
The SDL Speci�cation of the Sliding Window Protocol Revisited

Christian Facchia� Markus Haubner� Ursula Hinkelb

aSiemens AG� PN KE CPT ��� D������ M�unchen� Christian�Facchi	pn�siemens�de

bInstitut f�ur Informatik� Technische Universit�at M�unchen� D��
��
 M�unchen�
fhaubnerm�hinkelg	informatik�tu�muenchen�de

This paper is a corrigendum to the SDL speci�cation of the sliding window protocol
which was �rst published by the ISO
IEC as a technical report� We present some results
of a tool supported simulation of the SDL speci�cation of the sliding window protocol�
We found out that the speci�cation contains signi�cant errors and does not meet the
informal description of the protocol� In this paper we describe these errors and give a
correct version of the SDL speci�cation�

�� INTRODUCTION

CCITT� and ISO have standardized the formal description techniques �FDT� Estelle�
LOTOS� SDL and MSC for introducing formal methods in the area of distributed systems�
The speci�cation and description language SDL is one of them� SDL is a widespread
speci�cation language� which� in our opinion due to its graphical notation and structuring
concepts� is well�suited for the formulation of large and complicated speci�cations of
distributed systems�
We will present some results of a case study ���� in which we examined the tool supported

development of protocols� Because of its practical relevance and simplicity we chose the
SDL speci�cation of the sliding window protocol as an example for this examination�
An SDL description of the sliding window protocol is given in ������� Working with the
tools we did not follow any method for the testing of SDL systems but did just use the
various facilities of the tools like the graphical editor and the simulator� When editing and
simulating the SDL speci�cation of the sliding window protocol� we found some incorrect
parts within this speci�cation� The speci�cation does not meet the informal description
of the protocol which is also given in ������� We will explain these discrepancies by
examples which we drew of the simulation� Then we will present a corrected speci�cation
with respect to the previously found errors� Therefore� this paper can be regarded as a
corrigendum to some parts of �������
Based on our experience we propose the use of formal methods with tool assistance�

Although a formal speci�cation may contain errors �which of course should be avoided�� it

�In ���� the CCITT became the Telecommunication Standards Sector of the International Telecommuni�
cation Union �ITU�T�� If a document is published by CCITT� this organization name will be used instead
of ITU�T in the sequel�

helps the designer to achieve a better understanding of the system to be built� Tools are
extremely useful in achieving a correct speci�cation� Design inconsistencies� ambiguities
and incompleteness are detected in an early stage of software development�
This paper is organized as follows� In Section � we will give an informal introduction

to the sliding window protocol� The main part of this paper� Section �� describes the
errors that we found and their correction� Moreover� we will explain how we discovered
the errors using SDL tools� Section � summarizes the results and draws a conclusion�

�� THE SLIDING WINDOW PROTOCOL

The sliding window protocol is a widespread protocol describing one possibility of the
reliable information exchange between components� The sliding window protocol can
be used within the data link layer of the ISO
OSI basic reference model ���� Due to
its purpose it describes a point to point connection of two communication partners �a
transmitter and a receiver� without an intermediate relay station� The latter aspect is
dealt with in higher layers of the ISO
OSI basic reference model� Note that the connection
establishment and disconnection phase are not part of the sliding window protocol� It
serves only to establish a bidirectional reliable and order preserving data transfer within
an existing connection�
The basic principle of the sliding window protocol is the usage of a sending and receiving

bu�er� For the transmitter it is possible to transmit more than one message while awaiting
an acknowledgement for messages which have been transmitted before� In hardware
description an equivalent property is called pipelining�
According to ���� the protocol can be described as follows� The transmitter and the

receiver communicate via channels that are lossy in the sense that messages may dis�
appear� Messages may also be corrupted which has to be detectable by the protocol
entity� Each message is tagged with a sequence number� The transmitter is permitted
to dispatch a bounded number of messages with consecutive tags while awaiting their
acknowledgements� The messages are said to fall within the transmitter�s window� At the
other end� the receiver maintains a receiver�s window� which contains messages that have
been received but which to this point in time cannot be output because some message
with a lower sequence number is still to be received� The receiver repeatedly acknowl�
edges the last message it has successfully transferred to the receiving user by sending the
corresponding sequence number back to the transmitter�
We demonstrate the advantages of the sliding window protocol by an example� Station

A wants to transmit � frames to its peer station B� Station A sends the frames �� � and �
without waiting for an acknowledgement between the frames� Having received the three
frames� station B responds by sending an acknowledgement for frame � to station A�
The SDL speci�cation of the sliding window protocol ������ is based on a sliding window

protocol using �go back n� according to ��
�� For simplicity only a unidirectional �ow of
data is described� Thus� it is possible to distinguish two components� transmitter and
receiver� Note that the �ow of acknowledgements is in the opposite direction to the data
�ow� Each frame is identi�ed by a unique sequence number� As an abstraction of real
protocols� in which a wrap around may occur� an unbounded range of sequence numbers
is used in ������� The sequence number is attached to each data frame by the transmitter

and it is later used for the acknowledgement and for the determination of the frame�s
sequential order� The transmitter increments the sequence number for each new data
element�

lowest

unack

highest

sent � � �� � �

transmitter window size

Figure �� Transmitter window

The transmitter window shown in Figure � is used for bu�ering the unacknowledged
frames� The variable lowestunack is used as an indicator for the lowest sequence number
of an unacknowledged frame which has not necessarily been sent� Initially it is set to
�� The variable highestsent indicates the sequence number of the last sent frame and is
initialized by
� Both values determine the size of the transmitting window bounded by
the constant tws�
If the transmitter wants to send a data frame� then it has to check �rst whether the

actual window size �highestsent� lowestunack� is less than tws� If this condition is not
ful�lled� the data frame is not sent until it is possible� In the other case the transmitter
increments highestsent by one� emits the data combined with highestsent as sequence
number and starts a timer for that sequence number� Whenever a correct acknowledge�
ment �not corrupted and with a sequence number greater or equal than lowestunack� is
received� all timers for frames with lower sequence numbers beginning by the received one
down to lowestunack are cancelled� Then lowestunack is set to the received sequence
number incremented by one� When a timeout occurs� all timers according to the sequence
number of the message for which the timeout has occurred up to highestsent are reset
and the corresponding frames are retransmitted in a sequential order starting with the
message for which the timeout occurred� This includes also the repeated starting of the
timers�
In Figure � the second window� which is located at the receiver� is presented� The

receiver window is used to bu�er the received frames which can not yet be handed out to
the user because some frame with a lower sequence number has not been received� The
variable nextrequired� whose initial value is �� is used to indicate the sequence number
of the next expected frame� The maximum size of the receiver window is described by
the constant rws� If a noncorrupted frame is received with a sequence number in the
range of �nextrequired��nextrequired � rws � �� all messages starting by nextrequired

up to the �rst not received message are delivered to the user� Then nextrequired is
set to the number of the �rst not received message and nextrequired � � is sent as an
acknowledgement to the transmitter�

� � �� � �
next

required

highest

received

receiver window size

Figure �� Receiver window

�� AN ANALYSIS OF THE SLIDING WINDOW PROTOCOL

In this section we present the errors that we found in the SDL speci�cation of the sliding
window protocol ��������� We will �rst describe each error in an abstract way and then
show a scenario in which it occurs followed by a corrected speci�cation�

���� Tracing the errors

For our case study� in which we evaluated the facilities of SDL tools� we chose the sliding
window protocol as an example� because it is a well known� simple protocol� We did not
follow any systematic testing method �like e�g� using TTCN or a test case generation� but
concentrated on the evaluation of the various facilities of SDL tools�
One way to check the behaviour of the protocol is to use the simulation as it is o�ered by

some SDL tools� By simulating the SDL speci�cation the behaviour of the speci�ed system
can be debugged� We started with executing a single step simulation� We sent signals
from the environment to the system and observed the reaction of the SDL processes�
The exchange of signals as well as the internal status of the system like the values of
variables and the input ports are displayed and can be observed during the simulation�
We immediately recognized that there was something wrong with the behaviour of the
protocol�
Thinking that the problem might have its cause in our speci�cation of the protocol

which we used as input to the tools� or that we might have made some mistakes during
the simulation� we generated Message Sequence Charts of the simulation� We analysed
the MSCs and checked the corresponding parts of the SDL speci�cation with paper and
pencil� Thus� we found the errors described further below�
The advantage of using tools is the visualization of the dynamic behaviour of the system

speci�ed by SDL� The interaction of the processes and the exchange of signals as well as
the changing of the data values within the processes are di�cult to imagine without tool
support� Especially the display of the values of the variables of the processes and the
message �ow with the values of parameters transmitted by the signals were very helpful
for the detection of the errors�

���� A short overview of the SDL speci�cation

We give only a short description of the structure of the SDL speci�cation which is
presented in full details in ����� The speci�cation is based on SDL��� Figure � gives an

overview of the structure of the speci�cation but omits signals� channel identi�ers and
data declarations�

Receiver

Medium

system Sliding Window Protocol

block ReceiverEntity

to�from Medium to�from Medium

to the receiving user

messages

messages

to the receiving user

Transmitter

Entity

Receiver

Entity

from the sending user

block Transmitter

Entity

Transmitter

from the sending user

messages

messages

Figure �� The structure of the SDL speci�cation

The SDL speci�cation of the protocol is composed of three blocks� TransmitterEn�
tity� ReceiverEntity and Medium� The sending and the receiving users are part of the
environment and interact with the corresponding protocol entities by signals� The two
blocks TransmitterEntity and ReceiverEntity communicate via channels with the block
Medium� The block Medium models an unreliable medium� which can nondeterministi�
cally lose� corrupt� duplicate or re�order messages� Its behaviour is described in Section
���� The behaviour of the block Medium is not part of the SDL speci�cation of the sliding
window protocol itself� However� there is an SDL speci�cation of an unreliable medium in
another chapter of ������� Thus� we took this speci�cation for the medium of the Sliding
Window Protocol�
The TransmitterEntity sends data� which it gets as input from the sending user� via the
medium� The ReceiverEntity gets data from the medium and sends acknowledgements
over the medium to the TransmitterEntity� Data� which have been correctly transmitted�
are given to the receiving user�
The block TransmitterEntity consists of the process Transmitter which includes two pro�
cedures� ReleaseTimers and Retransmit� The block ReceiverEntity consists of the process

Receiver which includes the procedure DeliverMessages�

���� Errors Concerning the Sequence Number

In the formal description of the sliding window protocol �������� unbounded sequence
numbers are attached to the messages� When the transmitter sends a message� it has to
start a timer for that message� Each message is related to an individual timer� However�
due to a constraint of the informal description of the protocol� the number of timers
existing at the same time is bounded� In the following we describe an error which is based
on dealing with this discrepancy in the SDL speci�cation�

Data Transfer

Window Closed

Data Transfer

Window Closed

ReleaseTimers

�seqno�hs�

Retransmit

�seqno�hs�cq�

ReleaseTimers

�seqno�hs�

Retransmit

�seqno�hs�cq�

tim �seqno�tim �seqno�

seqno �� hs �

�hs � seqno� mod tws

Data Transfer

Data Transfer

Data Transfer

Window Closed

Part of the speci�cation of the process Transmit in �	���

Corrected version of the speci�cation

process Transmit

This transition describes the reaction

to the input of the timer signal�

ReleaseTimers and Retransmit with the

has to be retransmitted�

sequence number of the message which

parameter seqno which denotes the

The process Transmit calls the procedures

Window Closed

Window Closed

Figure �� The use of sequence numbers in Process Transmitter

������ Description of the Error

In the process Transmitter� after a new message was sent� the timer is set to the sequence
number of the message modulo tws by the statement �set�now�delta� tim�hs mod tws���
�highestsent is abbreviated by hs�� However� after a timeout� the parameter of the timer
is treated as if it contained the sequence number itself and not the modulo number �see
left diagram in Figure ���
In the procedure Retransmit the same error occurs� Instead of the sequence number of

the retransmitted message the sequence number modulo tws is sent and used to set the
timer �see left diagram in Figure ���

p �� p mod tws�

p �� �p � �� mod tws� p �� p � �

which have to be retransmitted

number of the message for which the

Corrected version of the speci�cation

procedure Retransmit

Part of the speci�cation of the procedure Retransmit in 	
����

tim�p mod tws��

set�now�delta�

The variable p denotes the sequence

timer has to be set�

Setting of timers for messages

by the Transmitter�

set�now � delta� tim�p��

Figure �� The setting of timers in the procedure Retransmit

The procedure Retransmit calculates the sequence numbers of the messages to retrans�
mit modulo tws� so the receiver will not accept retransmitted messages that have sequence
numbers which di�er from the modulo sequence number�

������ Erroneous Scenario

Suppose the transmitter window size is � and the value of highestsent �abbreviated
by hs� is ��� Suppose further the receiver is waiting for a retransmission of message ���
because message �� was corrupted� Having received the timer signal� the transmitter
will retransmit the messages �� and �� with the sequence numbers �� mod tws � � and
�� mod tws � �� The receiver already got the messages � and � � so it will ignore the
newly transmitted messages and will still be waiting for message ��� Now the sliding
window protocol is in a livelock� where the transmitter will retransmit messages �� and
�� with sequence numbers � and � forever and the receiver will never accept them� because
their sequence numbers are lower than nextrequired�

������ Correction of the Speci�cation

In order to solve this problem and to keep the changes to the speci�cation minimal�
concerning the process Transmitter we insert the assignment seqno �� hs � �hs �
seqno� mod tws in a task after the input symbol of the timeout signal �see right dia�
gram in Figure ��� It calculates the correct sequence number from the modulo sequence
number and highestsent� so the correct sequence number will be passed to the pro�
cedures ReleaseTimers and Retransmit� In the procedure Retransmit the line �p ��
�p � �� mod tws� is changed into �p �� p � �� and in the task �p �� p mod tws�
set�now � delta� tim�p��� the assignment is removed and the set statement is changed
into �set�now � delta� tim�p mod tws��� �see right diagram in Figure ���

���� Errors Concerning the Closing of the Transmitter Window

The transmitter has a limited bu�er for messages which have been received but have
not yet been acknowledged� If this bu�er is �lled up� the transmitter does not accept any
more messages and the transmitter window is closed� as shown in Figure ��

message

Data Transfer Window Closed

hs � lu � tws

true false

Figure �� Closing the transmitter window

������ Description of the Error

In the process Transmitter the transmitter window is closed too late� Even if there
are tws unacknowledged messages� lowestunack � tws is greater than highestsent and
the window is still open� As a consequence� the next message� that is sent� will also use
the timer of the lowest unacknowledged message� although it is still in use� Therefore�
one timer is used for two di�erent messages� If the lowest unacknowledged message is
not received correctly by the receiver� the transmitter will not get a timeout for this
message� The transmitter will not retransmit the message and the receiver will not pass
on any messages until it will have received the missing message� Thus� the sliding window
protocol is in a livelock�

������ Erroneous Scenario

Suppose tws � �� highestsent�hs� � �� lowestunack�lu� � � and the queue is set to
� �� �� �� �� � � ��ve messages have been sent� they are all still unacknowledged��� The
transmitter window is full and should have been closed after message � had been sent�
However� the evaluation of the condition hs � lu� tws �� � ���� in the decision symbol
returns true� so the window is not closed� Suppose the transmitter sends message �� Now
the queue � �� �� �� �� �� � � keeps more than tws elements� As a consequence� the timer
for message � is overwritten with the timer for message �� because in the set statement

�Note that the messages are represented only by their sequence numbers� For simplicity we have omitted
their content�

set �now � delta� tim �hs mod tws�� the timer instance � is attached to both messages�
One message later than expected the condition hs � lu � tws �� � � � �� evaluates to
false and the transmitter window is closed�

������ Correction of the Speci�cation

The condition hs � lu � tws is changed into hs � lu � tws ��� so the transmitter
window will be closed one message earlier� just in time�

���� Errors Concerning the Spooling of the Transmitter Queue in

the Retransmit Process

During the retransmission of messages� a rotation of the messages stored in the trans�
mitter queue is necessary� because the message that has got the timeout has to be re�
transmitted �rst� In the following we describe an error which occurs during this rotation
process �see Figure ���

p � lu � �

k� ��

spooling

k� �

�true�

�false�

k� �� k� � �

of the message which has received the timeout�

transmitter queue� The variable p denotes the sequence number

This part of the speci�cation describes the spooling of the

procedure Retransmit

Figure �� The spooling of the transmitter queue

������ Description of the Error

In the procedure Retransmit the message queue should be rotated until the �rst message
to be retransmitted is at the beginning of the queue� However� the calculation of the
messages that have to be rotated is incorrect� because the queue is always rotated one
message further than it should be� As a result� when the messages are retransmitted the
message bodies will not �t to their sequence numbers�

������ Erroneous Scenario

Suppose a scenario in which four messages are in the transmitter window�
queue �� �� �� �� � �� lu � ��
Now message � receives a timeout� so p � ��

The rotation of the messages in the queue starts�
k� �� p� lu� � � �� � � � � �
k� � � �

The queue is rotated once� queue �� �� �� �� � �
Despite the fact that the messages are in the correct order the rotation of the messages
continues�
k� �� k�� � � �
k� � � �
 �
The queue is rotated a second time� queue �� �� �� �� � �
k� �� k�� � �

Now the value of k� �
 is false� the rotation is �nished and the retransmission starts�
Message � is retransmitted with the �rst element in the queue as content� Thus� the new
message has the sequence number �� but the body of message �� Sequence number � will
be combined with message body � and sequence number � will be sent with the message
body �� As the checksums are calculated after the new combinations� the receiver will
not notice the altered sequence of the message bodies and the message is corrupted�

������ Correction of the Speci�cation

To correct the rotation in the procedure Retransmit� the calculation of k� has to be
k� �� p� lu instead of k� �� p� lu� � in Figure ��

���� Errors Concerning the Medium

Transmitter and receiver exchange their data and acknowledgements over a medium�
This medium models an unreliable channel� which can nondeterministically lose� corrupt�
duplicate or re�order messages� However� in SDL�� there exists no means for expressing
nondeterminism� Therefore� in ������ hazards are introduced� as shown in Figure �� The
process MsgManager is responsible for the treatment of the data within the medium�
Its nondeterministic behaviour is modelled by introducing the guard process MsgHazard�
This process sends hazard signals to the MsgManager suggesting which operations are to
be carried out by the MsgManager on the data� normal delivery �MNormal�� loss �MLose��
duplication �MDup�� corruption �MCorrupt� or reordering �MReord� of messages� The
data within the medium are stored in a queue called Medium Message Queue mq� which
is a local variable of the SDL process MsgManager�
The treatment of acknowledgements within the medium is handled by the process Ack�
Manager� For modelling its nondeterministic behaviour the process AckHazard is intro�
duced and speci�ed similar to MsgHazard�

������ Description of the Error

A hazard may send signals to its manager� although its manager�s message queue mq is
empty� Some operations performed by the manager on the queue mq after having received
a signal produce an error if the queue mq is empty�

������ Erroneous Scenario

Suppose message � waits in the queue mq to be transmitted�
MediumMessageQueue � mq �� � �
Suppose that the hazard signal MNormal appears�

block Medium

MsgManager

MsgHazard

AckManager

AckHazard

mm

aa
��la�

��lm�

ReceiverEntity

Acknowledgements from

signallist lm � MNormal�MLose� MDup�

Data to

ReceiverEntity

signallist la � ANormal� ALose� ADup�

MReord� MCorrupt�

AReord� ACorrupt�

Acknowledgements

to TransmitterEntity

Data from

TransmitterEntity

Figure �� Structure of the block Medium

qitem �� qfirst�mq� � �
Now the queue is empty�
mq �� qrest�mq� � qnew

Message � is sent to the receiver�
Suppose the hazard signal MNormal appears again�
Then qitem is set to qfirst�mq� � qfirst�qnew�
According to the axiom qfirst�qnew� �� error� the execution of the SDL system will
stop and an error message will be displayed�

������ Correction of the Speci�cation

To prevent these errors the manager always checks if its message queue mq is empty
when it gets a signal from its hazard� Only if the message queue mq is not empty� the
hazard signal will be processed� otherwise the manager will not do anything�
Note that this error would not have occurred if SDL �� was used which includes ex�

plicit language constructs for nondeterminism� because the usage of the SDL processes
MsgManager and AckHazard is not necessary�

�� CONCLUSION

Our analysis of the sliding window protocol with tool assistance resulted in a signi�cant
improvement of the corresponding SDL speci�cation� First� we were suprised that errors�
which are typical for programming� are found in an SDL speci�cation� But taking a closer
look at the speci�cation� we recognized that some parts of the speci�cation concerning
data types and operations on data are very complex and have been speci�ed by program�
ming concepts like procedures� It is not surprising that using concepts for programming
results in simple programming errors� Based on our experience we propose the use of
formal methods with tool assistance for the development of SDL systems� Thus� typical
programming errors are detected in the early stages of system development�
The use of formal methods forces a system developer to write precise and unambiguous

speci�cations� Note that a formal requirement speci�cation does not guarantee a correct
speci�cation� It only describes the system�s requirements in an unambiguous way� The
formal requirement speci�cation has to be checked to ensure that it corresponds to the
speci�er�s intuition� This process is called validation� By using validation techniques like
e�g� simulation or proving some properties errors of the speci�cation can be detected in
early development steps� We �rst read the SDL speci�cation of the sliding window pro�
tocol without noticing the errors presented in Section �� The SDL speci�cation describes
a complex behaviour and is hard to overlook� However� the simulation in ���� which is a
testing of some speci�cation�s aspects� showed these inconsistencies immediately� Indeed
we found these errors during the simulation without using any systematic methodology�
We think that a systematic approach for the simulation might yield even more errors�
Moreover� writing a speci�cation without a later simulation is quite similar to program�
ming without testing the program� A programmer would not rely on an untested program�
except the program had been formally veri�ed� However� even a formally veri�ed program
should be tested in order to check whether it meets the requirements� The validation of a
speci�cation should be tool supported� because in most cases a manual approach is very
time consuming so that the validation will be omitted or be done only for some parts
of the speci�cations� We think that in practice a simulation should be chosen rather
than a formal veri�cation� A simulation can be carried out without having mathematical
knowledge which is essential for formal proofs� There exists a variety of tools for SDL
which are of great assistance in editing and checking syntactically and semantically SDL
speci�cations� During the tutorials of the last SDL Forum ����� methods for the testing
and the validation of SDL systems were presented �see �������
The importance of simulating SDL speci�cations is demonstrated by the fact that�

although the authors of the speci�cation of the sliding window protocol are SDL experts
and did a detailed analysis of the informal description of the protocol� they did not succeed
in giving a correct SDL speci�cation�
Although large programs and speci�cations or text are likely to contain some errors�

we have been surprised that these fundamental errors of the speci�cation of the sliding
window protocol have not been noticed before� If an implementation of the protocol had
been based on the SDL speci�cation� the errors should have been discovered immediately�
In another case study we found some errors in the speci�cation of the Abracadabra

protocol� too ������ Therefore� we suggest that all SDL speci�cations which are part of

ITU�T standards or ISO technical reports� like ������� should be checked by tools and
if necessary be corrected� This could result in a corrigendum to ������� It might also
be interesting to have a closer look at the Estelle and LOTOS speci�cations included in
������ and to analyse whether these speci�cations are correct or include some errors not
yet known�

ACKNOWLEDGEMENTS

We thank Manfred Broy� ystein Haugen� Stephan Merz� Franz Regensburger and
Ekkart Rudolph who read earlier drafts of this paper and provided valuable feedback� For
analysing and simulating the SDL speci�cation of the sliding window protocol we used
the SDL tools ObjectGeode by Verilog and SICAT by Siemens AG�

REFERENCES

�� R� Br!k and A� Sarma� SDL ���� with MSC in CASE� North�Holland� �����
�� A�R� Cavalli� B��M� Chin� and K� Chon� Testing Methods for SDL Systems� Computer

Networks and ISDN Systems� ����������� " ����� �����
�� M� Haubner� Vergleich zweier SDL�Werkzeuge anhand des SlidingWindow Protokolls�

Fortgeschrittenenpraktikum� Technische Universit�at M�unchen� ����� in German�
�� U� Hinkel� An Analysis of the Abracadabra�Protocol� ����� Internal report� in Ger�

man�
�� D� Hogrefe� Validation of SDL Systems� Computer Networks and ISDN Systems�

����������� " ����� �����
�� ISO� ISO ����� Information Processing Systems � Open Systems Interconnection �

Basic Reference Model� �����
�� ISO
IEC� Information Technology � Open System Interconection � guidelines for the

application of Estelle� LOTOS and SDL� Technical Report ISO
IEC
TR �
���� �����
�� C� Klein� Spezi�kation eines Dienstes und Protokolls in focus " Die Abracadabra

Fallstudie� ����� in German�
�� K� St#len� Development of SDL Speci�cations in focus� In R� Br!k and A� Sarma�

editors� SDL ���� with MSC in CASE� pages ���"���� North�Holland� �����
�
� A� S� Tanenbaum� Computer Networks� Prentice Hall� �����
��� K� J� Turner� Using Formal Description Techniques � An Introduction to Estelle�

Lotos and SDL� John Wiley $ Sons� �����

