
A Universally Polymorphic Speci�cation

Language

A Brief Informal Introduction�

Dieter Nazareth

Institut f�ur Informatik

Technische Universit�at M�unchen

Arcisstr� ��� D������ M�unchen

e�mail	 nazareth
informatik�tu�muenchen�de

November �� ����

Abstract

This paper �rst discusses the advantages of sorts in algebraic speci�ca�
tion languages� It gives a brief introduction into polymorphism approaches
used in functional programming languages to weaken the strength of tradi�
tional sort systems� We then sketch a universally polymorphic speci�cation
language which combines all polymorphism concepts within one universal
approach� The approach is based on quali�ed sorts which generalize the
Haskell sort classes to n�ary sort predicates� To describe the properties of
arbitrary sort predicates we use a separate Horn�Clause speci�cation� In
an introductory example we show how to model sort classes with our ap�
proach� A further example demonstrates that this universal polymorphism
approach is also well�suited to model inheritance in algebraic speci�cation
languages�

� Sorts in Speci�cation Languages

Most formal languages use sorts to distinguish between di�erent kinds of values�
There are many reasons for the use of sorts� First of all sorts are an important�
universal ordering principle and are not invented by computer scientists� It is a
basic property of mankind to classify objects of the world by common features�
By classifying objects one tries to put order into chaos�

�This work is sponsored by the German Ministry of Research and Technology �BMFT� as
part of the project �KORSO � Korrekte Software��

�



Therefore the usage of classi�cations� which we call sorts� is also important
in a speci�cation language� because it forces the user to structure speci�cations�
This decreases both the error rate and makes speci�cations more readable for
people� Sorts can even be seen as a simple form of documentation�

Further� sorts are an important abstraction principle� They allow us to make
propositions about a collection of objects� which are valid for each member of this
collection� Thus� we can abstract in propositions from individual objects� At the
same time the proposition is restricted to the objects of a sort� In axiomatic
speci�cation languages sorts serve therefore as a basis for restricting properties
to a subset of the universe of objects�

Besides this classical ordering and abstraction principle there are further rea�
sons for using sorts in speci�cation languages� e�g� avoiding partial functions or
improving performance� But at this point we do not want to go into further
details�

Up to now we enumerated only advantages of sorts� but of course there are
also disadvantages� Sometimes the sort system hinders the user in his �exibility
and expressibility� because the sort system imposes too many restrictions on the
user� In some cases a problem must be adapted to �t a speci�c sort system� This
often leads to arti�cial speci�cations�

Another problem is that the user sometimes must write too much sort infor�
mation� which is unnecessary because it can be deduced from the context� This is
not only tiresome to write� but can lead to �unreadable� speci�cations� The aim
of a language designer must therefore be to provide a sort system that restricts
the user as little as possible� but as much as necessary�

However� sorts are only advantageous if their correct usage is automatically
checked� A sort system only makes sense� if we can guarantee that a speci�ca�
tion contains no error with respect to the sort system� Such sort systems are
called strong sort systems� Only a strong sort system really helps to decrease the
error rate� because sort errors are always detected and reported to the user� Be�
cause axiomatic speci�cations are in general not executable� the sort correctness
must be checked by a static speci�cation analysis� In the framework of algebraic
speci�cations a strong sort system must therefore be a static sort system� i�e� a
sort system where the well�sortedness can be determined by static speci�cation
analysis� This condition strongly restricts the choice of suitable sort systems for
speci�cation languages�

� An Introduction to Polymorphism

Many e�orts have been made to weaken the strength of traditional sort systems�
Most of them try to allow a term to be not only of one sort� but of many dif�
ferent sorts� This ability in general is called polymorphism� This section gives a
brief introduction into polymorphism concepts used in functional programming

	



languages� A detailed introduction can be found in 
CW��
�
One of the oldest polymorphism concepts is the so�called ad�hoc polymor�

phism� better known as overloading� Overloading allows to use the same identi�
�er for completely di�erent functions� A typical example is the in�x identi�er �
which is not only used for addition of various numbers� but sometimes also for
the concatenation of lists� In a language that provides overloading the user can
de�ne both functions� i�e�

� � Nat � Nat � Nat

� � List � List � List

and use them both in one term� From the sort context� normally by static pro�
gram analysis� it is decided which � must be used� i�e� the overloading is resolved�
Strictly speaking� this is therefore not a kind of polymorphism because each term
again has exactly one sort� If not� the overloading can not be resolved� Normally
these terms are rejected as not well�sorted� Because overloaded identi�ers are
resolved� ad�hoc polymorphism does not have to be dealt with in the semantics�

The most well�known proper polymorphism concept is called� due to Strachey

Str��
� parametric polymorphism� As the name suggests this is some kind of
abstraction principle that allows us to abstract from a concrete sort in a term�

Let us consider a function length that takes a list as argument and returns
the length of the list as result� This function can be de�ned by the following two
equations�

length emptylist � �

length�append�x�l�� � succ�length l�

The de�nition of the length function is independent of the contents of the
list �represented by x� and therefore independent of the sort of the list elements�
Thus� we can abstract from the element sort and assign the following sort scheme
to the function length�

length � ��� List � � Nat

� is used as a sort variable and � as universal quanti�cation for the sort
variables� indicating that � can be replaced by an arbitrary sort� List is a
unary function� called sort constructor� on the sort level taking a sort as argu�
ment and yielding a sort as result� The parametric polymorphism allows now
to apply the function length to a list of arbitrary sort� Let for example the
variables ln� List Nat� lln� List List Nat and lb� List Bool be de�ned�
Then length can be applied to all those variables� i�e� length�ln�� length�lln�
and length�lb� are well�sorted terms�

If the sort quanti�er is only used at the outermost level of a sort term� as
in our example� we get the simplest form of parametric polymorphism� called

�



shallow polymorphism or Hindley�Milner polymorphism� due to Hindley 
Hin��

and Milner 
Mil��
� Because all sort variables are bound at the outermost level�
the quanti�er � is normally omitted� This kind of polymorphism can be found
in many modern� functional programming languages� The �rst one was ML

Har��
� therefore the Hindley�Milner polymorphism is sometimes also called
ML polymorphism�

Another polymorphism concept that weakens the strength of traditional sort
systems is called subsort polymorphism or short subsorting� The subsort polymor�
phism allows to de�ne a partial order on sorts� called subsort relation� which is
interpreted as set inclusion on the domains� The most well�known programming
language with a subsorting concept is OBJ 
JKKM��
� Subsorting allows us to
apply functions to elements of a subsort of the function�s parameter sort� Let us
assume that the sort Nat is a subsort of the sort Int� written Nat�Int� If we
have a function � with the functionality Int�Int�Int� the application of � to
a pair of natural numbers yields a well�sorted term� because the subsort relation
states that each value of sort Nat is also a value of sort Int�

Subsort polymorphism enables us to model inheritance in object oriented
frameworks� We will demonstrate in Section � how to model inheritance with
our universal polymorphism approach�

During the development of the functional programming language Haskell

HJW�	
 the developers realized� that the existing polymorphism concepts are
not well�suited to model some kind of functions� They noticed that between ad�
hoc polymorphism and parametric polymorphism there is in some sense a gap�

�

���

length Nat� List Nat � Nat
length Bool� List Bool � Nat

�nite

���

length� List Nat � Nat
length� List Bool � Nat

�nite

length� ��� List � � Nat

in�nite

no ad�hoc parametric polymorphism
� �z �

gap

Figure �� Polymorphism Gap

Figure � shows� how the length function can be handled with di�erent poly�
morphism concepts� The di�erence between no polymorphism and ad�hoc poly�
morphism is only a syntactic one� because overloading only allows to use the same
function identi�er several times in one scope� But we are not allowed to overload
sort identi�ers� We have to use a di�erent identi�er for each kind of lists� Thus�
in both cases we have a separate function for each sort and we can only de�ne
a �nite number of length functions� The parametric polymorphism in contrast

�



allows us to de�ne only one length function which can be applied to lists of every
sort� because the sort variable � can be instantiated by an arbitrary sort� This
yields an in�nite number of instantiations�

The problem is that there are a lot of functions that should be applicable
to an in�nite number of sorts� but not to all sorts� i�e� an in�nite subset of the
universe of sorts� A typical example is the equality between values� The equality
function �� should be applicable on nearly every sort� but for example not on
functional sorts� because the equality of functions is undecidable� In a program
the application of �� to functions leads to a run�time error which should be
avoided by the sort system� However� this can be achieved neither by ad�hoc� nor
by parametric polymorphism�

In the functional programming language Haskell this problem was solved by
using sort classes� 
WB��
� This approach generalizes the equality type variables
of ML �see 
Pau�	
 for details� and closes the gap between ad�hoc and parametric
polymorphism� It allows to structure sorts by typing them� In Haskell these
types are called classes� The classes are used to restrict the bound sort variables
in polymorphic functions by tagging them with classes� This leads to a typed
abstraction mechanism� The equality function �� can be de�ned in the following
way��

��� ����EQ� � � � � Bool

This means� that �� is only available on sorts which are in the class EQ� With
the following two de�nitions we can de�ne which sorts are belonging to class EQ�

Nat��EQ

List���EQ�EQ

The �rst line states that Nat must be in class EQ� The second line means�
that List is a function that takes a sort of class EQ and yields a sort of class
EQ� In other words� if sort A is in class EQ the sort List A is also in class EQ�
These declarations allow us to apply the function �� on an in�nite� but restricted
number of sorts� In our case �� can be applied on all nested lists of sort Nat� i�e�
List Nat� List List Nat� � � � � but on no other sort�

There are a lot of other examples where we want to use a function on an
in�nite� but restricted number of sorts� See 
HJW�	
 or 
BFG���
 for more
examples�

Another reason for the introduction of the sort class concept in Haskell was to
make �ad�hoc polymorphism less ad�hoc�� as Wadler and Blott stated in 
WB��
�
In other words� the sort class concept can be used to model ad�hoc polymorphism
in a more structured way� Therefore in the following we do not deal with tradi�
tional overloading anymore�

�In the functional community they are called type classes	 of course�
�We will not use Haskell syntax in this section�

�



� A Universal Approach to Polymorphism

In the last section we gave an overview of the most important polymorphism
concepts� We saw that parametric polymorphism� subsorting and the sort class
concept are very useful concepts to weaken the strength of a traditional sort
system� They all help to describe the task of a system in a problem oriented way�
It is therefore a natural desire to unify all these concepts in one language by a
universal polymorphism approach�

Mark P� Jones extended the sort class concept to n�ary sort predicates 
Jon�	
�
In his approach bound sort variables can not only be restricted by sort classes�
but by arbitrary n�ary sort predicates� This allows to de�ne functions of the
following sort scheme�

f� ����� � ���n� P������ � ���n��� � ��Pm����� � ���n� � � ����� � ���n�

� is a sort expression containing possibly the sort variables ���� � � ��n� The
sort variables can be restricted by predicates P��� � � �Pm of arbitrary arities� The
� between the predicates is interpreted as logical �� Jones calls these restricted
sorts quali�ed sorts� These quali�ed sorts are the basis for a universal approach
to polymorphism� because the above sort scheme includes all sort expressions
needed for the polymorphism concepts mentioned in the last section as a special
case� The functions from the last section can be given the following� in some
sense equivalent quali�ed sorts�

length� ��� List � � Nat

��� ��� EQ��� � � � � � Bool

Parametric polymorphism can be expressed trivially by quali�ed sorts� be�
cause we do not need any restricting predicate� Therefore the length function
stays the same� Also for the sort class concept it is quite easy to see that it �ts
into the above scheme� because a class can also be seen as a unary sort predicate�
In our example the class EQ is replaced by a sort predicate EQ�

More complicated is the handling of subsort polymorphism� In Section 	 we
presented an implicit subsorting concept� Implicit� because besides the subsort
relation we do not need any other concept to use the subsorting� i�e� we do
not need any kind of coerce function� coercing elements of a sort to elements
of a supersort of this sort� The coercion is done implicitly� because the subsort
relation is interpreted as set inclusion on the domains� This implicit subsorting�
however� can not be expressed with quali�ed sorts� We can only provide some
kind of explicit subsorting�

Let us look at the addition function � from Section 	� In a �rst step we
abstract from the concrete sort Int and get the following function�

�� ��� � � � � �

�



However� this function is too general� because now � can be applied to ele�
ments of any sort� Thus� we must restrict the sort variable � by an appropriate
predicate� We only want to apply � on subsorts of Int� This can be achieved by
the following function�

�� ��� ��Int � � � � � �

The binary sort predicate � is used to restrict the sort variable � to all
subsorts of Int� This is� however� only the intended semantics behind the purely
syntactic identi�er �� Later we will see� how to de�ne this semantics�

Quali�ed sorts o�er only explicit subsorting� because every function that
wants to use the subsort relation must explicitly use the restricting predicate
in its functionality� But this is not a drawback � because implicit rules are always
more susceptible to errors� Explicit subsorting achieved by quali�ed sorts is even
more expressive� because we can express the dependence of the result sort on an
argument sort� In our example adding two natural numbers yields again a natural
number and not an integer as in the implicit version� With implicit subsorting
this can only be achieved by overloading the identi�er � or by using so�called
retract functions� See 
Naz��
 for a closer look at the problems that arise� when
using subsorting in an algebraic speci�cation language�

Besides sort classes and subsorting there are other interesting applications of
quali�ed sorts� See 
Jon�	
 for more examples�

As part of his thesis Jones occupied himself with the syntactic treatment of
quali�ed sorts in functional programming languages� He extends the Damas�Mil�
ner approach 
DM�	
 to type inference and gives an algorithm that infers the
most general sort in the presence of quali�ed sorts� In his work he abstracts
from a concrete predicate system� His results are� up to a few basic assumptions�
independent of a concrete predicate system�

But quali�ed sorts are only a basis for a universally polymorphic language�
because we need a framework to describe the properties of the predicates used in
the quali�ed sorts� As already mentioned�� is only a predicate identi�er without
any semantics� We must �x some properties like re�exivity and transitivity� and
we must de�ne the desired subsort relations� like Nat�Int� The same holds for
the class predicates� To complete the sort class concept� we must be able to
de�ne� which sorts belong to a class� For example� we must be able to de�ne� as
in Section 	� that all nested lists of sort Nat belong to class EQ�

But we do not want to restrict our speci�cation language to the polymorphism
concepts described in Section 	� Therefore we need a universal predicate language
that allows us to de�ne the properties of arbitrary predicates used in quali�ed
sorts�

�



� A Universally Polymorphic Speci�cation Lan�

guage

In this section we want to sketch brie�y the idea of a universally polymorphic
speci�cation language� i�e� a speci�cation language that provides quali�ed sorts
together with a universal language to specify the properties of sort predicates�
We do not want to go into syntactic details and we do not want to speak about
the semantics of such a language� These areas are treated in 
Naz��
�

To realize this idea� we need a two�leveled speci�cation language� Our speci��
cations are divided into a speci�cation on the sort level� called sort speci�cation�
and a speci�cation on the object level� called object speci�cation� where the sec�
ond one depends on the �rst one� The speci�cation on the object level as usual
de�nes the behaviour of the constants and functions� The sort level speci�cation
de�nes the properties of the sort predicates used in the quali�ed sorts of the
object level�

On the object level we use a classical �rst order logic with higher order func�
tions� e�g� LCF 
Pau��
� Because of the sort speci�cation being used to de�ne
the well�sortedness of the object speci�cation� the sort speci�cation must in some
sense be executable� Therefore we use a Horn�Clause logic on the sort level� This
language is on the one hand general enough to describe the properties of arbitrary
predicates and is on the other hand executable via resolution�

As already mentioned� we do not give an exact de�nition of our language�
We will explain the basic setup on a simple example which uses sort classes� In
Section � we will show on a larger example how to model inheritance with this
approach�

Example � f

�� Specification on the sort level

�� Sort constructors

cons Bool�� Nat�� List��

�� Sort predicates

pred EQ��

�� Horn�Clause axioms

sortaxioms

EQ�Nat��

EQ��� � EQ�List ���

endaxioms

�� Specification on the object level

�� Functions

fun �� Nat�

�



succ� Nat � Nat�

emptylist� ��� List ��

append� ��� � � List � � List ��

�� ��� EQ��� � � � List � � Nat�

����� ��� EQ��� � � � � � Bool�

�� First�order axioms

axioms EQ��� � � a�b�c� �� l� List ��

�� Laws for ��

�a��a� � true�

�a��b� � true � �b��c� � true � �a��c� � true�

�a��b� � true � �b��a� � true�

�� Laws for �

��a�emptylist� � ��

��b�append�a�l�� � if a��b then succ���b�l��

else ��b�l�

endif�

�� Application of � �theorem�

����append���emptylist�� � succ ��

�� Further laws
���

endaxioms g

�� starts a one line comment� The speci�cation is split into a sort level and
an object level� As usual in the framework of algebraic speci�cations both levels
consist of a signature and an axioms part�

On the sort level the signature consists of the sort functions� called sort con�
structors� and the sort predicates� The number assigned to each identi�er ex�
presses the arity of the constructor respectively predicate� In our example we
de�ne a zero�ary sort constructor Nat� i�e� a sort constant or basic sort and a
unary sort constructor List� Further we de�ne a unary sort predicate EQ�

In the axioms part of the sort level we de�ne the desired properties of our
predicate EQ� Speaking in terms of classes� the �rst axiom states that sort Nat
belongs to class EQ� The second axiom says that if a sort � belongs to class
EQ then sort List � also belongs to this class� Thus we have de�ned the same
behaviour as in Section 	� This is of course only a small example� Our Horn�
Clause logic is universal enough to express more complicated structures� as we
will see in Section ��

On the object level we will now use the predicate EQ to restrict our polymor�

�



phic functions� In the signature part of the object level we declare our functions�
This is the only place where we can declare a polymorphic function� If we allowed
to de�ne a polymorphic identi�er by ��abstraction� we would get a higher order
function with respect to polymorphism� i�e� we would get a function that takes a
polymorphic function as argument� This is not allowed in our approach� The rea�
son is that we restrict our language to shallow polymorphism� Therefore it also
makes no sense to allow polymorphic ��abstractions� because this ��abstraction
can only be applied once and not passed as argument�

We also do not allow to de�ne polymorphic functions by the quanti�ers �
and �� The reason is that we do not want to make propositions about a set of
polymorphic objects� We only want to describe the behaviour of a particular
polymorphic object� like ��� Another more technical reason is that the sort of
bound identi�ers is automatically inferred by a sort inference system� i�e� the user
can omit sort annotations for local identi�ers� But if these identi�ers are allowed
to be polymorphic no sort error would ever be detected� because the system can
always infer the totally polymorphic sort ���� for local identi�ers� This would
lead to a nearly unsorted language� Thus� the signature of a speci�cation replaces
the let�construct used in functional languages to de�ne polymorphic functions�

On the object level we now de�ne a polymorphic equality predicate �� where
the sort variable � is restricted by the sort predicate EQ� In the same way we
restrict a function �� counting the number of occurrences of a particular element
in a list� Both functions are therefore only applicable on sorts that ful�l the sort
predicate EQ� Looking at the sort speci�cation these are just all nested lists over
Nat� i�e� the sort speci�cations gives the intended semantics to EQ� Besides these
two functions which are the focus of our attention we need constructors for our
sorts Nat and List � with the usual semantics� We assume that all functions in
the signature are strict�

In the axioms part we now describe the laws of our functions by using tra�
ditional �rst order logic� We assume that � quanti�es only over de�ned values�
The laws for �� as well as for � are as usual� The equality function �� is de�ned
to be an equivalence relation and the counter function � is de�ned recursively�
The interesting point of the speci�cation lies in the universal quanti�cation of
the variables used to de�ne the polymorphic functions� These variables are as�
signed the sort � respectively List �� But note that by doing this we do not
declare a polymorphic identi�er� In both cases the sort variable � is not bound
by a � at the outermost level of the sort expression� which is not allowed for
local identi�ers� Thus� the variables have the same sort at each occurrence in the
axioms and are therefore not polymorphic� All sort variables are automatically
universally quanti�ed at the outermost level of the object speci�cation�

Like in the signature� we must restrict the sort variable � by the sort predicate
EQ� Otherwise the speci�cation would not be well�sorted� because �� as well as �
can only be applied to variables whose sort ful�l the predicate EQ� By using sort
variables in the axioms part we can �x the laws not only for one sort� The laws

��



must be valid for all instantiations of the sort variables which ful�l the restricting
predicate�

To show the application of � we added a simple theorem to our speci�cation�
In the theorem we apply � to a list of natural numbers� This application is well�
sorted� because we can deduce from the sort speci�cation that List Nat ful�ls
the sort predicate EQ�

The example shows quite well the connection of polymorphism to param�
eterized speci�cations� Without polymorphism concept we would have used a
parameterized speci�cation for that problem� In 
GN��
 it is shown that in many
cases parameterized speci�cations can be replaced by more elegant polymorphic
speci�cations�

� Modelling Inheritance

In the last example we only gave a simple application of our universally polymor�
phic speci�cation language� The example can� in a similar way� already be written
in the speci�cation language Spectrum 
BFG���
� which provides a sort class
concept� The di�erence� however� is that Spectrum only provides sort classes�
whereas in this approach sort classes are only one of many possible applications�
In this section we will give an example of a completely di�erent application of
our universal polymorphism approach� We will show that our language is also
well�suited to model inheritance in a smart way�

The example deals with the speci�cation of a graphics system� one of the �rst
application areas of inheritance techniques� A similar speci�cation can be found
in 
Bre��
� which uses an implicit subsorting concept with overloading to model
the operations that can be applied to graphic objects� We restrict ourselves to
an abstract requirement speci�cation� This speci�cation can be used as a basis
to develop executable implementations�

In our example we use an operator enriches to structure the speci�cation�
This operator is used to build hierarchical speci�cations by adding new sort
constructors� sort predicates� functions and axioms to the respective part of a
given speci�cation�

The speci�cation of the graphics system is based on a speci�cation CART COORD�
which provides the basic sort Coord together with the constructor� the selectors
and a few basic operations on coordinates� We assume that there is a speci��
cation NUMBERS providing the sorts Nat� Int and Real together with the usual
operations� Moreover� we assume that � quanti�es only over de�ned values and
that all functions are strict�

CART COORD � f enriches NUMBERS�

cons Coord��

��



fun �� Constructors and Selectors for Coord

���� Int � Int � Coord�

�� Coord � Int�

	� Coord � Int�

�� Other functions on Coord


� Coord � Coord � Coord�

�� Coord � Coord � Coord�

mult� Coord � Nat � Coord�

scale coord� Coord � Nat � Coord � Coord�

axioms � x	�x
�y	�y
� Int� n�Nat� c	�c
�Coord�

�� Laws for constructor and selectors

��x	�y	� � x	�

	�x	�y	� � y	�

�c	 � 	c	 � c	�

�� Laws for other functions

�x	�y	� 
 �x
�y
� � �x	�x
���y	�y
��
�x	�y	� � �x
�y
� � �x	�x
���y	�y
��

mult�x	�y	�n� � �x	�n���y	�n��
scale coord�c	�n�c
� � c
 
 mult�c	�c
�n��

�� Coordinate c	 is scaled with factor n

�� relative to the reference point c


endaxioms g

A graphics system generally provides a set of graphic objects together with
some operations to manipulate them� In our speci�cation GRAPHIC SYSTEM we
consider only the moving and scaling of objects� These two operations should
be available on all kinds of objects� Therefore we use polymorphic functions
and restrict the operations to graphic objects� Graphic objects are typically
hierarchically ordered by a so�called is�a relation� For example� a point is a line
and a line is a rectangle and a rectangle is a graphic object� This is�a relation
is used to specialize objects� A graphic object in our example is the most vague
term with the least properties� The terms rectangle� line and point are more and
more concrete and are only special cases of the others�

The is�a relation is strongly connected with the concept of inheritance� A
specialized object inherits all properties from a more general object� For examples
points� lines and rectangles inherit all general properties of a graphic object�
These properties also include the general operations like moving and scaling�

Normally the is�a relation is modelled by a subsort relation� Our universal
approach� however� allows us to specify directly this is�a relation� This leads

�	



to a very problem�oriented speci�cation and shows that our language is �exible
enough to describe di�erent kinds of problems in a natural way�

On the sort level we de�ne a new basic sort Graphic Obj and a binary in�x
sort predicate �is�a�� In the axioms part of the sort speci�cation we de�ne the
laws of the new sort predicate� namely the re�exivity and the transitivity�

In our speci�cation each object is surrounded by an invisible rectangular
frame� The functions bl and tr yield the respective bottom�left and top�right
coordinate of this frame� The manipulating operations are speci�ed by describing
their e�ect on the surrounding frame� All functions are de�ned polymorphically
and restricted by the predicate � is�a Graphic Obj� All functions can there�
fore be applied only on sorts which are graphic objects� We do not go into each
single axiom� Again we only look at the universally quanti�ed identi�ers�

The properties described in this speci�cation are very general and should be
valid for all graphic objects� Therefore we use the sort variable � for the identi�er
g and restrict � by the predicate � is�a Graphic Obj� Note that giving the
identi�er g the sort Graphic Obj would yield a completely di�erent semantics�
In this case all axioms would only be valid for the elements of sort Graphic Obj

and not e�g� for the elements of sort Line� de�ned in the next speci�cation� This
is because our approach is explicit� De�ning sort predicates together with rules
does not in�uence the domains� i�e� the sort predicate is�a does not impose a
subset order on the domains�

GRAPHIC SYSTEM � f enriches CART COORD�

cons Graphic Obj��

pred �is�a��

�� Laws for the subsort predicate is�a

sortaxioms

� is�a �� �� Reflexivity

� is�a �� � is�a � � � is�a �� �� Transitivity

endaxioms

fun bl� tr� ��� � is�a Graphic Obj � � � Coord�

move� ��� � is�a Graphic Obj � � � Coord � ��

scale� ��� � is�a Graphic Obj � � � Nat � Coord � ��

axioms � is�a Graphic Obj � � g� �� c�d� Coord� n� Nat�

�move�g�c� � move�g�d�� � �c � d��

move�g�bl g� � g�

move�move�g�c��d� � move�g�d��

��



bl�move�g�c�� � c�

tr�move�g�c�� � bl�move�g�c�� 
 �tr g � bl g��

bl�scale�g�n�c�� � scale coord�bl g�n�c��

tr�scale�g�n�c�� � scale coord�tr g�n�c��

scale�g�n�c� � move�scale�g�n�bl g�� scale coord�bl g�n�c���

endaxioms g

So far we have speci�ed only those general properties of our manipulating
operations that are valid for all graphic objects� In POINT LINE we now add two
kinds of objects� points and lines� and give additional properties for them� In
the axioms part of the sort level we now de�ne that Point is�a Line and that
Line is�a Graphic Obj� Therefore all general properties of graphic objects are
inherited by points and line�

For all objects that are lines we de�ne an additional function length com�
puting the length of a line� Again we use a restricted sort variable � for the line
variables is the axioms part� Note that for describing the properties of the points
we do not use a sort variable� The identi�ers p and q are declared to be of sort
Point� This is equivalent to � with the restriction � is�a Point because there
is no proper specialization of the sort Point� However� if we later would like to
specialize the sort Point� we would have to use a restricted sort variable for the
identi�ers p and q�

POINT LINE � f enriches GRAPHIC SYSTEM�

cons Point�� Line��

sortaxioms

Point is�a Line�

Line is�a Graphic Obj�

endaxioms

fun length� ��� � is�a Line � � � Real�

axioms � is�a Line � � p�q� Point� l�l	�l
�l�� �� c� Coord� n� Nat�

bl p � tr p�

length p � ��

�bl p � bl q� � �p � q��

�bl l	 � bl l
� � �tr l	 � tr l
� � �length l	 � length l
��

��bl l	 � bl l
� � �bl l	 � bl l�� �

��



�tr l	 � tr l
� � �tr l	 � tr l��� �

��l	�l
� 
 �l	�l�� 
 �l��l
���

length�move�l�c�� � length l�

length�scale�l�n�c�� � n � length l�

endaxioms g

� Conclusion

We have sketched a universally polymorphic speci�cation language� which allows
to use all kinds of polymorphism in one general approach� This is in contrast to
other languages which provide only one or two di�erent kinds of polymorphism�
e�g� the speci�cation language Spectrum which provides only parametric poly�
morphism and sort classes� We have seen in di�erent examples that our approach
is �exible enough to model sort classes as well as inheritance in a very direct way�
Thus� the sort system does not hinder the user� but supports him in writing
problem�oriented speci�cations� Our approach is therefore a big step towards the
ful�lment of the requirement� that a sort system should restrict the user as little
as possible� but as much as necessary�

References

�BFG���� Manfred Broy	 Christian Facchi	 Radu Grosu	 Rudi Hettler	 Heinrich Huss�
mann	 Dieter Nazareth	 Franz Regensburger	 Oscar Slotosch	 and Ketil
St
len� The Requirement and Design Seci�cation Language SPECTRUM�
An Informal Introduction� Version ���� Part i� Technical Report TUM�
I����	 Technische Universit
at M
unchen� Institut f
ur Informatik	 Fakult
at
f
ur Informatik	 TUM	 ����� M
unchen	 Germany	 May �����

�Bre��� R� Breu� Algebraic Speci�cation Techniques in Object Oriented Program�
ming Environments	 volume ��� of LNCS� Springer	 �����

�CW��� L� Cardelli and P� Wegner� On Understanding Types	 Data Abstraction	
and Polymorphism� ACM Computing Surveys	 �������������	 December
�����

�DM��� L� Damas and R� Milner� Principle Type�Schemes for Functional Programs�
In Proceedings of the �th Annual Symposium on Principles of Programming
Languages	 pages �������	 �����

�GN��� R� Grosu and D� Nazareth� Towards a new way of parameterization� Sub�
mitted to the Third Maghrebian Conference on Software Engineering and
Arti�cal Intelligence	 June �����

��



�Har��� Robert Harper� Introduction to Standard ML� Technical Report ECS�
LFCS������	 University of Edinburgh	Department of Computer Science	
November �����

�Hin��� R� Hindley� The Principle Type�Scheme of an Object in Combinatory Logic�
Trans� Am� Math� Soc�	 ���������	 December �����

�HJW��� P� Hudak	 S� Peyton Jones	 and P� Wadler	 editors� Report on the Program�
ming Language Haskell� A Non�strict Purely Functional Language �Version
����� ACM SIGPLAN Notices	 May �����

�JKKM��� J��P� Jouannaud	 C� Kirchner	 H� Kirchner	 and A� Megrelis� OBJ� Pro�
gramming with Equalities	 Subsorts	 Overloading and Parameterization� In
J� Grabowski	 P� Lescanne	 and W� Wechler	 editors	 Algebraic and Logic
Programming	 pages ������ Akademie�Verlag Berlin	 �����

�Jon��� Mark P� Jones� Quali�ed types� Theory and practice� Technical Mono�
graph PRG����	 Oxford University Computing Laboratory	 Programming
Research Group	 July �����

�Mil��� Robin Milner� A Theory of Type Polymorphism in Programming� Journal
of Computer and System Sciences	 ����������	 �����

�Naz��� Dieter Nazareth� Modelling inheritance in an algebraic speci�cation lan�
guage� In Jianping Wu et al�	 editor	 Proceedings of the Third International
Conference for Young Computer Scientists� Beijing	 pages ���������� Ts�
inghua University Press	 July ����� �����

�Naz��� Dieter Nazareth� A Universally Polymorphic Speci�cation Language� PhD
thesis	 Technische Universit
at M
unchen	 ����� to appear�

�Pau��� L�C� Paulson� Logic and Computation� Interactive Proof with Cambridge
LCF	 volume � of Cambridge Tracts in Theoretical Computer Science� Cam�
bridge University Press	 �����

�Pau��� Lawrence C� Paulson� ML for the Working Programmer� Cambridge Uni�
versity Press	 �����

�Str��� C� Strachey� Fundamental Concepts in Programming Languages� In Lec�
ture Notes for International Summer School in Computer Programming	
Copenhagen	 �����

�WB��� Philip Wadler and S� Blott� How to Make Ad�hoc Polymorphism Less Ad
hoc� In �	th ACM Symposium on Principles of Programming Languages	
pages �����	 �����

��


