
Security for Downloadable Automotive Services

Stephan Merk*, Kathrin Scheidemann*, Michael Rudorfer*, Thomas Stauner*,
Johannes Grünbauer**, Gerhard Popp**, Guido Wimmel**

*BMW Car IT GmbH, Petuelring 116, 80809 München, Germany
[stephan.merk,kathrin.scheidemann,michael.rudorfer,thomas.stauner]@bmw-carit.de

**Institut für Informatik, TU München, Boltzmannstraße 3, 84748 Garching b. München, Germany
[popp,wimmel,gruenbau]@in.tum.de

Abstract. The paper explains how a security analysis can be conducted for future adaptive, service-based
automotive software systems. The central idea is to use abstract threat trees which are instantiated and
worked out in detail when a concrete implementation platform is known. We then consider the main
threats resulting from the analysis in the context of the candidate implementation platform OSGi/Java and
identify two main problems. For one of the problems a solution is sketched.

1 Introduction

The increasing integration of electronic devices
and networks into daily life leads to a growing avail-
ability of software based services. Services can
autonomously react to events within the system,
adapt their behavior to their environment and are
even able to alter the whole system: adaptiveness can
change the whole structure of a system by exchang-
ing certain components. Services increasingly find
their way into new domains such as the automotive
world and in such mission critical environments
security plays an extremely important role.

In the project MEWADIS [Mew04], we try to find
methods and techniques for the development of se-
cure, dynamic, downloadable and context adaptive
services. These methods comprise a formal service
definition, a formal and automatic composition of
services, the ability to verify security requirements
and a methodical development process. As a practi-
cal application we consider mobile services in cars
together with their appropriate user interface (man-
machine-interface, MMI). This field is a proper
choice as matters of security, extensibility and adap-
tiveness are concerned.

Dynamically composed, downloadable services
require a great amount of security, safety and reli-
ability. These goals cannot be achieved without sys-
tematic support from the development process.

A profound knowledge of the threat situation is
vital to define security requirements.

The situation in the automotive environment is
characterized by high security needs, a long product
lifecycle, and difficult processes to perform software
updates, if available at all. This special situation
requires a tailored procedure for the threat and risk
analysis. We start from abstract threats and refine

them according to the concrete distribution of the
components on the physical devices in the car. This
approach is described in Section 2.

The security requirements we derived from the
threat analysis have to be addressed by adequate
countermeasures provided by a concrete technical
environment for services. The OSGi platform is a
candidate for such a secure environment and shall be
reviewed with regard to security mechanisms. Where
OSGi provides no sufficient security mechanisms, it
is necessary to define additional ones to fill these
gaps and supply the infrastructure for secure,
downloadable services. These concepts are explained
in Section 3. Finally, in Section 4 we give a short
conclusion.

2 Security Threats for Downloadable,
Adaptive Automotive Services

Automotive systems in general are very heterogene-
ous distributed systems, characterized by multiple
interactions, strong interrelations and dependencies
between functional units.

In [DGP+04a], the authors have introduced a
model-based and incremental service–based devel-
opment process which could be applied to cope with
the complexity of such systems. Services, i.e. func-
tional entities with their encapsulation, dependencies
and combination are used as abstract modelling units
and are finally mapped to components, which can,
but do not necessarily need to run within service
orientated architectures like OSGi, Openwings or
Jini. The service specification includes a syntactic
service interface, a behavior, a set of properties and
dedicated relationships to other services [DGP+04b].

A service is called adaptive, if its behavior is de-
pendent on its context, where the context comprises
attributes of the service’s environment. An example

Security for Downloadable Automotive Services 2

of a context adaptive service would be an on-board
diagnosis service which is only allowed to carry out
some functional tests while the vehicle is parked.

Method of Analysis. In order to derive security
needs in a system hosting downloadable, adaptive
services, we developed a service-based model for an
automotive system based on current and new func-
tionalities and carried out a detailed security analy-
sis.

The multiple interactions of functional units men-
tioned above also have a strong impact on security
aspects. The analysis procedure therefore must take
into account these aspects. The applied security
analysis method is based on procedures introduced in
[BSI03] and [How03] and was adapted to the special
circumstances of service-based modeling and of the
automotive domain.

Starting from the specification of the services, a
catalog of 81 basic threats (potential events causing
damage) was developed. Threats were recorded per
service in 5 different categories: malfunction of the
service, unavailability, confidentiality of data, integ-
rity of data and non-repudiation of service interac-
tions. For each basic threat, values were determined
for the damage potential and the estimated motiva-
tion of potential attackers.

To keep damage potential constant when services
are recombined, damage resulting from effects on
related services was not taken into account at this
stage, but will be considered in the next step of the
analysis.
 The values of the damage potential and the esti-
mated motivation of potential attackers were used to
determine critical threats that ought to be examined
more closely.

The aim of the next analysis step was to list as
many attack scenarios as possible leading to the
realization of one of the critical threats. A well
known structure for representing attack scenarios is
called ‘threat trees’ (see e.g. [And01]). Similarly to
fault trees, they model an undesired event (a threat)
in their roots, and successive nodes represent possi-
ble causes.

Threat tree modeling in our automotive context
was subdivided into two phases. Within the first
phase only abstract attack scenarios were taken into
account, leaving aside all platform and deployment
specific details. The set of abstract threats that had to
be taken into consideration as potential child nodes
proved to be limited to a few typical abstract attack
patterns. Therefore, a set of template trees was de-
veloped which could be used as a systematic support
for the first phase of the threat tree modeling. For
each of the critical threats determined above, we
started tree modeling using one of the templates.
Templates contain sub trees that describe attack
scenarios which directly affect the service, e.g. tem-
pering with the code of the service implementation.

There are also sub trees in the templates which de-
scribe attack scenarios involving related services. If
the service has relations to more than one other ser-
vice, the corresponding sub tree in the template has
to be instantiated respectively. Some of the sub trees
may not be relevant on account of the specification
of the service. Therefore these sub trees are pruned.

Leaf nodes in the tree can sometimes be seen as
threats to related services that are also part of an
attack scenario that leads to the threat modeled in the
current threat tree. In that case, the threat tree which
models the threat to the related service can be in-
serted as a sub tree. We call that threat tree composi-
tion.

 In the second phase the abstract trees were
elaborated, according to one concrete deployment
scenario. Therefore the leaves of the abstract trees
had to be substantiated by platform specific details,
now allowing for an estimation of the likelihood of
certain attack scenarios, derived from attack scenario
characteristics like necessary resources, technical
knowledge or its exploitability. Figure 2.1 illustrates
our threat tree modeling procedure.

The advantage of this two step procedure is that
changing the deployment of the services doesn’t
affect the abstract trees, but only the concrete refined
ones. Therefore it would be possible to optimize
system deployment according to security aspects
without having to remodel the trees from scratch.

Figure 2.1.: Two stage threat tree modeling.

One of the threats we found was that an attacker
could try to manipulate displays in the car in order to
deflect the driver. If such an attack was possible,
damage potential is estimated to be high , since it
could lead to safety risks or negative publicity. We
assumed the motivation of potential attackers to be
medium high, because no financial benefit could be
expected. The likelihood of an attack to be success-
ful was estimated to be high in an unsecured envi-

Security for Downloadable Automotive Services 3

ronment, in case non-trustworthy code had full ac-
cess to the displays. This has to be prevented by
appropriate system design.
Results. In our study, we were able to map the adap-
tiveness of services to well known structures, more
precisely to normal service relations: context infor-
mation was assumed to be provided by other ser-
vices. This way our method supports the analysis of
adaptive services as well.

