
Use Case Oriented Development of Security-Critical
Systems�

Jan Jürjens and Gerhard Popp and Guido Wimmel
Department of Computer Science, Munich University of Technology

Bolzmanstraße 3, D-85748 Garching, Germany
phone: +49-89-28917832 fax: +49-89-28917307

�juerjens,popp,wimmel�@in.tum.de

February 20, 2003

Abstract

Since the connection of computers over the Internet and the expansion of dis-
tributed systems, they are confronted with more and more attacks. To counteract this
circumstance, we have to consider security requirements from the beginning of the sys-
tem development. In early phases of system development, it is common to use a two-
part process for the elaboration of the application core and the functional specification
in use cases. In this paper, we show an extension of this process for security-critical
systems. We show a methodical concept for the development of security-critical sys-
tems and the modelling of security aspects in the application core with an extension
of the Unified Modelling Language, here UMLsec. Furthermore, we introduce secu-
rity use cases for the development of security aspects in conjunction with behavioural
modelling.

1 Introduction

Developers and customers think both about objects (e.g. an account) and about tasks or ac-
tivities (e.g. selling a book) in the early phases of a software development process. Whereas
objects can be modelled in a data model, experience in the field of software engineering
shows that the operational concept, i.e. specifying the behaviour with function signatures in
the data model, does not meet the requirements on behavioural modelling. For this case, the
application ofUse Cases(see [JCJO92, JBR99]) for the modelling of the dynamic aspects
is widely accepted.

The idea of aUse Case Oriented Development(see [Bre98, Bre02, Kru00, JBR99,
DW98]) is a hybrid process with a functional and object-oriented view of the system. The
core of the static system is modeled in a class diagram and the actions in use cases. The

�This work was partially supported by the German Ministry of Economics within the FairPay project.

1



integration of the use cases into the static core leads to an object-oriented view with static
as well as dynamic aspects.

Whereas the object-oriented development of a data model for the core system is widely
agreed upon, we want to consider a more specific definition of a use case than used normally
(see [DW98, FS98, Bre98, Bre02]): A (joint action) use case is a joint interaction of a user
with a system for the execution of a task.

We describe use cases in an informal way as plain text. The use case description has to
answer the following questions:

� Which actor is involved?

� Which data or objects does the actor exchange with the system?

� Which classes of the core system are changed by the execution?

� Which expected behaviour does the system show?

� Which variation of the expected behaviour does exist?

After the elaboration of the use cases and the specification of the core system in a
domain model, e.g. in a class diagram, we have the information that is needed for further
development steps leading finally to the software product.

Since IT systems become more and more interconnected, they also become exposed to
an increasing number of attacks. Thus, we additionally have to observe security aspects
in the software development process. Security is a complex non-functional requirement
which can only be guaranteed by the interaction of many parts in the system. Leaving
security aspects to late stages and not considering them systematically (as it is often done)
makes their integration extremely difficult and increases the potential for the final product
to contain vulnerabilities.

In this paper, we present a methodology to integrate security aspects into the early
phases of development, based on the hybrid process described above. Security require-
ments are captured within the requirements engineering process and represented both in the
respective use case and data models.

Our approach is based on the secure systems extension UMLsec [J¨ur02b, Jür02a, J¨ur03]
of the Unified Modelling Language, the de-facto industry standard in object-oriented mod-
elling.

In Section 2 we give an overview over the overall two-part process for security develop-
ment, before we explain in detail the security data modelling in Section 3 and the security
use case modelling in Section 4. Section 5 summarizes the integration of the two models
and introduces the next development steps. In Section 6 we consider related work before
we give a short conclusion in Section 7.

2



2 Methodical Concept for Specifying Security-Critical Systems

The common process in the object-oriented software development establishes a class di-
agram for the data model. In this diagram, the static data of the domain is collectively
modeled with the associations between the data structures. Whereas the class diagram rep-
resents only the data structures, the interaction sequences where the user is confronted with
the system are initially described by text in the requirements specification (see [Som00]).
After a closer specification for each function, use cases are elaborated, which describe,
group, divide and extend the functions in a moderate way. After the elaboration of the do-
main model and the behaviour in use cases, they are connected to an object-oriented system
specification.

the core application

class diagram

identification from classes of

extension of the application

core with security aspects

class diagram

systematical description in plain text

extension of the use cases

with security aspects

systematical description in plain text

specification of the united system

behavioural specification

class diagram +

integration in oo view

oo view

sec view

functional

view

oo view

sec view

use case specification

Figure 1: Methodical Concept for Specifying Security-Critical Systems

So far, security aspects are not considered. At most, the requirements specification
describes, in a section about non-functional requirements, that the system has to be secure
and explains in plain text which requirements should be met.

A systematic way for the integration of security aspects is that we extend both the do-
main model and the use cases with security information. After the definition of the class
diagram, we extend, in a further step, the class diagram with security information. For ex-
ample, we consider the classes, attributes and relations and decide whether they should be
protected. In Section 3 the necessary extension process and the necessary UML-extension
are explained.

The two-part process of structure and function development forces a security specifica-
tion for the functional development as well. For this reason, in addition to extending the

3



class diagram, we also extend the developed use cases with security information. We con-
sider the input and output data as well as the interaction sequences and categorize them into
critical and non-critical actions. How we elaborate the security aspects of the use cases is
described in Section 4.

In Section 5, we outline the integration of the two security-enriched models into a com-
mon object-oriented view. Furthermore we describe the further development steps within
the system development.

Figure 1 show the security enriched extended methodical concept. It is derived from
[Bre98, Bre02], where security aspects were not considered.

3 Static Security Data Modelling with UMLsec

We recall the fragment of UMLsec [J¨ur02b, Jür02a, J¨ur03] which concerns static data mod-
elling. UMLsec allows one to express security-related information within the diagrams in
a UML system specification. The extension is given in form of a UML profile using the
standard UML extension mechanisms.Stereotypesare used together withtagsto formulate
security requirements and assumptions on the system environment;constraintsgive criteria
that determine whether the requirements are met by the system design.

Stereotypes define new types of modelling elements extending the semantics of existing
types or classes in the UML metamodel. Their notation consists of the name of the stereo-
type written in double angle brackets�� ��, attached to the extended model element. This
model element is then interpreted according to the meaning ascribed to the stereotype.

One way of explicitly defining a property is by attaching ataggedvalue to a model
element. A tagged value is a name-value pair, where the name is referred to as thetag. The
corresponding notation is���� � ������ with the tag name��� and a corresponding�����
to be assigned to the tag. Tags can define either data values (DataTags) or references to
other model elements (ReferenceTags). If the value is of type Boolean, one usually omits
���� � ������, and writes����� instead of���� � �����.

Stereotype Base Class Tags Constraints Description
secrecy dependency assumes secrecy
integrity dependency assumes integrity
high dependency high sensitivity
critical object secrecy, critical object

integrity,
high

Figure 2: UMLsec stereotypes

Another way of adding information to a model element is by attachingconstraintsto
refine its semantics.

Stereotypes can be used to attach tagged values and constraints as pseudo-attributes of
the stereotyped model elements.

4



Tag Stereotype Type Multipl. Description
secrecy critical String * secrecy of data
integrity critical String * integrity of data
high critical String * high-level message

Figure 3: UMLsec tags

In Figure 2 we give the relevant fragment of the list of stereotypes from UMLsec, to-
gether with their tags and constraints. Figure 3 gives the corresponding tags.

We explain the use of the stereotypes and tags given in Figures 2 and 3.

critical This stereotype labels objects that are critical in some way, which is specified in
more detail using the corresponding tags. The tags are���������, �����������, and�	��	�.
The values of the first two are the names of expressions or variables (that is, attributes or
message arguments) of the current object the secrecy (resp. integrity) of which is supposed
to be protected. The tag�	��	� has the names of messages as values that are supposed to
be generally highly sensitive.

secure dependency One may use the above stereotypes to enforce the condition ofsecure
dependency, which ensures that the���
�� �� and ������ �� dependencies between (interfaces
of) objects respect the security requirements on the data that may be communicated across
them, as given by the tags���������, �����������, and�	��	� of the stereotype��������
� ��.
More exactly, the constraint enforced is that if there is a���
�� �� or ������ �� dependency from
an object� to an interface� of an object	 then the following conditions are fulfilled.

� For any message name
 in �, 
 appears in the tag��������� (resp.����������� resp.

�	��	�) in � if and only if it does so in	.

� If a message name in� appears in the tag��������� (resp.����������� resp.�	��	�)
in � then the dependency is stereotyped��������� �� (resp.�� ��������� �� resp.��	��	 ��).

If the dependency goes directly to another object without involving an interface, the same
requirement applies to the trivial interface containing all messages of the server object.

As an example, Figure 4 shows a key generation subsystem instance with the require-
ment�����
�� ���������� ��. The given specification violates this constraint, since Random
generator and the���
�� �� dependency do not provide the security levels for random() re-
quired by Key generator. More precisely, the constraint is violated, because the message
��
�
� is required to be of high level by Key generator (by the tag�	��	� in Key genera-
tor), but it is not guaranteed to be high level by Random generator (in fact there are no high
messages in Random generator and so the tag�	��	� is missing).

5



Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{high={random()}}

Figure 4: Key generation subsystem instance

4 Security Use Case Modelling

In the part about non-functional requirements of the requirements specification, the security
requirements are described in plain text for the complete system. These security require-
ments affect both the data structure, as we have seen above, and the behavioural specifica-
tion. In the use case specification the functions of the system have been elaborated to use
cases. Now we have to map the overall security aspects to the use cases and extend them
if necessary. After the mapping we can decide between the following three different use
cases.

The use case is not security-critical, i.e. no given security requirement has to be imple-
mented in the use case. For instance, in a web-based telephone system the user looks
for a phone number in the online directory before he instructs the system to establish
a connection. Since phone number directories are publicly accessible, the query is
not security-critical.

It is a security-critical use case, it has to meet one or more security aspects from the non-
functional, overall specification. In our web-based telephone system a user sends a
request for a new telephone access. The following security aspects are adopted from
the non-functional specification: The data of the request is confidential, its integrity
has to be ensured, and repudiation has to be prevented.

A new use case has to be added to the system to fulfil the required security aspects. A
necessary condition for guaranteeing confidentiality, integrity and non-repudiation is
that the user must be logged on the system. For this reason we need an authentication
mechanism. This function originally is not part of the functional list in the require-
ments specification and therefore not elaborated as a use case before security aspects
are considered. Such new use cases have a��
��� �� relationship to the security-critical
use cases that rely on the functionality they provide.

6



USE CASE: ESTABLISH A CONNECTION

Risk associated with the actor
The actor establishes a connection without any encryption, so there is no way to iden-
tify the sender and the connection can be eavesdropped.

Security I/O Data
Input: When establishing the connection, the caller selects the phone number of the
destination.�The phone number is critical, because it can be attacked.�
Output: The system sends a messageready or aborted to the caller.�The mes-
sages are critical, because they can be attacked.�

Modified Classes
Connection

Added Classes
Key generation, Key storage, Crypt message

Modified System Behaviour
The system has to exchange the data over a secure channel. After the caller selects the
phone number, the system generates a session key. The system exchanges the session
key with the opposite system in an encrypted way. Afterwards, the system can encrypt
and decrypt the data with the known key.

Figure 5: Use Case Extension: Establish a Connection

Whereas for non security-critical use cases there is nothing to do with regards to secu-
rity, the recovery of security aspects for the second and third use case type may be complex.
We suggest the application of a question catalogue for deriving the security aspects from
the elaborated standard use cases. The following questions have to be answered for every
security-critical and every new use case.

� Which risks are connected with the actor who is involved in or starts a use case?

� Which input and output data of the use case is security-critical when we analyze them
with respect to security aspects like authenticity, integrity, confidentiality, availability
and non-repudiation?

� Normally, the use case affects classes in the application core. Which classes have
to be modified and how strongly does the security aspect affect the classes ? Do we
have to change only attributes, or also behaviour of the classes, as far as behaviour is
described in this early phase?

� How does the modified system behaviour look like? For example, we may have new
error messages, abnormal terminations, reduced operability, etc.

� Do we have additional action sequences due the specification of security aspects?

The elaborated security aspects are described in plain text as well. In contrast to the
textual description in the requirements specification this description is more structured. The

7



structure is derived from the questions. In addition to the textual specification we can model
the behaviour between the actor and the system in a sequence diagram (see [FS98]), en-
riched with the necessary security communication between the two participants. [FH97]
suggests enriched sequence diagrams in which the security constraints are added to mes-
sages and are displayed in curly brackets.

In Figure 5 we show a security extension for the use case “Establish a Connection” over
a telephone line. For the system, a non-functional requirement is given: the communication
must be secure. In this example, all input and output data are critical, as described textually.
Additionally, we have emphasised these security requirements through curly brackets as
suggested for interaction diagrams in [FH97].

5 Outline of Integration and Further Development Steps

After the integration of the security aspects into both the application core and the use case
specification, the two views will be connected before the design process can begin. We ex-
tend the class diagram with a class for every use case. This class later holds the behavioural
sequence functions.

Furthermore, the mapping of the security aspects takes place in the integration step.
Every use case has input and/or output data. If the data structure of this data is not part of
the class diagram, we have to add the necessary new classes. Additionally, we have to map
the security aspects of the input and output data. For each attribute or the whole class we
have to test whether the security specification is the same as in the class diagram. Otherwise
we have ignored some security aspects in the preceding static security data modelling or in
the security use case modelling. This adjustment brings the opportunity to add missing
security aspects and helps therefore to avoid important security problems in both the data
model and the functional specification.

For the example given in Section 4 we need a data type for the phone number and one for
the return message in the domain model, if the classes do not exist yet. The phone number,
as well as the return message are classified as security-critical in Figure 5. For this reason,
the added classes have to be classified critical, too. During the design the attributes of the
phone number class and the message class must be specified according to the classification
of the class. If e.g. the phone number class existed before the integration process started,
then we have to check the class whether it is classified critical. If not, we have detected a
disagreement and we have to adapt the domain model.

Further, in the integration we may realize that we need special security classes, for
example for the implementation of a cryptographic algorithm. We can add them to the class
diagram in this early stage and we therefore have the ability to bring more structure into the
data model.

After the integration, the integrated class diagram and the enriched use case diagrams
are the starting points for the analysis phase. In this phase, a refinement of the behavioural
specification from the use cases takes place, the example sequences have to be enriched

8



with all possible alternatives, and the messages within the system have to be considered
more closely with respect to the communication between single objects, and not merely
between the actor and one system object.

6 Related Work

E. B. Fernandez and J. C. Hawkins present in [FH97] an extension of use cases and in-
teraction diagrams to develop distributed system architecture requirements. Among other
non-functional requirements they introduce questions for the extension of use cases, too,
but without relating the use cases to class diagrams. In contrast to our security use case
modelling the paper presents a universal list of questions for requirements elaboration, like
e.g. system communication load, fault tolerance, safety, real-time deadlines and security.
For these reasons, the questions are less specific than in our context. Furthermore, the pre-
sented questions are aimed at the detection of use cases from scratch, whereas in contrast
to this, our approach extends existing use cases, with exception of the third use case type
given in 4. [BKL02] uses use cases for access control design. [FMMMP02] employs use
cases in the context of secure database design and [BPRF99] in the context of security in
healthcare. However, these works are mainly focused on application examples for use cases
in security-critical systems, not on giving a methodology for their development or a concept
for their integration with domain models.

7 Conclusion and Further Work

In this paper we suggested a methodology to integrate security aspects from the beginning in
a system development process. Through the introduced methodical concept for specifying
security-critical systems we consider security aspects in both the static domain model and
the functional specification. For the elaboration of the functional aspects we introduced a
question catalogue and for the domain model an appropriate UML-extension.

A worthwhile direction of further investigation would be to try to continue combining
the approach of use case oriented development with ideas from model-driven development
(also called model-driven architecture) by including further kinds of UMLsec diagrams in
the approach, beyond the security-annotated class-diagrams used here. As mentioned in
Section 4, these could be sequence diagrams, but other kinds of diagrams should also be
considered. This would allow one to perform consistency checks between the use cases that
are formulated and the other models constructed during the development of the system, or
even to verify some behavioural requirements.

Furthermore, more work has to be done for the integration of security use cases in the
field of testing and in the field of verifying that the security aspects described in the use
cases are met in the system.

Another interesting research aspect is the integration of security use cases into criteria
catalogues like the Common Criteria (see [Com99]). Thereby we want to look at the essen-

9



tial documents necessary for a security evaluation, which are connected with the security
use cases.

References
[BKL02] G. Brose, M. Koch, and K.-P. L¨ohr. Integrating access control design into the software develop-

ment process. InIntegrated Design and Process Technology (IDPT), 2002.

[BPRF99] B. Blobel, P. Pharow, and F. Roger-France. Security and Design Based on a General Conceptual
Security Model and UML. InHPCN Europe, 1999.

[Bre98] Ruth Breu.Konzepte, Techniken und Methodik des objektorientierten Entwurfs – Ein integrierter
Ansatz. Habilitationsschrift, Technische Universit¨at München, November 1998.

[Bre02] Ruth Breu. An Integrated Approach to Use Case Based Development, 2002. To be published.

[Com99] Common criteria for information technology security evaluation version 2.1. Technical report,
August 1999. Avilable from http://www.commoncriteria.org/ docs/index.html.

[DW98] D. F. D’Souza and A. C. Wills.Objects, Components, and Frameworks With UML: The Catalysis
Approach. Addison Wesley Publishing Company, 1998.

[FH97] E. B. Fernandez and J. C. Hawkins. Extending use cases and interaction diagrams to develop
system architecture requirements. Technical Report TR-CSE-97-47, Department of Computer
Science and Engineering, Florida Atlantic University, Boca Raton, Florida, 1997.

[FMMMP02] E. Fernández-Medina, A. Mart´ınez, C. Medina, and M. Piattini. UML for the design of secure
databases: Integrating security levels, user roles, and constraints in the database design process.
2002. In [JCF�02].

[FS98] Martin Fowler and Kendal Scott.UML Distilled – Applying the Standard Object Modelling
Language. Addison Wesley Longman Inc., 7th edition, June 1998.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh.The Unified Software Development Process.
Addison Wesley Longman, Inc., 1999.

[JCF�02] J. Jürjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors.Critical Systems
Development with UML, number TUM-I0208 in TUM technical report, 2002. UML’02 satellite
workshop proceedings.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and GunnarÖvergaard.Object-Oriented
Software Engineering: A Use–Case Driven Approach. Addison Wesley Longman, Inc., 1992.

[Jür02a] J. J¨urjens. Principles for Secure Systems Design. PhD thesis, Oxford University Computing
Laboratory, Trinity Term 2002.

[Jür02b] J. J¨urjens. UMLsec: Extending UML for secure systems development. In J.-M. J´ezéquel,
H. Hussmann, and S. Cook, editors,UML 2002 – The Unified Modeling Language, volume
2460 ofLNCS, pages 412–425, Dresden, Sept. 30 – Oct. 4 2002. Springer. 5th International
Conference.

[Jür03] J. Jürjens.Secure Systems Development with UML. Springer, 2003. To be published.

[Kru00] Philippe Kruchten.The Rational Unified Process – An Introduction, Second Edition. Addison
Wesley Longman, Inc., 2000.

[Som00] Ian Somerville.Software Engineering. Addison Wesley, 2000.

10


