
Model-Based Requirements Engineering with AutoRAID

Bernhard Schätz, Andreas Fleischmann, Eva Geisberger, Markus Pister

Fakultät für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
{fleischa|geisberg|pister|schaetz}@in.tum.de

Abstract: While software design is increasingly based on models, requirements
engineering is generally performed using structured text; as a consequence, only a
weakly structured connection to design is possible. Model-based requirements en-
gineering can bridge this gap. With AutoRAID we introduce a tool prototype sup-
porting a structured and integrated requirements model, and operations for refine-
ment and structuring leading from textual requirements to the design model.

1 Introduction

The core issue of model based requirements engineering is the introduction of a common
conceptual model for requirements and design elements combined with step-wise for-
malization of requirements in the development process. Such a gradual, tool-based tran-
sition from requirements analysis to design reduces the gap between these phases. We
introduce the tool AutoRAID for that transition, based on a review-like process.

Due to their generally informal nature, ensuring the quality of requirements demands
different techniques then applied when assuring the quality of design specifications.
Standards like IEEE 1233-1998 [IE98a] define criteria for requirements specifications to
ensure quality in the early phases of development. Here, we address five quality defects
by means of constructive and analytic quality assurance:
• Inconsistency: By breaking down requirements into a detailed model with linked

elements, inconsistencies are removed (e.g., when detailing scenarios of a system
based on its interface).

• Ambiguity: By using a detailed model for the requirements, expressing the re-
quirements in terms of this model successively leads to elimination of ambiguities
(e.g., when classifying and detailing the steps of a scenario).

• Intraceability: By linking the detailed requirements on the fly to elements of the
design, traceability is automatically ensured (e.g., when motivating a mode of the
system out of a mode constraint).

• Infeasibility, Verifiability: Through the restriction imposed by formalization, a
design-like precision of description is enforced, reducing the risk of infeasibility and
verifiability (e.g., when specifying the interactions performed during a scenario).

While generally manually performed, review- or form-based approaches are used; here
we present a model-based and tool-supported approach, based on a review-like process.
Model-based requirements engineering uses a formal model of requirements focusing on
their classification, implicitly present in approaches [IE98b]. Thus, it fits into a struc-

tured development process when tool-supported structuring and classification mecha-
nisms as used in a review process [DP04] are offered to domain experts. Besides those
structuring steps (e.g., identifying the steps of a use case), analytical techniques applied
in an inspection are mechanized (e.g., each functionality must allocated to a component).
In the following, we present those techniques as implemented in AutoRAID [AR04]:
• Structured requirements model: Introducing domain-specific classes of requirements

(e.g. architectural requirements, modal requirements, use case scenarios).
• Integration of textual requirements: Integrating textual requirements into the model

and offering pragmatic mechanisms for their use.
• Tool-based support for classifying and structuring: Mechanizing the step-wise struc-

turing (e.g. identification of actuators in functional requirements).
• Connection to design-oriented model elements: Linking classes of requirements and

classes of design (e.g. modal requirements to control states).
The model of design is taken from the AutoFOCUS [Sch04], targeting reactive systems.

2 The AutoRAID Conceptual Model

State-of-the-art requirements tools generally use a rather simple conceptual model to
define requirements specifications, basically supporting only the concept `Requirement’
as well as the relations `sub-requirement’ and `associated requirement’. In contrast – as
shown in a simplified version in Figure 1 – AutoRAID uses a more complex model, built
around the notion of a (informal) specification element. As explained in Section 3, our
approach consists of the activities Structuring, Classification, Formalizing and Analysis.
To support them, the model offers specific elements and associations described below.

2.1 Structured Requirements

A major step during requirements engineering – as found in DOORS or Requiste Pro –
consists of breaking down requirements into sub-requirements. AutoRAID uses the con-

Component

SubComponents

Channel

ControlState

Transition

Pattern

DataTypeDataElement

Port
0..*

0..*

0..*

0..*

0..*

0..2

0..*

2

1

1

0..*0..*

0..*

0..*

0..* 1

10..*

Condition

Sequence

Observation

0..*

0..*

1..*

2

2

State

Observation

Event

Observation

1

1

0..*

0..*

Specification

SubRequ iremen ts
0..*

0..1

Architectural

Specification

Data

Specification

Functional

Specification

Modal

Specification 0..*

Observation

Specification

0..*

0
.
.1

0..10..*

0..*

0..1
0..*

Associated

Requirements

0..*

..*0

Scenario

Specification

0..*

0..

Figure 1: Simplified Conceptual Model for Analysis and Design

cept Specification (corresponding to a single requirement) and associations SubRequire-
ments and AssociatedRequirements. Specification elements have the usually attributes
(e.g., unique identifier, creator, priority). Requirements can be broken up into sub-re-
quirements forming a hierarchy that allows back-tracing the requirements to their goals.

2.2 Classified Requirements

As suggested in [IE98b], specifications can be classified as:
• Architectural requirements, describing the structure of a system. Components, inter-

faces and channels are captured with these requirements.
• Modal requirements, describing the operating modes of the application. Different

states or modes of the system and its components are defined here.
• Data type requirements, describing data types that can be used for communication

within the system and with the environment.
• Functional Requirements, defined in terms of uses cases described by representative

sequences of observations about the system and its interactions with its environment.

2.3 Integrated Requirements

Since a major functionality of AutoRAID is the easy transition from an informal to
model-based description of the system, the model shown in Figure 1 shows a tight inte-
gration of concepts for both kinds. For each classified informal concept (e.g., architec-
tural specification) there is a model-based concept (e.g., component, channel, port) asso-
ciated with it. The dashed associations show the connections between the respective
concepts. These links from the requirements to a structured models support analysis and
completion of the specification as well as traceability between analysis and design.

3 Tool Support

Figure 2 shows the user interface of AutoRAID. The model browser (left hand side of
Figure 2) shows the tree of the requirements analysis (Analysis) as well as of the design-
oriented model (Component Car); it shows generic Specifications (Requirements) as well
as classified Specifications (Use Cases, Constraints). The work area (right hand side)
shows the formalization step (see Subsection 3.3) of an Event Observation (front layer);
this communication event itself is a part of a Scenario Specification (second layer),
which in turn is a part of a Functional Specification (background layer). AutoRAID
assumes a review-based development process, with the steps defined in the following
subsection.

3.1 Generation and Import of Requirements

The tool AutoRAID allows to manually create or import requirements. During creation,
a requirement is automatically assigned a unique ID; the user adds attributes like title,
status, priority, etc. When creating requirements from an imported document, a `select-
and-create’ functionality allows to conveniently define a requirement. To support trac-

ing, the link between text and requirement displayed in the source text. For documenta-
tion purposes, a structured document can be generated from the refined requirements.

3.2 Structuring Requirements

To support a hierarchical structuring of a requirement specification, any kind of specifi-
cation can be structured hierarchically. The possibilities in AutoRAID are:
• A Specification can be linked to one or more Specifications, to identify common

SubRequirements or correlated requirements.
• Out of an existing Specification a new Specification is created and linked to it as a

SubRequirement, to break up a compound specification into its sub-specifications.
AutoRAID offers a convenient `select-and-create’ functionality, to easily identify a part
of a Specification to become a separate sub-specification; this functionality reuses the
selected part of the original description to create the new Specification and establishes a
SubRequirement relation between them.

3.3 Classifying and Formalizing Requirements

By classification, generic requirements are grouped according their category; specifica-
tions are broken down into sub-specifications until they are detailed enough to fit one of
the categories (architectural, modal, data, functional). To enforce more preciseness,
categorized specifications are further detailed. E.g., a Functional Specification can be

Figure 2: Definition of Event Observation in Scenario “Standard Display Interaction”

structured in form of a Scenario identifying its Observation Specification steps. These
steps are again classified, e.g., as communication Event Observations with sender, re-
ceiver, and signal. Using a form-like, text-based description, at this level a specification
is already formalized, requiring the strictness and preciseness of a detailed conceptual
model. These specification elements can be displayed in a graphical fashion; e.g., a sce-
nario is alternatively displayed as a sequence diagram. Thus, AutoRAID allows giving a
detailed description of the system from the requirements point of view, adding, e.g.,
rationales to document development decisions; or, from the design point of view, focus-
ing on a compact and comprehensible description. By using shared elements, design
elements can be easily traced back to motivating elements of the requirements model.

3.4 Analyzing Requirements

AutoRAID supports the step-wise analysis in a review-based and constructive fashion
using the strictness of model-based formalization step implicitly to analyze a specifica-
tion. Additionally, using the structured, model-based specification incrementally devel-
oped from weakly structured specifications, analysis techniques in form of consistency
conditions can be applied to detected possible weaknesses of the model, e.g., “Each
business requirement is refined by at least on application requirement” or “Each applica-
tion requirement is classified or refined by a application requirement”. Consistency
analysis is performed automatically, presenting those specification and model elements
that do not meet the consistency conditions.

4 Conclusion

AutoRAID covers structuring, classification and analysis of requirements, capturing the
decision process through forward and backward tracing, supporting the incremental
transformation of an informal specification to a model-based design. Current research
issues address the inclusion of additional classifications (e.g., work flows) and the treat-
ment of product lines. Furthermore, the applicability of the AutoRAID approach is in-
vestigated in real-world case studies in the automotive (chassis electronics) and the avia-
tion domain (flight control).

5 Bibliography

[AR04] Website of AutoRAID, http://wwwbroy.in.tum.de/~autoraid/
[DP04] Denger, C. Paech, B. “An Integrated Quality Assurance Approach for Use Case Based

Requirements”. In: Rumpe, B. Hesse, W. (eds). Modellierung 2004. Springer, 2004.
[IE98a] Software Engineering Committee of the IEEE Computer Society. IEEE Guide for De-

veloping System Requirements Specifications. IEEE Standard 1233-1998. IEEE CS.
[IE98b] Software Engineering Committee of the IEEE Computer Society. IEEE Guide for Soft-

ware Requirements Specifications (ANSI). IEEE Standard 830-1998. IEEE CS
[Sch04] Schätz, B.: Mastering the Complexity of Embedded Systems. In: Formal Techniques for

Embedded Distributed Systems, Kordon F., Lemoine, M. (eds.). Kluwer, 2004.