The most significant risks in the system are asso-
ciated with the interaction between safety critical
vehicle functions and possibly not trustworthy
downloadable services. It is also necessary to main-
tain a degree of isolation for downloaded services
from different vendors, to protect them against each
other. Therefore, a service-platform hosting
downloaded applications must provide mechanisms
to grant fine grained access permissions to services
according to the authenticated source of code. A
platform hosting both, safety critical and download-
able services, must also provide mechanisms to en-
sure that possibly not trustworthy services can not
illegally influence safety critical functional units, e.g.
by occupying necessary resources.

The OSGi platform, which was specified by the
Open Services Gateway Initiative, a non-profit coop-
eration of industrial members including IBM, Sun
and the BMW Group, is one possible platform that
could be used to host downloaded services within
next generation cars, as it provides mechanisms to
enable the delivery and execution of managed ser-
vices.

In the next section, we give a brief introduction
to the OSGi Platform itself, with emphasis to its
major security mechanisms and its ability to meet the
security demands derived from our analysis.

3 Security Support in the OSGi
Architecture

OSGi-Overview. The core OSGi specification
[OSGi03] defines a Java-based framework with a
minimal component model, management facilities
for the components and a service registry. The two
central concepts of OSGi are services and bundles. A
service is described by an interface and has a prede-
fined behavior. A bundle can be regarded as a physi-
cal unit of deployment and as a logical component
within the framework. In the first case it is essen-
tially a JAR file with a manifest, Java class files and
eventually other resources. Among the classes in the
JAR are the service-interfaces, its implementations
and a special class, called bundle activator that
serves the framework as a starting point for the exe-
cution of the bundle. From a conceptual view, a
bundle is a dynamic life cycled component that can
be installed started and stopped by the framework.

Once started, a bundle can register services with the
registry by providing the name of the service inter-
face, the service implementation and optional prop-
erties. Other bundles can get available services via
the registry and use them. As there is a strict separa-
tion between the specification of a service by its
interface and its implementation, a OSGi service
could have multiple implementations provided by
different bundles.

Furthermore, a bundle can import and export Java
packages by declaring the names of the packages in
IMPORT/EXPORT headers of the manifest. In a
process, called bundle resolution, the framework
automatically maps each imported package to an
exported package, provided by exactly one other
bundle. Thus all bundles importing a certain package
use the same implementation of the package. The
import/export mechanism is necessary in order to get
references to service interfaces and especially im-
posed by the classloading concepts of Java and
OSGi. Besides it allows for the sharing of libraries
between bundles.

Evaluation of the OSGi Security Model. Start-
ing from the security analysis we evaluated the secu-
rity mechanisms of OSGi. We assumed a simple
onboard architecture with an OSGi-framework run-
ning on an ECU, that is connected to the CAN (Con-
troller Area Network) and MOST (Media Orientated
Systems Transport) busses. Inside the framework
there are several core bundles, providing high-level
services to access vehicle functions, and a set of
bundles downloaded from an offboard server, that
offers bundles from different providers. Based on the
trustability of their provider, we enhanced the OSGi
security mechanisms by associating bundles with
trust levels (TL). Depending on their trust level
downloaded bundles get restricted access to vehicle
functions via the core services. Additionally they can
register services that can be accessed by other
downloaded bundles. To be able to enforce protec-
tion of downloaded services against each other, we
set up a generic service access policy, saying that
bundles in general are only allowed to use service
implementations that are provided by bundles having
a trust level which is at least as high as their own.

OSGi security, as defined by the specification, is
based on the Java security model. It focuses on ac-
cess control to critical operations, like e.g. getting a
service, and requires the calling bundle to have a
special permission for the action. Each bundle is
granted a single set of permissions that are config-
ured via the PermissionAdminService. Permissions
are bound to a so called bundle-location identifier.
OSGi does not permit to grant permissions depend-
ing on the signer of the bundle JAR file.

The security part of the specification defines three
different security permissions, namely AdminPer-
mission, ServicePermission and PackagePermission.

Security for Downloadable Automotive Services 4

AdminPermission is required for highly critical
tasks like managing the lifecycle of a bundle or con-
figuring the permissions of bundles and should be
restricted to trusted management bundles.

