A Universally Polymorphic Specification
Language
A Brief Informal Introduction®

Dieter Nazareth
Institut fur Informatik
Technische Universitat Munchen
Arcisstr. 21, D-80290 Miunchen

e-mail: nazareth@informatik.tu-muenchen.de

November 8, 1993

Abstract

This paper first discusses the advantages of sorts in algebraic specifica-
tion languages. It gives a brief introduction into polymorphism approaches
used in functional programming languages to weaken the strength of tradi-
tional sort systems. We then sketch a universally polymorphic specification
language which combines all polymorphism concepts within one universal
approach. The approach is based on qualified sorts which generalize the
Haskell sort classes to n-ary sort predicates. To describe the properties of
arbitrary sort predicates we use a separate Horn-Clause specification. In
an introductory example we show how to model sort classes with our ap-
proach. A further example demonstrates that this universal polymorphism
approach is also well-suited to model inheritance in algebraic specification
languages.

1 Sorts in Specification Languages

Most formal languages use sorts to distinguish between different kinds of values.
There are many reasons for the use of sorts. First of all sorts are an important,
universal ordering principle and are not invented by computer scientists. It is a
basic property of mankind to classify objects of the world by common features.
By classitying objects one tries to put order into chaos.

*This work is sponsored by the German Ministry of Research and Technology (BMFT) as
part of the project “KORSO - Korrekte Software”.



Therefore the usage of classifications, which we call sorts, is also important
in a specification language, because it forces the user to structure specifications.
This decreases both the error rate and makes specifications more readable for
people. Sorts can even be seen as a simple form of documentation.

Further, sorts are an important abstraction principle. They allow us to make
propositions about a collection of objects, which are valid for each member of this
collection. Thus, we can abstract in propositions from individual objects. At the
same time the proposition is restricted to the objects of a sort. In axiomatic
specification languages sorts serve therefore as a basis for restricting properties
to a subset of the universe of objects.

Besides this classical ordering and abstraction principle there are further rea-
sons for using sorts in specification languages, e.g. avoiding partial functions or
improving performance. But at this point we do not want to go into further
details.

Up to now we enumerated only advantages of sorts, but of course there are
also disadvantages. Sometimes the sort system hinders the user in his flexibility
and expressibility, because the sort system imposes too many restrictions on the
user. In some cases a problem must be adapted to fit a specific sort system. This
often leads to artificial specifications.

Another problem is that the user sometimes must write too much sort infor-
mation, which is unnecessary because it can be deduced from the context. This is
not only tiresome to write, but can lead to “unreadable” specifications. The aim
of a language designer must therefore be to provide a sort system that restricts
the user as little as possible, but as much as necessary.

However, sorts are only advantageous if their correct usage is automatically
checked. A sort system only makes sense, if we can guarantee that a specifica-
tion contains no error with respect to the sort system. Such sort systems are
called strong sort systems. Only a strong sort system really helps to decrease the
error rate, because sort errors are always detected and reported to the user. Be-
cause axiomatic specifications are in general not executable, the sort correctness
must be checked by a static specification analysis. In the framework of algebraic
specifications a strong sort system must therefore be a static sort system, i.e. a
sort system where the well-sortedness can be determined by static specification
analysis. This condition strongly restricts the choice of suitable sort systems for
specification languages.

2 An Introduction to Polymorphism

Many efforts have been made to weaken the strength of traditional sort systems.
Most of them try to allow a term to be not only of one sort, but of many dif-
ferent sorts. This ability in general is called polymorphism. This section gives a
brief introduction into polymorphism concepts used in functional programming



languages. A detailed introduction can be found in [CW85].

One of the oldest polymorphism concepts is the so-called ad-hoc polymor-
phism, better known as overloading. Overloading allows to use the same identi-
fier for completely different functions. A typical example is the infix identifier 4+
which is not only used for addition of various numbers, but sometimes also for
the concatenation of lists. In a language that provides overloading the user can
define both functions, i.e.

+ : Nat X Nat — Nat
4+ : List X List — List

and use them both in one term. From the sort context, normally by static pro-
gram analysis, it is decided which 4+ must be used, i.e. the overloading is resolved.
Strictly speaking, this is therefore not a kind of polymorphism because each term
again has exactly one sort. If not, the overloading can not be resolved. Normally
these terms are rejected as not well-sorted. Because overloaded identifiers are
resolved, ad-hoc polymorphism does not have to be dealt with in the semantics.

The most well-known proper polymorphism concept is called, due to Strachey
[Str67], parametric polymorphism. As the name suggests this is some kind of
abstraction principle that allows us to abstract from a concrete sort in a term.

Let us consider a function length that takes a list as argument and returns
the length of the list as result. This function can be defined by the following two
equations:

length emptylist = 0
length(append(x,1)) = succ(length 1)

The definition of the length function is independent of the contents of the
list (represented by x) and therefore independent of the sort of the list elements.
Thus, we can abstract from the element sort and assign the following sort scheme
to the function length:

length : Ila. List a — Nat

« is used as a sort variable and II as universal quantification for the sort
variables, indicating that « can be replaced by an arbitrary sort. List is a
unary function, called sort constructor, on the sort level taking a sort as argu-
ment and yielding a sort as result. The parametric polymorphism allows now
to apply the function length to a list of arbitrary sort. Let for example the
variables 1n: List Nat, 1ln: List List Nat and 1b: List Bool be defined.
Then length can be applied to all those variables, i.e. 1length(1ln), length(11ln)
and length(1b) are well-sorted terms.

If the sort quantifier is only used at the outermost level of a sort term, as
in our example, we get the simplest form of parametric polymorphism, called



shallow polymorphism or Hindley/Milner polymorphism, due to Hindley [Hin69]
and Milner [Mil78]. Because all sort variables are bound at the outermost level,
the quantifier 1I is normally omitted. This kind of polymorphism can be found
in many modern, functional programming languages. The first one was ML
[Har86), therefore the Hindley/Milner polymorphism is sometimes also called
ML polymorphism.

Another polymorphism concept that weakens the strength of traditional sort
systems is called subsort polymorphism or short subsorting. The subsort polymor-
phism allows to define a partial order on sorts, called subsort relation, which is
interpreted as set inclusion on the domains. The most well-known programming
language with a subsorting concept is OBJ [JKKMS88]. Subsorting allows us to
apply functions to elements of a subsort of the function’s parameter sort. Let us
assume that the sort Nat is a subsort of the sort Int, written NatCInt. If we
have a function 4+ with the functionality Int xInt—Int, the application of + to
a pair of natural numbers yields a well-sorted term, because the subsort relation
states that each value of sort Nat is also a value of sort Int.

Subsort polymorphism enables us to model inheritance in object oriented
frameworks. We will demonstrate in Section 5 how to model inheritance with
our universal polymorphism approach.

During the development of the functional programming language Haskell
[HJW92] the developers realized, that the existing polymorphism concepts are
not well-suited to model some kind of functions. They noticed that between ad-
hoc polymorphism and parametric polymorphism there is in some sense a gap.

finite finite infinite

length_Nat: List_Nat — Nat length: List_Nat — Nat
length_Bool: List_Bool — Nat length: List_Bool — Nat length: Hea. List @« — Nat

[
no ad-hoc parametric polymorphism

gap

Figure 1: Polymorphism Gap

Figure 1 shows, how the length function can be handled with different poly-
morphism concepts. The difference between no polymorphism and ad-hoc poly-
morphism is only a syntactic one, because overloading only allows to use the same
function identifier several times in one scope. But we are not allowed to overload
sort identifiers. We have to use a different identifier for each kind of lists. Thus,
in both cases we have a separate function for each sort and we can only define
a finite number of length functions. The parametric polymorphism in contrast



allows us to define only one length function which can be applied to lists of every
sort, because the sort variable a can be instantiated by an arbitrary sort. This
yields an infinite number of instantiations.

The problem is that there are a lot of functions that should be applicable
to an infinite number of sorts, but not to all sorts, i.e. an infinite subset of the
universe of sorts. A typical example is the equality between values. The equality
function == should be applicable on nearly every sort, but for example not on
functional sorts, because the equality of functions is undecidable. In a program
the application of == to functions leads to a run-time error which should be
avoided by the sort system. However, this can be achieved neither by ad-hoc, nor
by parametric polymorphism.

In the functional programming language Haskell this problem was solved by
using sort classes' [WB89]. This approach generalizes the equality type variables
of ML (see [Pau92] for details) and closes the gap between ad-hoc and parametric
polymorphism. It allows to structure sorts by typing them. In Haskell these
types are called classes. The classes are used to restrict the bound sort variables
in polymorphic functions by tagging them with classes. This leads to a typed
abstraction mechanism. The equality function == can be defined in the following

way?:

==: Jla::EQ. @ X a — Bool

This means, that == is only available on sorts which are in the class EQ. With
the following two definitions we can define which sorts are belonging to class EQ:

Nat::EQ
List::(EQ)EQ

The first line states that Nat must be in class EQ. The second line means,
that List is a function that takes a sort of class EQ and yields a sort of class
EQ. In other words, if sort A is in class EQ the sort List A is also in class EQ.
These declarations allow us to apply the function == on an infinite, but restricted
number of sorts. In our case == can be applied on all nested lists of sort Nat, i.e.
List Nat, List List Nat, ..., but on no other sort.

There are a lot of other examples where we want to use a function on an
infinite, but restricted number of sorts. See [HJW92] or [BFG*93] for more
examples.

Another reason for the introduction of the sort class concept in Haskell was to
make “ad-hoc polymorphism less ad-hoc”, as Wadler and Blott stated in [WB89].
In other words, the sort class concept can be used to model ad-hoc polymorphism
in a more structured way. Therefore in the following we do not deal with tradi-
tional overloading anymore.

Tn the functional community they are called type classes, of course.
2We will not use Haskell syntax in this section.



3 A Universal Approach to Polymorphism

In the last section we gave an overview of the most important polymorphism
concepts. We saw that parametric polymorphism, subsorting and the sort class
concept are very useful concepts to weaken the strength of a traditional sort
system. They all help to describe the task of a system in a problem oriented way.
It is therefore a natural desire to unity all these concepts in one language by a
universal polymorphism approach.

Mark P. Jones extended the sort class concept to n-ary sort predicates [Jon92].
In his approach bound sort variables can not only be restricted by sort classes,
but by arbitrary n-ary sort predicates. This allows to define functions of the
following sort scheme:

f: May,...,a,. Pilar,...,an], s Polar,. . a,] = 7lag,...,q,]

T is a sort expression containing possibly the sort variables aq,...,a,. The
sort variables can be restricted by predicates Pq,...,P,, of arbitrary arities. The
, between the predicates is interpreted as logical A. Jones calls these restricted
sorts qualified sorts. These qualified sorts are the basis for a universal approach
to polymorphism, because the above sort scheme includes all sort expressions
needed for the polymorphism concepts mentioned in the last section as a special
case. The functions from the last section can be given the following, in some
sense equivalent qualified sorts:

length: Ile. List o — Nat
==: [la. EQ(a) = a X a — Bool

Parametric polymorphism can be expressed trivially by qualified sorts, be-
cause we do not need any restricting predicate. Therefore the length function
stays the same. Also for the sort class concept it is quite easy to see that it fits
into the above scheme, because a class can also be seen as a unary sort predicate.
In our example the class EQ is replaced by a sort predicate EQ.

More complicated is the handling of subsort polymorphism. In Section 2 we
presented an implicit subsorting concept. Implicit, because besides the subsort
relation we do not need any other concept to use the subsorting, i.e. we do
not need any kind of coerce function, coercing elements of a sort to elements
of a supersort of this sort. The coercion is done implicitly, because the subsort
relation is interpreted as set inclusion on the domains. This implicit subsorting,
however, can not be expressed with qualified sorts. We can only provide some
kind of explicit subsorting.

Let us look at the addition function 4+ from Section 2. In a first step we
abstract from the concrete sort Int and get the following function:

+: Ila. o X a — «



However, this function is too general, because now + can be applied to ele-
ments of any sort. Thus, we must restrict the sort variable a by an appropriate
predicate. We only want to apply + on subsorts of Int. This can be achieved by
the following function:

+: IIeve. aCInt = a X a — «

The binary sort predicate C is used to restrict the sort variable a to all
subsorts of Int. This is, however, only the intended semantics behind the purely
syntactic identifier C. Later we will see, how to define this semantics.

Qualified sorts offer only explicit subsorting, because every function that
wants to use the subsort relation must explicitly use the restricting predicate
in its functionality. But this is not a drawback , because implicit rules are always
more susceptible to errors. Explicit subsorting achieved by qualified sorts is even
more expressive, because we can express the dependence of the result sort on an
argument sort. In our example adding two natural numbers yields again a natural
number and not an integer as in the implicit version. With implicit subsorting
this can only be achieved by overloading the identifier + or by using so-called
retract functions. See [Naz93| for a closer look at the problems that arise, when
using subsorting in an algebraic specification language.

Besides sort classes and subsorting there are other interesting applications of
qualified sorts. See [Jon92] for more examples.

As part of his thesis Jones occupied himself with the syntactic treatment of
qualified sorts in functional programming languages. He extends the Damas/Mil-
ner approach [DM82] to type inference and gives an algorithm that infers the
most general sort in the presence of qualified sorts. In his work he abstracts
from a concrete predicate system. His results are, up to a few basic assumptions,
independent of a concrete predicate system.

But qualified sorts are only a basis for a universally polymorphic language,
because we need a framework to describe the properties of the predicates used in
the qualified sorts. As already mentioned, C is only a predicate identifier without
any semantics. We must fix some properties like reflexivity and transitivity, and
we must define the desired subsort relations, like NatCInt. The same holds for
the class predicates. To complete the sort class concept, we must be able to
define, which sorts belong to a class. For example, we must be able to define, as
in Section 2, that all nested lists of sort Nat belong to class EQ.

But we do not want to restrict our specification language to the polymorphism
concepts described in Section 2. Therefore we need a universal predicate language
that allows us to define the properties of arbitrary predicates used in qualified
sorts.



4 A Universally Polymorphic Specification Lan-
guage

In this section we want to sketch briefly the idea of a universally polymorphic
specification language, i.e. a specification language that provides qualified sorts
together with a universal language to specify the properties of sort predicates.
We do not want to go into syntactic details and we do not want to speak about
the semantics of such a language. These areas are treated in [Naz94].

To realize this idea, we need a two-leveled specification language. Our specifi-
cations are divided into a specification on the sort level, called sort specification,
and a specification on the object level, called object specification, where the sec-
ond one depends on the first one. The specification on the object level as usual
defines the behaviour of the constants and functions. The sort level specification
defines the properties of the sort predicates used in the qualified sorts of the
object level.

On the object level we use a classical first order logic with higher order func-
tions, e.g. LCF [Pau87]. Because of the sort specification being used to define
the well-sortedness of the object specification, the sort specification must in some
sense be executable. Therefore we use a Horn-Clause logic on the sort level. This
language is on the one hand general enough to describe the properties of arbitrary
predicates and is on the other hand executable via resolution.

As already mentioned, we do not give an exact definition of our language.
We will explain the basic setup on a simple example which uses sort classes. In
Section 5 we will show on a larger example how to model inheritance with this
approach.

Example = {

—— Specification on the sort level
—— Sort constructors
cons Boolgy; Naty; Listy;

—— Sort predicates
pred EQ;;

—— Horn—Clause axioms
sortaxioms

EQ(Nat) ;

EQ(a) = EQ(List a);
endaxioms

—— Specification on the object level
—— Functions
fun O: Nat;



succ: Nat — Nat;

emptylist: Ila. List a;

append: Ila. @ X List a — List a;
#: llo. EQ(a) = o X List a — Nat;
.==.: Illa. EQ{a) = a X a — Bool;

—— First—order axioms
axioms EQ(a) = V a,b,c: «a, 1: List «.

—— Laws for ==
(a==a) = true;
(a==b) = true A (b==c) = true = (a==c) = true;

(a==b) true < (b==a) = true;
—— Laws for #
#(a,emptylist)

=O;
#(b,append(a,l)) =

if a==b then succ(#(b,1))
else #(b,1)
endif;

—— Application of # (theorem)
#(0,append(0,emptylist)) = succ 0;

—— Further laws

endaxioms }

—— starts a one line comment. The specification is split into a sort level and
an object level. As usual in the framework of algebraic specifications both levels
consist of a signature and an axioms part.

On the sort level the signature consists of the sort functions, called sort con-
structors, and the sort predicates. The number assigned to each identifier ex-
presses the arity of the constructor respectively predicate. In our example we
define a zero-ary sort constructor Nat, i.e. a sort constant or basic sort and a
unary sort constructor List. Further we define a unary sort predicate EQ.

In the axioms part of the sort level we define the desired properties of our
predicate EQ. Speaking in terms of classes, the first axiom states that sort Nat
belongs to class EQ. The second axiom says that if a sort a belongs to class
EQ then sort List « also belongs to this class. Thus we have defined the same
behaviour as in Section 2. This is of course only a small example. Our Horn-
Clause logic is universal enough to express more complicated structures, as we
will see in Section 5.

On the object level we will now use the predicate EQ to restrict our polymor-



phic functions. In the signature part of the object level we declare our functions.
This is the only place where we can declare a polymorphic function. If we allowed
to define a polymorphic identifier by A-abstraction, we would get a higher order
function with respect to polymorphism, i.e. we would get a function that takes a
polymorphic function as argument. This is not allowed in our approach. The rea-
son is that we restrict our language to shallow polymorphism. Therefore it also
makes no sense to allow polymorphic A-abstractions, because this A-abstraction
can only be applied once and not passed as argument.

We also do not allow to define polymorphic functions by the quantifiers V
and 4. The reason is that we do not want to make propositions about a set of
polymorphic objects. We only want to describe the behaviour of a particular
polymorphic object, like ==. Another more technical reason is that the sort of
bound identifiers is automatically inferred by a sort inference system, i.e. the user
can omit sort annotations for local identifiers. But if these identifiers are allowed
to be polymorphic no sort error would ever be detected, because the system can
always infer the totally polymorphic sort Ila. « for local identifiers. This would
lead to a nearly unsorted language. Thus, the signature of a specification replaces
the let-construct used in functional languages to define polymorphic functions.

On the object level we now define a polymorphic equality predicate == where
the sort variable « is restricted by the sort predicate EQ. In the same way we
restrict a function #, counting the number of occurrences of a particular element
in a list. Both functions are therefore only applicable on sorts that fulfil the sort
predicate EQ. Looking at the sort specification these are just all nested lists over
Nat, i.e. the sort specifications gives the intended semantics to EQ. Besides these
two functions which are the focus of our attention we need constructors for our
sorts Nat and List « with the usual semantics. We assume that all functions in
the signature are strict.

In the axioms part we now describe the laws of our functions by using tra-
ditional first order logic. We assume that V quantifies only over defined values.
The laws for == as well as for # are as usual. The equality function == is defined
to be an equivalence relation and the counter function # is defined recursively.
The interesting point of the specification lies in the universal quantification of
the variables used to define the polymorphic functions. These variables are as-
signed the sort « respectively List a. But note that by doing this we do not
declare a polymorphic identifier. In both cases the sort variable « is not bound
by a II at the outermost level of the sort expression, which is not allowed for
local identifiers. Thus, the variables have the same sort at each occurrence in the
axioms and are therefore not polymorphic. All sort variables are automatically
universally quantified at the outermost level of the object specification.

Like in the signature, we must restrict the sort variable a by the sort predicate
EQ. Otherwise the specification would not be well-sorted, because == as well as #
can only be applied to variables whose sort fulfil the predicate EQ. By using sort
variables in the axioms part we can fix the laws not only for one sort. The laws

10



must be valid for all instantiations of the sort variables which fulfil the restricting
predicate.

To show the application of # we added a simple theorem to our specification.
In the theorem we apply # to a list of natural numbers. This application is well-
sorted, because we can deduce from the sort specification that List Nat fulfils
the sort predicate EQ.

The example shows quite well the connection of polymorphism to param-
eterized specifications. Without polymorphism concept we would have used a
parameterized specification for that problem. In [GN93] it is shown that in many
cases parameterized specifications can be replaced by more elegant polymorphic
specifications.

5 Modelling Inheritance

In the last example we only gave a simple application of our universally polymor-
phic specification language. The example can, in a similar way, already be written
in the specification language SPECTRUM [BFG193], which provides a sort class
concept. The difference, however, is that SPECTRUM only provides sort classes,
whereas in this approach sort classes are only one of many possible applications.
In this section we will give an example of a completely different application of
our universal polymorphism approach. We will show that our language is also
well-suited to model inheritance in a smart way.

The example deals with the specification of a graphics system, one of the first
application areas of inheritance techniques. A similar specification can be found
in [Bre9l], which uses an implicit subsorting concept with overloading to model
the operations that can be applied to graphic objects. We restrict ourselves to
an abstract requirement specification. This specification can be used as a basis
to develop executable implementations.

In our example we use an operator enriches to structure the specification.
This operator is used to build hierarchical specifications by adding new sort
constructors, sort predicates, functions and axioms to the respective part of a
given specification.

The specification of the graphics system is based on a specification CART_COORD,
which provides the basic sort Coord together with the constructor, the selectors
and a few basic operations on coordinates. We assume that there is a specifi-
cation NUMBERS providing the sorts Nat, Int and Real together with the usual
operations. Moreover, we assume that V quantifies only over defined values and
that all functions are strict.

CART_COORD = { enriches NUMBERS;

cons Coordg;

11



fun —— Constructors and Selectors for Coord
.F.: Int x Int — Coord;
—: Coord — Int;
1: Coord — Int;

—— 0Other functions on Coord

$: Coord X Coord — Coord;

5: Coord X Coord — Coord;

mult: Coord X Nat — Coord;

scale_coord: Coord X Nat X Coord — Coord;

axioms V x1,x2,y1,y2: Int, n:Nat, cl,c2:Coord.

—— Laws for constructor and selectors
—(x1ky1) = x1;

1 (x1ky1) = y1;
—cl F Tecl = ci;

—— Laws for other functions

(x1Fy1) & (x2Fy2) = (x1+x2)F(yi14y2);
(x1ky1) 6 (x2Fy2) = (x1—x2)F(y1-y2);
mult(xiFyl,n) = (xlxn)F(yl*n);
scale_coord(cl,n,c2) = c2 @ mult(cli—c2,n);
—— Coordinate cl1 is scaled with factor n
—— relative to the reference point c2

endaxioms }

A graphics system generally provides a set of graphic objects together with
some operations to manipulate them. In our specification GRAPHIC_SYSTEM we
consider only the moving and scaling of objects. These two operations should
be available on all kinds of objects. Therefore we use polymorphic functions
and restrict the operations to graphic objects. Graphic objects are typically
hierarchically ordered by a so-called is-a relation. For example, a point is a line
and a line is a rectangle and a rectangle is a graphic object. This is-a relation
is used to specialize objects. A graphic object in our example is the most vague
term with the least properties. The terms rectangle, line and point are more and
more concrete and are only special cases of the others.

The is-a relation is strongly connected with the concept of inheritance. A
specialized object inherits all properties from a more general object. For examples
points, lines and rectangles inherit all general properties of a graphic object.
These properties also include the general operations like moving and scaling.

Normally the is-a relation is modelled by a subsort relation. Our universal
approach, however, allows us to specify directly this is-a relation. This leads

12



to a very problem-oriented specification and shows that our language is flexible
enough to describe different kinds of problems in a natural way.

On the sort level we define a new basic sort Graphic_0bj and a binary infix
sort predicate .is—a.. In the axioms part of the sort specification we define the
laws of the new sort predicate, namely the reflexivity and the transitivity.

In our specification each object is surrounded by an invisible rectangular
frame. The functions bl and tr yield the respective bottom-left and top-right
coordinate of this frame. The manipulating operations are specified by describing
their effect on the surrounding frame. All functions are defined polymorphically
and restricted by the predicate @ is—a Graphic 0bj. All functions can there-
fore be applied only on sorts which are graphic objects. We do not go into each
single axiom. Again we only look at the universally quantified identifiers.

The properties described in this specification are very general and should be
valid for all graphic objects. Therefore we use the sort variable « for the identifier
g and restrict o by the predicate o is—a Graphic_ Obj. Note that giving the
identifier g the sort Graphic Obj would yield a completely different semantics.
In this case all axioms would only be valid for the elements of sort Graphic 0bj
and not e.g. for the elements of sort Line, defined in the next specification. This
is because our approach is explicit. Defining sort predicates together with rules
does not influence the domains, i.e. the sort predicate is—a does not impose a
subset order on the domains.

GRAPHIC SYSTEM = { enriches CART_COORD;
cons Graphic Objg;
pred .is—a.;

—— Laws for the subsort predicate is—a

sortaxioms
a is—a o; —— Reflexivity
o is—a 3, § is—a v = « is—a 7v; —— Transitivity
endaxioms

fun bl, tr: Ha. a is—a Graphic 0bj = a — Coord;
move: [la. a is—a Graphic 0bj = a X Coord — aj;
scale: Ilae. @ is—a Graphic Obj = a x Nat X Coord — a;

axioms « is—a Graphic Obj = V g: «, c¢,d: Coord, n: Nat.
(move(g,c) = move(g,d)) & (c = d);

move(g,bl g) = g;
move (move(g,c),d) = move(g,d);

13



bl(move(g,c))
tr(move(g,c))

c3

bl(move(g,c)) & (tr g — bl g);

bl(scale(g,n,c)) = scale_coord(bl g,n,c);
tr(scale(g,n,c)) scale_coord(tr g,n,c);

scale(g,n,c) = move(scale(g,n,bl g), scale_coord(bl g,n,c));
endaxioms }

So far we have specified only those general properties of our manipulating
operations that are valid for all graphic objects. In POINT LINE we now add two
kinds of objects, points and lines, and give additional properties for them. In
the axioms part of the sort level we now define that Point is—a Line and that
Line is—a Graphic 0bj. Therefore all general properties of graphic objects are
inherited by points and line.

For all objects that are lines we define an additional function length com-
puting the length of a line. Again we use a restricted sort variable a for the line
variables is the axioms part. Note that for describing the properties of the points
we do not use a sort variable. The identifiers p and q are declared to be of sort
Point. This is equivalent to 3 with the restriction f is—a Point because there
is no proper specialization of the sort Point. However, if we later would like to
specialize the sort Point, we would have to use a restricted sort variable for the
identifiers p and q.

POINT LINE = { enriches GRAPHIC SYSTEM;
cons Pointy; Lineg;
sortaxioms
Point is—a Line;
Line is—a Graphic. 0Obj;
endaxioms
fun 1length: Ila. @ is—a Line = a — Real;

axioms a is—a Line = V p,q: Point, 1,11,12,13: a, c: Coord, n: Nat.

bl p = tr p;
length p = O;

Plp=0blqg) < (p=qQ;

(bl 11 = bl 12) A (tr 11 = tr 12) = (length 11 = length 12);
((b1 11 = bl 12) A (bl 11 = bl 13) A

14



(tr 11 = tr 12) A (tr 11 = tr 13)) =
((11=12) v (11=13) v (13=12));

length(move(l,c)) = length 1;
length(scale(l,n,c)) = n * length 1;

endaxioms }

6 Conclusion

We have sketched a universally polymorphic specification language, which allows
to use all kinds of polymorphism in one general approach. This is in contrast to
other languages which provide only one or two different kinds of polymorphism,
e.g. the specification language SPECTRUM which provides only parametric poly-
morphism and sort classes. We have seen in different examples that our approach
is flexible enough to model sort classes as well as inheritance in a very direct way.
Thus, the sort system does not hinder the user, but supports him in writing
problem-oriented specifications. Our approach is therefore a big step towards the
fulfilment of the requirement, that a sort system should restrict the user as little
as possible, but as much as necessary.

References

[BFG193] Manfred Broy, Christian Facchi, Radu Grosu, Rudi Hettler, Heinrich Huss-
mann, Dieter Nazareth, Franz Regensburger, Oscar Slotosch, and Ketil
Steglen. The Requirement and Design Secification Language SPECTRUM.
An Informal Introduction. Version 1.0. Part i. Technical Report TUM-
19311, Technische Universitit Miinchen. Institut fir Informatik, Fakultit
fiir Informatik, TUM, 80290 Miinchen, Germany, May 1993.

[Bre9l] R. Breu. Algebraic Specification Techniques in Object Oriented Program-
ming Environments, volume 562 of LNCS. Springer, 1991.

[CW85] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction,
and Polymorphism. ACM Computing Surveys, 17(4):471-523, December
1985.

[DM8&2] L. Damas and R. Milner. Principle Type-Schemes for Functional Programs.
In Proceedings of the 9th Annual Symposium on Principles of Programming
Languages, pages 207212, 1982.

[GN93] R. Grosu and D. Nazareth. Towards a new way of parameterization. Sub-
mitted to the Third Maghrebian Conference on Software Engineering and
Artifical Intelligence, June 1993.

15



[Har86]

[Hin69]

[HIW92]

[JKKMSS]

[Jon92]

[Mil78]

[Naz93]

[Naz94]

[Paul7]

[Pau92]

[Str67]

[WBS9]

Robert Harper. Introduction to Standard ML. Technical Report ECS-
LFCS-86-14, University of Edinburgh,Department of Computer Science,
November 1986.

R. Hindley. The Principle Type-Scheme of an Object in Combinatory Logic.
Trans. Am. Math. Soc., 146:29-60, December 1969.

P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the Program-
ming Language Haskell, A Non-strict Purely Functional Language (Version
1.2). ACM SIGPLAN Notices, May 1992.

J.-P. Jouannaud, C. Kirchner, H. Kirchner, and A. Megrelis. OBJ: Pro-
gramming with Equalities, Subsorts, Overloading and Parameterization. In
J. Grabowski, P. Lescanne, and W. Wechler, editors, Algebraic and Logic
Programming, pages 41-53. Akademie-Verlag Berlin, 1988.

Mark P. Jones. Qualified types: Theory and practice. Technical Mono-
graph PRG-106, Oxford University Computing Laboratory, Programming
Research Group, July 1992.

Robin Milner. A Theory of Type Polymorphism in Programming. Journal
of Computer and System Sciences, 17:348-375, 1978.

Dieter Nazareth. Modelling inheritance in an algebraic specification lan-
guage. In Jianping Wu et al., editor, Proceedings of the Third International
Conference for Young Computer Scientists, Beijing, pages 9.05-9.08. Ts-
inghua University Press, July 15-17 1993.

Dieter Nazareth. A Universally Polymorphic Specification Language. PhD
thesis, Technische Universitdt Miinchen, 1994. to appear.

L.C. Paulson. Logic and Computation, Interactive Proof with Cambridge
LCF, volume 2 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1987.

Lawrence C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, 1992.

C. Strachey. Fundamental Concepts in Programming Languages. In Lec-
ture Notes for International Summer School in Computer Programming,
Copenhagen, 1967.

Philip Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less Ad
hoc. In 16th ACM Symposium on Principles of Programming Languages,
pages 60-76, 1989.

16



