
Modelling Inheritance in an Algebraic Speci�cation

Language�

Dieter Nazareth

Institut f�ur Informatik� Technische Universit�at M�unchen

Postfach ���� ��� D����� M�unchen �� Germany

e�mail� nazareth�informatik	tu�muenchen	de

Abstract

This paper points at the retract problem that arises� when using subsorting�

in a not necessarily executable algebraic speci�cation language� We show how

this problem can be circumvented in many important cases by the use of con�

ditionally polymorphic functions� Further� we will see that this sorting facility

is well�suited to model inheritance in a smart way� We give a simple example

which demonstrates this approach in the speci�cation language Spectrum�

� Subsorting in a Speci�cation Language

Statically sorted languages help to increase the perceivability of programs	 Many
errors can be detected and corrected at compile time	 Sometimes� however� the sort
system is too rigid and therefore restricts the expressiveness of the language	

One concept to weaken the strength of the sort system is to allow subsort re�
lations between sorts	 The partial ordering on the set of sorts is interpreted as set
inclusion on the domains	 The most well�known programming language with a sub�
sorting concept is OBJ 
��	 Subsorting allows us to apply functions to elements of
a subsort of the function
s parameter sort	 This is an important concept to model
inheritance in object oriented frameworks	 Let us assume that the sort Nat is a
subsort of the sort Int� written Nat � Int	 If we have a function � with the func�
tionality Int � Int� Int� then the application of � to a pair of natural numbers
yields a well�sorted term� because the subsort relation states that each value of sort
Nat is also a value of sort Int	

Another reason for the use of subsort relations is the possibility to avoid par�
tial functions	 Functions can be made total by restricting the parameter sort to an
appropriate subsort	 The predecessor function pred on natural numbers is an exam�
ple for a partial function� because pred is unde�ned on �	 The following signature
shows� how pred can be made total by using a subsort�

sort PosNat� Nat� PosNat � Nat�

succ�Nat� PosNat�

pred�PosNat� Nat�

�This work is sponsored by the German Ministry of Research and Technology �BMFT� as part
of the compound project �KORSO � Korrekte Software��

�We generally use the word sort instead of type� to avoid confusion with the notion of abstract
data types�

�



The above signature allows us to apply the function succ repeatedly� e	g	 succ�succ
����	 This expression is well�sorted� because the subsort relation PosNat � Nat

enables us to coerce the term succ��� to the sort Nat	 If we look at the expres�
sion pred�pred�succ� succ������ we would expect that the evaluation yields the
proper value �	 This term� however� is not well�sorted� because the sort Nat of
pred�succ�succ�����must be coerced to PosNat� which is not possible in general	

In a functional programming language there is a simple solution to this problem	
If a value of sort � must be coerced to a subsort � the compiler inserts a so�called
retract function r with functionality ���	 This retract function yields a sort error
at runtime� if the coercion is not possible	 The above example would be changed
by the compiler to pred�r�pred�succ�succ�������	 So parts of the sort check
are deferred to the run�time of the program	 The price one has to pay is the loss
of the static sort system	 But retract functions keep the language strongly sorted�
because at run�time the sort errors are detected	

In a non�executable speci�cation language� however� there is no such simple so�
lution to this problem	 Because� if the speci�cation cannot be executed� parts of the
sort check cannot be deferred to the run�time	 Thus� in a non�executable language
a strong sort system must be a static sort system	 Of course� the problem is solved
if we abandon the strong sort system� but especially for a speci�cation language
a strong sort system is important� because speci�cation errors concerning the sort
system can be detected at an early speci�cation phase� before a time consuming
development is started	

A trivial solution to the problem seems to be the insertion of a retract function
r��� � by the speci�er	 The function must be speci�ed to behave like the identity
function on the subsort � and is left open on all other elements of �	 Usually these
elements are mapped to the unde�ned value �� as in the following example�

r�Nat� PosNat�

�x�Nat�if x�� then r�x��� else r�x��x endif�

But this is not a real solution to the problem	 Firstly� one needs a lot of retract
functions with respective axioms and one has to use this retract functions explicitly
in the axioms	 So the sort system again hinders the user in writing elegant spec�
i�cations	 Secondly� the problem was solved by using a partial function	 But in
the above example subsorting was introduced to avoid partial functions	 Therefore�
in a speci�cation language the subsorting concept is not suitable to avoid partial
functions like in a functional programming language	

Nevertheless� subsorting is also useful in a speci�cation language because� like
already mentioned� it is a central mechanism in object oriented approaches	 All
functions applicable to elements of a supersort can also be applied to elements of
a subsort	 Thus subsorting is a concept that supports the reuse of software which
is one of the main goals in software engineering	 For an important class of subsort
applications we will show a smart solution to the retract problem	

� Conditionally Polymorphic Functions

Another concept to weaken the strength of traditional sort systems is paramet�
ric polymorphism�� which can be found in many modern languages	 The most
well�known polymorphic language is the functional programming language ML 
��	
Therefore this kind of polymorphism is also sometimes called ML�polymorphism	

Parametric polymorphism allows a function to work uniformly on an in�nite
range of sorts having a common structure	 This common structure is achieved

�Do not confuse this kind of polymorphism with the so�called ad�hoc polymorphism� which is
also called overloading�

�



with the help of sort constructors and sort variables in the sort expression of an
identi�er	 A typical example for a polymorphic function is the function len which
computes the length of lists	 This function is independent of the sort of the list
elements	 Therefore we can write one function len with the functionality List �

� Nat where � is a sort variable	
If we combine the subsorting facility with the parametric polymorphismwe get a

richer sort system which is decidable by static program analysis if a few restrictions
are considered 
��	 However� the principal sort of an expression� representing all
valid sorts of the expression� cannot be expressed by a sort expression alone	 We
need a pair consisting of a sort expression and a set of subsort relations between
sort expressions� called coercions	 The ��expression �f��x�f�f x�� for example�
has the principal sort 	��� ��� �� �� f� � �g
	 This means that the
��expression belongs to any sort� which is an instance of the �rst component of
the principal sort� with the additional condition that the respective instances of �
and � must ful�ll the given coercion� namely that � must be a subsort of �	 In the
speci�cation language Spectrum 
�� such functions can be declared in the signature
of a speci�cation and are called conditionally polymorphic functions	

In many cases this kind of functions is suitable to overcome the retract problem	
Let us look at the following signature�

sort Nat� Int� Real�

Nat � Int� Int � Real�

����Real � Real� Real�

It allows us to apply the function ��� to elements of sort Real� Int and Nat	
But the result is always of sort Real and must be coerced with a retract function to
the appropriate subsort	 Now we change the functionality of ��� in the following
way�

���� � � �� � f� � Realg�

This signature also allows us to apply ��� to elements of the sort Real� Int and
Nat	 But the result of the application is now of sort Real� Int or Nat� depending
on the sort of the arguments	 The expression ���� for example� is of sort Nat� if �
and � are of sort Nat	

The conditional polymorphism is a more powerful sort concept� which enables
us to express the fact� that the result of applying a function to an element of a
subsort again is an element of this subsort	 This is some kind of closure property	
The subsorting concept by itself is too weak to express such a property	

Note� however� that this proceeding is not suitable in general to solve the retract
problem in statically sorted languages	 E	g	 it is not possible to change the func�
tionality of �
��Real � Real� Real in the same way� because the subtraction of
two natural numbers not always yields a natural number� i	e	 the subtraction is not
closed with respect to the natural numbers	 But the closure property is typical for
object oriented problems and therefore the conditional polymorphism is well�suited
to model inheritance in object oriented frameworks	

� The Speci�cation Language Spectrum

We will now show on an example how the conditional polymorphism can be used to
specify a system with subsort relations in a smart way	 To understand the example
speci�cation we give a brief introduction to the speci�cation language Spectrum
we will use	 A detailed informal introduction can be found in 
��	

�



Spectrum is an algebraic speci�cation language which is currently developed
at the TUM�	 The language is not restricted to conditional�equational axioms� but
allows full �rst order logic with higher order functions	 It contains explicit support
for partial and non�strict functions and has a rich sort system including polymor�
phism and subsorting	 The semantics of a speci�cation is denoted by the class of
all algebras which ful�ll the given axioms�	

We will now explain some basic syntactic constructs that are used in the example	
The language is divided into two parts� one for specifying a component �in the small�
and one for structuring speci�cations �in the large�	 As usual� a speci�cation in the
small consists of a signature part and an axioms part	 A one line comment starts
with ��	 The arrow�in a sort expression means that the identi�er denotes a strict
and total function	 Each speci�cation implicitly contains a prede�ned signature
including the sort Bool and some basic functions like the polymorphic equality
����� � �� Bool	 Spectrum has a similar construct like the data�construct
in Haskell 
��	 In the speci�cation CART COORD �see Section �� the sort Coord is
speci�ed together with its constructor 	�	 and its destructors � and �� selecting
the x�part respectively y�part of a coordinate	

In our example we only need the enriches operator to structure the speci�ca�
tion	 This operator is used to build hierarchical speci�cations by adding new sort�
function symbols and axioms to a given speci�cation	 These basic explanations
should be enough to understand the following example	

� The Speci�cation of a Graphic System

The following example deals with the speci�cation of a graphic system� one of the
�rst application areas of object oriented techniques	 A similar speci�cation can be
found in 
��� but in contrast� we will use conditionally polymorphic functions to
model the operations that can be applied to the objects	 We restrict ourselves to
an abstract requirement speci�cation	 This speci�cation can be used as a base for
developing executable implementations	

The speci�cation of the graphic system is based on the speci�cation CART COORD�
which provides the sort Coord together with the constructor� the destructors and
a few basic operations on coordinates	 We assume that there is a speci�cation
NUMBERS providing the sorts Nat� Int and Real together with the usual operations	

CART COORD � f enriches NUMBERS�

sort Coord � ������Int���Int� strict�

���� Coord � Coord � Coord�

�
�� Coord � Coord � Coord�

mult� Coord � Nat � Coord�

scale coord� Coord � Nat � Coord � Coord�

axioms �x��x��y��y��Int�n�Nat�c��c��Coord in

�x��y�� � �x��y�� � �x��x����y��y���
�x��y�� 
 �x��y�� � �x�
x����y�
y���

mult�x��y��n� � �x��n���y��n��
scale coord�c��n�c�� � c� � mult�c�
c��n��

�� coordinate c� is scaled with factor n

�Technische Universit�at M�unchen
�This is known as loose semantics�

�



�� relative to the reference point c�

endaxioms� g

A graphic system generally provides a set of graphic objects together with some
operations to manipulate them	 In our speci�cation GRAPHIC SYSTEM we consider
only the moving and scaling of objects	 These two operations are speci�ed by
conditionally polymorphic functions� because they are both closed with respect to
all graphic objects	 For example moving or scaling a line yields again a line	 If we
would use a function move��Graphic Obj � Coord� Graphic Obj we would loose
sort information by moving objects� because the result of applying the function
move� to a line would always be of sort Graphic Obj	 The same holds for the
scaling function	

In our speci�cation each object is surrounded by an invisible rectangular frame	
The functions bl and tr yield the respective bottom�left and top�right coordinate
of this frame	 The manipulating operations are speci�ed by describing their e�ect
on the surrounding frame	

GRAPHIC SYSTEM � f enriches CART COORD�

sort Graphic Obj�

bl� tr� Graphic Obj � Coord�

move�� � Coord � � f� � Graphic Objg�
scale�� � Nat � Coord � � f� � Graphic Objg�

axioms � g�Graphic Obj� c�d�Coord� n�Nat in

�move�g�c� � move�g�d�� � �c � d��

move�g�bl g� � g�

move�move�g�c��d� � move�g�d��

bl�move�g�c�� � c�

tr�move�g�c�� � bl�move�g�c�� �

�tr g 
 bl g��

bl�scale�g�n�c�� � scale coord�bl g�n�c��

tr�scale�g�n�c�� � scale coord�tr g�n�c��

scale�g�n�c� � move�scale�g�n�bl g��

scale coord�bl g�n�c���

endaxioms� g

So far we have speci�ed only those general properties of our manipulating oper�
ations that are valid for all graphic objects	 In POINT LINE we now add two kinds of
objects� points and lines� and give additional properties for them	 The sort Point
is speci�ed to be a subsort of Line� because every point is a trivial line	 Line is
a subsort of Graphic Obj	 Therefore all general properties of graphical objects are
also valid for points and lines	

In the axioms marked with an � we pro�t from the conditional polymorphism	
Because the universal quanti�cation of l is restricted to the sort Line� both move

and scale yield a value of sort Line	 Therefore the function length can be ap�
plied without retract function	 If we would use the function move� in the same
context we would need an appropriate retract function to coerce the object from
sort Graphic Obj to sort Line	

�



POINT LINE � f enriches GRAPHIC SYSTEM�

sort Point� Line�

Point � Line� Line � Graphic Obj�

length� Line � Real�

axioms � p�q�Point� l�l��l��l��Line�

c�Coord� n�Nat in

bl p � tr p�

��p�Point� p�l� � length l � ��

�bl p � bl q� � �p � q��

��bl l� � bl l�� 	 �tr l� � tr l���


 �length l� � length l���

��bl l� � bl l�� 	 �bl l� � bl l�� 	
�tr l� � tr l�� 	 �tr l� � tr l���


 �l��l�� � �l��l�� � �l��l���

length�move�l�c�� � length l� ���
length�scale�l�n�c�� � n�length l� ���

endaxioms� g

� Conclusion

We pointed at the retract problem which arises when using subsort relations in
a statically sorted language	 We have seen that subsorting is not suited to avoid
partial functions in non�executable speci�cation languages like in the executable
speci�cation language OBJ	 However� for an important class of subsorting appli�
cations the retract problem can be circumvented with conditionally polymorphic
functions	 We demonstrated that the conditional polymorphism is well�suited to
specify with inheritance in object oriented applications	 Together with parametric
polymorphism the subsorting concept is therefore also useful in a non�executable
algebraic speci�cation language� because it helps to solve the problem of software
reuse in software engineering	

References


�� J	�P	 Jouannaud� C	 Kirchner� H	 Kirchner� and A	 Megrelis	 OBJ� Programming
with equalities� subsorts� overloading and parameterization	 In J	 Grabowski�
P	 Lescanne� and W	 Wechler� editors� Algebraic and Logic Programming� pages
�����	 Akademie�Verlag Berlin� ����	


�� Robert Harper	 Introduction to Standard ML	 Technical Report ECS�LFCS�
������ University of Edinburgh� November ����	


�� Y	�C	 Fuh and P	 Mishra	 Type inference with subtypes	 In ESOP ��� pages
������	 Springer Verlag� ����	


�� M	 Broy� C	 Facchi� R	 Grosu� R	 Hettler� H	 Hu�mann� D	 Nazareth� F	 Re�
gensburger� and K	 St�len	 The Requirement and Design Speci�cation Language

�



SPECTRUM� An Informal Introduction� Version �	�	 Technical Report TUM�
I����� Technische Universit�at M�unchen� ����	


�� P	 Hudak� S	 Peyton Jones� and P	 Wadler� editors	 Report on the Program�
ming Language Haskell� A Non�strict Purely Functional Language �Version ����	
ACM SIGPLAN Notices� May ����	


�� R	 Breu	 Algebraic Speci�cation Techniques in Object Oriented Programming
Environments� volume ��� of LNCS	 Springer� ����	

�


