer Mehlhorn� Matthias Schumann� Parallel Multiple
Shooting for Optimal Control Problems Under NX��

	
������
 A Christian Suttner� Christoph Goller� Peter Krauss� Klaus�J�orn Lange�
Ludwig Thomas� Thomas Schnekenburger� Heuristic Optimization of
Parallel Computations

	
���
��
 A Andreas Listl� Using Subpages for Cache Coherency Control in Parallel
Database Systems

	
������
 A Manfred Broy� Ketil St"len� Speci�cation and Re�nement of Finite
Data�ow Networks � a Relational Approach

	
������
 A Katharina Spies� Funktionale Spezi�kation eines Kommunika�
tionsprotokolls

	
������
 A Peter A� Krauss� Applying a New Search Space Partitioning Method
to Parallel Test Generation for Sequential Circuits

	
������
 A Manfred Broy� A Functional Rephrasing of the Assumption�Com�
mitment Speci�cation Style

	
������
 A Eckhardt Holz� Ketil St"len� An Attempt to Embed a Restricted Ver�
sion of SDL as a Target Language in Focus

	
������
 A Christoph P�aum� A Multi�Level�Algorithm for the Finite�Element�
Solution of General Second Order Elliptic Di�erential Equations on
Adaptive Sparse Grids

	
���	��
 A Manfred Broy� Max Fuchs� Thomas F� Gritzner� Bernhard Sch�atz�
Katharina Spies� Ketil St"len� Summary of Case Studies in FOCUS
� a Design Method for Distributed Systems

	
���
��
 A Maximilian Fuchs� Technologieabh�angigkeit von Spezi�kationen digi�
taler Hardware

	
������
 A M� Griebel� P� Oswald� Tensor Product Type Subspace Splittings And
Multilevel Iterative Methods For Anisotropic Problems

	
���
��
 A Gheorghe S#tef$anescu� Algebra of Flownomials
	
������
 A Ketil St"len� A Re�nement Relation Supporting the Transition from

Unbounded to Bounded Communication Bu�ers
	
������
 A Michael Griebel� Tilman Neuhoe�er� A Domain�Oriented Multilevel

Algorithm�Implementation and Parallelization
	
������
 A Michael Griebel� Walter Huber� Turbulence Simulation on Sparse Grids

Using the Combination Method
	
������
 A Johann Schumann� Using the Theorem Prover SETHEO for verifying

the development of a Communication Protocol in FOCUS � A Case
Study �

	
������� A Hans�Joachim Bungartz� Higher Order Finite Elements on Sparse
Grids

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
������� A Tao Zhang� Seonglim Kang� Lester R� Lipsky� The Performance of
Parallel Computers� Order Statistics and Amdahl�s Law

	
���	��� A Lester R� Lipsky� Appie van de Liefvoort� Transformation of the Kro�
necker Product of Identical Servers to a Reduced Product Space

	
���
��� A Pierre Fiorini� Lester R� Lipsky� Wen�Jung Hsin� Appie van de
Liefvoort� Auto�Correlation of Lag�k For Customers Departing From
Semi�Markov Processes

	
������� A Sascha Hilgenfeldt� Robert Balder� Christoph Zenger� Sparse Grids�
Applications to Multi�dimensional Schr�odinger Problems

	
���
��� A Maximilian Fuchs� Formal Design of a Model�N Counter
	
������� A Hans�Joachim Bungartz� Stefan Schulte� Coupled Problems in Mi�

crosystem Technology
	
������� A Alexander Pfa�nger� Parallel Communication on Workstation Net�

works with Complex Topologies
	
������� A Ketil St"len� Assumption�Commitment Rules for Data��ow Networks

� with an Emphasis on Completeness
	
������� A Ketil St"len� Max Fuchs� A Formal Method for Hardware�Software

Co�Design
	
������� A Thomas Schnekenburger� The ALDY Load Distribution System
	
������� A Javier Esparza� Stefan R�omer� Walter Vogler� An Improvement of

McMillan�s Unfolding Algorithm
	
���	��� A Stephan Melzer� Javier Esparza� Checking System Properties via Inte�

ger Programming
	
���
��� A Radu Grosu� Ketil St"len� A Denotational Model for Mobile Point�to�

Point Data�ow Networks
	
������� A Andrei Kovalyov� Javier Esparza� A Polynomial Algorithm to Compute

the Concurrency Relation of Free�Choice Signal Transition Graphs
	
���
��� A Bernhard Sch�atz� Katharina Spies� Formale Syntax zur logischen Kern�

sprache der Focus�Entwicklungsmethodik
	
������� A Georg Stellner� Using CoCheck on a Network of Workstations
	
������� A Arndt Bode� Thomas Ludwig� Vaidy Sunderam� Roland Wism�uller�

Workshop on PVM� MPI� Tools and Applications
	
������� A Thomas Schnekenburger� Integration of Load Distribution into

ParMod�C
	
������� A Ketil St"len� Re�nement Principles Supporting the Transition from

Asynchronous to Synchronous Communication
	
������� A Andreas Listl� Giannis Bozas� Performance Gains Using Subpages for

Cache Coherency Control
	
������� A Volker Heun� Ernst W� Mayr� Embedding Graphs with Bounded

Treewidth into Optimal Hypercubes
	
���	��� A Petr Jan$car� Javier Esparza� Deciding Finiteness of Petri Nets up to

Bisimulation
	
���
��� A M� Jung� U� R�ude� Implicit Extrapolation Methods for Variable Coef�

�cient Problems
	
������
 A Michael Griebel� Tilman Neunhoe�er� Hans Regler� Algebraic Multi�

grid Methods for the Solution of the Navier�Stokes Equations in Com�
plicated Geometries

	
������
 A Thomas Grauschopf� Michael Griebel� Hans Regler� Additive
Multilevel�Preconditioners based on Bilinear Interpolation� Matrix De�
pendent Geometric Coarsening and Algebraic�Multigrid Coarsening for
Second Order Elliptic PDEs

	
���	��
 A Volker Heun� Ernst W� Mayr� Optimal Dynamic Edge�Disjoint Em�
beddings of Complete Binary Trees into Hypercubes

	
���
��
 A Thomas Huckle� E�cient Computation of Sparse Approximate Inverses
	
������
 A Thomas Ludwig� Roland Wism�uller� Vaidy Sunderam� Arndt Bode�

OMIS % On�line Monitoring Interface Speci�cation
	
���
��
 A Ekkart Kindler� A Compositional Partial Order Semantics for Petri

Net Components

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

Reihe A

	
������
 A Richard Mayr� Some Results on Basic Parallel Processes
	
������
 A Ralph Radermacher� Frank Weimer� INSEL Syntax�Bericht
	
������
 A P�P� Spies� C� Eckert� M� Lange� D� Marek� R� Radermacher� F� Weimer�

H��M� Windisch� Sprachkonzepte zur Konstruktion verteilter Systeme
	
������
 A Stefan Lamberts� Thomas Ludwig� Christian R�oder� Arndt Bode� PF�

SLib ! A File System for Parallel Programming Environments
	
������
 A Manfred Broy� Gheorghe S#tef&anescu� The Algebra of Stream Processing

Functions
	
������
 A Javier Esparza� Reachability in Live and Safe Free�Choice Petri Nets

is NP�complete
	
���	��
 A Radu Grosu� Ketil St"len� A Denotational Model for Mobile Many�to�

Many Data��ow Networks
	
���
��
 A Giannis Bozas� Michael Jaedicke� Andreas Listl� Bernhard Mitschang�

Angelika Reiser� Stephan Zimmermann� On Transforming a Sequential
SQL�DBMS into a Parallel One� First Results and Experiences of the
MIDAS Project

	
������
 A Richard Mayr� A Tableau System for Model Checking Petri Nets with
a Fragment of the Linear Time � �Calculus

	
���
��
 A Ursula Hinkel� Katharina Spies� Anleitung zur Spezi�kation von mo�
bilen� dynamischen Focus�Netzen

	
������
 A Richard Mayr� Model Checking PA�Processes
	
������
 A Michaela Huhn� Peter Niebert� Frank Wallner� Put your Model Checker

on Diet� Veri�cation on Local States
	
������� A Tobias M'uller� Stefan Lamberts� Ursula Maier� Georg Stellner�

Evaluierung der Leistungsf'ahigkeit eines ATM�Netzes mit parallelen
Programmierbibliotheken

	
������� A Hans�Joachim Bungartz and Thomas Dornseifer� Sparse Grids� Recent
Developments for Elliptic Partial Di�erential Equations

	
���	��� A Bernhard Mitschang� Technologie f'ur Parallele Datenbanken � Bericht
zum Workshop

	
���
��� A nicht erschienen
	
������� A Hans�Joachim Bungartz� Ralf Ebner� Stefan Schulte� Hierarchis�

che Basen zur e�zienten Kopplung substrukturierter Probleme der
Strukturmechanik

	
���
��� A Hans�Joachim Bungartz� Anton Frank� Florian Meier� Tilman Neunho�
e�er� Stefan Schulte� Fluid Structure Interaction� 	D Numerical Sim�
ulation and Visualization of a Micropump

	
������� A Javier Esparza� Stephan Melzer� Model Checking LTL using Constraint
Programming

	
������� A Niels Reimer� Untersuchung von Strategien f�ur verteiltes Last� und
Ressourcenmanagement

	
������� A Markus Pizka� Design and Implementation of the GNU INSEL�
Compiler gic

��

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

BIBLIOGRAPHY

SFB ��� � Methoden und Werkzeuge f�ur die Nutzung paralleler

Rechnerarchitekturen

Reihe B

	
������ B Wolfgang Reisig� Petri Nets and Algebraic Speci�cations
	
������ B J�org Desel� On Abstraction of Nets
	
��	��� B J�org Desel� Reduction and Design of Well�behaved Free�choice Systems
	
��
��� B Franz Abstreiter� Michael Friedrich� Hans�J�urgen Plewan� Das

Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

	
������ B Barbara Paech�� Concurrency as a Modality
	
������ B Birgit Kandler� Markus Pawlowski� SAM� Eine Sortier� Toolbox �

Anwenderbeschreibung
	
��	��� B Erwin Loibl� Hans Obermaier� Markus Pawlowski� �� Workshop �uber

Parallelisierung von Datenbanksystemen
	
��
��� B Werner Pohlmann� A Limitation of Distributed Simulation Methods
	
������ B Dominik Gomm� Ekkart Kindler� A Weakly Coherent Virtually Shared

Memory Scheme� Formal Speci�cation and Analysis
	
��
��� B Dominik Gomm� Ekkart Kindler� Causality Based Speci�cation and

Correctness Proof of a Virtually Shared Memory Scheme
	
������ B W� Reisig� Concurrent Temporal Logic
	
������ B Malte Grosse� Christian B� Suttner� A Parallel Algorithm for Set�of�

Support
Christian B� Suttner� Parallel Computation of Multiple Sets�of�Support

	
������ B Arndt Bode� Hartmut Wedekind� Parallelrechner� Theorie� Hardware�
Software� Anwendungen

	
�����	 B Max Fuchs� Funktionale Spezi�kation einer Geschwindigkeitsregelung
	
�����	 B Ekkart Kindler� Sicherheits� und Lebendigkeitseigenschaften� Ein Lit�

eratur�uberblick
	
�����
 B Andreas Listl� Thomas Schnekenburger� Michael Friedrich� Zum En�

twurf eines Prototypen f�ur MIDAS

�

10/21/97 TUM-I9713, SFB Nr. 342/09/97 http://www.informatik.tu-muenchen.de/~pizka