ServicePermission (REGISTER resp. GET) grants
the authority to a bundle to register a service with the
registry or to get a given service that is implemented
by another bundle. ServicePermissions are defined
with respect to the fully qualified name of the service
interface to be accessed. Implementation specific
properties can not be taken into account. As men-
tioned above, the same service can be implemented
by two bundles with different trust levels. To enforce
our service access policy in this context, we need to
grant trust level dependent permissions, which are
not supported by the OSGi permission concept. To
cope with this problem an interceptor concept can be
used.

PackagePermission (EXPORT resp. IMPORT) al-
lows the export and import of packages, that are
implemented by bundles. The concept of sharing
packages by exporting and importing them violates
the separation of namespaces of different bundles.
By exporting a malicious or incompatible package,
one bundle can start a spoofing or compatibility
attack against other bundles, which import the pack-
age. Forbidding the export and import completely,
that is not granting PackagePermissions to user-
defined bundles, does not solve the problem, as the
ability to export and import the packages with the
service interfaces is an absolute need for the registra-
tion and lookup of services. The import/export prob-
lem is essentially a consequence of the automatic
package resolving by the framework. As the specifi-
cation doesn’t provide an interface to alter the pack-
age resolution process, there is actually no OSGi-
compliant solution to this security-critical problem.

Attacks against the availability of the onboard
platform and its connected devices are important
threats in the context of a resource constrained envi-
ronment. OSGi doesn’t provide means to counter
these threats.

4 Conclusion

We expect that future extendibility of automotive
systems by software download will be based on
context-adaptive services running on a central plat-
form. To provide an absolutely safe operation of a
vehicle it is vital to analyze security of the service
download and provide countermeasures against pos-
sible threats. This paper therefore presented some
results from the MEWADIS project.

First, it outlines how a detailed security analysis
can be conducted for downloadable adaptive services
in a car. The main result here is that a number of
abstract attack patterns can be identified and abstract

threat trees can be defined for them. Once the con-
crete deployment platform is known, a concrete
threat tree can then be elaborated by instantiating and
detailing the abstract trees. Concerning the analysis
itself, the central result is that a service platform for
downloadable services has to provide access permis-
sions depending on the authenticated source of the
code and measures to ensure that non trustworthy
services do not influence other services on the plat-
form.
The second part of the paper then considers how the
candidate platform architecture OSGi supports these
security requirements. For the requirement of trust
level based access to services, we propose to use
interceptors to enforce this extension of the OSGi
access policy. A further problem is that the concept
of sharing of packages in OSGi can be used to dis-
rupt services using a package. However, package
sharing is a prerequisite for a service-centered archi-
tecture. From our analysis it seems that this problem
can only be alleviated but not completely solved.

5 Bibliography

 [DGP+04a] Martin Deubler, Johannes Grünbauer,
Gerhard Popp, Guido Wimmel &
Christian Salzmann “Towards a Model-
Based and Incremental Development
Process for Service-Based Systems”,
Proceedings of the IASTED
International Conference on Software
Engineering, 2004

[DGP+04b] Martin Deubler, Johannes Grünbauer,
Gerhard Popp, Guido Wimmel &
Christian Salzmann “Tool Supported
Development of Service-Based
Systems”, submitted.

[Mew04] MEWADIS Web site, available via
http://www4.in.tum.de/~mewadis/
(in German).

[BSI03] Bundesamt für Sicherheit in der
Informationstechnik "IT-
Grundschutzhandbuch“, 2003

[And01] Ross Anderson „Security Engineering“,
John Whiley & Sons, Inc. 2001

[How03] Michael Howard & David LeBlanc
„Writing Secure Code“, Microsoft
Press, 2003

[OSGi03] The OSGiAlliance “OSGi Service
Platform”, IOS Press, 2003

[HaCe04] Richard S. Hall & Humberto Cervantes
“An OSGi Implementation and
Experience Report”, CCNC, 2004

